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ABSTRACT With the construction of the modern power system, power load forecasting is significant
to keep the electric Internet of Things in operation. However, it usually needs to collect massive power
load data on the server and may face the problem of privacy leakage of raw data. Federated learning
can enhance the privacy of the raw power load data of clients by frequently transmitting model updates.
Concerning the increasing communication burden of resource-heterogeneous clients resulting from fre-
quent communication with the server, a communication-efficient federated learning algorithm based on
Compressed Model Updates and Lazy uploAd (CMULA-FL) was proposed to reduce the communication
cost. CMULA-FL also integrates the error compensation strategy to improve the model utility. First, the
compression operator is used to compress the transmitted model updates, of which large norms are uploaded
to reduce the communication cost of each epoch and transmission frequency. Second, by measuring the
error of compression and lazy upload, the error is accumulated to the next epoch to improve the model
utility. Finally, based on simulation experiments on the benchmark power load data, the results show that the
communication cost decreases at least 60%with controlled loss of model prediction compared with baseline.

INDEX TERMS Power load forecasting, federated learning, quantization, lazy upload, error compensation.

I. INTRODUCTION
With the rapid increase of electricity demand, the mod-
ern power system should have the characteristics of digital
enabling, flexible opening and high efficiency [1] better to
enable electric Internet of Things (IoTs). Power load fore-
casting is the backbone of the construction of the modern
power system. Accurate prediction of short-term power load
data can improve prediction ability of emergencies and guar-
antee the growing power demand and the reliability of the
electric IoTs [2], [3]. Moreover, power load forecasting can
significantly improve the economic and social benefits of
electric IoTs. Therefore, it is significant to forecast power
loads accurately to accelerate the construction of the modern
power system.
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Recently, data-driven machine learning [4], [5], [6] has
been widely used in power load forecasting and achieves
marvelous prediction accuracy. Generally, the power grid
company (the server) needs to collect massive power load
data from enterprises or individuals (the clients), as shown in
Fig. 1. However, it will lead to the risk of privacy disclosure
in the process of collecting or storing power data [7], [8].
Moreover, with the rising privacy consciousness of people
and the improvement of data security law, it is difficult for
the power grid company to collect and analyze the power load
data from clients [9].

Federated learning (FL) [10], [11], [12], [13], proposed
by Google, can effectively protect the raw power load data
privacy of all clients. Concretely, in the federated settings, the
server coordinates massive clients to train a shared machine-
learning model by frequently transmitting model parameters
instead of collecting the raw power load data on each client.
Therefore, FL significantly ensures the privacy of the raw
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FIGURE 1. The workflow of power load forecasting and application
scenarios.

power data of each client and realizes the efficient mining
of power load data.

However, frequent communication between the server and
clients will result in low communication efficiency [14], [15],
[16], [17]. On the one hand, it leads to high communication
cost to transmit high-dimension deep learning models [16],
[17] and the high communication cost makes clients reluctant
to take part in the federated training process. On the other
hand, it is time-intensive to upload high-dimension models
from clients to the server frequently [14], resulting in com-
munication bottleneck in power grid data centers. Therefore,
communication cost has become one of the most important
bottlenecks of FL to ensure the privacy of clients’ raw data.

To reduce the communication cost, the existing methods
mainly consider the communication frequency and the com-
munication cost of each epoch, such as periodic averaging [7],
[18], lazy upload [17], gradient or model compression [14],
[15], [16], sampling [19]. From the perspective of communi-
cation frequency, McMahan et al. [7] adopted the method of
periodic averaging to reduce the communication cost. From
the perspective of the communication cost in each epoch,
Bernstein et al. [14] proposed SignSGD to compress the
gradient, which significantly reduced the communication cost
in the uploading stage of the model. Compression opera-
tors [15], [16] can also reduce the communication cost of each
epoch by uploading compressed gradients with controllable
error. To bring down the communication cost comprehen-
sively, Sun et al. [17] proposed LAQ by combining lazy
upload and model updating quantization to reduce the upload
frequency and transmission cost in each epoch.

However, there are still three core problems. Firstly, most
existing methods are not systematic and only reduce the com-
munication cost from one dimension. Secondly, the existing
methods ignore the high communication cost in the down-
loading stage of the model. Finally, both model compression
and lazy upload strategies will generate a large bias, which
significantly reduces the model utility and even diverges the
model.

To deal with the above three problems and improve
communication efficiency, we proposed a communication-
efficient power load forecasting algorithm (CMULA-FL)

based on model bidirectional compression and lazy upload.
Moreover, CMULA-FL utilizes the error compensation strat-
egy to diminish the impacts of generated bias. Compared with
the existing power load forecasting algorithm, we summarize
our main contributions below:

1) We propose CMULA-FL, a communication-efficient
FL algorithm based on bidirectional compression and
lazy upload, to reduce the communication cost system-
atically. The proposed CMULA-FL reduces the com-
munication cost from the orthometric aspects of the
transmission cost of each epoch and the transmission
frequency of the model update simultaneously.

2) We propose an error compensation strategy to deal with
the reduction of the model utility caused by biases from
model update compression and lazy upload. The error
compensation strategy improves the model utility by
accumulating the model update errors of the last epoch
to the next epoch.

3) We deployed massive experiments on the power
load dataset to verify the efficiency of CMULA-FL.
The experimental results validate that bidirectional
compression and lazy upload can greatly reduce
the communication cost, and the fusion with error
compensation strategy can ensure the model utility.

The remaining parts of this paper are organized as fol-
lows. We first investigate the existing work related to power
load forecasting and the communication-efficient algorithm
in the federated scenarios in Section II. Then, the back-
ground knowledge involved in this paper is briefly intro-
duced in Section III. The proposed CMULA-FL algorithm
is introduced in detail in Section IV. In Section V, the effec-
tiveness of the CMULA-FL algorithm and the influence of
some important parameters are verified by deploying exper-
iments and analyzing experimental results in detail. Finally,
we present the conclusion in Section VI.

II. RELATED WORK
A. POWER LOAD FORECASTING
There are various methods to forecast power load data, such
as mathematical statistics theory [20], [21] and deep learning
model [22]. Jeong et al. [20] put forward the logistic mixture
vector autoregressive model based on curve registration to
predict the short-term power load of buildings. By integrating
clustering and prediction algorithms through the expectation-
maximization algorithm, it significantly achieved a better pre-
diction effect. Similarly, Savari et a. [21] proposed a real-time
load prediction algorithm for electric vehicles, which fulfilled
the function of power dispatching management based on
charging piles recommended by the state of charge. Muzaf-
far and Afshari [22] proposed a LSTM-based model, which
has the capabilities to mine the long-term dependencies and
extract useful information from power load data.

However, those centralized scenarios to forecast power
load requires massive power load data from clients, and there
exists a potential risk of privacy disclosure in the collection
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and storage process [7]. Coupled with the increase of people’s
privacy awareness and data security laws, data barriers are
gradually forming [9]. Therefore, the fusion with FL can not
only protect the privacy of the original power load data, but
also coordinate amounts of clients to train the shared model.

B. FL-BASED POWER LOAD FORECASTING
In order to ensure the privacy and security of clients’ raw data,
FL has been widely applied in the field of power load fore-
casting and has achieved remarkable results. Taïk et al. [23]
applied FL to short-term forecasting to protect clients’ data
privacy and obtained desired effectiveness. To address the
problem that the load variation patterns in each region cannot
be accurately grasped in time due to high communication
delay, Li et al. [24] proposed an ultra FL algorithm for short-
term power load forecasting. Besides, He et al. [25] adopted
the federated K-means clustering algorithm to divide clients
into separate clusters based on historical power load data,
and learns local personalized models within each cluster to
enhance the privacy security of local data. The horizontal fed-
erated LSTM algorithm [23], [26] was employed to predict
the power demand of each client to enhance security.

However, in the FL scenarios, each client needs to commu-
nicate frequently with the grid power data center, incurring
high communication cost that significantly increase the bur-
den on resource heterogeneous clients [14], [15], [16], [17].
Therefore, it is crucial to design a communication-efficient
power load forecasting algorithm.

C. COMMUNICATION-EFFICIENT FL
For the purpose of improving communication efficiency, the
existing methods mainly consider reducing the communi-
cation frequency and communication cost of each epoch.
Saputra et al. [27] proposed model sharing to reduce the
communication frequency, significantly bringing down the
communication overhead while safeguarding the privacy of
clients’ raw data. From the perspective of the high commu-
nication overhead in federated power load forecasting, Fekri
et al. [28] adopted periodic averaging to reduce the commu-
nication frequency and guarantee the forecasting accuracy
in resource-constrained federated scenarios. Gholizadeh and
Musilek [29] found that there were a few abnormal nodes in
FL training, which reduced the convergence speed. Accord-
ingly, the abnormal node detection strategy was introduced,
and the abnormal nodes were removed to ameliorate the
convergence speed and reduce the communication overhead.
In [14], the SignSGD method was adopted to compress the
gradient in the uploading phase, which significantly reduced
the communication cost of each epoch.

However, the approaches still face three significant prob-
lems. Firstly, the communication cost is determined by com-
munication frequency and the communication cost in each
epoch, so the existing methods lack comprehensiveness and
systematicity. Secondly, the existing methods do not alle-
viate the communication cost in the transmission stage of

the model, or only consider the cost in the uploading stage,
ignoring the high communication cost in the downloading
stage of the model. Finally, reducing the communication cost
poses large errors and significantly reduces the model utility.
To cope with these three problems, a FL-based power load
forecasting algorithm based on lazy upload and bidirectional
model quantization is proposed from the two dimensions of
communication frequency and communication cost of each
epoch. Apart from this, the error compensation strategy is
utilized to improve the model utility.

III. PRELIMINARY
This section presents the optimization method and the basic
framework of the proposed algorithm. First, Section III-A
introduces the stochastic gradient descent method. Then,
Section III-B describes the workflow of FL and serves it as
the basic framework of the proposed algorithm.

A. STOCHASTIC OPTIMIZATION
In general, the objective of machine learning is to solve the
following optimization problem.

minwF(w) =
1
N

∑
ξi∈D

f (w, ξi), (1)

where D and f (w, ξi) represent the training set and the i-th
loss respectively. The mini-batch stochastic gradient descent
method can perform as a solver for this optimization problem
and reduce the consumption of computing resources at the
same time. The iterative updating rule is as follows.

wj+1 = wj −
ηj

|Dj|

∑
ξj,i∈Dj

∇f (wj, ξj,i), (2)

whereDj ⊆ D is the mini-batch data in the j-th iteration, and
ηj is the learning rate.

B. FEDERATED LEARNING
In order to ensure the clients’ raw data privacy, Google pro-
posed the FL algorithm [7]. We take a FL scenario with a
central server andK clients as an example to describe the sys-
tem model of FL in detail. Before federated training, the data
of multiple clients are not exactly overlapping or mutually
exclusive. Therefore, overlapping data needs to be filtered
out to ensure fairness. First, the server uses the encryption
algorithm to align the data of clients and confirms the com-
mon data among clients without disclosing the raw data.
Then, based on the requirements in the application scenarios,
a specific portion of the clients are screened for modeling.
Once the target clients are identified, the FL training process
begins. The training process of FL mainly is composed of the
following four steps.

1) The server initializes some basic parameters, such as
the model parameters, learning rate and so on, then
broadcasts them to each client.

2) All clients train the received model separately on local
data sets and calculate gradients or model parameters
as intermediate results.
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3) Clients meeting the upload criteria send intermediate
results to the server.

4) The server receives and aggregates the gradients or
model parameters. Then, the server broadcasts the
updated model parameters individually to all clients.

Iterate steps 2-4 until the test loss value is less than the set
threshold or a preset number of iterations is reached.

During the FL training process, the raw data for each
clients is always stored locally, which protects the privacy
and security of the raw data. Therefore, FL greatly reduces
the risk of privacy disclosure of the raw data.

IV. CMULA-FL
To lower the communication cost of FL-based power load
forecasting, we proposed a communication-efficient FL algo-
rithm based on CompressedModel Updates and Lazy uploAd
(CMULA-FL). CMULA-FL can not only reduce the commu-
nication cost effectively, but also couple the error compensa-
tion strategy to ensure the model utility. The basic idea of
CMULA-FL is described in Section IV-A. Based on these
ideas, the framework and details of CMULA-FL algorithm
are presented in Section IV-B.

A. MAIN IDEA
The communication cost of the whole federated training pro-
cess is mainly determined by the transmission bits in one
epoch and transmission frequency. Therefore, the proposed
CMULA-FL algorithm reduces the communication cost from
these two orthometric dimensions. From the perspective of
the communication cost in one epoch, model update of each
client will be compressed before transmitting to the server.
Similarly, the aggregated model update on the server will also
be compressed before broadcasting to the clients. From the
aspect of communication frequency, the lazy upload strategy
is adopted by only selecting part clients to upload model
updates, because some clients have inconspicuous changes in
model updates and make fewer contributions to the process
of aggregation. Therefore, The client can upload the model
update until the accumulated model changes are greater than
a threshold.

However, it will incur an obvious bias, which can reduce
the model utility. The bias comes from compressed trans-
mission parameters and lazy upload. With the increasing
of compressed information and the lazy upload threshold,
the bias will significantly reduce the model utility and even
diverge the model. In order to ensure the model effectiveness,
the proposed CMULA-FL algorithm adopts the error com-
pensation to reduce the influence of errors by accumulating
the errors generated in the current epoch to the next epoch.

B. DETAILED DESCRIPTION
Based on the above basic ideas, an efficient CMULA-FL
algorithm is proposed in this paper to forecast power load
data safely and efficiently. The pseudo-code of CMULA-FL
algorithm is mainly composed of two parts, including the

Algorithm 1 CMULA-FL: Server Side
Input: Compression operator Q(·), number of all clients K .
Output: Optimal model parameter w∗.
1: Initialize themodel parameters, model update, and global

error.
2: Quantize the model update and compute the error of

quantization.
3: Broadcast the quantized model update.
4: while the preset stopping condition is not achieved do
5: for i = 1→ K do
6: The i-th client computes and uploads the quan-

tized model update.
7: end for
8: Receive and aggregate the model updates.
9: Accumulate the error of j− 1-th epoch.
10: Quantize the model update and compute the quanti-

zation error.
11: Update the global model and broadcast the quantized

model update.
12: end while

server side (Algorithm 1) and the client side (Algorithm 2).
Fig. 2 shown the workflow of the proposed CMULA-FL.
It mainly consists of three parts, namely the quantization of
model update (③ and ⑧) and error compensation (④ and ⑦)
on the server and the clients, and lazy upload (⑤) on the
clients.

On the server side (⑥-⑧), as shown in Algorithm 1, the
server first initializes parameters such as model and model
updates (line 1). Then, the server quantizesmodel updates and
broadcasts them to all clients (lines 2-3). After all the satisfied
clients upload their model updates (lines 5-7), the server
aggregates all received quantized model updates (line 8) and
accumulates the error of the last epoch (line 9). In order
to reduce communication costs, the server quantizes the
aggregated updates and calculates quantized errors (line 10).
Finally, the shared model is updated and the quantized model
update is broadcast to clients (line 11). The server repeats the
processes (lines 4-12) until the stopping criteria is satisfied.

On the client side (① - ⑤), as shown in Algorithm 2, each
client first receives the model update and updates the local
model (line 1). Then, each client updates the received model
on local data for E iterations (line 2). After local iteration,
the variation of local model is updated. To guarantee the
model utility, each client’ local model update is accumulated
with the error of the last epoch (line 3). The corrected model
update is quantized to reduce the communication cost (line 4).
Finally, the lazy upload strategy is adopted to further reduce
the communication cost (lines 5-11). That is, when the model
update reaches the preset threshold ϵ or the client has not
uploaded the model update for tmax epoch, clients will update
the quantization error and upload the local quantized model
update (line 6). If the upload conditions are not satisfied, the
lazy upload error is updated (line 10).
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FIGURE 2. Framework of CMULA-FL. CMULA-FL algorithm contains three main parts: model update quantization
(③, ⑧), error compensation (④, ⑦) on both clients and the server, and lazy upload (⑤) on the clients.

Algorithm 2 CMULA-FL: Client Side
Input: learning rate η, lazy upload parameter ϵ.
Output: Quantized model update 1w̃i,j.
1: Receive the model update and update local model param-

eter w0
i,j.

2: Train the model on local data for E iterations.
3: Compute the model update and accumulate the error
erri,j−1.

4: Quantize the model update 1w̃i,j = Q(1w̄i,j).
5: if ||1w̃i,j|| ≥ ϵ or ti ≥ tmax then
6: Compute the quantization error erri,j and upload the

model update 1w̃i,j.
7: ti← 1;
8: else
9: ti← ti + 1;

10: Update the lazy upload error erri,j.
11: end if

In the remaining parts, we will present the three core
parts of CMULA-FL in Sections IV-B1-IV-B3 and model
aggregation in Section IV-B4.

1) MODEL BIDIRECTIONAL QUANTIZATION
Transmission of complete model parameters requires a
large amount of communication cost, which can be sig-
nificantly reduced by model compression. In this paper,
the transmission models of the uploading and downloading
stages are compressed by the γ -compression operator. The
γ -compression operator is defined as follows
Definition 1 (γ -Compression Operator): If the compres-

sion operator Q satisfies

||x − Q(x)||2 ≤ (1− γ )||x||2, (3)

then the compression operatorQ is defined as γ -compression
operator.

Common compression operators include Top-k sparsity
operator [16] and 1-bit quantization [30] and so on. However,
compared with these compression operators, the multi-bits
quantization method can adjust the quantization bits flexibly
and control the precision of transmitted model parameters to
realize the controllable error. Therefore, we adopt the multi-
bits quantization.

By utilizing the γ -compression operator to compress the
model update of the clients and server, CMULA-FL can
effectively reduce the communication cost effectively in the
downloading and uploading process with controllable error.
The compression rules for the clients and the server are as
follows:

1w̃i,j = Q(1w̄i,j),

1w̃j = Q(1wj), (4)

where 1w̃i,j and 1w̃j are the model updates of the i-th client
and server after quantization respectively.

2) LAZY UPLOAD
If the change of a model update is small, it has few impacts
on the aggregated model. Therefore, skipping this redundant
gradient can not only reduce the communication cost of the
client, but also have few impacts on the aggregated model.
Before model training, the server initializes a small norm
threshold ϵ. When the norm of the model update is smaller
than the set threshold ϵ, the model update can be skipped.

If the model update obtained by the client continues to be
small, the client will make little contribution to the federated
process. When the client satisfies the uploading criteria, the
accumulated model update will have a large staleness, which
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will result in a large model deviation. Therefore, it is nec-
essary to ensure the freshness of the model updates. Then,
we can set a maximum number of local iterations to tmax
empirically. If the norm of the client’smodel update continues
to be less than the set threshold ϵ for tmax epochs, the quan-
tizedmodel update will be uploaded to control the staleness of
the model update. By setting a smaller ϵ and tmax , the model
updates will be fresher and model utility can be improved.

3) ERROR COMPENSATION
After the compressed quantization model is updated, there is
a large quantization error between the original model update
and the quantization results. With the increasing epochs, the
cumulative effects will significantly reduce the model utility
and even diverge the model. To improve the model utility,
it is indispensable to adopt the method of error compensation
for both clients and the server to decrease the impacts of
compression error.

For each client, after training the model for E times locally,
the error of the last epoch can be accumulated to the current
model change to alleviate the impacts of the quantization
error.

erri,j−1 = 1w̃i,j−1 − Q(1w̄i,j−1),

1w̄i,j = 1wi,j + erri,j−1, (5)

where erri,j−1 represents the quantization error generated by
the i-th client in the j− 1-th epoch.

For the server, the local model updates of clients are aggre-
gated first, and then the results are added to the errors of the
previous epoch to decrease the impacts of compressed model
update,

errj−1 = 1w̃j−1 − Q(1wj−1),

1wj = Agg(1w̃i,j)+ errj−1, (6)

where errj−1 represents the quantization error generated by
the server in the j− 1-th epoch.
Apart from the quantization error, the lazy upload can

also generate a large bias. If the model updates of one client
continue to be small and are abandoned directly, it will incur
two problems. On the one hand, frequent skipping of model
updates leads to extravagant computing resources. On the
other hand, the skipped gradients make the aggregated model
update be biased and decrease the model utility. Therefore,
when the client’s localmodel update carries little information,
the model update can be accumulated to the next epoch with
the quantization error. When the client is skipped, the error is
given as

erri,j = wEi,j − w
0
i,j + erri,j−1. (7)

where w0
i,j and w

E
i,j are the models of i-th client at the begin-

ning and end of the local training process respectively.

4) MODEL AGGREGATION
After the model updates on all satisfied clients reach the
server side, the server aggregates the model updates and

accumulates the error errj−1. The aggregation and accumu-
lation rules are as follows

1wj =
1
Sj

∑
i∈Sj

1w̃i,j + errj−1, (8)

where Sj defines the set of clients who upload the model
updates.

V. EXPERIMENTS
To validate the performance of the proposed algorithm
CMULA-FL, we deployed CMULA-FL under the PySyft
framework [31]. The performance is measured from the per-
spective of training speed and communication efficiency.
Section V-A presents the experimental setup, such as three
existing comparison algorithms and power load datasets.
Then, detailed experimental results are shown and analyzed to
demonstrate the advantages of CMULA-FL in Section V-B.

A. EXPERIMENTAL SETUP
1) DATASETS AND MODELS
In the experiments, we made use of a benchmark power
load dataset from the Chinese Society of Power Engi-
neering,1 which records the power load data of a region
from 2009 to 2015. The power load data can be converted into
a matrix X. However, due to the fact of improper operation
and other human factors in the process of collecting data,
there exist some bad data, bringing down the model utility.
Therefore, it is significant to preprocess the dataset before the
training model. The data is preprocessed in three main steps,
namely data standardization, generation of time-series data,
generation of training data and test data. The three steps will
be introduced in detail as follows.

a: DATA STANDARDIZATION
The power load data has the characteristic of periodicity.
Therefore, the power load data is roughly similar between two
adjacent periods. In this paper, we used some basic statistical
metrics and an empirical threshold to judge the similarity of
data in two adjacent periods and identify bad data. The details
are as follows.
• Divide the power load data into different groups
(N groups) in days;

• Compute the mean value X̄q and variance σ 2
q of q-th

group (q = 1, . . . ,N );
• Pick out the bad data based on an empirical threshold

ϵq ∈ [1, 1.5]. The n-th data Xn,q in group q is divided
into a bad data if it satisfies

|Xn,q − X̄q| > 3σqϵq.

• Correct the bad data based on adjacent data,

Xn,q = (Xn−1,q + Xn+1,q)/2.

• Normalize the power load data.

1http://shumo.nedu.edu.cn.
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TABLE 1. Experimental parameter settings.

b: GENERATION OF TIME-SERIES DATA
In order to deploy LSTM to train power load data, it is
significant to generate time-series data and labels. In order
to ensure the model utility, we generate time-series data
through a sliding window, which is set to a larger number
of 12.

c: GENERATION OF TRAINING DATA AND TEST DATA
The training set and test set are obtained by dividing the
generated time-series data in a ratio of 4:1. Then, the training
power load data was randomly assigned to each client, and
each client keeps a similar amount of data.

d: MODEL
For the sake of ensuring the model utility of the power load
dataset, the neural network LSTM is adopted in this paper.
The LSTM consists of two layers, each of which contains an
input gate, a forgetting gate and an output gate. The outputs
of the first layer are the input parameters for the input gate in
the second layer. The activation function for each layer set as
the Softmax function.

e: PARAMETER SETTINGS
In our experiments, to keep the model updates fresh, tmax is
set to 10. Other default parameters are as listed in Table 1.

2) COMPARISON ALGORITHMS
The proposed CMULA-FL was compared with two
communication-efficient algorithms in our experiments,
including a Lazily Aggregated Quantized gradient approach
(LAQ, [17]) and FL based on Periodic Averaging and Quanti-
zation (FedPAQ, [32]). FedAvg [7], one of the most classical
FL algorithms, is set as the baseline. A brief introduction of
the two comparison algorithms is as follows.

a: LAQ
To improve communication efficiency, LAQ quantizes
gradients as well as skips some quantized gradients with
less information by utilizing previous gradients, which can
simultaneously save communication bits and rounds without
sacrificing the desired convergence guarantees.

b: FedPAQ
To reduce the communication cost, FedPAQ adopts the low-
precision quantizer to decrease the communication cost of
one epoch. Apart from that, FedPAQ utilizes partial client

participation and periodic averaging to reduce the commu-
nication frequency.

3) METRICS
We compared CMULA-FL with the above algorithms from
the aspects of training speed and communication efficiency.
The training speed is directly measured by the number of iter-
ations before convergence which is judged based on training
loss. Communication efficiency is measured by the transmis-
sion bits during the training process. We describe the metrics
of training loss and transmission bits as follows.

a: TRAINING LOSS
We use Mean Squared Error (MSE) as the metrics of the
performance on the test data. It reflects the magnitude of the
difference between the true label and the predicted value of
the model and is calculated as

MSE =
1
m

m∑
i=1

(yi − f (xi))2, (9)

where m is the number of test data, yi and f (xi) are the true
and predicted value respectively. MSE can reflect two aspects
of model performance. On the one hand, the declining rate
of MSE on the test dataset reflects the convergence speed.
On the other hand, a smaller MSEmeans that the correspond-
ing algorithm predicts more accurately.

b: COMMUNICATION COST
The communication cost is measured by the bits of transmis-
sion parameters uploaded by all clients and the rule is given
as

Ctot =
J∑
j=1

∑
i∈Sj

Mnum∑
k=1

C(1w̃i,j,k ), (10)

where C(1w̃i,j,k ) defines the bits of 1w̃i,j,k , the k-th model
parameter of model 1w̃i,j.

B. EXPERIMENTAL RESULTS AND ANALYSIS
To validate the performance of CMULA-FL and explore the
impacts of some important parameters on the model utility,
four groups of experiments were conducted from two aspects:
the communication cost and the loss value. The specific
settings of each group are as follows:

1) The first group counted up the communication cost of
the model in the training phase under different algo-
rithms and quantization bits.

2) In the second group, CMULA-FL was compared with
the baseline and two comparison algorithms to verify
the model utility.

3) In the third group, some ablation experiments and
comparison experiments were presented to verify the
function of some components of CMULA-FL. In the
ablation experiments, the error compensation strategy
was removed from CMULA-FL to explore the impacts
of error compensation and we rename it CMULA-FL
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TABLE 2. Communication cost of different algorithms under different
quantization bits.

(No Compensation). In the comparison experiments,
CMULA-FL was compared with FedAvg and the cen-
tralized settings with only one client (One-Client).

4) In the fourth group, various quantization bits were set
to explore the influence of quantization on the model
utility.

1) IMPACTS OF QUANTIZATION BITS ON COMMUNICATION
COST
In order to explore the communication cost for different
quantization bits and algorithms, we dynamically set the
quantization bits for CMULA-FL and varied the algorithms
to verify the effectiveness of CMULA-FL. To ensure fairness,
the number of training epochs was 100 and Table 1 shows the
settings of other parameters. Table 2 shows the communica-
tion cost for different algorithms and different quantization
bits.

As can be seen from Table 2, the larger quantization bits
will result in a larger communication cost for LAQ and
CMULA-FL, which indicates that the bits of transmission
parameters are positively correlated with the communication
cost. However, the relation is not linear due to the lazy
upload strategy. Table 2 also shows that CMULA-FL can
significantly reduce the communication cost compared with
the baseline, FedAvg. Compared with LAQ and FedPAQ,
the proposed CMULA-FL demonstrates a superior perfor-
mance in terms of communication cost since CMULA-FL
compresses the bidirectional transmission parameters. Apart
from that, the communication cost of CMULA-FL decreases
more rapidly with the diminution of quantization bits than
those of LAQ due to the fact that LAQ only compresses the
model during the uploading stages, whereas CMULA-FL also
reduces the communication cost in the downloading stages.

To verify the model utility, CMULA-FL was compared
with the baseline, FedAvg and two comparison algorithms.
All algorithms adopted the same parameters as shown in
Table 1 and the quantization bits for CMULA-FL and LAQ
were set to 8. Fig. 3 shows the relation between MSE and
epochs for different algorithms.

As shown in Fig. 3, FedAvg has the smallest MSE value
and the MSE of CMULA-FL is a little larger within accept-
able ranges. However, LAQ and FedPAQ have larger biases
and fluctuate heavily since LAQ uses stale gradients while

FIGURE 3. Relation between MSE and epochs for different algorithms.

FedPAQ ignores the error caused by model compression.
It shows that CMULA-FL can reduce the communication cost
without sacrificing much prediction accuracy by utilizing the
error compensation strategy.

By combining the analysis of Table 2, Fig. 3 also shows
that CMULA-FL can not only reduce the communication cost
effectively by compressing bidirectional model update and
uploading model update lazily, but also guarantee the model
utility by utilizing error compensation strategy.

2) IMPACTS OF DIFFERENT COMPONENTS ON MSE
We deployed some ablation experiments and comparison
experiments to verify the function of some components of
CMULA-FL. To ensure the fairness of the comparison, the
initialized model parameters were set to the same values in
different scenarios and the number of epochs was 100. Table 1
shows specific parameter settings. Fig. 4 shows the relation
between MSE and epochs under different settings.

As shown in Fig. 4, FedAvg converges the fastest, while
CMULA-FL has a slightly lower convergence speed. How-
ever, compared with CMULA-FL-NoCom, the performance
of CMULA-FL has been significantly improved, which
shows that compression and lazy upload will significantly
reduce the model utility and the impacts can be decreased by
error compensation strategy.

Fig. 4 also shows that the model trained with a single client
converges the slowest. It is due to the fact that all clients
can jointly train the model and more data can significantly
improve the model generalization. The FL scenarios are sim-
ilar to aggregating all the data from clients, which enhances
the data volume and thus improves the convergence speed.

3) IMPACTS OF QUANTIZATION BITS ON MSE
To explore the impacts of different quantization bits on
CMULA-FL, we dynamically set quantization bits to observe
the changes of MSE. To ensure fairness, the number of train-
ing epochs was 100, and Table 1 shows the settings of other
parameters. Fig. 5 shows the trends of MSE corresponding to
different quantization bits.
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FIGURE 4. Relation between MSE and epochs under different settings
(the centralized settings with one client, FedAvg, CMULA-FL without error
compensation strategy (No Compensation) and CMULA-FL).

FIGURE 5. Relation between MSE and epochs under different
quantization bits (Quan_Bits) for CMULA-FL.

As shown in Fig. 5, a larger number of quantization bits
results in converging faster. If the quantization bits are set
larger, the transmission model will be more accurate. There-
fore, the model will be updated in a righter direction and
converge faster. It shows that on the premise of sufficient
communication resources, the larger quantization bits can
lead to a higher prediction accuracy of the model.

VI. CONCLUSION
We propose communication-efficient CMULA-FL to fore-
cast power load data on enterprises or individuals efficiently
and safely to better enable electric IoTs. Based on bidirec-
tional quantization and lazy upload, CMULA-FL effectively
reduces the communication cost of the federated predic-
tion process. Apart from that, CMULA-FL also utilizes the
error compensation strategy to ensure prediction accuracy
and convergence speed. Firstly, the model updates of the
clients and server are quantized to bring down the commu-
nication cost. CMULA-FL also adopts lazy upload to further
improve communication efficiency. Secondly, the deep fusion

with error compensation strategy can effectively reduce the
impacts caused by quantization errors and lazy upload errors.
Finally, the model effectiveness of CMULA-FL is veri-
fied by deploying massive experiments in different scenes
and parameter settings. However, the proposed CMULA-
FL algorithm is still imperfect and needs to be improved.
For example, CMULA-FL has many hyper-parameters and
it is difficult to set hyper-parameters based on experiences.
In the subsequent work, the influence of hyper-parameters
will be analyzed theoretically, such as the local update change
threshold and time threshold. By analyzing the impacts of
different parameters, it will be more convenient to deploy
CMULA-FL.
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