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ABSTRACT In practical multi-skilled resource-constrained multi-project management, the activity duration
is often affected by some factors (e.g., rework, increased workload), leading to uncertainty. Moreover,
multiple projects are often managed under a distributed decision-making environment. To deal with uncertain
activity durations in distributed multi-project management with multi-skilled staff, this paper studies
a stochastic distributed resource-constrained multi-project scheduling problem with multi-skilled staff
(MS-SDRCMPSP). In a distributed decision-making environment, a two-stage model with local scheduling
and global coordination stages is established to describe MS-SDRCMPSP. A two-stage algorithm with
12 priority rules (TSA-12PRs) is proposed, these 12 priority rules are composed of 4 activity priority rules
and 3 resource priority rules. In the local schedule stage, 4 activity priority rules (PRs) are applied to obtain
the local schedule plan. In the global coordination phase, we develop 3 resource PRs based on variable
neighborhood search (VNS), of which VNS is used to solve the execution order of conflicting projects,
and 3 resource PRs are developed to formulate multi-skilled resource assignment strategies. Based on the
multi-skilled instances adapted from benchmark instances, we evaluate the performance of the 12 PRs on
different instances. The experiment results show that two PRs among 12 PRs perform better than other
PRs in all-size instances. Comparing the two-stage algorithm with better two PRs with other approaches in
literatures, we find that our method performs better than other approaches, especially in large-size instances.
In addition, further experiments show that our method is more conducive to shortening the CPU runtime on
distributed problems than centralized methods.

INDEX TERMS Multi-project scheduling, multi-skilled staff, uncertain activity durations, stochastic
scheduling priority rules.

I. INTRODUCTION

Resource-constrained multi-project scheduling problem
(RCMPSP) contains a series of projects, each of which
contains activities that satisfy the resource availability and
priority relationship constraints when obtaining a multi-
project scheduling plan [1]. An extension to RCMPSP is the
multi-skilled resource-constrained multi-project scheduling
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problem (MS-RCMPSP) [2]. A classic practical scenario
about MS-RCMPSP can be found in software develop-
ment [3]. There exists a multi-project management environ-
ment in MS-RCMPSP. Multiple projects compete for limited
multi-skilled staff that primary several skills. The assignment
of multi-skilled resources involves the matching relationship
of “activity-skill-resource”; i.e., implementing activities in
the project requires the completion of multi-skilled staff
who primary specific skills. The case of the ‘“‘activity-skill-
resource” is shown in Fig. 1.
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FIGURE 1. The relationship of the “activity-skill-resource”.
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The projects undertaken by enterprises become larger and
more complex, so enterprises often choose to undertake mul-
tiple projects at the same time. At the same time, organiza-
tional management is also gradually distributed (distributed
decision-making environment). There are multiple project
decision-makers, and all projects are independent. The only
connection among projects is to share limited resources.
When multiple projects compete for shared resources,
shared resources are prone to conflict due to resource
limitations and project independence, which forms a dis-
tributed resource-constrained multi-project scheduling prob-
lem (DRCMPSP) [4]. The solution to DRCMPSP involves
the independent scheduling of multiple single-project exe-
cuted simultaneously and the reasonable allocation of shared
resources among projects. Generally, a multi-agent system
(MAS) is used for solving the DRCMPSP, which includes
multiple project agents (PA) and one coordinating agent
(CA). Each PA has local resources to pursue its local interest
objective and does not disclose local information to each
other. CA coordinates shared resources (global resources) for
each PA according to the global objective. The function of
MAS in DRCMPSP is shown in Fig. 2.

In the distributed decision-making environment, it is more
and more common to share resources with multi-skilled
staff based on multiple projects. For instance, a software
development company has two project teams that undertake
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FIGURE 3. The case of MS-RCMPSP.

an online office platform and an e-commerce project. The
two project teams share the multi-skilled staff with coding,
testing, and other skills. Each project needs limited local
resources managed by the project manager and shared global
staff managed by the coordinating manager. This problem
needs to solve the independent scheduling of each project and
the allocation of global multi-skilled staff. Therefore, when
facing such distributed problems, it is necessary to study
the distributed resource-constrained multi-project schedul-
ing problem with multi-skilled staff (MS-DRCMPSP) [5].
In MS-DRCMPSP, each PA submits the global informa-
tion to CA, and then CA assigns the multi-skilled staff
by considering the characteristics of multi-skilled staff het-
erogeneity and the matching relationship of *‘activity-skill-
resource”. Further, CA solves the global multi-skilled staff
conflicts by developing an effective coordination mecha-
nism, which includes determining the start time of the activ-
ity and assigning multi-skilled staff. When multi-skilled
staff primary several skills and the skill level is differ-
ent (multi-skilled heterogeneity), the actual duration of the
activity will be also changed. These further increase the
difficulty of solving MS-DRCMPSP. As an extension of
DRCMPSP, MS-DRCMPSP belongs to NP-hard. The case of
the MS-DRCMPSP is shown in Fig. 3.

In the existing literature, scholars only study deterministic
problems where all parameters are deterministic. However,
during the practical implementation of the project, there
are often uncertain situations, the most common of which
are uncertain activity durations. When uncertainty occurs,
activities are interrupted, resulting in delays and losses in
practical project management. For example, uncertain activ-
ity durations make the baseline scheduling plan and the
resource assignment strategy impossible. Stochastic schedul-
ing is often used to solve the uncertainty in project schedul-
ing. In stochastic scheduling, a scheduling policy is obtained
instead of a specific scheduling plan [6]. In addition, stochas-
tic scheduling is a common method to solve the problem
of uncertain activity duration, in which the activity duration
usually follows a known distribution. There is no litera-
ture that studies the multi-skilled resource-constrained multi-
project scheduling problem with uncertain activity durations
by stochastic scheduling.

Based on the MS-DRCMPSP and uncertain activ-
ity durations, we proposed the stochastic distributed
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resource-constrained multi-project scheduling problem with
multi-skilled staff (MS-SDRCMPSP). Each project is sched-
uled by its PA to optimize the expected project makespan
(local objective) in this problem. CA assigns multi-skilled
staff for each project depending on minimizing the expected
total tardiness costs (global objective). Further, heteroge-
neous characteristics of multi-skilled staff and uncertain
activity durations significantly increase the difficulty of
modeling and solving MS-SDRCMPSP. We attempt to
develop a two-stage algorithm with 12 priority rules (TSA-
12PRs) and variable neighborhood search algorithm (VNS)
by multi-skilled staff heterogeneous characteristics for the
MS-SDRCMPSP, especially designing some effective multi-
skilled staff assignment strategies.

The main contributions of this article can be described as
follows:

Firstly, multi-skilled staff are considered shared resources
in a distributed multi-project environment with uncertain
activity durations.

Secondly, a two-stage algorithm with 12 priority rules
(TSA-12PRs) is proposed to solve this problem, among
which 4 activity PRs for solving the local schedule stage and
variable neighborhood search (VNS) with 3 resource PRs for
solving the global coordination stage.

Thirdly, the TSA-12PRs are evaluated on different size
problems, and the two best PRs are selected on all
size instances. Further experiments compared a distributed
approach (SGNM) and a centralized method (BRKGA).

The rest of this article is structured as follows. A sum-
mary of existing publications in this field is presented in
Section II. Section III is devoted to the problem description
and mathematical formulations. In Section IV, the 12PRs and
the proposed algorithms are used in this paper to solve the
MS-SDRCMPSP. A comprehensive experimental analysis is
provided in Section V. Finally, Section VI summarizes the
article.

II. LITERATURE REVIEW

In this section, a brief review of the existing literature rel-
evant to this article is conducted. It includes the distributed
resource-constrained multi-project scheduling problem, the
multi-skilled resources-constrained multi-project scheduling
problem, and the stochastic project scheduling problem.

A. MULTI-SKILLED RESOURCE-CONSTRAINED
MULTI-PROJECT SCHEDULING PROBLEM

Hegazy et al. were the first to propose the multi-skilled
project scheduling problem [7]. The Bellenguez team consid-
ered the characterize of multi-skilled resources and defined
the MS-RCPSP in the current paper [8], [9]. Now the
researches about multi-skilled staff mainly concentrate on
a single-project environment. They are mainly divided
into multi-skilled resource-heterogeneous project schedul-
ing problems [10], [11], multi-mode multi-skilled resource-
constrained project scheduling problems [12], [13], [14],
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multi-objective multi-skilled resource-constrained project
scheduling problems [15], [16].

There are few related types of research on the multi-skilled
resource-constrained multi-project scheduling problem. The
leading research is a centralized scheduling method, that is,
there is only one decision-maker. Heimerl and Kolisch [17]
studied the MS-RCMPSP in the centralized decision-making
environment of IT enterprises. Considering multi-skilled
outsourced resources, the meta-heuristic algorithm was used
to solve MS-RCMPSP [17]. Walter and Zimmermann [18]
studied MS-RCMPSP from the perspective of the team size.
Chen et al. [19] studied the learning effect of MS-RCMPSP,
established a multi-objective constrained model of
MS-RCMPSP, and used a non-dominated genetic algorithm
(NSGAID) to solve the problem; Some studies (Wu and
Sun [20]; Gutjahr et al. [21]) also studied the centralized
MS-RCMPSP [20], [21], [22]. In summary, a centralized
approach with only one decision-maker is unsuitable for mul-
tiple decision-makers. It lacks a certain degree of flexibility
and can not only partially satisfy all projects.

Conversely, the distributed approach is more suitable for
management environments with multiple decision-makers.
So far, only scholar Yu et al. [5]studied the multi-skilled
distributed resource-constrained multi-project scheduling
problem, established a two-stage decision-making model,
and provided practical management suggestions. Therefore,
there are more possibilities for the MS-DRCMPSP, especially
under uncertain situations.

B. DISTRIBUTED RESOURCE CONSTRAINED
MULTI-PROJECT SCHEDULING PROBLEM
Generally, the distributed scheduling problem is solved by
multi-agent systems (MAS). In the MAS, there are mul-
tiple Project Agents (PAs) as the project managers and
a Coordinating Agent (CA) as the coordinating manager
[23], [24], [25], [26]. Homberger solved DRCMPSP through
an electronic iterative negotiation mechanism based on the
mediation protocol [27]; Subsequently, Homberger contin-
ued to expand the DRCMPSP model, proposed the restart
evolutionary algorithm, and solved the large-size example
problem [28]. Zheng et al. [29]solved the DRCMPSP by a
critical-chain method. Wang et al. [30] researched a resource-
constrained project scheduling problem with a fractional
shared resource by a column-generation-based algorithm.
Rostami et al. [31] designed a lagrangian relaxation algorithm
for DRCMPSP and verified the effectiveness of the method.
Recently, the distributed approach has also been applied in
different areas. For example, Zhao and Xu [32] discussed the
distributed multi-project scheduling problem with the transfer
time. Kosztyan [33]studied the flexible multi-level project
scheduling problem by a matrix-based multi-level multi-
mode project scheduling algorithm. Other scholars (Babaee
Tirkolaee et al. [34]; Tirkolaee et al. [35]; Mahdavi et al. [36])
also studied the multi-trip scheduling problem in different
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fields, such as waste management, heat storage systems, and
two-echelon supply chain management.

C. STOCHASTIC PROJECT SCHEDULING PROBLEM

In stochastic scheduling, project activity duration is often
known and assumed to follow a distribution; the objective is
to minimize the expected makespan of the project. Given the
randomness of the activity duration, the solution of SRCPSP
is a scheduling policy rather than a deterministic schedule.
For solving the SRCPSP, there are two main methods. One of
them is a meta-heuristic to solve the SRCPSP. For example,
genetic algorithms (Chen et al. [37]; Zaman et al. [38]), tabu
search (Servranckx and Vanhoucke [39]). The other is the
priority rules-based heuristic [37], [38], [39].

In contrast to meta-heuristics, the priority rules-based
heuristic relies on creating a priority rule instead of multiple
iterations. It includes two types of elementary policies, which
can be subdivided into static policies and dynamic policies.
The static policy means that the strategy is given before the
project is executed. During the execution process, the strategy
will not change. Some static policies are often used in the
literature, such as resource-based policy class, activity-based
policy class, earliest-start policy class, preselective policy
class, preprocessor policy class, and generalized preprocessor
policy class [40], [41], [42]. The dynamic policy seeks the
best policy step by step in a dynamic way. Its solutions must
be constantly updated according to new information, such as
the activity start time. Thus, dynamic policies usually need
more CPU runtime.

Scholars Thomas F, et al. studied uncertain problems
by stochastic scheduling under the centralized environ-
ment. The research expanded the deterministic model and
solved the uncertain MS-RCMPSP through the Frank Wolfe
algorithm [6]. However, under the distributed decision-
making environment, there is no literature that studies the
multi-skilled resource-constrained multi-project scheduling
problem with uncertain activity durations by stochastic
scheduling.

Considering the complexity of the distributed environment
and multi-skilled heterogeneity, a dynamic strategy will sig-
nificantly increase the CPU runtime of the stochastic schedul-
ing. It is more realistic that a decision-maker needs to make
decisions as quickly as possible with a static strategy. There-
fore, it is more important to study the stochastic distributed
multi-skilled resource-constrained multi-project scheduling
problem by the static policy.

Ill. PROBLEM MODELING

In this section, stochastic distributed resource-constrained
multi-project scheduling problem with multi-skilled staff is
introduced in detail, and a two-stage model is established.

A. PROBLEM DESCRIPTION

In this problem, M projects are scheduled simultaneously.
Eachprojectt € 1, 2, ..., M has an arrival date w; > 0 denot-
ing its earliest possible start time. In project i, there are a set
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of activities noted as a;; € Vi(V; = {ai. ..., ay,}), where
activity a;o and activity a;;, represent two dummy activities at
the beginning and the end. E;; denotes the predecessor activity
set for a;j, that is, a;; can be started only after all activities
in E;; are completed. A dummy activity has a duration of
zero and no resource usage under any probability distribution;
oppositely, the duration of a non-dummy activity is a random
variable and obeys a known probability distribution. Non-
dummy activities also require several types of local resources
and at most one type of global resource. The local resource
k(k =1,2,...,K;) stands for the ordinary staff who has only
one skill. The global resource g(g = 1, 2, ..., G) refers to the
multi-skilled staff who primary several skills.

When multiple PAs conflict with limited global resources,
some activities can not get global resources in time and will
cause their projects to be postponed. Each project has a unit
delay cost fc; and a completion time Bi(B; = t - Xij;).
CA designs a coordination mechanism to assign global
staff to each PA. There is no connection among projects
except for sharing limited global staff. During all project
execution, one staff can only use one skill to perform one
activity simultaneously. At any moment, the skill demands
for all activities being performed in the multi-project cannot
exceed the total available global resources in providing skills
at current moment. Similarly, the local resources also have a
limited quantity Rj.

Each PA performs local scheduling of one project to
minimize the expected makespan of this project, which is
described as the following (1) and (2).

min E(f,) (D
T
fo =Dt Xiy. @)
t=0

As a global decision-maker, the objective of CA is to find
a feasible schedule and global resources assignment plan
with the goal of minimizing the expected total tardiness costs
(TTC) denoted by (1) and (4).

min E(TTC) 3)

M
TTC = Ztci . (B; — w; — CPD;) 4)
i=1

This objective refers to the sum of the delay costs caused
by the actual makespan (B; — w;) of each project exceeding
the critical path duration (CPD;).

The following particular assumptions are considered in this
article:

« An activity can only be executed after all the resources
required by the activity have arrived.

o All multi-skilled staff have the characteristics of het-
erogeneity. In other words, each resource may have a
different level for each skill s(s = 1,2,...,S5). The
higher the skill level, the shorter the actual duration.
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B. NOTATION

1) PARAMETERS

lgs - the level of skill s primaried by the resource g.
risj - the skill s demand of the activity a;;.

vf-j - a Boolean variable indicating when skill s is required
by activity a;; that equals 1 and equals 0 otherwise.

d;j - the planned duration of activity a;;, that is, the staff
with [os = 1 performs the activity, d;; follows a random
variable with a known probability distribution.

d;j - the actual duration of activity a;;, the actual duration
is effected by the level of skill, see (5).

2) DECISION VARIABLE
xiz;e: 1, 1f the activity a;; starts at time ¢; 0, otherwise;

yiz: 1, if the resource g with the skill s perform activity a;;
at time ¢; 0, otherwise;

dy = | ry-dy/ D les iy vy )
g=1

IV. TWO-STAGE ALGORITHM BASED ON

12 PRIORITY RULES

In order to obtain a complete multi-project scheduling plan
in the distributed environment, a two-stage coordination pro-
cess is designed at each conflicting time. Here, conflicting
time refers to when more than two projects require global
resources, and these two projects are also called conflicting
projects. MAS comprises PA as a project manager and CA as
a coordinating manager.

In stage one, the local scheduling is a statistic scheduling
approach with the goal of the expected project makespan
by each PA. Each PA solves the local scheduling based on
activity priority rules (in Section IV-Al). In stage two, the
global coordination process not only needs to determine the
execution order of conflicting projects (in Section IV-B) at
each conflicting time, but also needs to assign multi-skilled
resources (in Section IV-A2) reasonably. CA solves the global
coordination process to minimize the expected total delay
costs of multiple projects. This paper combines the charac-
teristics of multi-skilled resources and designes a heuristic
strategy based on 12 priority rules.

Fig. 4 presents an overview of the global coordination
press.

Stepl:From the time O, after all PAs finish the local
scheduling by activity PRs (in Section IV-Al), they submit
the global resources demand information to the CA.

Step2:At this time, if there is only one project requir-
ing global resources, CA assigns global resources for this
activity according to the resource PRs (in Section IV-A2);
Suppose there are more than two projects requiring
global resources, CA ranks conflicting projects by Vari-
able Neighborhood Search (VNS, in Section IV-B) and
coordinates global resource assignments by resource PRs
(in Section IV-B).

29558

PA -local scheduling
by activity PRs (in 4.1.1)

!

PA submits the global resource
information to CA

|

Only one PA requires the
global resources at time t

t=t+1
FA - the PAs order by VNj A

(in4.2)

CA - the assignment of global
resources by resource PRs (in 4.1.2)

v

PA - update the local schedule plan

All projects finish
their scheduling

FIGURE 4. An overview of the global coordination press.

A. PRIORITY RULE BASE HEURISTIC POLICY

The local scheduling is managed by each PA, which is to
minimize the expected makespan of this project. In the local
scheduling, each PA obtains the local scheduling by activity
priority rules. At the conflicting time, CA assigns the global
resources for a selected project by resource priority rules.

1) ACTIVITY PRIORITY RULES

This section exhibits the 4 activity priority rules for the local
SRCPSP. These rules perform better than other static priority
rule heuristic policies for SRCPSP [43], [44], [45]. Then
we test the suitability of these 4 activity priority rules on
MS-SDRCMPSP.

This section exhibits the 4 activity priority rules
(in Table 1) for the local SRCPSP. These rules perform better
than other static priority rule heuristic policies for SRCPSP.
Then we will test the suitability of these 4 activity priority
rules on MS-SDRCMPSP.
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TABLE 1. Four activity priority rules for the local SRCPSP.

Priority rules Extreme Calculation formula Comments

Latest start time(LST) MIN LS;j LS;; is the latest start time of activity.
LF;j is the latest finish time of activity,

Latest finish time(LFT) MIN LF;; «v is the index of the simulation,

ns is the total number of simulations.
LS is the latest start time
calculated by the critical path
method C'PM in simulation cv.
LF;j is the latest finish time
calculated by the critical path
method C'P M in simulation a..

Statistical latest
start time (SLST) MIN 1/ns - 25:1([,51“‘7)

Statistical latest
finish time (SLFT) MIN 1/ns-> 02, (LFf;)

2) RESOURCE PRIORITY RULES

We choose three resource priority rules with good per-
formance from the existing literature (Snauwaert and
Vanhoucke [48]); that is, Highest Average Level (HAL),
Lowest Average Level (LAL), Lowest Number & Highest
Level (LN&HL). Then we design a new resource priority
rule called Highest Level &Lowest Number (HL&LN). This
section explains that 4 resource priority rules are used at the
conflicting time. Some of them are based on the skill-level or
the skill-number.

a: HIGHEST AVERAGE LEVEL (HAL)

This rule uses the skill level to assign multi-skilled staff.
Resources are ranked based on the average level of their mas-
tered skills, then activities with HAL are selected first, which
indicates that the most efficient resources will be prioritized.

b: LOWEST AVERAGE LEVEL (LAL)

This priority rule is the opposite of the previous rule.
Resources will be ranked from the lowest to the highest
average depth, indicating that the least efficient resources will
be prioritized. Similar to Highest Breadth First, this rule adds
diversity to the set of priority rules.

c: HIGHEST LEVEL &LOWEST NUMBER (HL&LN)

The rule considers both skill-level and skill-number of
resources. It gives priority to resources with the highest skill-
level and selects resources with the lowest skill-number as
tie-breakers. The objective of this rule is to minimize the
makespan of the activity by utilizing resources with the high-
est skill-level.

d: LOWEST NUMBER & HIGHEST LEVEL (LN&HL)
This rule also considers the skill-level and the skill-number.
In this case, the lowest skill-number resources are prioritized,
and the highest skill-level resources are used as tie-breakers.
This rule aims to keep the most skill-number resources avail-
able while assigning the most efficient resources.

In the local scheduling, 4 activity priority rules are cho-
sen. For each activity priority rule, there are 4 resource
assignment rules. By Combining activity priority rules
and resource assignment rules, we obtain 16 priority
rules based on heuristic strategies. They are LST-HAL,
LST-LAL, LST-HL&LN, LST-LN&HL; LFT-HAL, LFT-
LAL, LFT-HL&LN, LFT-LN&HL; SLST-HAL, SLST-LAL,
SLST-HL&LN, SLST-LN&HL; SLFT-HAL, SLFT-LAL,
SLFT-HL&LN, SLFT-LN&HL.
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B. VARIABLE NEIGHBORHOOD SEARCH DESIGN
To minimize the global objective, CA determines an execu-
tion order of all conflicting projects at each conflicting time.
Firstly, an initial order L2 is selected from highest to lowest
unit cost; projects with higher unit costs are prioritized for
execution, which helps narrow the search to find a reason-
able solution. Then CA assigns the corresponding global
resources for projects in L2 according to the resource PRs
(in Section IV-A2), and calculates the total delay cost (an
initial solution Sj,;;) of multi-projects in L2. Finally, starting
from position 1 (the first project at the current order iy, ),
exchanging the order with the following projects as a new
order. CA assigns the global resources based on the resource
PRs (in Section IV-A2) and calculates the new solution S,
in the current order. If the new solution S, is larger than
the initial solution Sj,;;, the order will be updated again;
otherwise, replace the initial solution and return to position 1.
We continue to perform the variable neighborhood search
until the best solution Allgeqy is obtained at the current
moment.

Algorithm 1 The Postcode of Variable Neighborhood
Search (VNS)
Require:
LP: the set of all conflicting projects at the current con-
flicting time;
L1: the set of projects at least one activities meet the skill
availability for each project in LP.
1: if L1 # then
2:  Obtain initial order L2; %selected in order by highest
unit deferred cost first

3 Calculate S;,;; ; %the initial solution.
4 Record iy, = 1; Count = 0.
5. if length(L1(1)) = 1 then
6: leelay = Sinit;
7 else
8 9%change the order of adjacent projects
9 while i,,,, < allocate,,, do
10: Count = Count +1;0
11: a = L2(1, ipp);
12: L2(1, ippo) = L2(1, ippp + 1);
13: L2(1,ipp + 1) = a;
14: Calculate Sy,,,; % the new solution
15: if ;e = Sinir then
16: ipro = ipro + 1;
17: else
18: ipro =1,
19: Sinit = Snews
20: end if
21: leelay = Sinit;
22: end while
23:  end if
24: end if
Ensure:

Alldelay = leelay-
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TABLE 2. Five distributions for activity durations.

Distribution  Distribution R: Shape .

N ange 5 Variance
type code parameter
Uniform Ul U(dij — {/dij,dij + {/dij) - dij/3
distribution u2 U(0,2d:5) - d3;/3
Beta Bl B(d;;/2,2d;;) a=d;j/2—1/3,=2a  dij/3
distribution B2 B(di;/2,2d:;) a=1/6,8=2a dz;/3
Exponential (T - )
distribution EXP B(dij) _ &

V. COMPUTATIONAL STUDY

A series of experiments are carried out to conduct the com-
putational study. All designed test problems are solved in
Matlab R2018b, with a core i7 CPU and 16 GB memory.
This section contains four parts: Section V-A introduce the
problem instances; Section V-B analyzes the impact of sim-
ulated times on the priority rules; Section V-C verifies the
performance of the TSA-12 PRs on different distributions.
Section V-D analysis the performance of the TSA-12 PRs
compared with other algorithms (including the distributed
method and centralized method).

In order to be able to compare the PR results with pre-
vious works on the SRCPSP, we first follow the existing
literature in line with their probability distribution types and
parameters [41], [46]. Assuming that the activity duration is
a random variable, the mean value of the duration is equal
to the deterministic duration of the MPSPLIB data set. The
five distributions and their variances are shown in Table 2.
Variances represent different degrees of uncertainty: the vari-
ance of distribution U1 and B1 is the smallest, the variance
of U2 and B2 is the middle, and the variance of Exp is the
largest. Additionally, in each beta distribution, the shape of
the distribution is determined by two main shape parameters,
« and B. For subsequent experiments, we used the two most
commonly used parameters as reported in the literature, and
the specific values of the shape parameters are shown in
Table 2.

A. PROBLEM INSTANCES

Yu et al. [5] provided problem instances for the
MS-DRCMPSP under certainty. In this paper, we intro-
duce uncertainty in activity duration to the MS-DRCMPSP,
which increases the problem complexity in terms of solu-
tion times and solving difficulty for the MS-SDRCMPSP.
Wang et al. [47] demonstrated that the J30 dataset is already
representative in the multi-skilled project scheduling problem
under uncertainty. Therefore, it is reasonable that we selected
20 instances from the literature [5], including the J30 and J90
datasets generated from the MPSPLIB.

The problem instances are shown in Table 3. These
instances are classified into 4 subsets. Each problem subset
is named as MPJ;_m (MP subset), where the number of
activities J; per project m is 30, 90, and the number of projects
is 2, 5, NOI denotes the number of instances primaried by
each problem subset. According to the problem size, MP90_5
is called a large-size instance, and the other three problem sets
are called small-size instances.
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Further multi-skilled information required to generate

instances are:

« Each problem instance is provided with at most one type
of global resource and three types of local resources.

o The types of skills with project numbers of 2, 5 are set
to 3, 5, respectively.

o The value of the parameters risj are generated in the range
of [1] and [3] uniformly.

o Each staff primaries the types of skills are generated in
the range of [2] and [3] uniformly.

o The level of skill is randomly generated in the range of
0.6, 0.8, and 1, respectively. Such skill levels are valid
and guarantee the speed at which the resource executes
the activity [48], so staff with lower skill levels are not
considered.

TABLE 3. Problem instances of MS-SDRCMPSP.

Problem subsets NOI m  J;  Probelmsize  Skill types
MP30_2 5 2 30 60 3
MP90_2 5 2 90 180 5
MP30_5 5 5 30 150 3
MP90_5 5 5 90 450 5

B. THE INFLUENCE OF SIMULATION TIMES AND
SELECTION OF PRIORITY RULES

MP30_2 and MP90_2 problem sets are used for pre-
experiment when selecting simulated times. In order to test
the significance of the results among the three simulated
times, we first perform the paired samples Wilcoxon signed-
rank test for 12 PRs of each problem set. The significance
level is set to 5%. Table 4 and 5 show the statistical test results
on MP30_2 and MP90_2, respectively.

TABLE 4. Wilcoxon signed rank test results for 12 PRs on MP30_2.

Priority rules 10vs30  10vs50  30vs50
LST-HL&LN 0.000 0.034 0.228

LST-HAL 0.000 0.000 0.297
LST-LN&HL 0.000 0.000 0.284
LST-LAL 0.000 0.000 0.345
LFT-HL&LN 0.004 0.001 0.149
LFT-HAL 0.001 0.000 0.647
LFT-LN&HL 0.001 0.039 0.334
LFT-LAL 0.001 0.000 0.647
SLST-HL&LN 0.001 0.009 0.905
SLST-HAL 0.017 0.000 0.512
SLST-LN&HL 0.004 0.037 0.098
SLST-LAL 0.005 0.045 0.145
SLFT-HL&LN 0.007 0.000 0.547
SLFT-HAL 0.041 0.000 0.07

SLFT-LN&HL 0.003 0.002 0.653
SLFT-LAL 0.004 0.023 0.489

The results indicate significant differences in the quality
of solutions obtained for 12 PRs with 10 vs 30 simulated
times and 10 vs 50 simulated trajectories, but no signifi-
cant differences between 30 and 50 simulated trajectories.
Comparing the solutions, we find the results of 30 and
50 simulations are statistically better than that of 10 simula-
tions. To balance solution quality and computational runtime,
we set the number of simulated times to 30 in this paper.
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TABLE 5. Wilcoxon signed rank test results for MIP90_2.

Priority rules 10vs30  10vs50  30vs50
LST-HL&LN 0.000 0.001 0.134

LST-HAL 0.011 0.022 0.073
LST-LN&HL 0.007 0.015 0.201
LST-LAL 0.000 0.000 0.06
LFT-HL&LN 0.000 0.000 0.06
LFT-HAL 0.000 0.002 0.102
LFT-LN&HL 0.016 0.002 0.560
LFT-LAL 0.003 0.017 0.199
SLST-HL&LN  0.023 0.012 0.072
SLST-HAL 0.003 0.017 0.199
SLST-LN&HL ~ 0.010 0.000 0.063
SLST-LAL 0.000 0.000 0.08
SLFT-HL&LN  0.037 0.02 0.082
SLFT-HAL 0.000 0.000 0.480
SLFT-LN&HL  0.000 0.000 0.08
SLFT-LAL 0.023 0.032 0.527

To choose better combinations of priority rules, we test
the results of different priority rules with MP30_2 and
MP90_2 under the U1 distribution. We sort 16 rule combi-
nations and find that the last four combinations ranked had
poor results: LST-LAL, LFT-LAL, SLST-LAL, and SLFT-
LAL. After analyzing the deviation between the four poorly
ranked combinations and the 12th combination, we found that
the deviation was greater than 5%. As a result, we excluded
the four underperforming combinations and selected the top
12 combinations for further analysis. Fig. 5 shows the devia-
tion of the combination of the last four worst heuristic rules
on MP30_2 and MP90_2.

C. PERFORMANCE OF THE 12 PRIORITY RULES UNDER
DIFFERENT DISTRIBUTIONS

Table 6, 7, 8 and 9 show the average tardiness cost of 30 runs
for MP30_2,MP90_2, MP30_5 and MP90_5 under different
distributions. The bold values in each table stand for the
minimum average E(TTC) under the same activity priority
rule. The underlined values in each column are the best results
obtained by all precedence rules under the same distribution.
According to the bold and underlined values, the combination
of several priority rules that perform better in each problem
set is shown in bold.
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TABLE 6. Average E(TTC) of MP30_2 obtained by 12 priority rules.

Priority rules Ul U2 Bl 52 EXP
LST-HL&LN 3023.67 3042.29 3035.76 3061 332447
LST-HAL 315435 318423 3160.86 319496  3423.76
LST-LN&HL 3320.17  3345.09 332271 3371.85 3604.32
LFT-HL&LN 3016.71 3068.62 3006.84 3059.47 3302.14
LFT-HAL 3142.02 3212.6 313642 3193.65 3419.34
LFT-LN&HL 3305.43 335641  3296.85 3341.8 3589.17
SLST-HL&LN 3036.23  3062.8  3009.77 3100.61  3402.15
SLST-HAL 3154.23 324829 316095 3255.71 3578.86
SLST-LN&HL 3321.27 3368.41 3288.57 337545 3600.16
SLFT-HL&LN  3010.11  3075.64 3027.03 3075.32  3329.27
SLFT-HAL 3150.98  3220.71  3169.29  3222.07 3550.47
SLFT-LN&HL 3303.45 3358.58 3289 3361.13  3579.88
TABLE 7. Average E(TTC) of MP90_2 obtained by 12 PRs.
Priority rules Ul U2 51 52 EXP
LST-HL&LN 11039.85  11220.66  11008.83  11281.79 11678.12
LST-HAL 11633.53  11758.55  11690.36  11759.57 12179.34
LST-LN&HL 12212.18 12417.89 12235.78  12456.94  12873.27
LFT-HL&LN  10896.86 11198.75 1094373 1125827 11609.73
LFT-HAL 11603.21 11639.97 11659.89  11730.65  12289.85
LFT-LN&HL 12199.64 12374.59 1219597  12376.92  12875.18
SLST-HL&LN 11002.09  11265.67 11030.38  11306.71 11885.24
SLST-HAL 11559.88 11793.7 11613.51 11779.71  12278.12
SLST-LN&HL 12190.56 12456.2 12223.1 12490.03  12991.23
SLFT-HL&LN  10933.46  11240.59  10915.85 11232.69 11683.83
SLFT-HAL 11491.68 1175373 1152847  11774.15  12293.39
SLFT-LN&HL 12165.7 12404.97  12185.37 12350.18  12843.46
TABLE 8. Average E(TTC) of MP30_5 obtained by 12 PRs.
Priority rules Ul U2 51 52 EXP
LST-HL&LN 58129  6052.59  5888.8  6121.14 6447.23
LST-HAL 6206.45 6473.87 628232  6570.65 6901.57
LST-LN&HL 6168.32  6427.13  6192.69  6365.18  6689.12
LFT-HL&LN 579591 6256.48 5980.19 6091.33  6243.89
LFT-HAL 6213.62  6668.51 6410.05 6511.97 6834.87
LFT-LN&HL 6146.85 6593.17 633589 6418.27 6739.25
SLST-HL&LN  5728.53 5825.32 5808.91 5904.13 6399.37
SLST-HAL 6164.77  6290.81 6205.88 6413.35 6735.86
SLST-LN&HL 6089.65 6310.05 6056.58  6321.77  6634.19
SLFT-HL&LN  5695.69 5995.13 5773.83 5917.97 6283.29
SLFT-HAL 6176.07 640843  6233.65 648575 6789.52
SLFT-LN&HL 6012.35 6315.64 6160.71 6187.11  6502.13
TABLE 9. Average E(TTC) of MP90_5 obtained by 12 PRs.
Priority rules Ul U2 51 52 EXP
LST-HL&LN 33884.29  34588.26 3367491 34717.12  37350.72
LST-HAL 36037.3 37006.7 36251.89  37289.69  40378.67
LST-LN&HL 3637231 3759555 36643.44  37530.03  40549.04
LFT-HL&LN 33690.7  34586.91 33525.71  34684.8  37130.17
LFT-HAL 36330.81 3701839 3617543  37188.39  40123.56
LFT-LN&HL 36218.95  37469.55  36291.29  37000.73  39235.29
SLST-HL&LN 33735.25 3494597 33671.58 34776.01  37298.12
SLST-HAL 35851.27  37318.76  36381.55 37490.25  40245.72
SLST-LN&HL 36178.25 37563.86 36516.92  37708.65  40456.53
SLFT-HL&LN  33623.21 34649.37 33516.02 34694.93  37100.56
SLFT-HAL 3572023  37243.63 36192 37396.55  39328.17
SLFT-LN&HL 36021.69  37474.67 36310.65 37683.72  40145.29

In Table 6, for MP30_2 problem set, LFT-HL&LN has the
best performance under B1, B2, and EXP, and SLFT-HL&LN
and LST-HL&LN perform best under Ul and U2, respec-
tively. In Table 7, for MP90_2 problem set, LFT-HL&LN has
the best performance under Ul, U2, and EXP, and SLFT-
HL&LN performs best under B1 and B2. In Table 8, for
MP30_5 problem set, SLST-HL&LN and SLFT-HL&LN are
the best compared with other priority rules under U2, B2 and
Ul, BI, respectively. However, LFT-HL&LN has the best
performance under EXP. While in Table 9, for MP90_5 prob-
lem set, LFT-HL&LN performs better than other priority
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rules under U2 and B2. However, SLFT-HL&LN has the best
performance under U1, B1 and EXP.

Additionally, in all Tables, HL&LN is beneficial in reduc-
ing the objective under all distributions. Since resources with
the highest skill-level and the lowest skill-number can per-
form activities as soon as possible, effectively reducing actual
activity durations and the single project makespan. From the
global perspective, when the resource priority rule (HL&LN)
is determined, LFT-HL&LN and SLFT-HL&LN have the
best performance for all-size instances, especially for large-
size instances. However, LST-HL&LN and SLST-HL&LN
only perform well for small-size instances. Therefore, as a
global decision-maker, it is better to choose the LFT or SLFT
as the activity priority rules and the HL&LN as the resource
priority rules, respectively.

D. PERFORMANCE ON THE TSA-12 PRs COMPARED
WITH OTHER ALGORITHMS

In order to verify the performance of TSA-12 PRs, our
comparative experiments mainly focus on two aspects:
(1) comparing the distributed methods on 12 heuristic priority
rules; (2) comparing the distributed and centralized methods
on different size instances.

The first comparative experiment aims to evaluate the
effectiveness of the VNS compared to other distributed meth-
ods for 12 heuristic priority rules, specifically the sequential
game-based negotiation mechanism (SGNM).

SGNM is a traversal search method where all conflict-
ing projects are arranged, and the best project sequence is
selected as the execution order at the conflicting time. Li and
Xu [49] introduced that SGNM had an excellent performance
in solving general distributed scheduling problems. There
is no literature on MS-SDRCMPSP with uncertain activity
duration, so we applied SGNM to MS-SDRCMPSP with
certain representativeness. The detailed SGNM is described
as follows:

SGNM: A sequential game-based negotiation mechanism
based on the distributed multi-agent system, introduced
in [49]. The sequential game is defined as a game consisting
of finite and at least two players where each player takes
actions at different times or in turn. CA as a coordinator orga-
nizes sequential games for PAs. After several sequential game
negotiations, CA determines the best subgame perfect Nash
equilibrium. Then multiple PAs resolve their local schedules
with the allocated global resources from CA independently.

Table 10, 11, 12, and 13 denote the comparison results
between our method and SGNM on 12 priority rules for
different instances. Since SGNM is also combined with a
two-stage distributed approach, its role as VNS is to decide
the project execution order in the global coordination press.
In order to test the impact of VNS and SGNM on results,
we ensure that each activity PR and resource PR as a com-
bination and 12 PRs are tested. The gap means the improved
percentage of VNS than SGNM in each priority rule. “+”
denotes that VNS is better than SGNM. “—” means that
SGNM is better than VNS.
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TABLE 10. Comparisons of E(TTC) with the distributed approach of
MP30_2.

Priority rules VNS SGNM Gap

LST-HL&LN 3023.67 298745 -1.21%
LST-HAL 315435 312934  -0.80%
LST-LN&HL 3320.17 341217  +2.77%
LFT-HL&LN 3016.71  3055.65 +1.29%
LFT-HAL 3142.02  3085.68 -1.83%
LFT-LN&HL 330543 335126 +1.39%
SLST-HL&LN  3036.23  3096.52  +2.0%
SLST-HAL 315423 311659 -1.21%
SLST-LN&HL  3321.27 335636 +1.06%
SLFT-HL&LN ~ 3010.11  2960.61  -1.67%
SLFT-HAL 315098 305419 -3.17%
SLFT-LN&HL  3303.45 334538 +1.27%

TABLE 11. Comparisons of E(TTC) with the distributed approach of
MP90_2.

Priority rules VNS SGNM Gap

LST-HL&LN 11039.85  10788.72  -2.33%
LST-HAL 11633.53 1215823  +4.51%
LST-LN&HL 12212.18  12732.01  +4.26%
LFT-HL&LN 10896.86  10419.79  -4.58%
LFT-HAL 11603.21 1141945 -1.61%
LFT-LN&HL 12199.64 1251925 +2.62%
SLST-HL&LN  11002.09 1135857  +3.24%
SLST-HAL 11559.88  11038.18  -4.73%
SLST-LN&HL  12190.56 1230142  +0.91%
SLFT-HL&LN ~ 10933.46 1062191  -2.93%
SLFT-HAL 11491.68 1098135  -4.65%
SLFT-LN&HL ~ 12165.7 12561.54  +3.25%

TABLE 12. Comparisons of E(TTC) with the distributed approach of
MP30_5.

Priority rules VNS SGNM Gap

LST-HL&LN 58129 646283  10.56%
LST-HAL 6206.45 6850.23  9.40%
LST-LN&HL 616832 6797.36  9.25%
LFT-HL&LN 579591 642535  9.80%
LFT-HAL 6213.62 6868.51  9.53%
LFT-LN&HL 6146.85 675839  9.05%
SLST-HL&LN 572853  6358.09  9.90%
SLST-HAL 6164.77  6778.46  9.05%
SLST-LN&HL  6089.65 6658.05  8.54%
SLFT-HL&LN  5695.69 631395  9.79%
SLFT-HAL 6176.07 6792.63  9.08%
SLFT-LN&HL ~ 6012.35 659128  8.78%

TABLE 13. Comparisons of E(TTC) with the distributed approach of
MP90_5.

Priority rules VNS SGNM Gap

LST-HL&LN 33884.29  39559.09 14.35%
LST-HAL 36037.3  41079.32 12.27%
LST-LN&HL 3637231  41359.05  12.06%
LFT-HL&LN 33690.7 3925993  14.19%
LFT-HAL 36330.81  41319.67 12.07%
LFT-LN&HL 3621895  41286.28 12.27%
SLST-HL&LN  33735.25  39359.27  14.29%
SLST-HAL 35851.27  41229.25 13.04%
SLST-LN&HL ~ 36178.25 4275825 15.39%
SLFT-HL&LN  33623.21 3910893  14.03%
SLFT-HAL 35720.23  41108.37 13.11%
SLFT-LN&HL  36021.69  42017.82 14.27%

Table 10 and 11 show no apparent difference between
the two projects for our method and SGNM. When there
are only two projects, there are at most two sequences
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FIGURE 6. The improved percentage of the solutions on different
instances.

at each moment, such as project 1-project 2 or project
2-project 1. If the sequence of random selection by SGNM
is the same as the sequence finally selected by VNS at the
decision time, the obtained objective refers to the same.
If the sequence of random selection by SGNM is opposite
to the VNS, the results of the two methods are different at
this moment. We also find that although the results from
VNS and SGNM are not the same, the deviation is controlled
within 5%, which is possible. Based on the comparison in
Fig. 6, it appears that the VNS method performs better than
SGNM, with an advantage of 8% on MP30_5and over 12%
on MP90_5. After analyzing the priority rules of VNS in
each table, it was found that LFT-HL&LN performed best in
MP30_2 and MP90_2, while SLFT-HL&LN performed best
in MP30_5 and MP90_5.

The second comparative experiment aims to compare
the performance of the distributed methods with a cen-
tralized method, which in this case is the BRKGA algo-
rithm. The BRKGA algorithm was originally proposed by
Almeida et al. [50] for the project scheduling problem with
flexible resources. Therefore, it is reasonable to test the
BRKGA algorithm on our instances. The detailed BRKGA
is as follows:

BRKGA: This centralized approach is a based random-
key genetic algorithm (BRKGA) for the project scheduling
problem with flexible resources [50]. In BRKGA, there are
three key parameters: the population size (pop), the crossover
rate(rc) and the mutation rate(rm). MP90_2 is a medium-
sized example in this paper, so we take it as an example
to set up a pre-experiment and select appropriate param-
eters for BRKGA. According to the pop = 60/100,rc =
0.7/0.8/0.9,rm = 0.05/0.1/0.15, different objetives are
obtained. Firstly, the Kolmogorov-Smirnov(K-S) test is used
to verify the sample data P = 0.000(< 0.05), and that does
not obey the normal distributionso this article uses a non-
parametric test. Then, the Wilcoxon signed rank-sum test is
applied since there are two kinds of population sizes. The
result is P = 0.000(<0.05). Therefore, at a significance level
of 5%, the value of population size has a significant impact.
Finally, this article applies the Friedman test to multiple
related samples of mutation probability between the different
population sizes, and the results are shown in Table 14.
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TABLE 14. Friedman test under pm grouping.

rm pop = 60 pop = 100
0.05  0.004(<0.05) 0.217
0.10 0.069 0.026(< 0.05)
0.15 0.34 0.124

TABLE 15. Comparisons of E(TTC) for best priority rules among different
approaches.

Problem TSA-12PRs SGNM BRKGA
Subsets E(ITTCy) CPU\(s) E(TTC2) CPUs(s) E(TTCs) CPUs(s)
MP30_2 3016.71 0.586 2960.61 0.694 2374.52 60.597
MP90_2 10896.86 2.495 10219.79 2.795 9209.72 85.287
MP30_5 5695.69 1.495 6313.95 7.232 4880.64 187.331
MP90_5 33623.21 10.824 39108.93 33.234 57978.48 381.055
4
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FIGURE 7. Average CPU time obtained by three approaches.

The bolded part of Table 14 indicates that there is a
signifificant impact when pop = 60,rm = 0.05 and
pop = 100,rm = 0.1 are at the 5% signifificance level.
Therefore, this article compares the target values under the
three crossover probabilities and selects the combination with
the smallest target value as pop = 100,rc = 0.8, and
rm = 0.1. Combined with the CPU runtime, the maximum
number of iterations as Gen = 100.
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SGNM and BRKGA stand for the distributed method and
the centralized algorithm, respectively. Table 15 shows the
compared results among three algorithms on best priority
rules for different problem subsets.

Table 15 and Fig 7 (a) shows that TSA-12PRs has
greater difference than other two approaches on MP90_5.
And we also find that BRKGA performs well on MP30_2,
MP90_2 and MP30_5, but the advantages are not obvi-
ous. Therefore, TSA-12PRs is more suitable for large-size
instances, while BRKGA is more suitable for small-size
instances. Then SGNM performs well on MP30_2 and
MP90_2, but SGNM has only a slight advantage over
TSA-12PRs and only performs better on the instances with
2 projects. We can see that the number of projects is more
important to SGNM than the problem size. Fig.7(b) shows
that BRKGA needs more CPU runtime, which is not appli-
cable to the actual situation. When there are more projects,
SGNM has no advantage, such as five projects.

It appears that the distributed method, particularly TSA-
12PRs, outperforms the centralized method for large-size
instances, while the centralized method is more suitable for
small-size instances. Additionally, the proposed TSA-12PRs
takes less time than the centralized method, making it a
promising approach for addressing the MS-SDRCMPSP with
uncertain activity duration.

VI. CONCLUSION

This article investigates the stochastic distributed resource-
constrained multi-project scheduling problem with the multi-
skilled staff. A two-stage approach with 12 priority rules is
developed for this problem. In the local scheduling stage,
4 activity priority rules are applied to optimize the expected
project makespan; in the global decision stage, 3 resource
priority rules are designed to achieve the expected total
tardiness cost. In order to confirm the performance of our
approach, different size multi-skilled instances are solved.
The experimental results show that the two best PRs, includ-
ing LFT-HL&LN and SLFT-HL&LN, perform better than
other PRs on all-size instances. When the two best PRs with
the two-stage algorithm are selected on all-size instances, our
approach performs better than others(SGNM), especially for
large-size instances. Additionally, further experiments show
that the centralized approach (BRKGA) is suitable for small-
size instances, but the CPU runtime of our method is within
the controllable range. Therefore, managers can consider our
method if there are more projects in practical project manage-
ment and the processing time is limited.

Since our method is only applicable to large instances,
we plan to design a more effective distributed coordination
method that can be applied to instances of all sizes in the
future. Additionally, since it is inevitable that multi-skilled
staff members will leave and return during a project, man-
agers may need to reallocate these staff members to work
on multiple projects. Therefore, future research aims to solve
the distributed resource-constrained multi-project scheduling
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with multi-skilled staff through rescheduling in an uncertain
environment.
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