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ABSTRACT This study deals with a new strategy of the re-assignment for multi-robot seamless coverage
tasks using the concept of propagation in a multi-robot surveillance system (MRSS). In the context of
MRSSs, multi-robot coverage tasks play a critical role. These tasks require generating paths for two or
more robots to cover an entire area, with the objective of minimizing the time needed to complete the
task. However, over time, robots may need to be excluded from coverage missions due to issues such as
battery charging or malfunctions. It is important to handle these situations efficiently in order to maintain
the completeness and balance of the coverage mission. Typically, it can be resolved by either recomputing
the coverage algorithm for the remaining robots or redistributing the coverage task of the excluded robot to
its neighbors. However, in the proposed method, the amount of coverage area of the excluded robot is equally
and efficiently assigned to the remaining robots. First off, a relational graph between robots and a tree based
on the excluded robot are sequentially constructed to necessarily know how the robots are geometrically
arranged in the given area centered on the excluded robot. The excluded robot becomes the root of the
tree, and the depth of the tree indicates the proximity of the coverage areas. Subsequently, the amount of
the original coverage area of the excluded robot can be differently assigned to its nearest neighbor robots
according to the size of the subtree. Then, the coverage area of the robots corresponding to the second level
of the tree are added from the partial coverage area of their parent robot to keep their coverage area balanced,
respectively. The similar process is continuously performed, such as ‘propagation’, until the re-assignment
of the coverage area over the leaf nodes is complete. Finally, balanced coverage area is re-assigned to the
remaining robots, which is time-efficiently computed. Simulations were performed on two occupancy grid
maps that were acquired from a simultaneous localization and mapping method. The proposed method was
evaluated against conventional methods on three factors such as the balanced re-assignment of the coverage
area (Balancing), the variation of the individual coverage area before and after the re-assignment process
(Seamless Coverage), and the total computational efficiency over time (Time-efficiency). The coverage area
was uniformly re-allocated after the proposed method was applied. In addition, the proposed method had
a short calculation time and enables seamless coverage even after re-allocation. In the future, probabilistic
maps related to the importance rate, accident rate, and crowds in the coverage area will also be taken into
consideration.

INDEX TERMS Multi-robot coverage task, multi-robot coverage path re-planning, multi-robot surveillance
system.

I. INTRODUCTION
With the increase in unmanned surveillance systems, the
necessity of using multiple robots has increased [1], [2],

The associate editor coordinating the review of this manuscript and

approving it for publication was Maged Abdullah Esmail .

[3], [4], [5]. The essence of the multi-robot surveillance
system (MRSS) is for multiple robots to completely cover a
given area within a limited time. This can be called multi-
robot coverage path planning (MCPP) in the MRSS [6].
MCPP is a special case of coverage path planning (CPP)
that involves generating a path for a robot or multiple
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FIGURE 1. Illustration of necessity of the proposed approach in a scenario. Nine robots cover different areas in a designated area simultaneously. If a
robot, RF, is excluded from the robot team due to battery charging, its coverage area is no longer monitored. To ensure seamless coverage, the area can
be assigned to the nearest neighboring robots. Alternatively, the viewpoints of the eight remaining robots can be intuitively recalculated and reassigned.
However, these methods cannot uniformly and efficiently redistribute RF ’s coverage area to the other robots in the team. This study proposes a detailed
area propagation method to cope with this issue.

robots that covers the entire area while minimizing the time
required to complete the coverage task [7]. CPP differs from
general path planning [8] in that it focuses on area coverage,
rather than just finding a path between a starting and
goal point.

MCPP of the surveillance system [9] is more complex than
that of the general cleaning system [10]. Unlike a typical
cleaning robot system that only considers visited points,
the surveillance system must take into account both the
viewpoints of the robots and the sensing area detected by
their sensors at each corresponding point. To carry out a robot
patrolling mission in a multi-robot surveillance system for
an extended period, it is crucial to devise countermeasures
against deviations from the coverage mission due to robot
battery charging or malfunction. This is one of the most
significant and practical challenges that must be addressed
for the long-term operation of surveillance systems.

Fig. 1 depicts a description of the balanced and efficient
re-allocation for the required coverage area. In this scenario,
nine robots were represented that initially covered a desig-
nated area [3]. When a robot, RF, is excluded from the robot
team because of battery charging, its coverage area is no
longer monitored. However, the task of covering the area can
be assigned to the nearest neighbors of RF, thus enabling
complete recovery of the coverage [11]. Alternatively, the
viewpoints of the eight robots over the entire area can be
recomputed and reassigned. However, this approach allocates
new coverage areas to the remaining robots in a unilateral
manner, which can lead to confusion in the entire coverage
task and even cause collision problems during transit to new
coverage areas. To mitigate these issues, a form of area
propagation can be envisioned, which is thoroughly proposed
in this study. The main contributions of this study are as
follows:
1. To achieve complete coverage, a robot relational graph

and a tree structure are constructed when a robot is excluded
from the coverage mission.
2. A propagation-based coverage area re-allocation

method has been proposed using the level of the tree structure.
This method has three advantages: equal distribution of
coverage areas, minimization of changes to the original
coverage tasks, and high time efficiency.
3. In the performance comparison, all approaches are

evaluated based on three factors: the balance of the coverage
area re-assignment, the variation of the individual coverage

area before and after the re-assignment process, and the
overall computational time.

II. RELATED WORK
Comprehensive studies on CPP for a single robot have
been conducted [12], [13]. Their field of research was
mainly concerned with coverage completeness and mini-
mizing overlap of coverage paths [14]. Furthermore, these
studies were carried out for various applications such as
disinfecting robots [15], harvesting robots [16], vacuum
cleaning robots [17], and surveillance robots [3].

In CPP, MCPP is considered a challenge [18]. However,
compared to single-robot CPP,MCPP has several advantages,
including reduced time consumption and improved execution
efficiency by completing tasks in parallel [6]. In addition,
if some members of the robot team fail, other robots
can compensate for the problem [13], which improves the
system’s robustness.

MCPP is the process by which a robotics team computes a
set of actionable paths that encapsulates a set of viewpoints
that must be visited, each with an assigned path, in order
to completely scan, navigate, or investigate the structure or
environment of interest [7]. In [19], MCPP algorithms were
compared. There are two types of approaches: the multi-
level subgraph patrolling (MSP) algorithm [20] and cyclic
coverage. The MSP algorithm is a multi-step segmentation
algorithm that assigns different regions (subgraphs) to each
mobile agent. This algorithm effectively computes the path
of any robot using the classical algorithm for Euler cycles
and various heuristics for Hamilton cycles, non-Hamilton
cycles, and the longest paths. The algorithm was compared
to the cyclic algorithm presented in [21]. The MSP algorithm
performed slightly better in half of the cases and slightly
worse in the other half.

Several studies [22], [23], [24] have considered the use
of multiple unmanned aerial vehicles (UAVs) for MCPP.
The aim of these studies was to improve the efficiency of
MCPP itself for UAVs with varying capabilities by using
clustering or optimization algorithms, such as the ant colony
algorithm. However, these research works did not deeply
consider resilience scenarios involving faults or charging
requirements.

In MRSSs, MCPP studies are broadly categorized into
distributed and centralized methods. One of distributed
methods was proposed in [25] for increasing the speed
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of exploration work through multi-robot cooperation. This
method used an auction-based approach to handle broken
robots and assigned new tasks to the remaining robots
based on their bids. However, a drawback of this method
is that it can be challenging to ensure area balancing and
seamless coverage because it may be difficult to consider
the entire situation. Centralized patrolling methods that use
graph theory are sub-divided into two categories [26], which
are cyclic [27] and graph partitioning methods [28]. In cyclic
methods, robots follow a predefined cyclic path across all
vertices in the graph and this path is computed as a solution
to the traveling salesman problem (TSP) which is a known
NP-hard problem. In graph partitioning methods, the map is
partitioned into different disjoint regions, and each region is
assigned to a robot for patrolling the region independently.

In MRSSs, MCPP includes an additional constraint
according to the sensing range of the equipped sensors on
each robot [29], [30]. This is because not only the viewpoints
that the robot should visit but also the area detected around
them can be considered covered. In particular, in [29], an area
consisting of obstacles with polygonal shapes was covered
using cluster-based algorithms and a cyclic coverage method.
Viewpoints were generated according to the trapezoidation
process using a limited visual range.

The concept of resilience was partially discussed
in [11] and [31]. Especially, in [32], a distributed method
called cooperative autonomy for resilience and efficiencywas
proposed. It not only provided resilience to the robot team
against failures of individual robots but also improved opera-
tional efficiency with event-based re-planning. In particular,
the game-theoretic structure built using Potential Games [33]
considers only the nearest neighbors of the failed robot in
a resilience game. In this study, because the balanced re-
assignment of the coverage area is one of the most important
criteria, performance comparisons with the above method are
also considered.

Initially, the problem of the surveillance system was
defined as the Art Gallery Problem (AGP), which was a well-
known problem formulated by Klee in [34]. This problem can
be solved by determining the minimum number of guards
required to cover the entire gallery, which has also been
considered in 3D [35]. These works considered several static
sensors as guards, which can be applied to closed-circuit
television (CCTV) surveillance systems.

One graph-based coverage approach [29] utilizes the
concept of AGP to consider the sensing range in MCPP.
The first step is to generate a uniform set of points called
static guards so that the entire area of interest (AOI) can be
observed. The robots participating in the coverage mission
must then visit the points to cover the AOI. The second
step involves creating a graph that connects the guard and
workspace nodes. The third and fourth steps are to reduce
the size of the graph and use multiple robots to cover the
graph, respectively. However, the gaps between the generated
viewpoints were not constant, and the fault tolerance of some
robots in the long term was not considered.

In [3], the work introduced in [29] and [30] was improved
and extended to MCPP. The viewpoints were extracted
based on the normal vectors of the occupied points in the
given map. To balance the number of viewpoints, several
heuristic parts, such as the path division and recombination
parts, were considered. In this study, initial MCPP was
performed in a similar manner. In a study [36], the problem
of unbalanced multi-robot coverage was addressed using
Voronoi partitioning. The study showed an improvement in
terms of workload balance among the robots compared to the
KH algorithm.

To solve the MCPP problem, research has been con-
ducted from the viewpoint of cooperative exploration [37]
or different velocities [38]. In [39], when a graph-based
representation of the occupancy grid map is given, an edge
probability heat graph is constructed using a CNN, which
can obtain near-optimal solutions of the CPP. For complete
coverage [40], an energy-aware back-and-forth coverage path
planning approach is required. They considered the best
configuration of back-and-forth motions at the maximum
altitude in resolution constraints while minimizing the
number of turns [41]. However, there have been few studies
that can effectively reassign the coverage area when a robot
fails, or the battery needs to be charged.

III. PROPOSED APPROACH
In this study, the proposed method ensures that the remaining
robots do not have any problems with the overall coverage
mission, even if a robot conducting the coverage deviates
from the robot team owing to battery charging or fault.
To make this possible, a propagation concept is adopted. This
is based on the phenomenon of radio waves in nature and
involves sequentially reallocating the coverage areas of an
excluded robot, starting from those that are at the periphery.
As a result, the coverage area of the excluded robot is
uniformly distributed to the coverage loads of the remaining
robots. The proposed method consists of four processes
as shown in Fig. 2. First off, a relational graph between
the robots was constructed. Based on this graph, a tree
was configured from the excluded robot. Subsequently, the
coverage area was re-allocated via the propagation scheme,
which is the core of the proposed approach. Finally, the
coverage paths of the remaining robots were re-planned using
the updated coverage area.

The coverage areas and paths of multiple robots were
initially assigned and generated according to the method
presented in [3]. In this process, the sensing range of each
robot, named Sr , is considered as the spacing of the nodes
that the robots should visit for full coverage. Because the
proposed method can be operated depending on the existence
of a robot excluded from the coverage mission, it is assumed
that the situation has occurred in the description below.

A. CONSTRUCTION OF ROBOT RELATIONAL GRAPH
In initial MCPP, a graph of the road map of the i-th robot was
constructed in advance, which is namedGip. It includes nodes,
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FIGURE 2. Overall structure of the proposed method. It has four steps
such as the construction of a robot relational graph, tree configuration
from an excluded robot and coverage area re-allocation, the core of the
proposed approach, i.e., Propagation, coverage path re-planning of the
individual robots from the updated their own coverage area.

FIGURE 3. An illustration of multi-robot coverage. In this example, the
initial coverage areas of seven robots such as RA, RB, RC, RD, RE, RF and
RG are assigned on the map. The coverage area of RE with yellow color
will be re-assigned.

V i
p, and edges, E ip, regarding the movement of the robots.

However, in order to re-assign the coverage area of a robot
that has departed from the coverage mission to the remaining
robots, proximity between robots is essential. To represent
this, a robot relational graph, namedGr , is constructed, which
is based on the geometric coverage area of robots.Gr consists
of Vr and Er which denote nodes describing the remaining
robots themselves and edges indicating whether or not nodes
are adjacent as follows.

Er (i, j) =
{
1, if Dist (Vr (i) ,Vr (j)) ≤ Sr + δ

0, otherwise
(1)

where Dist (Vr (i) ,Vr (j)) represents the minimum distance
between V i

p and V j
p. If the distance is less than or equal to

Sr+δ, then,Vr (i) andVr (j) are adjacent. ‘adjacent’ indicates
their coverage areas are adjacent.

For example, suppose that the coverage areas of the seven
patrolling robots are initially assigned on the map as shown
in Fig. 3. To construct a graph Gr for the seven robots RA,
RB, RC, RD, RE, RF, and RG, their connectivity is determined

FIGURE 4. Example of a robot relational graph, Gr . Robots adjacent to
robot RA were RB, RC, and RE. In addition, robots adjacent to RC were RA
and RD. RF had an adjacent relationship with RE, RD, and RG.

based on (1). In the graph, the robots correspond to Vr (1),
Vr (2), . . . , and Vr (7), respectively.

The result is shown in Fig. 4. The robots adjacent to
robot RA are RB, RC, and RE. In addition, robots adjacent to
RC are RA and RD. RF has an adjacent relationship with RE,
RD, and RG.
The structure of the graph indicates the density of the

coverage areas of the robots in the entire area.

B. TREE CONFIGURATION FROM THE EXCLUDED ROBOT
In a long-term operation in a MRSS, any robot can be
excluded from the coverage mission owing to battery
charging or its faults, as mentioned previously. To cope
with this, a tree, T , for appropriate re-assignment of the
entire coverage area is constructed using Gr . The root
of T represents an excluded robot. In this example, it is
assumed that the battery of RE drops below a certain level.
Subsequently, T can be constructed as shown in Fig. 4. AsRA,
RB, RC, and RF are known to be adjacent to the RE from
Gr , they constitute the 1st level of T . In addition, RD and RG
closest to the RF are configured as nodes for the 2nd level of
T . In the case of RD, because it is closest to RC, it may also be
a child node of RC once T is configured. This is determined
by the order of execution during the construction of T .

C. PROPAGATION
The coverage area of the excluded robot that needs to be
reassigned must be equally divided among the remaining
robots. In addition, the split coverage area was added to
each robot to minimize its impact on the ongoing coverage
mission. This section explains the concept of propagation
using the levels of T .

First off, it is necessary to uniformly re-assign the coverage
area of the excluded robot, which is the root node of the tree,
to surrounding robots. Neighbor robots of the excluded robot
are robots with the child nodes of the root node, which is
said to be the 1st level of nodes in T . The coverage area of
the excluded robot was divided and assigned to the robots
corresponding to the 1st level of the nodes. In the example,
if the size of the coverage area of the RE is 100, the area
is intuitively allocated to robots of the first level in T by
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25% of the area because the number of first-level nodes, i.e.,
RA, RB, RC, and RFis four. This approach is similar to that
suggested in [32]. However, in that case, the coverage areas
of RD and RG corresponding to the 2nd level are maintained
as they are, resulting in only the robots corresponding to
the 1st level increase their coverage area. This is expected
to show poor performance in terms of the minimum worst
visiting period which is one of the ultimate goals for an
optimal patrol in the surveillance system. In other words,
because the number of robots has changed from seven to six
owing to the excluded robot, The best solution in terms of
the balanced re-assignment of the coverage area is to divide
the coverage area of the excluded robot by a percentage of
16.7 and assign it to each robot’s coverage area. In this study,
a matrix representing the coverage assignment quantity was
defined to properly allocate the coverage area of the excluded
robot according to the level and size of the tree structure. The
matrix is represented asML(i, j), as listed in Table 1.

TABLE 1. Matrix ML for the re-allocation amount by level of the tree in
the example.

The i-th row ofML denotes the order of the robots and the
j-th column denotes the level of the tree. In the first level,
a coverage area of 1 was assigned to the RA, RB, and RC
because they had no children in the tree. However, because
the RF has two child nodes, the allocated coverage area is 3.
Similarly, at the second level, RD and RG have no child nodes,
and the size of the assigned coverage area is 1.

The relative coverage area to be allocated was determined
using ML . The coverage area for the excluded robot, RE,
is called ARE . This denotes a cardinality represented as
n

(
V RE
p

)
and is re-assigned to each robot as follows:

ARi =
ML(i, j)
NR − 1

ARE , for all i (2)

where ARi is the additional coverage area of Ri after re-
allocation. j is determined by the level of Ri in tree. NR
denotes the number of robots used. Because ARE is 100 and
NR is 6, V RE

p is divided into six equal parts. In the case of
RA, RB, and RC, because the elements ofML regarding them
are filled with 1, only 16.7 percent of V RE

p is additionally
allocated. However, because the relative amount of coverage
area in RF is three, the size of the additional coverage area for
RF is half that of ARE .
Now, we consider the second level of T . At the second

level, the relative coverage sizes of both RD and RG were 1.

FIGURE 5. Tree structure for the re-assignment of the coverage area of
RE. The root node of the tree is RE. RA, RB, RC, and RF make up the first
level of the tree. The second level of the tree that is the same as the leaf
node of the tree indicates RD and RG.

FIGURE 6. Expected coverage area re-assignment results according to the
level of the tree in the example.

Since they are connected to the RF in T , the coverage area
close to RD and RG among the entire coverage areas of the
RF should be added to each coverage area. This is a form
of taking part in the RF coverage area. This is illustrated
in Fig. 6.

RF obtains three timesmore area than any other robot in the
vicinity and re-allocates two-thirds of the allocated amount to
RD and RG, respectively. This process ensures that the entire
coverage area is uniformly distributed, and the ongoing patrol
missions of the individual robots are also minimally affected.
When RE is excluded from the coverage mission, if the entire
area is newly allocated to the remaining robots, it will bring a
significant change to coverage area of each robot. However,
the proposed propagation scheme minimizes changes in each
coverage area and simultaneously attempts to distribute the
coverage area of the RE equally.

The proposed algorithm can be iteratively performed in the
same manner if there are additional levels, such as the third
and fourth levels in the tree. Although the amount of coverage
area to be allocated is determined, it is not specified which
nodes involved in the coverage area will be added to one of
each robot. In this study, the specific allocation process for
the coverage area was divided into two parts.

In the first part, it redistributes the entire coverage area of
the excluded robot to the robots corresponding to the first
level of the tree according to ARi . The nodes to be assigned
are selected individually in the order of the closest nodes in
the border of the coverage area. However, in the coverage
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area allocation process, there may be a problem in that not
all nodes can be allocated according to ARi . For instance,
suppose a temporary node is intended to be assigned to
robot Ri to coincide with ARi , but it might be obstructed by
the coverage area of another robot Rj. In such a scenario,
the node will be allocated to Rj instead, and then Ri will
retrieve a different node from Rj through a readjustment
process.

The following is a part of the propagation. Because the area
allocation size, ARi has already been calculated, the distance
between them must be calculated to appropriately transfer
the partial coverage area of a parent node of Ri in T to V Ri

p .
A number of proximity nodes are extracted based on the
distance while ARi is reflected. This process is repeated until
the child nodes correspond to the leaf nodes of T . Finally,
each robot has its own updated coverage area for patrolling.
The entire process is described in Algorithm 1. Algorithm 2
is a process in which coverage nodes are transferred between
parents and children in the real tree.

Algorithm 1 Algorithm for Propagation
Input: RE , Gp, Gr , NR, ARE
NR : number of robots
RE : excluded robot
ARE : the size of the coverage area of the excluded robot
GEp : a graph of the road map of the excluded robot
Output: Updated Gpfor all robots
T ← Construction of Tree(RE , Gp, Gr )
NT ← Depth of T
ML ← Construction of Coverage Re-assignment Matrix(T)
for j = 1: NT
for i = 1:NR
Compute ARiusing (2)
if j=1, then,(First Depth)

Gip, G
E
p =Region_reassignment(Ri, RE , ARi ,

Gip, G
E
p )

else(Second Depth, Third Depth, . . . )
Rp = parents of Ri in T
Gip, G

p
p =Region_reassignment(Ri, Rp, ARi ,

Gip, G
p
p)

end if
end for

end for

D. MULTI-ROBOT COVERAGE PATH RE-PLANNING
After the re-assignment of the coverage area, the individual
graphs for the i-th robot Gip are updated. The coverage path
of each robot is also re-planned, which is a well-known
traveling salesman problem (TSP). The nearest neighbor
based CPP is performed by selecting the minimum cost
among the candidate coverage paths. Because individual
coverage missions are in progress, the TSP tour is re-
calculated using a starting point fixed at each robot’s current
location.

Algorithm 2 Algorithm for Region_reassignment

Input: Ri, Rj, ARi , G
i
p, G

j
p

Output: Gip, G
j
p

for j = 1: ARi
[idx] = argDist

(
V j
p,V i

p

)
− ascending order index

Gip←Add Node (V j
p(idx)) – add by order

Ea←Generation of Additional Edges between
V i
pand V

j
p(idx)

Gip←Add Edges (Ea)

Gjp←Delete Node (V j
p(idx)) and Corresponding

Edge
end for

FIGURE 7. Simulation maps with Google maps. The simulation maps are
obtained using SLAM method [42] in Gwangju and Pohang in Republic of
Korea, respectively.

IV. SIMULATION
In the simulations, two occupancy grid maps that were
initially built using a Simultaneous Localization andMapping
(SLAM) algorithm [42] were exploited and refined to operate
MCPP. The maps are shown in Fig. 7. Accurate positioning
and map building are important processes in practical multi-
robot surveillance system. However, in this study, the re-
allocation of MCPP is the main focus; thus, accurate
positioning and map building are not addressed seriously.

Each robot had its own LiDAR sensor with a range Sr .
In this section, the number of robots is varied in each
experiment such as 2, 3, 5, and 10. In addition, Sr was
changed to 10m, 25m, and 40m. In addition, the three types of
factors are the balanced re-assignment of the coverage area,
variation of the individual coverage area before and after the
re-assignment process, and overall computational time.

A. INITIAL COVERAGE AREA ASSIGNMENT
MCPP can be performed according to [3], which generates
the initial coverage paths for NR robots with Sr . The
construction results of three Gp values for different Sr are
shown in Fig. 8. Dotted circles indicate lidar sensing ranges
according to Sr . Their centers represent viewpoints Vp that
the robots should visit.
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FIGURE 8. Construction results of three Gp regarding different Sr. The
dotted circles indicate lidar sensing ranges according to Sr. Their centers
represent viewpoints Vp that the robots should visit.

FIGURE 9. Initial coverage allocation results for NR robots. MCPP is also
computed, and multiple robots conducted their coverage tasks according
to the results of MCPP.

Fig. 9 shows the initial coverage allocation results for NR
robots. The MCPP is also computed, and multiple robots
conduct their coverage tasks according to the MCPP results.

B. COVERAGE AREA RE-ASSIGNMENT
When a robot is excluded from the coverage mission owing
to its fault or battery charging, a re-assignment process can
be conducted. The three algorithms were compared in this
section. One is to re-compute the entire coverage area for
NR-1 robots following the procedures described in [3]. NR-1
areas obtained after recalculation of the entire area were
assigned to the robots with the most overlapping area with
their coverage area. (additional implementation of the most
overlapping area search algorithm). Another one considers
only the nearest neighbor of the excluded robot which
is similar to [32]. The third algorithm is the proposed
propagation-based re-assignment algorithm.

FIGURE 10. An example of Gr for NR =10. Each has neighbors adjacent
to its coverage area.

FIGURE 11. Coverage area re-assignment results according to the level of
the tree in the example. The entire coverage area of RE (black, ⑤) is
assigned to 1st level (①,③,⑥,⑧) of nodes in T . Subsequently, the coverage
area is propagated to robots in the remaining levels of the tree.

Fig. 10 shows an example of Gr for NR =10. Each has
neighbors adjacent to its coverage area. In the simulation,
it was assumed that robot RE was excluded. In the propaga-
tion process,ML is constructed using T as follows:

ML =



3 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0 0


, (3)

where the depth of T is 3. ML is filled with an appropriate
number based on the structure of the subtree. The 1st level of
nodes inML has four and three children, respectively.

Fig. 11 shows the re-assignment results according to
the propagation steps. The entire coverage area of RE is
first assigned to the 1st level of nodes in T according to
ARi . Subsequently, the partial coverage areas of the robots
corresponding to 1st level of nodes in T are assigned to the
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2nd level of nodes in T according to ARi . For the 3rd and
4th levels of nodes, these processes are repeated. After the
re-assignment process was completed, the coverage area of
REwas perfectly assigned to the remaining robots.

C. RESULTS OF THE BALANCED NODE ASSIGNMENT
ACCORDING TO THE NUMBER OF ROBOTS
To verify the performance of the balanced node assignment,
the mean of the balanced node assignment, named MBALE ,
is defined and computed as follows:

MBALE =
1

NR − 1

∑NR

i̸=RA
|(ARi − A

O
i −

ARA
NR − 1

)|, (4)

whereAOi andARi are the coverage area of the i-th robot before
and after the re-assignment process, respectively.

TABLE 2. MBLE for several tests.

Table 2 represents MBALE values of the three methods
over several tests. The smaller result indicates more uniform
allocation of the area of the excluded robot. It is clear from the
results that the proposed method redistributes the coverage
area of the excluded robot to the remaining robots most
uniformly.

D. VARIATION OF THE INDIVIDUAL COVERAGE AREA
BEFORE AND AFTER THE RE-ASSIGNMENT PROCESS
The variation in the individual coverage area before and
after the re-assignment process is an important evaluation
factor to determine how smoothly the individual coverage
missions can be linked (meaning the seamless performance
of the coverage task). In addition, the coverage mission can
be effective after re-assignment.

The mean of this factor is MVARE which is computed as
follows:

MVARE =
1

NR − 1

∑NR

i̸=RA

(
n

(
V i,O
p − V

i,R
p

)
+n

(
V i,R
p − V

i,O
p

))
, (5)

where V i,O
p and V i,R

p are the nodes before and after the
re-assignment process, respectively. n (·) represents the
cardinality of a set. Since A − B is the difference between
the two sets, n

(
V i,O
p − V

i,R
p

)
denotes the number of nodes

taken from the child node of the i-th robot in T after the
re-assignment. In addition, n

(
V i,R
p − V

i,O
p

)
is the number

of additional nodes assigned from the parent node of the
robot after re-assignment. MVARE was computed for all
experiments, as shown in Table 3.

TABLE 3. MVARE over the several tests.

If the result is small, each robot can achieve seamless
coverage without significant changes in the coverage area.
The proposed method reduces the change in the coverage
area by at least 1.5 times and at most 5 times compared to
the method of recalculating the entire area. However, the
proposed method has better results in most cases than the
nearest neighbor-based method. This is because the nearest
neighbor-based method only makes a coverage change for
the robot to the excluded robot. In addition, in the proposed
method, all robots bear the burden equally to balance
the amount of re-assignment of the coverage area, which
increases the coverage variation before and after relocation.

E. ALGORITHM EXECUTION TIME COMPARISON
The last thing to note is the duration for which each method
is performed. The PC used for algorithm execution time
comparison was equipped with an AMD Ryzen Threadripper
3970X 32-core processor and 256GB of RAM. Three
different methods were compared for different environments
on the same PC. The first method (the totally recomputed
method) takes longer on average than the other two methods
because it recalculates the entire coverage area without using
the initial coverage area assignment. The proposed and NN
methods performed relatively quickly compared to the first
method. However, the proposed method took slightly longer
on average than the nearest neighbor-based method. This
is because the proposed method is performed for all robots
by propagation, whereas the nearest neighbor-based method
is performed only for robots closest to the excluded robot.
However, this time difference is not a significant problem
considering the meaning of the re-assignment process that is
not performed frequently.

V. DISCUSSION
In this study, if one robot in the coverage area of the robot
team leaves the coverage mission owing to charging or
breakdown, the proposed method is for the remaining robots
to fill the robot coverage area. To evaluate the proposed
method, three methods were evaluated according to three
factors by varying the number of maps and robots in the
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FIGURE 12. Comparison of coverage area re-assignment results in Map 1. This is the result of re-allocating the coverage area of Map1 for NR = 3,5,10.
The black nodes and paths shown in the first figure of each experiment represent the coverage path of the excluded robot. The second and third are the
performance results of the nearest neighbor-based method and the proposed method, respectively. In the nearest neighbor method, only the coverage
areas of robots adjacent to the excluded robot are changed. On the other hand, the proposed method equally divides the entire robot area through
‘propagation’.

experiments. The performance of the proposed method is
demonstrated by three factors: balanced re-assignment of
the coverage area, variation of the individual coverage area
before and after the re-assignment process, and overall
computation time.

TABLE 4. Computation time comparison (SEC).

First off, the proposed method showed lower values than
the other methods in the evaluation of the balanced re-
assignment of coverage areas. This implies that the coverage
area is evenly delivered to the entire robot in the propagation
scheme. This allows the robots to receive approximately
the same amount of information and continuously perform

balanced coverage. In particular, as the number of robots
increased, the value became very small, regardless of the
environment. Owing to the nature of propagation, it can be
observed that as the number of robots increases, the strength
of the proposed method increases.

The second factor is the variation in the individual coverage
area before and after the re-assignment process, which
indicates change in the current coverage area. If this value
is large, it means that there is a high degree of confusion
in each robot’s coverage mission performance after the re-
assignment of the area. If the level of confusion is too high,
the coverage mission area and paths will change significantly,
which may result in robot-to-robot collisions while moving to
the newly allocated area. In addition, if a robot is re-assigned
a completely new area compared to its existing coverage area,
it may take long time to complete the new coverage area.
The proposed method yielded better results than the method
that recalculates the total area. However, the proposedmethod
showed a higherMVARE than the method [32] because of its
ability to change the entire robot coverage area. In addition,
when calculating MVARE , it is divided by the total number
of robots. However, in the method [32], because the number
of robots that change the coverage area is the number of
closest robots, MVARE for effective robots changing the
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FIGURE 13. Comparison of Coverage area re-assignment results in Map 2. This is the result of re-allocating the coverage area of Map2 for NR =3,5,10.
The black nodes and paths shown in the first figure of each experiment represent the coverage path of the excluded robot. The second and third are the
performance results of the nearest neighbor based method and the proposed method, respectively. In the nearest neighbor method, only the coverage
areas of robots adjacent to the excluded robot are changed. On the other hand, the proposed method equally divides the entire robot area through the
propagation process.

coverage area increases as follows: (See data for effective
robots in Table 5 )

TABLE 5. MVARE over several tests.

The method [32] imposes a greater burden on each robot
in contrast to the proposed method.

Lastly, in terms of the total computation time, the proposed
method is on average faster than the full-area recalcula-
tion methods but slightly slower than the nearest-neighbor-
based methods. As aforementioned, the method [32] is
performed only on the closest robot from the excluded robot,
but the proposed method is performed for all remaining
robots. However, this lag is too small to be a major problem
in real world systems. Moreover, based on the results of
this study, a MRSS consisting of three mobile robots was
configured and a long-term test was conducted without any
issues arising from computational burden.

VI. CONCLUSION
In this study, the re-assignment of coverage was addressed
in the multi-robot surveillance system. Any robot in a
multi-robot surveillance team may be taken out of coverage
missions due to battery charging or faulty issues. To over-
come this problem, a strategy based on the propagation
principle was proposed while minimizing the change in
the coverage area for an individual robot and dividing the
coverage area of the excluded robot into the remaining
robots equally. For smooth propagation, a robot relational
graph and tree structure have also been suggested. Coverage
areas were differently assigned according to the depth of
the tree, which resulted in balanced coverage area for all
the remaining robots. The simulations were conducted using
two experimental maps. The coverage area was uniformly re-
allocated after the proposed method was applied. In addition,
the proposed method has a short calculation time and enables
seamless coverage even after re-allocation. In the future,
probabilistic maps related to the importance rate, accident
rate, and crowds in the coverage area will be considered.
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