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ABSTRACT Deep learning (DL) provides an effective approach for light field (LF) reconstruction that
aims to synthesize novel views from sparsely-sampled views. However, it is challenging to address domain
asymmetry when adopting spatial-angular interaction LF reconstructionmethods. To overcome this problem,
a view-selective angular feature extraction block (VS-LFAFE) is proposed to obtain full-resolution angular
features that enumerate whole viewpoints in a macropixel. By applying the VS-LFAFE, a novel LF
reconstruction method is proposed, consisting of two subblocks: a spatial-angular feature extraction and
fusion block, and an angular upsampling block. Experimental results demonstrate the effectiveness of the
VS-LFAFE, and validate that the proposed method can achieve superior performance compared with the
state-of-the-art methods.

INDEX TERMS Light field reconstruction, light field imaging, view-selective angular feature, convolutional
neural network.

I. INTRODUCTION
Microlens -based light field (LF) camera [1], [2], [3], [4]
can simultaneously capture intensity and angular information
of a scene with a microlens array (MLA) between the main
optics system and sensor. The additional angular information
enables a variety of applications such as refocusing [5], [6],
deocclusion [7], [8], depth perception [9], [10], [11], spectral
sensing [12], [13], semantic segmentation [14], [15], [16]
and reflection removal [17]. However, due to the limitation
of sensor resolution, the trade-off between the LF spatial
resolution and angular resolution restricts these applications.
Currently, two types of methods can mitigate this trade-off:
LF spatial super resolution reconstruction [18], [19], [20] and
LF reconstruction [21], [22]. This paper explores a novel LF
reconstruction method that aims to obtain a densely-sampled
LF image from a set of sparsely-sampled sub-aperture images
(SAIs).

LF reconstruction, also named as LF angular super res-
olution [23] or LF view synthesis [24], can be categorized
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into depth-dependent methods and depth-independent meth-
ods. Depth-dependent methods involves two subprocesses:
disparity-based view warping and view blending. In these
methods, the input LF SAIs are first warped based on
the pixelwise disparities to formulate novel angular views.
Then, optimization strategies are used to blend and refine
the formulated views. On the other hand, depth-independent
methods are implemented by extracting and fusing the LF
structural features, such as spatial features extracted from the
SAIs, angular features extracted from the macropixel image
(MacPI), and epipolar plane image (EPI) features extracted
from the SAI array. Because the computational efficiency of
depth-dependent methods is limited due to disparity estima-
tion and SAI warping processes, this paper focuses on depth-
independent methods.

LF reconstruction methods that utilize spatial-angular
interaction features [25], [26] have achieved promising
results in recent years. However, among these meth-
ods, the size of the extracted angular features is much
smaller than that of the extracted spatial features, which
leads to spatial-angular feature domain asymmetry [27].
To address this issue, upsampling strategies, such as
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transposed convolution or linear interpolation are required to
resize the angular features, which introduces additional error
to the interaction spatial-angular features.

To overcome this shortcoming, a novel LF reconstruction
method is proposed in this paper. The main contributions are
summarized as follows:

• A view-selective angular feature extraction block
(VS-LFAFE) is proposed by applying 2×2 convolutional lay-
ers to the differently-sampled LF MacPIs. By concatenating
the extracted angular features along the channel dimension,
a full-resolution angular feature can be obtained by using
the pixel shuffling strategy. Based on the ablation results,
the extracted full-resolution angular feature is effective in LF
reconstruction.

• A CNN-based LF reconstruction network is designed
with two subblocks: the spatial-angular feature extraction and
fusion block (SA-FEFB) and the angular upsampling block.
The SA-FEFB aims to extract discriminative spatial-angular
interaction features, and the angular upsampling block aims
to angularly upsample the extracted LF features and obtain
the reconstructed LF images.

• Extensive experiments on synthetic and real-world LF
datasets are conducted to validate the proposed network.
Based on the results, the proposed method outperforms other
state-of-the-art methods and can preserve accurate parallax
structures with reasonable computational efficiency.

The reminder of this paper is organized as follows.
In Section II, the related works are reviewed. In Section III,
the network framework is proposed. In Section IV, the exper-
imental results are presented. In Section V, conclusions and
recommendations for the future work are discussed.

II. RELATED WORKS
A. DEPTH-DEPENDENT LF RECONSTRUCTION
Depth-dependent LF reconstruction methods synthesize
novel angular views from a set of sparsely-sampled
SAIs with guidance from the disparity estimation results.
Georgiev et al. [28] synthesized novel views with a weighted
interpolation approach, in which the weight was obtained by
computing the flow between the reference SAI and its neigh-
bourhood SAIs. Wanner and Goldluecke [29] proposed a
regularization-based LF reconstruction method incorporating
subpixel-level disparity maps as priors. As an addition step
from the LF reconstruction, the disparity estimation process
was formulated as a global optimization problem by using the
EPI features. Kalantari et al. [24] proposed a learning-based
method for LF reconstruction, which consisted of two subpro-
cesses: disparity estimation and color estimation. Sequential
CNNs were used in both subprocesses, and the network was
trained by minimizing the error between the synthesized and
ground truth (GT) images. Shi et al. [30] proposed a pixel and
feature fused method. In this method, a disparity map was
obtained from a lightweight optical flow estimation network,
and two reconstruction modules were designed in the pixel
and feature domains. Jin et al. [31] proposed a CNN-based

method in a coarse-to-fine manner. In this method, densely-
sampled angular views were first synthesized by using a
confidence-based blending strategy, and then, an LF refine-
ment module was used to recover the LF parallax struc-
ture. They [23] also proposed an end-to-end learning-based
method with two learnable modules and a physically based
module. In this method, the depth estimation module was
designed to explicitly model scene geometry, the physically
based module was designed to warp the angular views, and
the light field blending module was designed for light field
reconstruction. Meng et al. [32] proposed a learning-based
method by jointly modeling the epipolar property and occlu-
sions. In this method, a warping confidence map was devel-
oped to handle the occlusions, and 4D CNN was used to
refine the synthesized angular views. Guo et al. [33] proposed
a CNN-based method for wide-baseline LF reconstruction.
In this method, a learnable dynamic interpolation block was
proposed to replace the commonly used geometry warping
operation, and the weights in dynamic interpolation were
learned by a lightweight neural network.

B. DEPTH-INDEPENDENT LF RECONSTRUCTION
The depth-independent LF reconstruction methods extract
and fuse the LF structural features to learn the implicit rela-
tionships between the densely-sampled and sparsely-sampled
LFs. Based on the extracted LF structural features, this kind
of methods can be categorized into EPI-based methods and
spatial-angular interaction methods.

EPI is generated by fixing one spatial and angular coor-
dinate in 4D light field data. Based on the slope of the EPI
lines, the disparity and occlusion patterns can be estimated,
and can thus be used for LF reconstruction. Wang et al. [34]
proposed a pseudo 4D CNN-based method. In this method,
the pseudo 4D CNN was formulated with 2D stride con-
volutions on stacked EPIs and detail-restoration 3D CNNs
connected with angular conversions. Wu et al. [35] proposed
a CNN-based method by taking advantage of the pattern
that a sheared EPI exhibits a clearer geometric structure.
In this method, the CNNwas elaborately designed to learn the
similarities between the input sheared EPIs and the ground
truth EPIs. They [36] also proposed an end-to-end deep
anti-aliasing neural network (DA2N) to solve the challenges
of large disparity and non-Lambertian effect. In this method,
pseudo EPIs from unstructured LFs were used in the training
process. Suhail et al. [37] proposed a two-stage transformer-
based model. In this method, the features were first aggre-
gated along the epipolar line dimension and then aggregated
along the reference view dimension to produce color infor-
mation. Yang et al. [38] proposed a 4D convolution-based
method in which three paralleled 4D convolutions with resid-
ual mechanisms were designed to simultaneously extract EPI
features and scene features.

The other branch of depth-independent LF reconstruction
methods is the spatial-angular interaction methods, which
extract spatial and angular features on an SAI array or
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MacPI. Yeung et al. [25] proposed a CNN-based method in
a ‘‘coarse-to-fine’’ manner, in which spatial-angular alter-
nating convolutions were designed to learn the LF intrinsic
spatial-angular features. Meng et al. [39] proposed a high-
dimensional convolution-based method, which consisted of a
residual network that restores local spatio-angular informa-
tion and a refinement network that reconstructs the spatial
details of the scenes. Hu et al. proposed [40] a CNN-based
method in which U-Net [41] was used to extract the hierar-
chical features, and spatio-angular separable (SAS) convo-
lution layers were used to separate and fuse the spatial and
angular features. By applying the spatial-angular alternating
mechanism, this method can be trained on larger patches and
can improve performance particularly in occluded regions.
They [42] also proposed a spatio-angular dense network,
in which the correlation blocks were proposed to model
the correlation information, and the spatio-angular dense
skip connections were proposed to improve the information
flow within spatial and angular domains. Cheng et al. [43]
proposed a spatial-angular versatile convolution (SAV-conv)
module by combining the spatial-angular separable convolu-
tion (SAS-conv) and spatial-angular correlated convolution
(SAC-conv), which could embed global and robust geometry
information into the extracted features.

For spatial-angular interaction methods, 4D convolutions
and spatial-angular interaction convolutions are frequently
used to extract discriminative features. 4D convolutions can
fully extract the high-dimensional features in one convolu-
tional layer, but the computational complexity is relatively
high. Therefore, this paper focuses on the LF reconstruction
method based on spatial-angular interaction convolutions.

III. METHODOLOGY
A. OVERALL NETWORK
Based on the two-plane model [44], an LF image can be
denoted as I ∈ RU×V×H×W ,where (U ,V ) are the angular
resolutions, and (H ,W ) are the spatial resolutions. In this
paper, we set U = V = A, thus a marcropixel is grouped
as a square matrix. LF reconstruction aims to reconstruct
an LF Image I ′

∈ RαU×αV×H×W from I, where α is the
upsampling rate.

The overall network framework is illustrated in Fig. 1(a).
The input of the network is an angularly sparsely-sampled
SAI array, which is first reshaped to a MacPI Im ∈ RAH×AW

and fed to a 3 × 3 convolutional layer to obtain the shallow
features FF,0 with a size of RAH×AW×C , where C is the
channel depth. The dilation of the 3 × 3 convolutional layer
is set to A to avoid angular aliasing. Then, FF,0 is fed to the
SA-FEFB to obtain spatial-angular interaction features FF .
An SA-FEFB consists of k0 spatial-angular interacted feature
extractors (SA-FEBs). To fully exploit each stage informa-
tion, features from each SA-FEB are concatenated, and then
the concatenated feature is fed to a 1×1 convolutional layer to
fuse the channel information. The overall calculation process

for the SA-FEFB can be expressed as:

FF = H1×1
([
FF,1,FF,2, · · · ,FF,k0

])
, (1)

where H1×1 is the 1 × 1 convolutional layer, FF,k0 is the
feature calculated from the k0th SA-FEB, and [.] is the con-
catenation operator along the channel dimension.

Following [45], an angular upsampling module is designed
to upsample the fused feature. First an A × A stride con-
volutional layer is used to obtain angularly downsampled
features with a size of RH×W×C , in which the stride is set
to A. Then, a 1 × 1 convolutional layer is used to expand the
channel depth to (αA)2C . A 2D pixel shuffling layer is used
to produce an upsampled feature FU ∈ RαAH×αAW×C . The
overall calculation process of the angular upsampling module
can be expressed as:

FU = Hp_s_αA (H1×1 (HA×A (FF ))) , (2)

whereHp_s_αA is the pixel shuffling layer with an upsampling
rate of αA, and HA×A is the A× A stride convolutional layer.

Finally, a 1×1 convolutional layer is employed to fuse the
channels to obtain the LF reconstruction results.

B. SA-FEB
The core block of the proposed network is the SA-FEFB,
which consists of several SA-FEBs. The SA-FEB aims
to extract and fuse spatial and angular features from the
MacPI-sampled shallow feature, which involves three sub-
blocks: LF spatial feature extraction block (LF-SFE), view-
selective LF angular feature extraction block (VS-LFAFE)
and spatial-angular feature fusion block.

1) LF-SFE
The LF-SFE aims to extract each SAI’s spatial feature. This
block consists of two feature extraction groups, where each
group involves k1 spatial feature extractors (SFEs), as illus-
trated in Fig. 1(b). The SFE is designed with a ‘‘3 ×

3 convolution-PRelu-3×3 convolution’’ structure, where the
dilation of the 3 × 3 convolutional layer is set to A. To fully
exploit each stage information in a spatial feature extraction
group, the feature from each SFE is concatenated and fused
with a 1×1 convolutional layer. Finally, the extracted feature
is added to the initial shallow feature to form a global residual
connection. After processing with the LF-SFE, the size of the
extracted spatial feature Fs is AH × AW × C .

2) VS-LFAFE
Existing methods always use a single A × A convolutional
layer as an angular feature extractor (Sin-LFAFE), in which
the stride is set to A. As illustrated in Fig. 2, this kind methods
produce domain asymmetry between the extracted spatial and
angular features. Also, the reference pixel of the A × A con-
volutional layer is always located at a specific position (left
corner pixel) in the macropixel region, thus, the convolutional
layer can only extract single pattern angular features.

To overcome these limitations, VS-LFAFE is proposed to
extract full-resolution angular features by enumerating all
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FIGURE 1. Proposed network framework.

FIGURE 2. The single-pattern LF angular feature extractor (Sin-LFAFE) is implemented by using one stride convolutional layer. a is the coefficients of the
input one channel feature map. c is the learnable convolutional weights, and b is the coefficients of the extracted angular feature.

pixels in a macropixel. As illustrated in Fig. 3, the VS-LFAFE
consists of four kinds of 2×2 convolutional layers: the left-up,
left-bottom, left-right and right-bottom convolutional layer.
For each 2× 2 convolutional layer, the stride is also set to A.
The left-up convolutional layer is the same as the Sin-

LFAFE, which enumerates left-top (A − 1) × (A − 1) pixels
in each macropixel to obtain corresponding angular features.
Assume that FF,0,0 is the first macropixel of the shallow

feature FF,0,

FF,0,0 = FF,0(1 : A, 1 : A). (3)

For pixel FF,0,0(i0, j0) where i0 and j0 range from 1 to
A − 1, the corresponding left-up convolutional layer can be
expressed as:

FL,U ,i0,j0 = H2×2
(
FF,0(i0 : AH , j0 : AW )

)
, (4)
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FIGURE 3. The proposed VS-LFAFE is implemented using four 2 × 2 stride convolutional layers.

where FL,U is the extracted angular feature, and H2×2 is the
2 × 2 stride convolutional layer. To make the reference pixel
in FF,0,0 at (i0, j0), the first i0 − 1 rows and j0 − 1 columns
of the input feature map are cropped.

The left-bottom convolutional layer aims to extract angular
features with the reference pixel in FF,0,0 at (A, j1), where j1
ranges from 1 to A− 1, which can be expressed as:

FL,B,j1 = Fud
(
H2×2

(
Fud

(
FF,0(1 : AH , j1 : AW )

)
, 1

)
, 1

)
,

(5)

where FL,B is the extracted angular feature, and Fud is the
up-down flipping operation. Two up-down flipping opera-
tions are conducted to align FL,B with FL,U .
The left-right convolutional layer aims to extract angular

features with the reference pixel in FF,0,0 at (i1,A), where i1

ranges from 1 to A− 1, which can be expressed as:

FL,R,i1 = Flr
(
H2×2

(
Flr

(
FF,0(i1 : AH , 1 : AW )

)
, 1

)
, 1

)
,

(6)

where FL,R is the extracted angular feature, and Flr is the
left-right flipping operation.

The right-bottom convolutional layer aims to extract angu-
lar features with the reference pixel at FF,0,0(A,A), which
can be expressed as:

FR,B = Fot
(
H2×2

(
Fot

(
FF,0

)
, 1

)
, 1

)
, (7)

where FR,B is the extracted angular feature, and Fot is the
origin transformation operation.

By concatenating the extracted angular feature along the
channel dimension, a channel-expanded feature FF,C can be
obtained with a size of H ×W ×A2C . Then, a 2D pixel shuf-
fling layer is used to produce an upsampled feature with a size

VOLUME 11, 2023 31161



S. Zhou et al.: High-Fidelity Light Field Reconstruction Method Using View-Selective Angular Feature Extraction

TABLE 1. Comparative ablation results evaluated by PSNR.

of AH × AW × C . Finally, by cascading k2 VS-LFAFEs, the
final angular featureFa can be obtained. Similar to the spatial
feature extraction block, the feature from each VS-LFAFE is
also concatenated and fused with a 1 × 1 convolution.

3) SPATIAL-ANGULAR FEATURE FUSION BLOCK
An attention-based residual block is used to fuse more dis-
criminative features from the extracted spatial and angular
features. In this block, the spatial and angular features are
first concatenated and then fused with a 1 × 1 convolutional
layer. The size of the fused feature is AH × AW × C . Then,
an attention residual block is cascaded, which contains k3
residual blocks and a channel attention block. The overall
spatial-angular feature fusion process can be expressed as:

Fsa = Hatt (H1×1([Fs,Fa])), (8)

where Fsa is the spatial-angular fused feature, and Hatt is the
attention residual block.

IV. EXPERIMENTS
A. DATASETS AND IMPLEMENTING DETAILS
Two synthetic datasets (i.e., theHCInew andHCIold datasets)
and two real-world datasets (i.e., the 30scene and STFlytro
datasets) are used to train and test the proposed network.
Following [23], for the synthetic datasets, 20 scenes are used
for training, and 4 scenes from the HCInew dataset, and
5 scenes from the HCIold dataset are used for testing. For
the real-world datasets, 100 scenes are used for training, and
30 scenes from the 30scene dataset, 25 scenes from the occlu-
sions category and 15 scenes from the reflective category in
the STFlytro datasets are used for testing.

Following [23], [45], this paper focuses on reconstructing
7× 7 densely-sampled LF data from 2× 2 sparsely-sampled
LF data. Therefore, during data preparation, ground truth
(GT) samples are obtained by angularly cropping the central
7×7 SAIs of each LF. The input samples are generated using
the 2×2 corner SAIs of the GT samples. To save GPU mem-
ory, each SAI is cropped to patches with 64×64 pixels during
the training process. Some data argumentation strategies are
performed to enhance the robustness, including horizontal
flipping, vertical flipping and 90-degree rotation.

In the training process, C is 64, k0 is 2, k1 is 4, k2 is 8, and
k3 is 2. The proposed network is trained with an L1 loss and
optimized by the Adam optimizer [46] with a batch size of 4.
The initial learning rate is set to 2 × 10−4, and decreased by
0.65 every 10 epochs. The proposed network is implemented

in the PyTorch framework with an Nvidia GTX2080Ti GPU,
and stopped after approximately 40 epochs for the synthetic
dataset, and approximately 70 epochs for the real-world
dataset.

In the testing process, each SAI is cropped to patches with
a size of 128× 128 pixels. In the cropping process, the stride
is set to 64 pixels. Then, the SAI patch array is resampled
to a MacPI and fed to the pretrained model to obtain the LF
reconstruction result. PSNR and SSIM are used to evaluate
the Y channel image. Note that only the 45 reconstructed
views are evaluated.

B. ABLATION STUDY
In this subsection, some experiments are conducted to inves-
tigate the efficiency of the module in the proposed network.
By testing each model on the real-world dataset, the ablation
results are listed in Table. 1.

1) PROPOSED NETWORK W/O ANGULAR FEATURE
In this part, only the LF spatial feature is used to formulate
model1. Without utilizing the angular feature, the PSNR
results are decreased by 0.86dB. This is because, the angular
feature incorporates abundant context information among the
SAIs, which is beneficial in synthesizing novel views.

2) PROPOSED NETWORK W/O SPATIAL FEATURE
In this part, only the LF angular feature is used to formu-
late model2. Without utilizing the spatial feature, the PSNR
results are decreased by 2.41dB. This is because, the spatial
feature incorporates flexible texture and color information,
which is important to reconstruct accurate textures in novel
view reconstruction process.

3) PROPOSED NETWORK W/O ATTENTION RESBLOCKS
In this part, the attention resblock, which fuses the extracted
spatial and angular features, is replaced with a 1 × 1 con-
volutional layer to formulate model3. Without using the
attention Resblocks, the PSNR results are decreased by
0.30dB. Based on the comparative results, extracting more
discriminative features from the spatial-angular interaction
features is beneficial in reconstructing more accurate novel
views.

4) EFFECTIVENESS INVESTIGATION OF THE VS-LFAFE
In this part, the VS-LFAFEs are replaced by the Sin-LFAFEs
to formulate model4. Although the spatial and angular
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TABLE 2. PSNR and SSIM results achieved by different LF reconstruction methods.

FIGURE 4. Visual comparison results of the synthetic LF images.

features are both used, the PSNR performance of model4 is
still decreased by 0.70dB. This is because, the proposed
VS-LFAFE can extract different pattern angular features and
formulate full-resolution angular features without applying
upsampling strategies, whichmakes themodule able to obtain
more integrated angular features.

C. COMPARISONS WITH STATE-OF-THE-ART METHODS
In this subsection, five state-of-the-art methods are adopted
for comparison with the proposed method, which includes
P4DCNN [34], ShearedEPI [35], LFASR-geo [23], FS-
GAF [31] and Yeung et al. [25]. All of the state-of-the-art
methods are retrained to adapt to the ‘‘2 × 2 → 7 × 7’’ LF
reconstruction condition.

1) QUANTITATIVE COMPARISON
The PSNR and SSIM results are shown in Table 2. The
best results are in bold, and the second-best results are
underlined. The P4DCNN and ShearedEPI methods are EPI-
based methods. Because only 2 rows or columns of EPI
features are used, these methods have difficulties in restor-
ing accurate spatial information, thus, the reconstruction

performance is limited. The LFASR-geo and FS-GAF meth-
ods are both disparity-dependent methods. Applying dispar-
ity estimation and feature warping operations, these methods
can achieve better performance in terms of PSNR and SSIM.
The method proposed by Yeung et al. is a spatial-angular
interaction method, that can also achieve comparable per-
formance. Among all these methods, the proposed network
can achieve the best score in all 5 datasets in terms of the
SSIM and can achieve the best score in 4 datasets in terms
of the PSNR. By extracting view-selective angular features
and incorporating them with spatial features, the proposed
method can fully utilize the high-dimensional LF features,
thus, the novel views can be well reconstructed.

2) QUALITATIVE COMPARISON
Fig. 4 shows the visual compassion results of the synthetic
LF images, and Fig. 5 shows the visual compassion results
of the real-world LF images. Based on the results of the
error map, the EPI methods can not restore the texture fea-
tures well because the EPI features are too sparse. The two
disparity-dependent methods significantly improve the per-
formance, however, the performance in the occluded region
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FIGURE 5. Visual comparison results of the real-world LF images.

FIGURE 6. Disparity estimation results of the synthetic LF image buddha and bicycle.

is also limited, as in which the disparity estimation accuracy
is relatively low. By fully utilizing the spatial and angular
features, the proposed method can achieve closer results and
produce fewer artifices.

3) ANGULAR CONSISTENCY COMPARISON
The target of LF reconstruction is not only angularly upsam-
pling the sparse sampled LFs but also preserving the par-
allax structure. Therefore, the disparity estimation method
SPO [47] is used to obtain the disparity map to evaluate
the angular consistency. Results are shown in Fig. 6, based
on which the disparity estimation results of LFASR-geo,
FS-GAF and the proposed method can achieve comparable
performance compared with the GT result, which indicates
that the proposed method can produce results with high angu-
lar consistency.

4) COMPUTATIONAL EFFICIENCY ANALYSIS
The inference time is used to evaluate the computational
efficiency. The evaluation is performed on the ‘‘2 × 2 →

7×7’’ task with an SAI spatial resolution of 512×512 pixels.
All methods were evaluated on the same GPU of an NVIDIA
GeForce RTX 2080 Ti, and the results are listed in Table 3.
Based on the results, the proposed method can achieve the
lowest inference time.

TABLE 3. Comparisons of the inference time.

V. CONCLUSION
In this paper, a novel LF reconstruction method is proposed
by designing aCNN-based network interacting the spatial and
angular features. In the proposed network, a novel angular
feature extractor (VA-LFAFE) is designed with 4 branches
of 2 × 2 convolutional layers to tackle the domain asym-
metry between the spatial and angular features. Extensive
experiments demonstrate that the proposed framework can
achieve state-of-the-art performance with reasonable compu-
tational efficiency. In the future, the proposed network can
be improved by designing an occlusion-aware network to
accurately handle occlusions in LF reconstruction process.
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