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ABSTRACT In the Internet of Things (IoT) communications, visual data are frequently processed among
intelligent devices using artificial intelligence algorithms, replacing humans for analysis and decision-
making while only occasionally requiring human scrutiny. However, due to high redundancy of compressive
encoders, existing image coding solutions for machine vision are inefficient at runtime. To balance the rate-
accuracy performance and efficiency of image compression for machine vision while attaining high-quality
reconstructed images for human vision, this paper introduces a novel slimmable multi-task compression
framework for human and machine vision in visual IoT applications. Firstly, image compression for human
and machine vision under the constraint of bandwidth, latency, and computational resources is modeled
as a multi-task optimization problem. Secondly, slimmable encoders are employed for multiple human
and machine vision tasks in which the parameters of the sub-encoder for machine vision tasks are shared
among all tasks and jointly learned. Thirdly, to solve the feature match between latent representation and
intermediate features of deep vision networks, feature transformation networks are introduced as decoders
of machine vision feature compression. Finally, the proposed framework is successfully applied to human
and machine vision tasks’ scenarios, e.g., object detection and image reconstruction. Experimental results
show that the proposed method outperforms baselines and other image compression approaches on machine
vision tasks with higher efficiency (shorter latency) in two vision tasks’ scenarios while retaining comparable
quality on image reconstruction.

INDEX TERMS Image compression, feature compression, collaborative compression, intelligent analytics,
machine vision.

I. INTRODUCTION
Tn recent years, Internet of Things (IoT) devices have been
deployed with deep learning-based models and are getting
smarter, which may make decisions and analyses indepen-
dently or collaboratively even without human intervention.
However, most intelligent devices suffer from insufficient
storage capacity and computation power; thus cloud servers
equipped with deep neural networks are introduced into
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the IoT environment to share the storage and computation
burdens and help with analyzing the data that is sent from
intelligent devices. The communication between IoT devices
and servers, termed ‘‘machine-machine communication’’,
thus becomes increasingly more frequent and dominant
than conventional human/machine-human communication.
Under normal circumstances, few scenarios require human
intervention, and only when an exceptional case emerges,
for example, manual authentication is needed if there is
a verification error in facial recognition using machines,
as shown in Fig. 1. Therefore, effective and efficient image
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FIGURE 1. Visual Internet of Things communication system, which is
dominant with feature stream transmission for machine vision tasks,
supplemented by the transmission of image streams for human
perception.

compression that satisfies both machine vision tasks and
human perception [1], [2] is desired.

Traditional image codecs, such as JPEG [3], HEVC [4],
and DNN-based image codecs [5], [6], [7] could compress
images to a needed quality for the human perception at
a certain bit rate. The compressed images can be further
used for machine vision tasks. This type of approach is
called ‘‘Compress then Analyze (CTA)’’. However, the whole
explosive growth of data is required to be compressed and
delivered, which increases the computation burden on the
encoder side and causes network jams during transmission.
It is not inefficient as most multimedia data are not
for humans. Key features may be enough for machine
vision.

By contrast, feature coding aims to achieve great perfor-
mance for machine vision tasks at a specific bit rate. This
type of approach is called ‘‘Analyze then Compress (ATC)’’,
which extracts compact and analytic-friendly visual features
first, and then compresses them for transmission using
existing image compression techniques. Examples of such
an approach include compact descriptors for visual search
(CVDS) [8] and compact descriptors for video analysis
(CDVA) [9], which extracted and compressed hand-crafted
and deep-learning compact feature descriptors, respectively.
However, the abstraction of intermediate features makes
it difficult to reconstruct the original image for human
perception.

Researchers have recently looked into novel collaborative
compression techniques that attempt to integrate feature and
image coding. The concept of video coding for machines
(VCM) has been described in [1], which aims to satisfy both
machine vision and human vision while using the possible
minimal amount of computing and communication resources.
In certain studies [10], [11], [12], [13], [14], intelligent
analysis was performed directly in the compressed domain
using multi-task learning techniques. A collaborative image
compression and classification framework was proposed
in [10]. The method combines image compression with

semantic inference using multi-task learning and introduces
an adversarial loss for optimization. However, the latent
representation is shared by several tasks, yet each task has
distinct needs for the information contained in the latent
representation, which may cause conflicts.

Scalable methods have become more popular in VCM
recently. In [15], the face’s edge features served as the base
layer, while the color information served as the enhancement
layer. And a Generative Adversarial Net (GAN) was used
to reconstruct face images suitable for face recognition and
human perception from corresponding layers. In order to
better serve human and machine vision and to find a better
trade-off between computational load and generalization
capabilities, some scholars consider a scheme in which image
signals and features of different layers are simultaneously
compressed and transmitted [16]. However, most methods
need to be supplemented with auxiliary modules to produce
scalable bit streams, and each feature needs to be encoded by
an independent encoder. This makes the whole architecture
obese, which requires high computational storage capacity
for edge devices and ultimately limits their applications in
IoT.

Therefore, IoT applications require image compression
algorithms that can be used for both machine vision and
human vision, as well as low latency during compression and
inference for machine vision tasks. Inspired by [17] and [18],
we propose a slimmable multi-task image compression
framework by controlling the encoder network’s width to
adjust latent representation for human and machine vision
tasks. For human vision tasks, we use larger encoder widths
to ensure the visual quality of the images. For machine vision
tasks, we use smaller encoder widths to reduce the bit rate and
transmission latency of the latent codes. And the low latency
of corresponding latent codes compression could be achieved
due to the reduced width of the sub-encoders. Compared with
existing methods, our framework can execute encoders at
different widths, enabling smooth switching of latent code
for different vision tasks. We also explore the effect of the
width of the sub-encoder on the performance of machine
vision tasks. Our main contributions are summarized as
follows

(1) A multi-task image compression framework with
slimmable encoders for human and machine vision is
proposed, in which slimmable encoders are served for various
vision tasks. The proposed method can achieve better rate-
accuracy performance on machine vision tasks in two vision
task scenarios while maintaining comparable reconstructed
image quality than other benchmarks.

(2) A slimmable network that can produce variable-size
latent representation for several vision tasks is proposed, and
the smallest size of sub-encoder is assigned to the frequently
used machine vision application, which could reduce latency
on machine vision inference tasks and save bandwidth during
IoT communication. And the rate accuracy performance for
machine vision could be boosted by learning jointly with
compression for human vision.
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FIGURE 2. Various frameworks of DNN-based compression system. x
represents the input image, while x̂ represents the reconstructed image. y
indicates latent representation. And Ti stand for the specific machine
vision inference task i . (a) Analyze then Compress. (b) Compress then
Analyze. (c) Multi-task with jointly optimized scalable bit stream with
latent-space scalability. (d) Multi-task with separately optimized scalable
bit stream.

(3) In addition to the full utilization of communication
and computing resources in the IoT communication scenario,
as shown in Fig. 1, the proposed framework could somehow
protect the users’ privacy since the feature stream and image
stream are separate.

II. RELATED WORK
Currently, image compression methods for human vision and
machine vision can be broadly classified into four categories.
Fig. 2 shows the general framework of these four approaches.

A. FEATURE CODING
One is called ‘‘Analyze then Compress (ATC)’’, as shown
in Fig. 2(a). Earlier works compress and transmit features
that can be used directly for machine vision tasks. MPEG
has completed the standardization of compact descriptors
for visual search (CVDS) [8] and compact descriptors for
video analysis (CDVA) [9], which standardize hand-crafted
and deep-learning compact feature descriptors, respectively.
This greatly advances feature compression. However, this
kind of highly concentrated feature coding may be limited to
specific tasks and scenarios [1]. Meanwhile, the development
of deep learning has prompted the emergence of new
feature compression schemes, which mainly transmit the
intermediate features of deep models for machine vision
analysis tasks and which layers to transmit depending on the
subsequent tasks [19]. In this scenario, intelligent analysis
networks are divided into two parts, and one is deployed at
the edge as a feature extraction network, called the front-end
network. The other is deployed in the cloud, termed back-end
network. There is a lot of research devoted to improving the
compression efficiency of intermediate features [20], [21],
[22], [23], [24]. For example, Singh et al. [23] proposed
an end-to-end learning approach that jointly optimized the
bit rate and task objective. Choi et al. [24] proposed a
compression method that selectively compressed a subset of
deep feature tensors and restored the original deep feature
tensors with the proposed back-and-forth (BaF) predictor to
complete the analysis task in the cloud.

B. IMAGE CODING
Another is ‘‘Compress then Analyze (CTA)’’, and its
structure is shown in Fig. 2(b), which combines compression
and machine vision analysis network structure and devises
joint optimization strategies. Some methods [25], [26],
[27], [28], [29], [30], which are based on existing learned
image compression frameworks, obtain the reconstructed
image more appropriate for analysis through joint learning.
However, in most cases, the quality of the image suffers.
For instance, in [27] and [29], the compression module and
the analysis network are successively coupled and trained
together, and accuracy (e.g., mAP) of machine vision task
increases with optimization, but the quality (e.g., PSNR) of
reconstructed image declines. In [28] and [30], the network
structure and machine vision task-friendly optimization
method result in a severely compressed background in
the image, which negatively affects the perceptual quality
of the background. In addition, since these methods still
reconstruct images after decoding, a complete cloud analysis
network is still required to perform machine vision tasks.
It greatly increases the resource consumption of the cloud.
The aforementioned two strategies in feature coding are
helpful for machine vision tasks while ineffective for human
perception.

The image coding and feature coding both treat the
compression processes and vision analysis as two individual
tasks though some work [27], [29] jointly train the two tasks,
and they either favor human perception or machine vision.
Therefore, both image coding and feature coding for human
and machine vision require the total computing consumption
of compression processes and vision analysis and may not
be effective for both two tasks. How to combine image
coding and feature coding to improve resource utilization and
compression efficiency becomes an important issue.

C. SCALABLE CODING
There is a popular approach to jointly train multiple vision
compression tasks and perform machine vision tasks directly
on the compressed domain [10], [11], [12], [13], [14],
as shown in Fig. 2(c). For instance, in [12], the training was
carried out using a multi-task loss consisting of classification
loss, reconstruction loss and rate loss, and the classification
is performed on the quantized representation. Another
important approach is to make latent codes scalable. Some
work [15], [31], [32], [33] separates the compressed bitstream
into two layers, i.e., the base layer and the enhancement
layer. The base layer is used for intelligent analysis, and
the enhancement layer is utilized to fuse with the base
layer to reconstruct the input image for human perception.
In [31] and [32], the Facenet network’s deep features were
utilized as the base layer, and the coarse input image was
first reconstructed from the base layer. The fine input image
was obtained by adding the coarse input image with the
enhancement layer, which was the decompressed residual of
the original input image and the coarse input image.
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FIGURE 3. An example implementation of the proposed slimmable multi-task image compression framework. ‘‘Q’’ represents quantization.
‘‘AE’’ and ‘‘AD’’ stand for arithmetic encoder and arithmetic decoder, respectively. The network architectures of the slimmable encoder and
decoder-M are illustrated at the bottom of the picture. N and K are the number of channels of convolution, which are chosen according to the
task. And the filters’ kernel size and stride are followed by the number of channels. ↑ and ↓ indicate upsampling and downsampling in each
convolutional layer, respectively. Slim-conv represents the slimmable convolutional layer and swit-GDN represents the switchable GDN layer.

Another popular approach is to compress and transfer the
image signal and features simultaneously [16], [34]. There
have been some studies extending to more visual analysis
tasks, the structure is shown in Fig. 2(d). For instance, in [34],
the authors proposed a method for compressing multiple deep
feature maps, which are intermediate representations of deep
networks. The deep-to-shallow feature maps will be used for
the coarse-to-fine analysis task.

III. PROBLEM FORMULATION AND MOTIVATION
In IoT applications, the goal of image compression for human
andmachine vision tominimize the accuracy loss formachine
analysis and the reconstruction loss for human eyes within
the resource constraint of intelligent devices, e.g., memory,
storage, and computational cost limits, while demanding for
low latency for visual analysis.

arg min
{φ,ϕ}

DM + DH ,

s.t. f (RM ,RH ) ≤ RT ,

g(ξM , ξH ) ≤ ξT ,

h(γM , γH ) ≤ γT ,

l(CM ,CH ) ≤ CT , (1)

where DM denotes the accuracy performance for machine
vision, andDH denotes the signal reconstruction performance
degradation for human vision. ‘M’ and ‘H’ represent machine
vision and human vision, respectively. The bit rates, memory,
storage, and computational costs of image compression are
under the constraints of RT , ξT , γT , CT , respectively. φ, ϕ

are the parameters of encoders and decoders to be optimized.
f (., .) calculates the bit rates of encoded latent codes, g(., .),

h(., .) compute the operation memory, storage the encoders
need, respectively, l(., .) counts the computational costs of
encoders consume. The specific way of f (., .), g(., .), h(., .),
l(., .) integrating machine vision and human vision terms
depend on the compression network structures.

In IoT application, a captured image x could be compressed
as latent representation yM or the feature maps of backbones
f are transmitted for visual analysis tasks T in most cases.
In addition, the image x will be compressed as latent
representation y for reconstructing x̂ occasionally required
by human observers. To make the most of the resources
and achieve effective and efficient image coding for visual
analysis while guaranteeing the reconstructed image quality,
different solutions can be attempted to address this issue.
Scalable image coding is a possible solution. However, the
whole encoders are used for image coding for both machine
and human vision in existing scalable image coding solutions,
thus the efficiency of the encoder for machine vision is
confined by that of the encoder for human vision. How to
improve the efficiency of image coding for machine vision
with negligible rate accuracy performance degradation needs
to be explored.

Suppose the reconstructed image x̂ is approximately equal
to the input image x, the inference tasks T can be conducted
on reconstructed image x̂. From [33] it can be inferred that
the processing chain can be described in Markov chain as
x → y → x̂ → f → T . And their mutual information
relationship can be written as

I (x; y) ≥ I (x; f), (2)

where I (.; .) calculates the mutual information between two
vectors. It indicates the mutual information between x and
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f is smaller than that between x and y. Thus, we assume
that the necessary information need to extracted from x to
generate f for visual analysis is less than that for y for human
vision. For example, edges information are more necessary
for image detection than color information for image quality.
Therefore, we conjecture that compressive encoders with
appropriate fewer channels are enough to extract necessary
key features for generating f for visual analysis. Motivated by
the above analysis and inspired by [17] and [18], we propose a
slimmable multi-task image compression method for human
and machine vision, in which reduced-size encoders are
splitted as sub-encoders for machine vision and the original
size encoder is for human vision. The machine and human
vision tasks are jointly learned to optimize Eq (1).

IV. PROPOSED SLIMMABLE MULTI-TASK IMAGE
COMPRESSION FOR HUMAN AND
MACHINE VISION
A. THE PROPOSED LEARNED IMAGE COMPRESSION
FRAMEWORK
Basically, a learned image compression framework includes
four modules, i.e., an encoder, a quantizer, an entropy model,
and a decoder. The overall framework of our proposed
learned image compression for human and machine vision
is shown in Fig. 3. The major difference is that slimmable
encoders with multiple sub-encoders are proposed for several
vision tasks, and the corresponding number of entropy
models, and decoders for vision tasks are configured. The
basic structure of the proposed method is based on two
learned image compression models, i.e., the factorized model
called bmshj2018-factorized and the hyperprior model called
bmshj2018-hyperprior from [5]. For simplicity, we denote
bmshj2018-factorized and bmshj2018-hyperprior models as
BFM and BHM. For BFM and BHM, the difference is that the
entropy model of BFM is a factorized-prior model, while that
of BHM is a hyperprior model. The two proposed networks
based on the two compression models are called S-BFM and
S-BHM.

B. THE PIPELINE OF SLIMMABLE IMAGE COMPRESSION
As shown in Fig. 3, the encoder ga transforms the input image
x to the latent representation y, which is quantized by the
quantizer Q and then transmitted after entropy coding. y is
then decoded and transformed by the decoder gs to obtain the
reconstructed input x̂. In our method, the input reconstruction
operation, the same as that in [5], can be described as

y = ga(x; φ), (3)

ŷ = Q(y), (4)

x̂ = gs(ŷ; ϕ), (5)

where φ and ϕ are the parameters of the encoder and decoder,
respectively.

For image compression for machine vision, a certain layer
in a backbone analysis network is chosen and taken as the
separatrix to divide the analysis network into two parts,

i.e., the front-end network and the back-end network. The
intermediate features fMi generated by the intermediate layer
of the front-end network are compressed and transmitted to
serve as the input to the back-end networks in [24]. Different
from this strategy, in our work, the front-end network and
feature compression processes are replaced by a process in
which the intermediate features fMi are directly generated
from images. For the analysis task i, the sub-encoder gai ,
which is a reduced-width sub-encoder embedded in the native
encoder, produces the latent variable yMi . To perform the
analysis task i, a decoder module decoder-Mi gsi is builted
to reconstruct the intermediate features f̂Mi , which can be
described as

yMi = gai (x; φi), (6)

ŷMi = Q(yMi ), (7)

f̂Mi = gsi (ŷMi; θ), (8)

where the sub-encoder gai shares parameters with the original
encoder. The individual modules of the proposed slimmable
compression framework will be discussed in the following
subsections.

C. SLIMMABLE COMPRESSIVE ENCODERS
As has been analyzed in Section III, the larger width of
compressive encoders entails higher dimensional feature
embedding with more details, and there exists an enough
(reduced-size) width of encoder to compress images into
latent codes for visual analysis. In addition, it can be inferred
from [33] that more information is required for image
reconstruction than for visual analysis tasks. Consequently,
slimmable compressive encoders for human and machine
vision are proposed, in which the original-size encoder is
for image reconstruction, while sub-encoders with reduced
width are assigned for low-latency visual analysis tasks.
Assume the encoder has S sub-encoders, which enable it
to perform S intelligent analysis tasks. An encoder with a
smaller width will share its parameters with an encoder with
a larger width. And the parameters of the sub-encoder with
the smallest width are shared among all tasks. For instance,
in the network with a machine vision task, the width of the
sub-encoder ga1 for machine vision task is smaller than the
native encoder ga for image reconstruction task, then φ1 is
part of φ. That is, the two encoders share the parameters
φ1. The specific structure of slimmable encoders is shown
in Fig 3.

To realize the slimmablity of compressive encoders,
similar to [17], convolutional layers are set to be slimmable
convolutional layers which could discard a few channels of
layers during operation, thus the slimmable encoders can be
mapped to serve multiple vision tasks. GDN layers are set
to be switchable GDN layers in our slimmable compressive
encoders so that independent normalization computations
of feature map distributions are switched among different
subnetworks.
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D. DECODER MODULES FOR IMAGE AND FEATURE
RECONSTRUCTION
To make a distinction between decoders for human and
machine vision, the decoder for image reconstruction is
denoted as decoder-H, and the decoders for visual analysis
are denoted as decoder-Mi. The structure of decoder-H in
the proposed compression framework is the same as that
in [5], which consists of deconvolution layers and IGDN
layers. For visual analysis, a transformation network, also
decoder-Mi, is constructed to transform the latent variables
ŷMi into the intermediate features f̂Mi of the analysis network.
The structure of decoder-Mi is demonstrated in Fig. 3. The
difference between decoder-Mi from decoder-H is that the
configuration in each layer of decoder-Mi, i.e., the channel
number, kernel size, and stride, will change depending on
the analysis task to ensure that its output matches the
input of the back-end network. For example, the selected
intermediate features in visual analysis network for instance
segmentation may vary from that for object detection.
Therefore, to match the dimensions of the corresponding
intermediate features, output dimensions of the convolutional
layers of the decoder-Mimodules for different tasks should be
custom-set. Additionally, LeakyReLU layers are used rather
than IGDN layers so that the output features of the decoder-
Mi can match the dynamic range of the features in visual
analysis network.

E. LOSS FUNCTION
Our goal of the proposed slimmable compression method is
to optimize the averaged rate-distortion (or accuracy) perfor-
mance over image reconstruction and vision analysis tasks,
especially improving rate-accuracy performance of image
vision analysis while retaining rate-distortion performance
of image reconstruction. Thus, the total loss function can be
written as

Ltotal = αHLH +

S∑
i=1

αMiLMi , (9)

where LH represents the rate-distortion loss of image
reconstruction task and LMi represents rate-feature-distortion
loss of machine vision task i. And the parameters of αH
and αMi control the direction of optimization. Combining Eq.
(1), the corresponding Lagrangian form loss function can be
constructed as

L = R8 + λ8D8, (10)

where 8 ∈ {H ,M}, R8 denotes the bit rate, D8 represents
the distortion or accuracy of vision task 8, and λ8 is the
Lagrangian multiplier. Specifically, for image reconstruction,
the loss function can be formulated as

LH = Ex∼px [−log2(Q(ga(x; φ)))] + λHMSE(x, x̂), (11)

where x is the input image and x̂ is the reconstructed image.
The first term estimates the rate of the quantized latent code
of x for human vision. MSE(.) is used to measure how well

the predicted value x̂ matches the original x by calculating
Mean Square Error (MSE) between x̂ and x. For the machine
vision task, the loss function can be written as

LMi = Ef∼pf [−log2(Q(g
(ci)
ai (x; φi)))] + λMiMSE(fMi , f̂Mi ),

(12)

where the first term estimates the rate of the quantized
latent code ŷMi of x for machine vision. The second term
computes theMSE between output features f̂Mi of the g

(ci)
si and

intermediate feature fMi of the pre-trained analysis network
for machine vision task i. ci represents the width of the sub-
encoder g(ci)ai of machine vision task i. The determination of ci
affects the latency and performance of machine vision tasks,
and also the performance of image reconstruction. How to
select a suitable ci is of importance, and we will discuss it in
the experimental section.

V. EXPERIMENTS
In this section, the configuration of experiments is first
introduced. The selection of the width of the sub-encoder
for machine vision tasks is discussed afterward, then the
performance of our proposed slimmable encoders for two
vision tasks is evaluated and compared. Finally, the encoder’s
efficiency for machine vision tasks is compared.

A. EXPERIMENTAL SETTING
1) TRAINING SETTING
Inspired by [18], we mainly adopted the training strategy
in [18], which optimizes its loss averaged from all switches.
During training, the width of our proposed slimmable
encoders is switched once for each batch of data.We compute
the respective rate-distortion loss for encoders with different
widths and perform a parameter update. In every batch of
training, the encoder and decoder-H for human vision are
first trained with the parameter αH set to 1 and αMi set to 0.
Next, the sub-encoder with reduced width and the decoder-
M is trained for the object detection or instance segmentation
tasks with the parameter αH set to 0 and αMi set to 1. Each
batch of training process is alternated between the respective
task losses. To speed up training, a high-rate model is trained
first, and then the low-rate models are fine-tuned based on the
pre-trained high-rate model’s weight. COCO train2014 data
set [36] are used to train the network with two vision tasks.
The training image is initially resized to 256 × 256 before
being fed into the model for training, and the batch size is set
to 64. The models are optimized using Adam optimizer with
learning rate of 1e-4 on encoders and decoders, and learning
rate of 1e-3 on entropy model. And the ReduceLROnPlateau
learning strategy is chosen, which reduces the learning rate
when the loss is no longer decreasing. The values of λφ ,
shown in Table 1, are used in the loss function to produce
six versions of trained models. The hyper-parameters λH and
λM for rate-distortion model were selected based on alternate
optimization by fixing one parameter and changing the other.
Each pair of λH and λM with the smallest loss were chosen.
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FIGURE 4. Individual compression. Images are compressed separately for
human and machine vision tasks.

The code of the proposed network is developed on PyTorch.
The model was trained on a workstation with a 2.3GHz dual-
core processor (Intel Xeon E5-2686 v4) and two TITANRTX
GPUs.

In the proposed compressive encoders, the original encoder
generates a 192-dimensional latent representation for image
reconstruction, and a sub-encoder with a width of 128 dimen-
sions is set up for the object detection task. The selection
of the width for sub-encoder is discussed in Section V-B.
And the output of the decoder-M is used as the 14th layer’s
input of YOLOv3 network [35] at the decoding end, and the
object detection result is acquired after the back-end network
calculation. COCO2014 dataset’s validation set [36], which
includes 80 different object categories, was used as the test
dataset for object detection and image reconstruction tasks.

2) EVALUATION METRICS
Bit per pixel (bpp) is the coding length required for per-
pixel coding. The mean average precision (mAP) metrics,
which are the average of the Average precision (AP) over
IoU thresholds from 50% to 95%, are used to represent
the object detection performances. For image reconstruction,
Peak Signal to Noise Ratio (PSNR) and Mean Structural
Similarity (MS-SSIM) are the evaluation metrics used to
assess image quality.

3) COMPARISON METHODS
To demonstrate the effectiveness of our proposed slimmable
multi-task compression framework, a baseline model is
compared, as shown in Fig. 4. Specifically, in the baseline
method, two independent encoders are trained separately for
human and machine vision tasks. The structures of these two
independent encoders are the same as those of the encoders
used for human and machine vision tasks in the slimmable
encoder. Corresponding to the proposed S-BFM and S-BHM,
the baseline models can be termed as Ba-BFM or Ba-BHM,
respectively. For machine vision, Equation (12) is used as the
loss function for baseline models. λM values used in Equation
(12) are shown in Table 3. The pretainedmodels from [37] are
used as the baseline model for human vision.

In addition to the baseline Ba-BFM and Ba-BHM models,
a comparison method proposed is called latent space

FIGURE 5. Comparison of object detection performance among the
proposed S-BHM networks with various widths of sub-encoder. Note that
only the feature bitrate is calculated in this figure.

scalability, dubbed as LSS, is introduced to test whether
the proposed slimmable encoders, i.e., reusable encoder, are
more effective than the LSS, i.e., reusable latent codes. The
LSS method uses an encoder to compress images into latent
codes, of which 128 dimensions of which are extracted
for intermediate feature representation for object detection,
and all the latent codes are used for image reconstruction.
Corresponding to the proposed S-BFM, for a fair comparison
to the proposed S-BFM, the LSS method is adapted by
employing the BFM [5] as the compression model instead
of the compression model in [14]. Besides, the input image
format of the adapted LSS is changed from YUV to RGB.
We denote the adapted LSS as LSS-BFM.

Conventional codecs like JPEG and HEVC are also
included in the comparison methods. The quantization
parameters of HEVC are set to 22, 25, 28, 31, 34, and 37 in the
experiments. And the JPEG quality level ranges from 10 to
60 in steps of 10.

B. SELECTION OF THE WIDTH OF SUB-ENCODERS FOR
MACHINE VISION TASKS
It is important to choose a suitable ci of sub-encoder g

(ci)
ai

for machine vision task i. When ci is small, fewer channels
are assigned for joint machine vision and human vision
feature compression, and more channels are left exclusively
for detail construction for human vision. We mainly explore
the effects of ci on human and machine vision performance
in two tasks, i.e., object detection and image reconstruction.
The proposed slimmable compression models S-BHM with
96, 128, 160 of c1 are compared. In addition, the original
compression model BHM is counted as slimmable encoders
S-BHMwith 0 channel for machine vision. Thus, four models
S-BHM-0, S-BHM-96, S-BHM-128, and S-BHM-160 were
compared. Since 0 channel is used for the machine vision
task, there are no results of S-BHM-0 for machine vision task.
All tested compression models were tested on a series of six
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TABLE 1. λH and λM values settings in the loss function for the proposed slimmable compression models.

TABLE 2. λH and λM values settings in the loss function for the proposed slimmable compression models with various widths of sub-encoder for
machine vision.

TABLE 3. λM values for training baseline models for object detection.

FIGURE 6. Comparison of image reconstruction performance among the
proposed S-BHM networks with various width of sub-encoder. Note that
only the image bitrate is calculated in this figure.

bitrates by setting λH to six different values, which are shown
in Table 2.

Fig. 5 demonstrates the bpp-mAP results of
S-BHM-96, S-BHM-128, and S-BHM-160 models, and
Fig. 6 demonstrates the bpp-PSNR and bpp-MS-SSIM

TABLE 4. Performance of the proposed slimmable compression models
S-BFM/S-BHM for object detection against baselines with BD metrics.

results of S-BHM-0, S-BHM-96, S-BHM-128, and S-BHM-
160 models. It can be observed that the bpp-mAP curves
obtained by S-BHM-96 and S-BHM-160 are below the bpp-
mAP curve obtained by S-BHM-128, and obviously the S-
BHM-128 model performs the best, and the S-BHM-160
model does the worst among the three models. It may be
inferred that as c1 increases, the rate-accuracy performance
of object detection first increases and then decrease. For
image reconstruction, the bpp-PSNR and bpp-MS-SSIM
curves obtained by the four models S-BHM-0, S-BHM-96,
S-BHM-128 are close while S-BHM-160 model is relatively
inferior. It may be inferred that sparing some channels for
joint human and machine vision feature compression may
not influence the image reconstruction performance greatly,
and when the number of channels for sharing is too large,
the image reconstruction performance becomes worse. The
reason could be that when c1 is too large, fewer channels are
assigned for individual image reconstruction, thus affecting
the image reconstruction performance directly and vision
analysis performance (object detection) indirectly through
joint learning. Therefore, considering both the visual analysis
and image reconstruction performance, and also the latency
for vision analysis, c1 is simply set as 128 for object detection
in our proposed slimmable encoders.

C. PERFORMANCE ON HUMAN-VISION PERCEPTION AND
MACHINE-VISION OF TWO TASKS
1) OBJECT DETECTION
Fig. 7 shows the mAP results in the range of [0-1] bpp.
In this case, the black dashed line is the result of the YOLOv3
network loaded with pre-trained parameters for an input
image size of 512 × 512, which has a value of 57.68%. The
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FIGURE 7. Comparison of object detection performance among proposed
network and benchmarks. Note that only the feature bitrate is calculated
in this figure except that the performance of JPEG and HEVC are listed as
anchor.

FIGURE 8. Comparison of image reconstruction performance among
proposed network and benchmarks. Note that only the image bitrate is
calculated in this figure except that the performance of JPEG and HEVC
are listed as anchor.

red lines are the results of the proposed networks S-BFM
and S-BHM. Table 4 details the performance of BD-mAP,
which is the extended BD metrics. The average increase or
decrease in mAP at a given bit rate is represented by BD-
mAP. The BD-bitrate is expressed as an average percentage
of bit savings at the same precision, and negative numbers
represent savings. It can be observed that the bpp-mAP

TABLE 5. Performance of the proposed slimmable compression models
S-BFM/S-BHM for image reconstruction against baselines with BD
metrics.

curves of S-BFM and S-BHM are above the curves of
their respective baselines, JPEG and HEVC. Specifically,
the S-BFM performs better than JPEG and HEVC in mAP
by 10.998% and 4.479% improvement, respectively. And
S-BHM also improves 11.686% and 4.752% mAP over
JPEG and HEVC. Compared to baseline Ba-BFM, our S-
BFM achieves 1.140% mAP improvement and -24.220%
bit savings. And the S-BHM network improves 0.393%
mAP and saves -36.332% bits over Ba-BHM. The results
show that object detection task performed well with jointly
learning on slimmable models than independent training. The
improved performance may be attributed to the knowledge
sharing introduced by parameter sharing. In addition, the
proposed S-BFM obtained slightly worse performance on
object detection than the LSS-BFM method with −0.317%
BD-mAP and 9.983% BD-bitrate. This is because the
parameter setting of the loss function of LSS-BFMmakes the
optimizationmore inclined in the direction ofmachine vision.

Fig. 9 shows the reconstructed images and object detection
results at around two levels of bitrates. The corresponding
bitrates, PSNR, and MS-SSIM values are given below the
reconstructed images, and the bounding box results of the
object detection task are also visualized and displayed. For
JPEG and HEVC methods, object detection is conducted
after the input image has been compressed and reconstructed,
so the bitrate of the object detection task is the same as
that of image reconstruction. For other comparisons and our
proposed methods, the object detection task separates from
the image reconstruction, and the bounding box results are
displayed on a black background. The results of original
images are listed as anchor. For the first rate example, it can
be observed that S-BFM detects more true objects (bounding
boxes) than Ba-BFM and JPEG at similar or lower bitrates.
Compared with HEVC and LSS-BFMmethods, the bit rate of
S-BFM could achieve similar object detection performance
at lower bit rate. While S-BHM and BHM have the same
number of detected objects, the object confidence scores of S-
BHM are higher. A similar performance can also be observed
in the second example.

2) IMAGE RECONSTRUCTION
Fig. 8 shows the corresponding bpp-PSNR and bpp-MS-
SSIM curves of the proposed network, baseline approaches,
and LSS-BFM method. Table 5 shows the BD-bitrate of our
two implementations, compared to their respective baseline
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FIGURE 9. Visual examples of our models’ outputs compared with several benchmarks. For visualization purposes, we only highlighted objects with a
confidence score of over 80%. The bit rate (bpp), PSNR (dB), and MS-SSIM values are displayed sequentially below the reconstructed image.

models and LSS-BFM. As can be shown, the bpp-PSNR
curves of the S-BFM and S-BHM are close to the bpp-
PSNR curves of Ba-BFM and Ba-BHM. For PSNR, the
bitrate saving is −9.631% and −0.308% for S-BFM and S-
BHM compared to their respective baseline models. On MS-
SSIM, our method is slightly lower than its baseline, with
17.984% and 7.114% increased for S-BFM and S-BHM,
respectively. The results demonstrate that the proposed
method can maintain the reconstructed image quality of
the baseline model to a certain extent while improving
the performance of machine vision tasks. In comparison
to method LSS-BFM, S-BFM achieves −78.696% and
−67.473% bitrate savings in PSNR and MS-SSIM compared
to the method of LSS-BFM with a factorized entropy model.
The reconstructed image quality of S-BFM is superior to
that of LSS-BFM, while the machine vision performance
of S-BFM is comparable to LSS-BFM, demonstrating the
effectiveness of the proposed slimmable encoder. Compared
with HEVC, the proposedmethod outperformsHEVC inMS-
SSIM but is inferior to HEVC in PSNR. It is validated that
DNN-based codecs perform very well on MS-SSIM in [33].
Our proposed method can be applied to other DNN-based
compression models and is expected to achieve similar PSNR
and MS-SSIM performance as the model it is based on.

As can be seen from Fig. 9, at a similar bit rate, the
PSNR and MS-SSIM of the reconstructed image by S-BFM
are comparable to that of BFM. It is a similar case of
S-BHM against BHM. Compared with JPEG and LSS-BFM,
the proposed S-BFM and S-BHM achieve better PSNR and
MS-SSIM values at lower bit rates.

FIGURE 10. Performance of object detection among proposed two-task
network and DNN-based image compression methods. Note that the
bitrates for S-BFM-dual and S-BHM-dual are calculated by adding the
feature stream and the image stream.

D. EVALUATION FOR BOTH IMAGE SIGNAL AND FEATURE
COMPRESSION
In the above experimental comparison, we compare the
image bitstream and feature bitstream separately, which
is due to the characteristics of a large number of edge-
cloud communications and a small amount of edge-human
communications in the visual IoT. However, there are still
rare cases where the feature stream and the image stream
need to be transmitted at the same time. In this section,
we will discuss the comparison with two DNN-based image
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TABLE 6. Params (millions of params), computational cost (billions of FLOPs) and encoding latency (ms) of comparsions among the proposed slimmable
compression models and other compared methods. The values are calculated for a 512 × 512 input image on a TITAN RTX GPU.

FIGURE 11. Comparison of image reconstruction performance among
proposed network and DNN-based image compression methods.

compression methods, i.e., BFM [5], BHM [5], in the
case of transmitting the feature stream and image stream
simultaneously. We take the network for two vision tasks as
an example. For DNN-based image compression methods,
the test images were first resized to 512 × 512, after which
the rebuilt images were fed into the pre-trained YOLOv3
network.

When the image bitstream and feature bitstream are
transmitted concurrently, the rate-distortion curves of the
suggested two-task network and the learning-based image
method are shown in Figs. 10 and 11. The purple lines are
the rate-performance curve after adding the code rates of
the characteristic bit stream and the image bit stream of the
proposed scheme. For object detection, the S-BFM network
outperforms the BFM network marginally. The same goes
for the S-BHM network, which is higher than BHM. But
for image reconstruction, the image quality is much worse

than the other learning-based image compression methods
at the same bit rate. Although the proposed scheme does
not perform well when the image stream and feature stream
are transmitted together, the proposed method only needs
to deploy half of the inference network at the decoding
end, which reduces the computational burden. On the other
hand, the image reconstruction branch of the proposed
scheme can do the same machine vision task analysis as
the neural network-based image algorithm, that is, connect
the whole inference network after reconstructing the image.
Therefore, we provide an alternative solution for machine
vision analysis.

E. COMPUTATIONAL COMPLEXITY
We assessed the efficiency of the proposed slimmable
encoder in terms of parameters (in MB), computational cost
in floating point operations (FLOPs) and encoding latency (in
ms). These values are calculated for 512× 512 input images,
where the latency is the average of the average latency
of the six different bitrate models on the COCOval2014
dataset. And encoding latency is calculated on a Titan RTX
GPU, excluding data loading, writing and arithmetic coding.
We compare the Ba-BFM, Ba-BHM, and LSS-BFMmethods,
whose compression processes differ only in the encoding
process. Since there is no benefit in latency, CTA schemes
like BFM are not used as comparison methods because
they require a full inference network, which increases the
inference time for machine vision applications beyond our
proposed solution.

The resource-saving of the proposed network is displayed
in Table 6. Because S-BFM’s and S-BHM’s encoder
structures are identical, their theoretically corresponding
computational complexity is also the same. Here, we use
S-BFM as an illustration. When only feature streams are
transmitted, the encoder width of the proposed S-BFM is
reduced. Compared to the LSS-BFM model with the original
size encoder, the FLOPs reduction on the object detection task
is calculated to be around 55%. The reduction also results in
lower latency during encoding by around 0.5 ms. This greatly
reduces the computational burden on the encoding side and
maximizes resource utilization in the IoT environment where
machine-to-machine communication is common. When the
image stream and feature stream are transmitted at the
same time, the proposed S-BFM saves about 30.8% of the
parameters compared to Ba-BFM. Compared with LSS-
BFM, the proposed network increases the parameters and
computational cost of one sub-encoder but with lower latency
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and better image reconstruction quality with comparable
machine vision analysis performance.

VI. CONCLUSION
The collaborative compression of human and machine vision
is one solution to meet the human and machine vision needs
of IoT visual communication. Existing VCM solutions for the
IoT, though, are constrained in their practical implementation
due to their complexity or inefficiency. In this paper, we intro-
duce a multi-task compression framework for human and
machine vision based on a slimmable encoder. The slimmable
encoder can be reduced to a smaller sub-encoder by adjusting
its width to serve various compression tasks. Moreover,
feature transformation networkswere introduced as decoders,
which map the latent representation to the intermediate
features of machine vision inference networks. The proposed
framework shows better performance and is more friendly to
edge devices due to the lightweight encoder. At the same time,
the privacy of users is somewhat safeguarded because only
characteristic information is transmitted.

Despite the promising results of our framework, there are
still some limitations and challenges that need to be addressed
in future work. For example, our framework does not
explicitly formulate a mathematical optimization problem.
It would be interesting to explore optimization strategies for
the model. In our future work, the proposed method can be
generalized to other types of image and machine vision tasks,
such as segmentation, human pose detection, etc. In addition,
the impact of different inference networks on the performance
of machine vision tasks can be explored in the future.
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