
Received 10 March 2023, accepted 20 March 2023, date of publication 27 March 2023, date of current version 3 April 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3262188

Data Imputation Techniques Applied to
the Smart Grids Environment
JONAS FERNANDO SCHREIBER 1, AIRAM SAUSEN 1, MAURICIO DE CAMPOS 1,
PAULO SÉRGIO SAUSEN 1, (Member, IEEE), AND MARCO THOMÉ DA SILVA FERREIRA FILHO2
1Department of Exact Sciences and Engineering, Regional University of Northwestern Rio Grande do Sul (UNIJUÍ), Ijui 98700-000, Brazil
2Department of Underground Networks, State Electric Power Distribution Company (CEEE-D), Porto Alegre 91350-180, Brazil

Corresponding author: Paulo Sérgio Sausen (sausen@unijui.edu.br)

This work was supported in part by the State Electric Power Distribution Company (CEEE-D) through Research and Development
Program contract number 5000004772.

ABSTRACT The electricity sector has added plenty of new technologies in recent years. Smart Grids
are characterized by the use of monitoring and communication technologies almost in whole system. The
application and use of such new technologies triggers a significant growth in the data number, increasing
the amount of errors and missing data, thus hindering the analysis. In this context, this paper performs
the modeling, implementation, validation and comparative analysis of four data imputation techniques:
K-Nearest Neighbor, Median Imputation, Last Observation Carried Forward, and Makima. The aim is to
verify if they could be applied to the electric segment - more specifically to the Smart Grids environment. The
database used in the research is obtained from the electricity utility CEEE and its underground substations,
located in southern Brazil. Following this, five simulation scenarios are created and one data set is removed,
based on pre-established criteria. Finally, the techniques are applied and the new database is compared with
the original one. From the simulation results, the technique which presented the best results is Makima, it is
validated as robust to be applied in the Smart Grids environment, especially in electrical data missing from
an electric power substation.

INDEX TERMS Electric power system, smart grid, big data, data imputation.

I. INTRODUCTION
The Brazilian Electric Power System (EPS) has gone through
changes, especially when it comes to the incorporation of new
technologies in the electric grid, once it was developed in the
twentieth century and, currently, it must meet new energy
consumption needs and demands for security and quality.
EPS is segmented into four subsystems: generation, trans-
mission, distribution and consumers (loads), in monitored
systems like this, the traditional processing of information
from the generation and distribution of energy does not occur
through simple operations of data analysis from the substa-
tion such as consultation, statistics, and modification [1].
More robust rules are required in those cases, so that it is pos-
sible to transform data into information and make decisions.
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This process is far from trivial, and only by correctly handling
these data it is possible to transform a traditional grid into a
Smart Grid.

Smart Grids are defined by the Electric Power Research
Institute (EPRI) as the superimposition of a unified commu-
nication and control system on the existing power distribution
system, where sensors are installed in the utility’s equipment
to monitor and verify its operating environment [1]. The
ability to integrate data acquired by the sensors is necessary to
solve problems and experience the benefits of this integration,
aiming to analyse, monitor, process and obtain near real-time
responses. Therefore, Smart Grids and smart meters open up
unprecedented business opportunities for utility companies.
On the other hand, huge challenges arise in regard to han-
dling and managing large volumes of data, since traditional
analysis techniques cannot process such amount effectively.
The use of solutions derived from the concept of Big Data
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Analytics [2], [3], [4] becomes necessary, since it works with
the application of advanced techniques specific to large data
sets.

Many problems can occur when large amount of data is
generated and handled. Using the extended monitoring sys-
tem in conjunction with different transmission media, con-
necting varied sources that send many distributed data, can
occasionally corrupt a piece of data from multiple record by
different equipment. In addition, data can be corrupted, either
by errors in the acquisition system or in the transmission
system, or also because they are incomplete due to failures to
communicate one or more system magnitudes. In summary,
data gaps are likely to occur throughout the power gener-
ation and distribution process, resulting in inconsistency in
the generation of information from this data. Data can be
verified, processed and corrected at the edge of the network,
i.e., at power substations, using a decentralized approach as
applied in [5] and [6], or even in a centralized way through
processing the data on the server, the centralized approach is
the one used in this paper.

The search for improvement in data processing in the Smart
Grids environment has been the subject of several research
projects in recent years. However, as the number of infor-
mation increases, an increase in record failures also occurs.
Thus, the focus of this research is directed towards the treat-
ment of these failures through data imputation techniques,
so that existing records are not lost or eliminated due to miss-
ing data. In this sense, the choice of an adequate data imputa-
tion technique is important, since it brings benefits to society
as a whole, providing quality energy to consumers, avoiding
financial losses caused by the interruption of energy supply
in various sectors of the economy. Rubin [7] discusses the
types of failures and how the loss of records interferes with
data analysis. Zhou et al. [8] use the based estimation method
Last Observation Carried Forward (LOCF) to estimate the
lost value and reconstruct the sensing dataset, considering
temporal characteristics of sensing data in Wireless Sensor
Networks (IWSNs).

Studies in several areas compare existing imputation tech-
niques. Chang and Ge [9] present a comparison of ten
data imputation techniques using Bayesian Principle Com-
ponent Analysis (BPCA), they are applied to the problem
of missing data in traffic flow. Majidpour et al. [10] per-
form a comparison between five techniques: Constant (zero),
Mean, Median, Maximum Likelihood, and Multiple Impu-
tation applied to compensate for missing values in Electric
Vehicle (EV) charging, both Constant (zero) and Median
techniques presented the best results. Pazhoohesh et al. [11]
perform a comparative study of eight techniques for impu-
tation of missing values in building sensor data, that is,
Monte Carlo Markov Chain (MCMC), Hmisc aregImpute,
K-Nearest Neighbours (KNN), Simple Mean, Expectation-
Maximization, Random Value, Regression and Stochastic
Regression, the authors got to the conclusion that one needs
to identify the percentage of missing data before selecting the

appropriate imputation technique in order to achieve the best
result.

In the electricity sector Khan et al. [12] use a simple aver-
age either to impute missing values or to solve data imbalance
problem in Electricity Theft Detection (ETD) applied to the
smart meter environment. Similarly, Weber et al. [13] came
up with a technique called Copy-Paste Imputation (CPI) for
energy time series, it checks one or several consecutive miss-
ing values and fills in missing values by copying blocks from
similar days. For data from smart meters, Peppanen et al.
[14] optimize an imputation technique based on Optimally
Weighted Average (OWA). Razavi-Far et al [15] develop a
new technique for imputation ofmissing energy data based on
correlation-connected clusters. It not only considers local cor-
relation between energy network measurements in estimating
missing data, but also handles high-dimensional data and
tolerates high missing rates. Zhang et al. [16] propose a new
technique for imputation of solar data. They also performed
modifications to the unsupervised learning algorithm Gen-
erative Adversarial Network (GAN), and they made a com-
parison with other machine learning techniques, the authors
highlight that solar GAN has a great potential to facilitate the
forecasting of photovoltaic generation.

In the Smart Grids scenario there is a growing need to
apply some procedure or technique that makes it possible
to detect and correct the absence of data. By analyzing the
related works, the great majority of them uses synthetic data
from the most diverse areas, for simulations and evaluation
of data imputation algorithms. In the case of the electricity
sector, the few existing works that use real data are restricted
to applications linked to consumer profiles, such as smart
meters, solar systems and electric vehicles. Different from
the related works, the contribution of this paper is related
to the administration and management of an utility company
inserted in the Smart Grid environment, and by using real data
from an underground electric power substation of this utility.
In the Smart Grids segment, it is noteworthy that there are
no studies that clearly and objectively present which and how
these techniques can be applied, not even if it is possible to
perform their application directly to the problem, or even if
they can be adapted.

In this context, this paper performs the modeling, imple-
mentation, validation and comparative analysis of four data
imputation techniques: K-Nearest Neighbor (KNN) [17],
Median Imputation [18], Last Observation Carried Forward
(LOCF) [8], and Makima [19], [20] (i.e., Akima’s modi-
fied algorithm) aiming to verify if they can be applied to
the electric segment, more specifically to the Smart Grids
environment. The techniques KNN and Makima are chose
because they are used in different areas of knowledge in the
case of missing data, Imputation by Median and LOCF are
chosen because they are the most widely used in monitoring
systems for their simplicity of implementation. Following the
line of originality, many techniques analysed in the literature
are based on synthetic data, focusing only on the evaluation
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FIGURE 1. Illustration of a database with missing values.

of the technique and not on the scenario in which they are
applied. Respecting the importance of working with real data
and scenarios, the database used in this paper is obtained
from a set of underground substations of the electricity utility
CEEE, located in southern Brazil. In the sequence, five sim-
ulation scenarios are created and a dataset is removed from
each scenario, following pre-established criteria. Finally, the
techniques are applied and the new database is compared
with the original one. They are implemented in MATLAB®,
version R2019a (student license) and evaluated after eight
runs and from the calculation of the relative mean error.

II. DATA IMPUTATION
With the rapid development of Information Technology (IT),
the Internet of Things (IoT), social networking, e-commerce,
and Smart Grids, the amount of data is growing and being
accumulated at an unprecedented rate. However, the emer-
gence of incomplete records grows at the same pace, degrad-
ing the quality and usability of those databases, turning the
research field in data imputation - especially in the electricity
sector - a fruitful area for studies and research.

In the power sector, most monitoring systems use data only
to generate alarms in certain situations and events. However,
with the application of new technologies and the increase
in the number of sensors, data is being stored and, above
all, analyzed, aiming to transform traditional electrical grids
into intelligent environments. In order to perform an ade-
quate analysis of this large volume of data, the computational
complexity and the correct sizing of the algorithms must be
analyzed, along with the problem of missing values in these
bases.

Database failuresmay occur for a number of reasons. Often
data is not recorded due to either an outage, or a sensor failure
(i.e., instrumentation). On other occasions the value that is
stored is far from the expected range, or not relevant, making
it an invalid value. In these scenarios, the reported value is
not the real value and it is considered invalid and labeled as a
missing value, as shown in Figure 1.

Studies on incomplete data can be found as early as 1962,
in which Sebestyen [21] proposes a solution based on chance
probability. In the seventies, Rubin [22] presents the multiple
imputation method, widely used to solve missing data prob-
lems, Chang and Ge [9] define the proportion p of missing

data in relation to the total data set, given by:

p =
P
T

(1)

where: P is the number of missing datas, and T is the total
number of data in the sample.

A. NON-RESPONSE MECHANISMS
The absence of data, also known asMissing Variables (MVs),
should not only be considered a problem, but also a way
on how to interpret results. The presence of MVs happens
frequently in various fields of knowledge and, based on the
classification system created by Rubin in [23], a matrix D
fromcollected data is considered. This matrix has R lines(i)
representing the register and A the columns (j) representing
attributes, so that di = (di1, . . . , diA), where dij is the value
from attribute j for the register i. Aware of this information,
matrix D is divided in two sets of data:

D = {Dexistent ,Dnonexistent} (2)

where: Dexistente are the non-missing data and Dinexistente are
the missing data. For each matrix D exists a matrix F of the
same dimension that identifies the missing data, in which
fij = 1 if dij exists, and fij = 0 if dij does not exist.
The missing data, or non-response mechanism, is consid-

ered through the conditional distribution of F in relation to D
(P(F |D)), and it can be:

1) Missing Completely at Random (MCAR): missing data
occurs at random and is not related to any variable, that
is, the probability of a not recorded observation does
not depend on any other observation in the matrix D,
it is given by:

P(F |D) = P(F) (3)

implying that the probability of occurrence of missing
data is the same for all cases, and the cause leading to
the occurrence of missing data is a random event.

2) Missing at Random (MAR): missing data has a pre-
dictable loss pattern from other variables, that is, the
missing data depends only on the recorded information
and is correlated with the variable with missing data,
that is:

P(F |D) = P(F |Dexistent ) (4)

if missing data does not depend on values Dinexistente
and only the values Dexistente, then missing data is
caused by some observed variable, which is available
for analysis and correlated with the variable that has
missing data.

3) Missing Not at Random (NMAR): the most difficult
type of data to deal with in an analysis is related to
unobserved values that are higher or lower than the
sample standard, i.e. the probability of missing data
varies in unknown ratios. It happens when F depends
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onwhat data is missing from thematrixDinexistente, may
also depend on the existing data Dexistente, that is:

P(F |D) ̸= P(F |Dexistent ). (5)

B. TREATMENT TECHNIQUES FOR MISSING VARIABLES
Several techniques can be used for the treatment of MVs in
the database; simpler techniques that perform record deletion,
and techniques that insert records where data is missing.
Directly deleting a record where data is missing is a quick and
easy practice, but it leads to data loss, since the existing infor-
mation is simply ignored. If the absence of records occurs, the
best to do is to elect one data imputation technique, where
the incomplete records are filled in, thus avoiding loss of
information and the amount of data to be analysed.

The Incomplete Case Deletion (ICD) is an example of
deletion technique of record affected by missing data [24],
in which every record that contains a missing variable is
removed, this technique has a simple implementation, but
also a high potential for information loss. The Pairwise Dele-
tion Option [25] excludes only samples with missing data in
the variables required for analysis are excluded, it also causes
loss of information available in the eliminated data and itis
simple to be implemented.

There are several techniques for substitution of MVs. The
most important ones are listed below. The Average Imputa-
tion technique [26] allows an missing value to be replaced
by the average of values present in the variable of interest,
generating reasonable and fast results. A variation of this
technique is Median Imputation [18], this measure of central
tendency requires the data to be ordered, so the missing value
is replaced by the median, which is the value that divides
the data set into equal parts, thus offering good performance.
Another commonly used technique is the LOCF [8] which
consists in identifying the missing record and replacing it
with the non-missing value prior to the missing record, prov-
ing to be a quick and easy-to-implement technique. For spe-
cific cases, imputation by Zero [18] can be employed, in this
technique the missing data are replaced by a constant - in this
case zero - and it is often used in situations which either the
variable is binary, or zero value is plausible.

Another existing imputation option is the Hot Deck
replacement [27] in this technique the replacement of a miss-
ing value is performed from a similar value in the current data
set. A variation of Hot Deck is Cold Deck replacement [16],
this technique differs from the previous for the fact that it uses
a value from an external origin dataset to the analysed set. It is
an easy technique to implement, although it may not work
well when there is a large amount of missing data.

There are also more elaborate techniques, such as Regres-
sion Imputation [23] which replaces missing data with pre-
dicted values from a regression model. In other words,
it imputes missing data based on other variables in the data
set. As an example, the KNN technique [17] chooses k
neighbors based on some distance measure, and its average

is used as an imputation estimate. Another existing technique
is Expectation Maximization (EM) [28] it seeks to estimate
the parameters of the joint distribution from data, such as the
mean vector and the covariance matrix, resulting in punc-
tual estimates of these vectors. And there is also the Cubic
Interpolation technique developed by Akima [19] with low
computational cost and oscillation, it presents more accurate
values close to the data. A modified version of it named
Makima is available in the Matlab computational tool [20]
directly preventing oscillation when compared to the original
technique.

Among the techniques mentioned above, four of them are
selected to perform a comparative study and to define which
is the most suitable to the data imputation problem related
to the electricity sector. Regarding the reasons for choosing
these four techniques, the factors taken into consideration are
the number of citations in works in related areas, the ease
of implementation, use of computer resources, use in mon-
itoring systems, and performance in relation to assertiveness.
For a better understanding, the four techniques previously
selected will be detailed below.

The first technique chosen is KNN [17], which basically
consists of returning the data after replacing the values NaN
(‘‘Not a Number’’) by matching values from the nearest
neighbouring column. If the matching value is also NaN , the
next neighbour column is used. This algorithm calculates the
Euclidean distance between observed columns using only the
rows that do not have NaN , values, so the analyzed data set
must have at least one row with complete and error/absence
free values.

The second technique chosen is Median Imputation [10],
[18], [29], it is technique widely referenced in the literature
and easy to implement. This algorithm uses the median cal-
culation to obtain the missing data from the division in two
equal parts of a window with k defined records.

The third technique chosen is LOCF [8]. The application
of this technique consists of examining the database, locating
the missing value NaN , and then replacing it with the most
recent non-missing value before it. The choice of this tech-
nique followed the same criteria previously mentioned and it
is widely used in the literature and simple to implement. If the
directly preceding position also contains a missing value,
the search continues recursively until a valid value is found.
If two or more NaN records in a row are missing, the LOCF
technique continues searching the previous field until a valid
record is found. This technique has a disadvantage, it presents
execution failure when there is an absence in the first register.
This happens due to the nonexistence of a previous register
to be used in the replacement, and in this specific case it is
necessary to implement an error/exception treatment in the
computational implementation of this technique.

The fourth technique chosen is Makima [20] based on
the Akima technique [19]. The Makima algorithm for one-
dimensional interpolation performs cubic interpolation to
produce piecewise polynomials with continuous first-order
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derivatives. This algorithm avoids excessive local undula-
tions. If

δi =
vi+1 − vi
xi+1 − xi

(6)

is the slope on interval [xi, xi+1) the piecewise cubic interpo-
lation gives a cubic polynomial that can interpolate values vi
and vi+1 at nodes xi and xi+1, then the value of the derivative
di at the sample point xi is a weighted average of nearby
slopes, given by:

di =
wi

w1 + w2
δi−1 +

w2

w1 + w2
δi. (7)

The weights used in the Makima algorithm are:

w1 = |δi+1 − δi| +
|δi+1 + δi|

2
,

w2 = |δi−1 − δi−2| +
|δi−1 + δi−2|

2
. (8)

The Makima algorithm gives priority to the side closest to
the horizontal, which is more intuitive and avoids overshoot.
In particular, whenever there are three or more consecutive
collinear points, the algorithm connects them with a straight
line and thus avoids an overshoot [20].

III. STUDY OF CASE
A real database1 is used in order to carry out this research.
It is obtained from sensors installed in a set of underground
substations at the electricity utility CEEE, located in southern
Brazil. Initially the entire database is analysed, and then a
period of 2 years is defined (i.e., 2018/2019). This period is
chosen with the objective of obtaining a significant number of
substations that reflect the energy consumption pattern of two
complete annual cycles, which makes it possible to reduce
any variation in energy consumption and consequently in the
variation of data.

From the set of 42 substations, the unit chosen for the
implementation of data imputation techniques is the one with
the highest number of samples as the shortest time interval
between samples and no interruptions or data loss. The sam-
pling rate of the monitoring system is one package every
10 seconds. However, due to several problems, either in the
acquisition system or even in the transmission system, it is
not possible to maintain this sampling frequency for a period
that could be considered satisfactory.

Then, the reading periodicity is increased by one packet
every 60 seconds, and of the 42 substations only the substa-
tion named in this paper as id17 managed to have a complete
sequence of error-free data for 14,427 uninterrupted minutes,
which is equivalent to a 10-day window of complete records,
i.e., 09/06/2019 to 19/06/2019. This case study, along with
the applied methodology, proves the difficulty of obtaining
an integrated and complete set of data in inhospitable envi-
ronments such as an underground electric power substation.

1The database can be made available upon request by email to the authors.

TABLE 1. Measurements used in this research.

Table 1 presents the measurements that form the database
used in this research.

Once the database is obtained, the methodology cho-
sen to perform the comparison among the four imputa-
tion techniques aforementioned is the one which inserts
errors/faults randomly into the original database, generating
a new database with errors [30]. From this methodology it
is possible to measure the effectiveness of mechanisms to
correctly complete missing data. The insertion of errors in
the original base follows an increasing percentage of errors
that generate different scenarios to simulate and analyse the
behaviour and the efficiency of the analysed methods from
the average of runs, by comparing differences between the
estimated/imputed data with the original base and without
errors.

The Relative Error (RE) is used to compare the chosen
techniques, that is:

Er =
|xi − x|

x
. (9)

where: Er is the relative error, xi is the imputed value, and x
is the actual value.

IV. RESULTS AND DISCUSSIONS
This section presents the simulation results considering
the four techniques: Median Imputation, LOCF, KNN, and
Makima. From the substation database id17, five scenarios
are created with 14,427 records of 11 analog magnitudes.
The first three 1%, 3% and 5% of records are respectively
removed from the original database. With the aim of evaluat-
ing the effectiveness of the techniques in extreme situations,
in the fourth scenario the Percentage of Missing Records
(PMR) is increased and can reach up to 99% of missing data.
The fifth scenario aims to analyse which technique has better
performance for imputation of missing data when applied to
the primary currents that suffer significant variation. After-
wards, the data imputation techniques are applied, then the
new database is compared with the original one, and the tech-
niques are evaluated from eight runs and the calculation of the
relative average error. The five scenarios, application of the
techniques, simulation results and discussions are presented
below.
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A. FIRST SCENARIO
From the complete database 1% of data is randomly removed,
i.e. 1,586 records. This random removal consists of replac-
ing the existing value with the content NaN . An auxil-
iary base of the same size is created to store the values
removed from the complete base, to facilitate comparison of
results.

Among the techniques presented above, KNN is the first
one evaluated. To perform the simulation, the function knnim-
pute of the MATLAB software is used. The generated base
is shielded for later analysis, after imputation of the missing
values.

The KNN technique is run eight times and then the
Mean Relative Error for evaluation (ERmed ) is calculated.
At the end a scan is performed on the simulated base and
the imputed value is compared with the original value of
the initial complete base. For the simulation results of the
KNN technique in this scenario, it is found the ERmed
of 10.61%.

The second technique evaluated isMedian Imputation. The
function fillmissing of MATLAB is used to fill the regis-
ters with value NaN by a value calculated from an argu-
ment given by the fillmissing. In the case of the median,
the argument used by the function is the movmedian with
a calculation window of 10 records. The Median Imputa-
tion technique is run eight times and the ERmed found is
of 1.56%.

The LOCF technique is the third one evaluated. For
the implementation, the function fillmissing of MATLAB
software is used by passing the argument previous. The
implemented algorithm replaces the value NaN with the first
existing valid previous record. From eight runs performed on
the database with 1% of missing data the ERmed of 1.64% is
obtained.

Makima technique is the last one evaluated. For this sim-
ulation the function fillmissing of the MATLAB software is
also used, inserting the argument makima. From the results
of the simulations of eight runs on the database the ERmed
of 1.38% is found. This technique got the best performance
among the four ones evaluated.

B. SECOND SCENARIO
Using the same methodology presented in the first scenario,
another database is created, now with 3% of the removed
records, called the second scenario. From the complete base,
4,759 records are replaced by the content NaN . The same
methodology adopted in the first scenario for the simulations
and evaluation of the four techniques is adopted in the second
scenario.

After performing the simulations, the KNN technique
presents an ERmed de 16.94%, the Median Imputation tech-
nique presents anERmed de 1.60%,while for LOCF technique
a ERmed of 1.66% is found, and lastly Makima technique
has a ERmed of 1.41%. For the second scenario, the Makima
technique also performed the best.

FIGURE 2. Comparative analysis of the ERmed of the four data
imputation techniques.

TABLE 2. ERmed for 8 techniques execution for each scenario.

C. THIRD SCENARIO
The third scenario extends the removal to 5% of the origi-
nal database records, i.e. 7.925 NaN contents are inserted.
The same methodology adopted in the scenario 1 and 2 to
carry out the simulations and evaluate the four techniques is
adopted in the third scenario. After performing the simula-
tions, the KNN technique presents an ERmed de 19.14%, the
Median Imputation technique presents an ERmed of 1.61%,
the LOCF technique has a ERmed of 1.68%, and again the
Makima technique obtained the best result with a ERmed of
1.43%.

Figure 2 presents a comparison between the four data
imputation techniques. The superiority of Makima tech-
nique is observed in relation to the others, followed by the
Median Imputation, LOCF, and with minor results, the KNN
technique.

In order to facilitate the comparison between the four
techniques evaluated, Table 2 presents the ERmed results for
the three scenarios in summarised form and the respective
Standard Deviation (SD).

D. FOURTH SCENARIO
The effectiveness of themethods in extreme situations is eval-
uated in the fourth scenario, here the PMR is incremented and
can reach up to a limit of 99% of missing data. To do so, from
the original database 10% of records are incrementally and
randomly removed and are replaced by NaN until the point
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TABLE 3. PMR versus ERmed for the KNN technique.

TABLE 4. PMR versus ERmed for the Median Imputation technique.

TABLE 5. PMR versus versus ERmed for the LOCF technique.

when the technique can no longer perform the imputation of
missing data in a satisfactory way.

TheKNN technique is evaluated first, it reaches a threshold
of 30% of missing data, as seen in Table 3. When 40% of
data are removed the technique achieves an ERmed superior to
100%. In this case, the percentage of 40% is considered the
limit for the application of this technique, since the ERmed
represents an imputed value more than double the original
value. It can also be seen that as the PMR is incremented, the
ERmed also increases.

TheMedian Imputation technique is evaluated by the same
methodology. Table 4 shows that this technique reaches a
limit of 20% of missing data, because when a PMR of 30% is
applied an execution error occurs and the technique cannot
correctly estimate the missing values. This is because the
Median Imputation technique cannot calculate the missing
value because the averaging method finds a NaN inside the
calculation window, which makes the simulation unfeasible
and it is therefore terminated.

The next technique analysed is LOCF. Table 5 shows that
this technique does not perform well, as it reaches its limit at
10% of missing data, when a PMR of 20% is applied there
is an execution error and the technique is no longer able to
correctly estimate the missing values. The LOCF technique
uses the immediately preceding record to replace the missing
one, which causes the failure. If there are two or more NaN
records in a sequence, the algorithm searches the previous
one recursively until it finds the first valid value available.
This technique does not work if the first record is a NaN
value. Since random removals are carried out, when 20% of
the records are removed, a data that is in the first position is
also removed, making it impossible to proceed with the tests.

Finally, the Makima technique is the last one evaluated.
This technique presented an excellent result, since it reached
a percentage of 99% ofmissing values managing to estimate a
value to replace the removed record with low ERmed . Table 6
presents the results found for the Makima technique.

TABLE 6. PMR versus versus ERmed for the Makima technique.

The technique uses the argument makima based on the
existing records in the base to perform the calculation and
subsequent replacement of the NaN records by the values
obtained. Thereafter, the technique responds well until it
reaches 99% of missing data. Considering the results for the
ERmed presented in Table 6 an elevation of this error can be
oserved when the percentage of missing data exceeds 70%.
From the simulation results of all the evaluated techniques
for the fourth scenario, it can be clearly seen that the Makima
technique obtained the best performance.

On the other hand, Median Imputatio and LOCF tech-
niques are discarded for not being able to present a stable
imputation sequence, since these techniques cannot deter-
mine a valid value to be imputed and they depend on the
position of the missing records. The KNN technique is able to
impute values for the removed data, however, when it reaches
a percentage of 40% of record removal, it inserts values
that resulted in a difference of over 100% from the original
database values. Makima is therefore the one to achieve the
best results in the fourth scenario.

E. FIFTH SCENARIO
The fifth scenario is defined in order to confirm if Makima
really has the best performance in the imputation of missing
data applied to the electric sector - more specifically in Smart
Grids. In this scenario, only the three primary currents of
the system are kept to evaluate the techniques performance.
These measurements are chosen because they suffer signifi-
cant variation when compared to other system measurements

In order to simplify and potentiate the tests considering the
three distinct phases of the current (i.e., phase A, B and C),
the removal of the registers is performed only in phase B.
Following the same methodology as the three first scenarios,
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TABLE 7. Result of data imputation for the primary current in phase B.

FIGURE 3. Comparison of ERM between mechanisms.

TABLE 8. PMR versus versus ERmed for the Makima technique.

the data is randomly removed with percentages of 1%, 3%
and 5% from the total of records.

Considering the random removal of 1% of data from the
B-phase primary stream, 144 records are removed; for 3% of
the data, 432 records are removed; and with 5% of the data,
721 records are replaced by theNaN content. Auxiliary bases
of the same size are created to store values removed from
the main base, to facilitate the comparison with the simulated
values. To evaluate all techniques, the ERmed is used; for this
scenario eight repetitions are also performed. Table 7 presents
the simulation results.

Figure 3 presents the ERmed for the four techniques eval-
uated in the fifth scenario, except for the KNN technique,
all others increased their ERmed rates when compared to the
results obtained in scenarios 1, 2 and 3. On the other hand,
the Makima technique achieved once again the best perfor-
mance. By repeating the methodology used in the fourth
scenario, data removal percentage for the Makima technique
is incrementally and randomly extended, starting again at
10%. This technique again presented an excellent result, since
it reached a percentage of 99% of missing values managing
to estimate a value to replace the removed record with ERmed
relatively low. Table 8 shows the percentages of ERmed ,a
small variation in the error rate is observed even significantly
increasing the percentage of missing data. Therefore, the
Makima technique is validated as robust for application in
Smart Grids environment, especially in missing electrical
data of an electric power substation.

V. CONCLUSION
This paper performs the implementation, validation and
comparative analysis of four data imputation techniques:
K-Nearest Neighbor, Median Imputation, Last Observation
Carried Forward, and Makima to be applied in the electric
segment, more specifically in the Smart Grids environment.
From a real database of an underground substation of the
electricity utility CEEE, located in southern Brazil, five test
scenarios are created and data is removed according to differ-
ent pre-established criteria, even extreme data missing situa-
tions are tested. In sequence, data imputation techniques are
applied, and the new database is compared with the original
one.

In the first three scenarios 1%, 3% and 5% of records are
removed from the original database, and in all simulation
results the Makima technique showed the lowest ERmed with
1.38%, 1.41% and 1.43% respectively. In the fourth scenario,
extreme situations are evaluated and the percentage of miss-
ing records is increased, reaching up to 99% of the data, con-
sidering the application and analysis of the four techniques,
the only one that managed to complete the database with up
to 99% of missing data is Makima with an ERmed of at most
5.22%. The fifth scenario aims to analyze which technique
has the best performance for imputation of missing data when
applied to the currents of primary phase B, and again 1%, 3%
and 5% of records are removed from the original database,
in all simulations results the Makima technique presented the
lowest ERmed with 2.67%, 2.81% and 2.80% respectively.
The fifth scenario is also evaluated for extreme conditions,
and the Makima technique is again the only one that was able
to complete the database with up to 99% of missing data with
a ERmed of 6.92% at most.

Therefore, the Makima technique is considered superior
to the others, being robust and suitable to be applied in a
Smart Grid environment, especially in missing data in the
processing and monitoring systems of electric power under-
ground substations. As future works, it is suggested both the
application of the Makima data imputation technique in a
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decentralized way, that is, directly in the substation’s internal
acquisition system, and also in the real monitoring system of
the underground substations installed at the electricity utility
CEEE, RS, Brazil.
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