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ABSTRACT This paper addresses cooperative control for a class of multi-agent networks. An interesting
feature of such network is that each agent possesses the characteristic of multi-time-scale. By developing the
relative states or the relative outputs based consensus protocols, some well-conditioned consensus criteria
in terms of linear matrix inequalities are derived successively based on the ε-strict Lyapunov function.
Compared with undirected graphs or strongly connected digraphs in existing works, a more general digraph
that it contains at least a directed spanning tree is considered herein. Moreover, a fully distributed consensus
protocol with time-varying coupling strength is proposed to avoid using global information. Finally, the
obtained theoretical results are validated by two examples including standard and nonstandard agents.

INDEX TERMS Consensus, directed graph, fully distributed protocol, multi-time-scale feature, strict
Lyapunov function.

I. INTRODUCTION
Cooperative control of multi-agent systems [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12] has received much
attention in past decades, and researchers from different dis-
ciplines have achieved abundant results including consen-
sus, formation control, rendezvous, and so forth. Consensus,
a fundamental problem in multi-agent systems, means that
a group of agents reach a common value or state by its
local interaction, and has become one of the attractive and
challenging research directions in a variety of scientific com-
munities, such as social networks [13], neural networks [14],
unmanned swarm systems [15], smart girds [16], etc.

The agent’s dynamics is an important factor in the design
of consensus algorithms, which are primarily studied for
single-integrator agents, please see [17], [18], and [19]. After
that, consensus problems have been studied for second-order
agents and high-order ones or their variations. Recently,
general linear dynamical agents and nonlinear agents are
also investigated. Despite these achievements, the dynamics
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in abovementioned works are assumed to be regular sys-
tems, in other words, all agents’ dynamics evolve at a sin-
gle time scale. In fact, many systems have multiple time
scales features. For examples, in the longitudinal motion
of a hypersonic vehicle, the ‘phugoid mode’ and the ‘short
period mode’ coexist and reveal a two-time-scale prop-
erty [20]. In the longitudinal dynamics of autonomous under-
water vehicle, the speed of translational dynamics is much
slower than that of orientation ones [21], which essen-
tially reflects the two-time-scale feature. In the direct-driven
single-link manipulator, the dynamics of armature current
and the dynamics of angular of manipulator belong to
the fast and slow dynamics, respectively. Unlike a sin-
gle vehicle/manipulator, a team formation of multiple vehi-
cles/manipulators can achieve more challenging and complex
tasks, such as, battlefield surveillance, collaborative pick-
and-place large payload, etc. Formally, these systems with
multiple time scales features can be modeled as singularly
perturbed systems [22], [23]. Compared with regular multi-
agent networks, the main challenges for coordination of
multi-time-scale agent networks include: (1) Conventional
analysis methods for single-time-scale agent networks cannot
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be applied to multi-time-scale agent networks, otherwise it
will lead to numerical ill-conditioned problem. How to design
multi-time-scale collaborative analysis and design methods is
challenging. (2) In the analysis and design of a single-time-
scale agent network, the problem of estimating multi-time
scale parameters is not involved. In this study, how to provide
information about the upper bound estimation of multi-time
scale parameters is also a challenging problem.

In the past decade, the collaborative behavior of multi-
agent systems with multiple time scales has attracted
much attention and various consensus algorithms have been
developed. For examples, to achieve consensus of singu-
larly perturbed multi-agent systems with global performance
guarantees, [24] proposes the decentralized control strategy
by using the state feedback controller. Recently, the results
in [24] are extended to different situations. Reference [25]
designs a distributed dynamic output-feedback consensus
protocol to achieve asymptotically consensus with global
performance guarantees, while [26] combines two Zeno-free
event-triggered mechanisms and event-triggered controller to
achieve guaranteed-cost consensus for two-time-scale agent
networks. Reference [27] further proposes both the static
and dynamic event-triggered mechanisms and distributed
synchronization protocols for two-time-scale agent networks
with switching topology. It is worth noticing that the singular
perturbation decomposition-based technology utilized above
is only applicable to the scene of the standard singular per-
turbation system. How to develop the corresponding analysis
and design method applicable to both standard and non-
standard singular perturbation system is one of the challenges
of this paper. Recently, [28] constructs both the relative states
and the relative outputs based adaptive consensus protocols
for two-time-scale agent networks. However, it is pointed
out that the communication topologies in the aforementioned
literature are assumed to be undirected. In fact, the asymmetry
of the Laplacian matrix induced by directed connected graphs
makes the analysis difficult in this paper. On the other hand,
the abovementioned works except [28] do not provide the
upper bound of the singular perturbation parameter which is
important for implementing the proposed consensus proto-
cols. The limitation on the communication is relaxed in [29]
and [30], where the topologies are directed and strongly
connected. However, the achieved consensus criteria therein
depend on the agent’s dynamics and the size of networks,
which maybe are unsolved as the size of networks is too
larger. Although these contributions, some facts should be
highlighted: 1) the communication topologies in above works
are special cases of directed topologies with a spanning tree;
2) Apart from [25] and [28], the proposed consensus proto-
cols given above rely heavily on the relative states of agent,
which are usually impossible or too expensive in practice.
Therefore, a natural question arises: Is it possible to develop
an suitable consensus protocol for multi-time-scale agent
networks with a general directed graphs by using the relative
states or the relative output states of agents? Which remains
unresolved so far.

Inspired by the above works, it is imperative to investigate
the consensus of multi-time-scale agent network under a gen-
eral digraph. The contributions of this paper are summarized
as follows:

(1) A milder condition on communication topology is
adopted herein. Specifically, unlike the undirected or
strongly connected directed graphs employed in some
existing works such as [24], [25], [26], [27], [28], [29],
and [30], we consider the directed topology contain-
ing the spanning tree, such requirement of topology is
relaxed effectively and is therefore more suitable for
practical applications.

(2) The ε-strict Lyapunov function is constructed to ana-
lyze both relative states and relative outputs based
consensus, some well-conditioned trackable consensus
criteria are deduced and the upper bound of singular
perturbation parameter is also estimated. Moreover,
in contrast to [24], [26], and [27], the results obtained
herein are applied to both the standard and nonstandard
agents.

(3) Two new fully distributed consensus protocols with
time-varying coupling strength are proposed. Com-
pared with the adaptive consensus protocol in [28] for
multi-time-scale agent network with undirected topol-
ogy,, the proposed consensus protocols are independent
on consensus states and can be implemented easily.

Notations: ℜ
n denotes the real n dimensional vectors. Im

is the identity matrix with dimension m, and vector 1 is a
vector with its all elements equals to 1. For a matrix P, the
expression P > 0(P < 0) means that P is symmetric positive
(negative) definite. A⊗B stands for the Kronecker product of
matrices A and B.

II. PROBLEM FORMULATION AND PRELIMINARIES
In this section, model description and some preliminaries
including definition and lemmas are given.

Consider a group of N identical general linear-time invari-
ant agents with dynamics is in the form of

ẋi(t) = A11xi(t) + A12zi(t) + B1ui(t),
εżi(t) = A21xi(t) + A22zi(t) + B2ui(t),
yi(t) = C1xi(t) + C2zi(t), i = 1, 2, . . . ,N .

(1)

where xi ∈ ℜ
n and zi ∈ ℜ

m are the slow and fast state vectors,
respectively; ε > 0 is a small parameter that indicates the
degree of the fast and slow dynamics separation; ui ∈ ℜ

p and
yi ∈ ℜ

q are the control input vector and the measured output
vector, respectively; Aij,Bi,Ci, i, j = 1, 2 are the known
constantmatriceswith appropriate dimensions.Moreover, the
communication graph among all agents is represented by a
directed graph G.

Let ξTi =
[
xTi zTi

]
, E(ε) = diag{In, εIm}, and

A =

[
A11 A12
A21 A22

]
,B =

[
B1
B2

]
,C =

[
C1 C2

]
.
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Network (1) can be rewritten as{
E(ε)ξ̇i = Aξi + Bui,
yi = Cξi, i = 1, 2, . . . ,N .

(2)

The communication links amongN agents are described by
a directed graph G = {V, E,A}, where V = {v1, v2, · · · , vN }

is the sets of nodes, E is the sets of edges. An edge (vi, vj)
belongs to the edge set E , if vj can access the information of
vi. If vj and vi can access the information from each other, the
corresponding graph is undirected. A path between vi and vj
is a sequence of edges. The graph G is said to be connected
if there exists a path between vi and vj, ∀i, j ∈ {1, 2, · · · ,N }.
The adjacency matrix A = [aij], i, j ∈ {1, 2, · · · ,N } is
defined as aij = 1 if (vi, vj) ∈ E but 0 otherwise, when
i ̸= j, and aii = 0. The Laplacian matrix L = [lij], i, j ∈

{1, 2, · · · ,N } is defined as lii = and lij = −aij for i = j.
Throughout this paper, the following definition and lem-

mas are introduced.
Assumption:The directed graph G contains at least a rooted

spanning tree.
Remark 1: Recently, the consensus problem has been

studied for multi-time-scale agent networks with undirected
topologies in [24], [25], [26], [27], and [28], the communi-
cation topology considered above can be seen as a special
case of Assumption 1. The asymmetrical of Laplacian matrix
associated with Assumption 1 makes significance difficult to
achieve consensus.
Definition: For network (1) and a given positive scalar ε∗,

it is said to achieve ε-uniformly consensus (ε-UC) if there
exists a suitable protocol ui such that limt→∞ ∥ξi(t)−ξj(t)∥ =

0, for all i, j = 1, . . . ,N and for any ε ∈ (0, ε∗].
Lemma 1: ([28], [31]): For some given matrices Mi(i =

1, 2, 3) withM2 = MT
2 and positive constant ε∗, E(ε)M (ε) =

MT (ε)E(ε) > 0 holds for any ε ∈ (0, ε∗], ifM1 > 0 and[
M1 ε∗MT

2
ε∗M2 ε∗M3

]
> 0, (3)

whereM (ε) =

[
M1 εMT

2
M2 M3

]
.

Lemma 2 ([32]): For a matrix L ∈ ℜ
N×N with exactly

one eigenvalue equal to zero and N − 1 eigenvalues with
positive real parts. Then, for any positive definite Q and
positive constant λ, there exists a positive definite matrix
P(λ) ∈ ℜ

N×N such that

PL+ LTP = Q− λ[Pϑrϑ
T
l + ϑlϑ

T
r P], (4)

where ϑl and ϑr are, respectively, the left and right eigenvec-
tors of the matrix L corresponding to the eigenvalue that is
equal to zero.

III. MAIN RESULTS
In this section, we will propose both the relative states based
protocol and the relative outputs based protocol, and deduce
some sufficient consensus conditions under which ε-UC of
MTSANs are ensured by constructing ε-dependent strict Lya-
punov function.

A. THE RELATIVE STATES BASED CONSENSUS ANALYSIS
To achieve ε-UC of MTSANs (1) by using the relative states
among the agents, the following protocol is given

ui = cF(ε)
N∑
j=1

aij(ξi − ξj), i = 1, 2, . . . ,N (5)

where c is the coupling strength, aij is the (i, j)-th entry of the
adjacencymatrix associatedwith the communication network
topologyG and indicates the information flow between agents
i and j with the definition that aij > 0 if the agent i receives
the information of the agent j, otherwise aij = 0. Moreover,
assume that there is no self-loops, F(ε) is the feedback gain
matrix will be designed later.
Theorem 1: Consider a MTSAN (1) with the topology

satisfies Assumption 1. The ε-UC via protocol (5) is solvable
if the coupling strength c ≥

λmax(P)
λmin(Q)

, where the matrices P and

Q are defined in Lemma 2, and the matrix gain is chosen as
F(ε) = −BTM−1(ε), whereM (ε) is defined in Lemma 1 and
satisfies

AM (0) +MT (0)AT − BBT < 0, (6)

AM (ε∗) +MT (ε∗)AT − BBT < 0, (7)

with a given positive scalar ε∗ > 0.
Proof: It can be deduced from Lemma 1 and the condi-

tions (6)−(7) that

E(ε)M (ε) = MT (ε)E(ε) > 0, ∀ε ∈ (0, ε∗], (8)

AM (ε) +MT (ε)AT − BBT < 0, ∀ε ∈ (0, ε∗], (9)

Let ξ∗
=

∑N
j=1 ϑl,jξj and ξ̄i = ξi − ξ∗, where ϑl is

the left eigenvector of the matrix L corresponding to the
eigenvalue that is equal to zero. It is easy to see that the
consensus problem under the protocol (5) can be investigated
by analyzing the asymptotical stability of ξ̄i, i = 1, 2, . . . ,N
since ξ1 = ξ2 = · · · = ξN is equivalent to ξ̄i = 0.
Denote ξ̄T =

[
ξ̄T1 ξ̄T2 . . . ξ̄TN

]
, combine (2) and (5), it can

be achieved that

E(ε) ˙̄ξi = Aξ̄i + cBF(ε)
N∑
j=1

aij(ξ̄i − ξ̄j), i = 1, 2, . . . ,N .

(10)

or

(IN ⊗ E(ε)) ˙̄ξ = [IN ⊗ A+ cL ⊗ (BF(ε))]ξ̄ , (11)

in a compact form.
Consider the following ε-dependent strict Lyapunov func-

tion candidate

V1(ε, ξ̄ ) = ξ̄T [P⊗ (E(ε)M−1(ε))]ξ̄ , (12)

where M−1(ε) exists for all ε ∈ (0, ε∗] based on (8), and P
is a positive definite matrix as shown in Lemma 2. Then, the
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time derivative of V1(ε, ξ̄ ) along the trajectory of (11) is given
by:

V̇1(ε, ξ̄ ) = 2 ˙̄ξT [P⊗ (E(ε)M−1(ε))]ξ̄

= ξ̄T [IN ⊗ A+ cL ⊗ (BF(ε))]T [P⊗M−1(ε)]ξ̄

+ ξ̄T [P⊗M−T (ε)][IN ⊗ A+ cL ⊗ (BF(ε))]ξ̄

= ξ̄T [P⊗ (ATM−1(ε) +M−T (ε)A)

+ cLTP⊗ (BF(ε))TM−1(ε)

+ cPL ⊗ (M−T (ε)BF(ε))]ξ̄ ,

= ξ̄T [P⊗ (ATM−1(ε) +M−T (ε)A)

−cQ⊗ (M−T (ε)BBTM−1(ε))]ξ̄

+ cλξ̄T [(Pϑrϑ
T
l + ϑlϑ

T
r P)

⊗ (M−T (ε)BBTM−1(ε))]ξ̄ (13)

by using F(ε) = −BTM−1(ε) and Lemma 2.
Note the fact that

ξ̄T [(Pϑrϑ
T
l ) ⊗ (M−T (ε)BBTM−1(ε))]ξ̄

= ξ̄T [(Pϑrϑ
T
l ) ⊗ (M−T (ε)BBTM−1(ε))]

× [(IN − 1NϑT
l ) ⊗ In+m]ξ

= ξ̄T [(Pϑrϑ
T
l − Pϑrϑ

T
l 1NϑT

l ) ⊗ (M−T (ε)BBTM−1(ε))]ξ

= 0, (14)

since ϑT
l 1N = 1. Then, it follows that

V̇1(ε, ξ̄ ) = ξ̄T [P⊗ (ATM−1(ε) +M−T (ε)A)

−cQ⊗ (M−T (ε)BBTM−1(ε))]ξ̄

≤ ξ̄T [P⊗ (ATM−1(ε) +M−T (ε)A

−c
λmin(Q)
λmax(P)

(M−T (ε)BBTM−1(ε))]ξ̄ . (15)

Let ξ̃i = M−1(ε)ξ̄i and ξ̃ =
[
ξ̃T1 ξ̃T2 . . . ξ̃TN

]
, the inequality

(15) can be further rewritten as

V̇1(ε, ξ̄ ) = ξ̃T [P⊗ (AM (ε) +MT (ε)AT − BBT )]ξ̃ < 0,

(16)

by using the fact that c ≥
λmax(P)
λmin(Q)

and the condition (9). In this
case, V̇1(ε, ξ̄ ) < 0 for any ε ∈ (0, ε∗]. That is, the ε-UC
problem of MTSANs (1) is solved. This ends the proof.
Remark 2: Conditions (6) and (7) show that the

existence condition of consensus protocol (5) is that
(E−1(ε)A,E−1(ε)B) is strongly controllable. On the other
hand, we do not require that the matrix A22 should be
nonsingular, which means that our method can be used for
multi-time-scale agent networks with both the standard and
nonstandard agents. Moreover, we have given the estimation
of the upper bound of singular perturbation parameter ε∗.
Remark 3: Contrary to the undirected topologies consid-

ered in [24], [25], [26], [27], and [28], and the strongly
connected digraphs considered in [29] and [30], the com-
munication networks herein are assumed to be digraphs with
spanning tree. The asymmetrical of Laplacian matrix makes

significance difficult to achieve consensus. Moreover, in con-
trast to the consensus conditions in [29] and [30] which may
be hard to verify when the size of networks is huge, the
obtained consensus criteria can be easy tested by agent’s
dynamics.

B. THE RELATIVE OUTPUTS BASED CONSENSUS ANALYSIS
In general, it is difficult to access all states of agents in
practice. In this subsection, by using only the agents’ relative
outputs, some well-conditioned sufficient consensus condi-
tions are further presented for MTSANs (1).

In this respect, we design the following consensus
protocol:{

E(ε) ˙̂ξi = Aξ̂i + Bui + K (ε)(yi − C ξ̂i),
ui = cF̂(ε)

∑N
j=1 aij(ξ̂i − ξ̂j), i = 1, 2, . . . ,N ,

(17)

where ξ̂i ∈ ℜ
n+m is the estimation of ξi, c denotes the

coupling strength, F̂(ε) and K (ε) serve as, respectively, the
consensus gain matrix and the observer gain matrix which
will be designed later.

Combining (2) and (17), we have{
E(ε)ξ̇i = Aξi + cBF̂(ε)

∑N
j=1 aij(ξ̂i − ξ̂j),

E(ε)ėi = (A− K (ε)C)ei, i = 1, 2, . . . ,N ,
(18)

where ei = ξi − ξ̂i serves as the estimation error of agent i.
Moreover, network (18) can be rewritten in a compact form

(IN ⊗ E(ε))ξ̇ = [IN ⊗ A+ cL ⊗ (BF̂(ε))]ξ
− cL ⊗ (BF̂(ε))e,

(IN ⊗ E(ε))ė = [IN ⊗ (A− K (ε)C)]e.

(19)

Let ξ∗
=

∑N
j=1 ϑl,jξj, ξ̄i = ξi − ξ∗, and η̄Ti =

[
ξ̄Ti eTi

]T ,
it can be obtained that

(IN ⊗ E(ε)) ˙̄η

=

[
IN ⊗ A+ cL ⊗ (BF̂(ε)) −cL ⊗ (BF̂(ε))

0 IN ⊗ (A− K (ε)C)

]
η̄.

(20)

where E(ε) = diag{E(ε),E(ε)}. Note that the ε UC problem
for network (2) under the protocol (17) can be investigated by
the asymptotical stability of η̄.
Theorem 2: Consider a MTSAN (1) with the topology sat-

isfies Assumption 1. The ε-UC via protocol (17) is solvable
if the coupling strength c and the matrix gain is chosen as
in Theorem 1, and the observer gain matrix is chosen as
K (ε) = M̂−T (ε)Y (ε), where Y (ε) = Y1 + εY2 and M̂ (ε)
satisfy the following LMIs

M̂T (0)A+ AT M̂ (0) − Y1C − CTY T1 < 0, (21)

M̂T
2 (ε∗)A+ AT M̂ (ε∗) − Y (ε∗)C − CTY T (ε∗) < 0, (22)

with a given positive scalar ε∗ > 0.
Proof: It can be deduced from Lemma 1 and the condi-

tions (21)−(22) that for any ε ∈ (0, ε∗]

M̂T (ε)(A− K (ε)C) + (A− K (ε)C)T M̂ (ε) < 0 (23)
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with M̂ (ε) =

[
M̂1 εM̂T

2
M̂2 M̂3

]
and Y (ε) = M̂T (ε)K (ε). Which

implies that the second equation of (20) is asymptotically
stable for any ε ∈ (0, ε∗].

On the other hand, it is easy to conclude from Theorem 1
that the subsystem ξ̄ is also asymptotically stable for any
ε ∈ (0, ε∗]. Then, we can draw the conclusion from Lemma
4.7 in [23] that system (20) is asymptotically stable for any
ε ∈ (0, ε∗]. Which means that the ε-UC problem ofMTSANs
(1) is solved. This ends the proof.
Remark 4: Compared with the consensus strategies pro-

posed in [24], [26], [27], [29], and [30] require full knowledge
of the relative states of agents, which are usually impossible
or too expensive in practice, the consensus protocol (17)
depends on only the relative output states of agents, which
can be implemented more easily.
Remark 5: The use of time-varying coupling gains is

related with consensus protocol. The author of [32] and
[33] proposed for the first time to use time-varying cou-
pling weights to avoid using global information. Compared
with [32], and [33], the contributions of this paper lie in the
following two aspects: (1) we extend the results of [32] and
[33] to the situation that each agent is described singularly
perturbed systems, and it is reported that the analysis and syn-
thesis for singularly perturbed systems is more complicated.
Specifically, we construct the ε-strict Lyapunov function to
analyze multi-time-scale networks; (2) only full-state-based
consensus protocol is given in [32] and [33], we not only
studies the full-state-based consensus issue, but also performs
the output-state-based consensus protocol design.

C. FULLY DISTRIBUTED CONSENSUS ANALYSIS
Note that in Theorems 1 and 2, the coupling strength c
should selected as c ≥

λmax(P)
λmin(Q)

, which means that we have
to calculate the maximum eigenvalue of P and the minimum
eigenvalue of Q. Therefore, from Lemma 2, the proposed
consensus protocols are not fully distributed since they rely
on knowledge of the Laplacian L. To address such issue,
in this subsection, motivated by [33], the coupling strength
c in above is redefined as a ‘‘slowly’’ strictly increasing time-
varying function. Therefore, the consensus protocols (5) and
(17) can respectively be modified as

ui = c(t)F(ε)
N∑
j=1

aij(ξi − ξj), i = 1, 2, . . . ,N (24)

and{
E(ε) ˙̂ξi = Aξ̂i + Bui + K (ε)(yi − C ξ̂i),
ui = c(t)F̂(ε)

∑N
j=1 aij(ξ̂i − ξ̂j), i = 1, 2, . . . ,N ,

(25)

Theorem 3: Consider a MTSAN (1) with the topology sat-
isfies Assumption 1. The ε-UC via protocol (17) is solvable
if the coupling strength c is selected as a ‘slowly’ strictly
increasing time-varying function and the matrix gain is cho-
sen as in Theorem 1.

Proof: Consider again ε-dependent strict Lyapunov
function candidate in (12). Proceeding as in the proof of
Theorem 1, it can be obtained that

V̇1(ε, ξ̄ ) ≤ ξ̄T [P⊗ (ATM−1(ε) +M−T (ε)A

−c(t)
λmin(Q)
λmax(P)

(M−T (ε)BBTM−1(ε))]ξ̄

= ξ̃T [P⊗ (MT (ε)AT + AM1(ε)

−c(t)
λmin(Q)
λmax(P)

BBT ]ξ̃ . (26)

Denote Sc(ε, t) = MT (ε)AT−c(t) λmin(Q)
λmax(P)

BBT + AM1(ε)
and Sc(ε) = AM (ε) +MT (ε)AT − BBT , respectively, then it
follows that

V̇1(ε, ξ̄ ) ≤ ξ̃T [P⊗ (Sc(ε, t) − Sc(ε)) + Sc(ε)]ξ̃ . (27)

Since c(t) is strictly increasing, it can be deduced that T :=

min{t ≥ 0 : c(t) ≥
λmax(P)
λmin(Q)

} ∈ [0, ∞) exists. Therefore,

∥Sc(ε, t) − Sc(ε)∥ = (1−c(t) λmin(Q)
λmax(P)

)∥BBT ∥ ≤ ∥BBT ∥ := β

for any t ∈ [0,T ) and Sc(ε, t)−Sc(ε) ≤ 0 for t ≥ T . It further
follows that for t ∈ [0,T )

V̇1(ε, ξ̄ ) ≤ ∥ξ̃T [P⊗ (Sc(ε, t) − Sc(ε))]ξ̃∥

≤ β∥P∥∥ξ̃∥
2

= β∥P∥∥M−1(ε)∥2∥ξ̄∥
2

≤
β∥P∥∥M−1(ε)∥2

λmin(P⊗ (E(ε)M−1(ε)))
V1(ε, ξ̄ )

: = β̄V1(ε, ξ̄ ), (28)

and for t ∈ [0,T )

V̇1(ε, ξ̄ ) ≤ ξ̃T [P⊗ Sc(ε)]ξ̃

≤ λmin(Sc(ε))∥M
−T (ε)PM−1(ε)∥∥ξ̄∥

2

≤
λmin(Sc(ε))∥M

−T (ε)PM−1(ε)∥
λmax(P⊗ (E(ε)M−1(ε)))

V1(ε, ξ̄ )

: = λ̄min(Sc(ε))V1(ε, ξ̄ ). (29)

It can be obtained by integrating both sides of above inequal-
ities that

V1(ε, ξ̄ ) ≤ eβ̄tV1(ε, ξ̄0)

≤ eβ̄te−λ̄min(Sc(ε))tV1(ε, ξ̄0)eλ̄min(Sc(ε))t

≤ e(β̄−λ̄min(Sc(ε)))TV1(ε, ξ̄0)eλ̄min(Sc(ε))t ,

t ∈ [0,T ], (30)

and

V̇1(ε, ξ̄ ) ≤ eλ̄min(Sc(ε))(t−T )V1(ε, ξ̄T )

≤ e(β̄−λ̄min(Sc(ε)))TV1(ε, ξ̄0)eλ̄min(Sc(ε))t , ∀t ≥ T . (31)

Whichmeans that the ε-UC problem ofMTSANs (1) with the
time-varying coupling strength is solved. This ends the proof.

Similarly, the following result can be deduced immediately
based on Theorems 2 and 3.
Theorem 4: Consider a MTSAN (1) with the topology

satisfies Assumption 1. The ε-UC via protocol (17) is solv-
able if the coupling strength c is selected as a ‘‘slowly’’
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FIGURE 1. The communication network topology among 9 rolls.

strictly increasing time-varying function, the consensus
matrix gain and the observer gain matrix are chosen as in
Theorems 1 and 2, respectively.
Remark 6: Theorems 3 and 4 show that the ε-UC prob-

lem of MTSANs (1) can be solved by introducing the time-
varying coupling strength c(t), differenting from the adaptive
consensus protocol in [28] for multi-time-scale agent network
with undirected topology, the coupling strength is indepen-
dent on consensus states and is therefore fully distributed.
Remark 7: A simpler and useful form of the coupling

strength is that c(t) := ln(κ + t) with κ > 1. Moreover, it has
be shown in [33] that under such choice, the corresponding
control input for each agent remains bounded.
Remark 8: The existing of ε will lead to the ill-

conditioning and stiffness problem and how to determine the
upper bound ε∗ is a fundamental problem and has attracted
much attention. In this paper, we construct ε-dependent strict
Lyapunov function to analyze the consensus of multi-time-
scale networks, and provide some well-conditioned trackable
consensus criteria. Moreover, to obtain an upper bound of
ε, we can use one dimensional search algorithm or other
methods, such as differential evolution algorithm, which has
been employed in some existing works, see [31].

IV. SIMULATION RESULTS
In this section, we give two numerical examples to illustrate
the effectiveness of the theoretical results obtained in this
paper.
Example 1: We first consider a drying section of a paper

converting machine [34] with 9 rolls, whose angles have to
reach the same level to avoid tearing up the paper. Here,
the network topology among 9 rolls is demonstrated by
FIGURE 1, and the each roll system is described by (2) with

A=

0 1 0
0 −0.01 0.2
0 0 −1.25

 ,B=

 0
0
0.2

 ,C=
[
1 0 0

]
.

First, we investigate the effectiveness of Theorems 1 and 2.

FIGURE 2. State trajectories of 9 agents under protocol (17).

For FIGURE 1 (a), we choose the upper bound of singular
perturbation parameter ε∗ = 0.1, λ = 0.2,Q = I9, it can
be deduced that the coupling strength c ≥ 9.1709. Then,
by solving all LMIs in Theorems 1, we find that Theorem 1
is feasible with

F(0.1) =
[
−0.0289 −2.1257 −0.0451

]
,

M (0.1) =

257.8917 −3.4996 −0.0311
−3.4996 0.1087 −0.2882
−0.3106 −2.8822 18.0452

 .

Which means that all rolls under the consensus protocol (5)
achieve consensus for any ε ∈ (0, 0.1]. To verify Theorem 2,
we further solve the conditions (21) and (22) in Theorem 2,
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FIGURE 3. State trajectories of 9 agents under protocol (5).

and find that Theorem 2 is also feasible with

K (0.1) =
[
0.9347 1.3326 −0.2025

]T
.

Which means that the ε-UC of MTSNs (1) under the consen-
sus protocol (17) is achieved.

In the numerical simulation, the initial states of each agent
are chosen randomly within [−15, 15], the coupling strength
and singular perturbation parameter are selected as c = 9.2

FIGURE 4. State trajectories of 9 agents under protocol (24).

and ε = 0.01, respectively, the simulation results are depicted
in FIGURE 2 and FIGURE 3. It can be observed that the
consensus among all rolls are achieved, which agrees with
our result in Theorems 1 and 2.

Note that to select some appropriate couple strength c for
carrying out the proposed consensus protocols, we have to
solve the equation in Lemma 2, in this situation, the global
information of the communication topology is needed. To fix
this issue, the coupling strength c(t) is selected as c(t) :=

ln(κ+t), with κ = 1.2, while both the consensus and observer
matrices are designed as above. For the sake of fair compari-
son, the same initial states are used, the simulation results are
portrayed in FIGURE 4 and FIGURE 5, which depict the time
evolution of the slow and fast states as well as their estimation
errors under the proposed consensus protocols (24) and (25),
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FIGURE 5. State trajectories of 9 agents under protocol (25).

respectively. Obviously, the entire states of the considering
networks finally achieve the desired consensus.

Moreover, we conduct simulation on a digraph with two
roots. The topology is shown as FIGURE 1(b), where roots
are agents 4 and 5. To be brief, only the simulation results
associated with consensus protocol (25) are given here. In the

FIGURE 6. State trajectories of 9 agents under protocol (25).

numerical simulation, the initial states, the coupling strength
and singular perturbation parameter are selected the same
values, the simulation results are depicted in FIGURE 6.
Example 2: This example is given to show that our pro-

posed method is suitable for multi-time-scale agent network
with nonstandard nodes. Consider network (1) consisting of
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FIGURE 7. State trajectories of 9 agents under protocol (5).

N = 4 agents, where the agent system is described by

A =


−1 0 0.375 0.1
0 −1 0.1 −0.5
0 0 −0.25 −1
0.2 −0.1 0 0

 ,B =


0
0
0

−0.5

 ,

C =

[
1 0 0 0
0 1 0 0

]
.

The Laplacian matrix corresponding to the network topol-
ogy among 4 agents is given by

L =


0 0 0 0

−1 1 0 0
0 −1 1 0
0 0 −1 1

 .

Obviously, each agent in this case is described by nonstan-

dard singularly perturbed system since A22 =

[
−0.25 −1

0 0

]
is singular matrix. Besides, the considered communication
topology among these agents is directed and also contains
a spanning tree. By selecting λ = 0.46 and Q = I4, FIGURE 8. State trajectories of 9 agents under protocol (17).
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we have c ≥ 1.7425. Moreover, it is easy to verify that
Theorems 1 and 2 are feasible with the upper bound of sin-
gular perturbation parameter ε = 0.05 and the following
protocol gains:

F(0.05) =
[
−2.0431 −0.0787 0.3145 2.7744

]
,

K (0.05) =

[
1.3994 0.2538 3.7460 0.0733
1.4666 −0.1449 1.4300 −0.1773

]T
.

Which means that network (1) can achieve ε-UC for any ε ∈

(0, 0.05] under the proposed protocols (5) and (17).
Simulation results are then displayed in FIGURE 7 and

FIGURE 8, where the initial states of networks are chosen
randomly within [0, 10], singular perturbation parameter ε =

0.01, and the coupling strength c = 1.75.
Remark 9: In [24], [26], and [27], each agent is assumed

to be an standard singularly perturbed system, in other words,
the matrix A22 should be nonsingular, then singular perturba-
tion decomposition method is employed to decouple the fast
and slow states of every agent. However, in this example the
considered model is nonstandard one, which implies that the
methods in [24], [26], and [27] are unapplicable. On the other
hand, the upper bound of singular perturbation parameter has
not been given in [24], [26], and [27], in this paper, we give
the estimation of the upper bound of ε. Therefore, our results
have superiority compared with these existing results.

V. CONCLUSION
The consensus problem of multi-time-scale agent networks
over general digraph has been investigated by introducing
the so-called ε-strict Lyapunov function in this paper. Both
the relative states and the relative output states based con-
sensus protocols have been designed. Meanwhile, the corre-
sponding consensus conditions have been obtained, and the
upper bound of singular perturbation parameter for ensuring
consensus has been estimated. Numerical simulations with
standard and nonstandard agents have been validated the
effectiveness of theoretical results.
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