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ABSTRACT The traffic infrastructure of a city requires evaluation and improvement through a large
amount of data analysis. The construction and laborious work of traditional methods make computer vision
flourish in traffic analysis. Among different computer vision technologies for intelligent transportation
system, one of the most important algorithms is multiple object tracking (MOT). At present, MOT used
in traffic analysis has several shortcomings, such as lack of the output of vehicle speed and movement
direction, and the consideration of single factor in trajectory tracking. These limitations have affected the
results of traffic analysis. This research proposes an end-to-end deep learning network, called PairingNet.
In addition to retaining the function and accuracy of the original detection network, PairingNet integrates the
calculation of vehicle trajectory into the network through the feature fusion of consecutive images, which
is introduced to predict the movement direction and speed of the vehicle. These additional features can be
used to better track the trajectories of vehicles. In addition, a pipeline is designed to reduce the loading
latency incurred by using the consecutive frames as the input for PairingNet. The experiment results indicate
that the vehicle identification of PairingNet reaches 96% accuracy, surpassing the original YOLOv3 as the
backbone structure, and reaches a near 100% accuracy rate in the predicted vehicle position. Moreover, with
the pipeline process, the inference speed of PairingNet is very close to the original YOLOv3. InMOT results,
the MOTA of PairingNet also has a high performance of 91%.

INDEX TERMS Deep learning, multiple object tracking, object detection, traffic analysis, vehicle trajectory.

I. INTRODUCTION
Traffic data collection and analysis are key components in
smart cities for efficient and real-time management of trans-
portation networks. This motivates researchers of Intelli-
gent Transportation Systems (ITS) to continuously develop
more accurate and more cost-effective methods for traffic
data collection. One of the recent methods is the Unmanned
Aerial Vehicle (UAV) with video streaming capability which
covers wide area, reduces installation costs, and minimizes
errors [1], [2], [3], [4]. Also, the UAV supported by image
processing techniques allows for collecting microscopic
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traffic information, such as vehicle type, direction, trajectory,
speed, and driving behavior [1], [2], [5]. Thus, intelligent
image processing methods are required for detecting and
tracking objects captured in the UAV videos.

Several fundamental object detection methods have been
used in ITS [1], [2], [3], [4], [6], [7]. Although these stud-
ies achieved high accuracy in object detection, the main
focus was on detecting a single object to determine road
parameters and traffic variables with little information about
object type and trajectories. Another popular algorithm for
detecting multiple objects and trajectories is Simple Online
and Real-time Tracking (SORT) [8]. SORT utilizes the
Kalman filter and the Hungarian algorithms to speed up
the computation process. Also, SORT provides a method
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to generate trajectories step by step. However, the multiple
steps cause more errors since these steps have a knock-on
effect, and the huge amount of frame information affects
the calculation of the prediction significantly. Further, the
Kalman filter based methods suffer from low accuracy par-
ticularly when they deal with moving images such as drone
videos [1].

This study focuses on detecting vehicles on roads, classi-
fying them, and determining their trajectories. To achieve
these goals, the study proposes PairingNet which is an end-to-
end network with object detection and prediction algorithm.
We introduce the concept of TrackNet [9] which continuously
analyzes multiple frames to detect the objects and simultane-
ously predict their next positions. Therefore, the prediction
not only considers the speed and the position, but also the
vehicle features. PairingNet is divided into object detection,
prediction, and pairing. Object detection is used to determine
the positions of vehicles. The position of each vehicle in the
next frame is predicted using the information acquired in the
previous frames. Finally, the pairing algorithm is used to get
the trajectory of each vehicle in the video. To evaluate the
performance of PairingNet, aerial videos taken by UAV are
used and analyzed. The results show that the mAP of the
object detection in PairingNet is 96%, which is similar to
YOLOv3, and the precision of the pairing prediction is close
to 100%.

In summary, the contributions of this research are as
follows.

• We propose PairingNet, an end-to-end object detec-
tion and prediction, for vehicle tracking based on the
top-view traffic video recorded from a UAV. PairingNet
is inspired by YOLOv3 and TrackNet. It takes three con-
secutive frames as the input to extract more information
from vehicles.

• PairingNet detects vehicles with not only the position
of the bounding box and vehicle category but also the
information including the driving direction and status.
The output of PairingNet can be used to improve the
performance of the vehicle tracking algorithm.

• To minimize the calculation cost of PairingNet,
a pipeline process is introduced to reduce the delay
from loading three consecutive frames as the input.
The experiment results show that the inference time of
PairingNet with pipeline is extremely close to that of
YOLOv3.

The rest of this paper is structured as follows. Section II
illustrates the related works about object tracking algorithm.
Section III discusses the traditional and modern methods of
vehicle detection. Section IV-A and Section IV-B explain the
proposed PairingNet and the multiple object tracking (MOT).
Section V presents the training and testing dataset. Section VI
shows the experiment results and performance analysis, and
finally Section VII concludes the paper and outlines future
work.

II. RELATED WORK
Traditional MOT algorithms, such as Multiple Hypothesis
Tracking [10], Optical flow [11], and Joint Probabilistic Data
Association filters [12], usually consume much time, and the
time increases exponentially with the number of objects being
tracked [13]. Hence, these algorithms are not appropriate
for application to traffic surveillance in this study. Instead,
the Kalman Filter [14], [15], which has fast calculation, has
become widely used in MOT. For example, the SORT [8]
method proposed in 2016 a fast and stable algorithm by com-
bining Kalman Filter and Hungarian algorithm [16]. How-
ever, SORT has certain limitations, such as using singular
consideration factors and the initialization parameter, which
greatly affect the performance of the algorithm. Therefore,
several studies proposed advanced network based on SORT
or Kalman Filter, such as Deep SORT [13] andMOANA [17],
which take into account the shape and color of the objects to
strengthen the capability of trajectory tracking.

Deep SORT uses the prediction model of Kalman Filter
and the Mahalanobis distance to calculate the spatial
correlation of objects between two frames in the paring algo-
rithm [13]. In addition, to eliminate a large number of paring
errors when the object has high motion uncertainty, Deep
SORT considers the appearance of the object as the paring
information which greatly improves the object tracking accu-
racy. The Appearance Metric in Deep SORT is provided in
Equation 1.

d(i, j) = min(1 − rTj r
(i)
k | r (i)k ∈ Ri) (1)

In the equation, d(i, j) measures tracking association with
j-th detected object in i-th trajectory. Each bounding box dj
has an appearance feature descriptor rj with |rj| = 1. For
the i-th trajectory, multiple trajectory appearance descriptors

r (i)k are recorded in Rk =

{
r (i)k

}Lk
k=1

, where k is the number

of trajectories. The equation calculates the cosine distance
of the i-th trajectory and the latest j-th bounding box, and
finds the most similar appearance and spatial paring result
to identify a more realistic pairing.

TrackletNet Tracker(TNT) [18] is a tracking algorithm that
has made achievements in the MOT field in recent years.
It is based on the operation of Tracklet, which integrates the
concept of Graphical module combined with cluster analysis
to distinguish the tracklet of each different object, and finally
reconstructs the complete trajectory. The whole TNT opera-
tion is explained as the Tracklet is generated by the result of
IoU and appearance feature. Then, the Tracklet represents the
nodes in the graph model and pushes two different Tracklets
into the network to calculate the similarity Pe of the two
Tracklets. Equation 2 is used to get the EdgeCost of the two
Tracklets (nodes). The Pe is between zero and one, where a
higherPemeans a higher similarity, and consequently a closer
distance. At the end, the graph model is taken as an input of
the cluster analysis. The Tracklets that are put into the same
cluster are regarded as the same object, and these Tracklets
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FIGURE 1. Network architecture of YOLOv3.

are then merged into a trajectory.

EdgeCost = log(
1 − Pe
Pe

) (2)

III. PRELIMINARY
The collection of traffic data has evolved from simple tra-
ditional tools to advanced ones such as Unmanned Aerial
Vehicle (UAV). Traditional tools include inductive loop [19]
in intrusive way, microwave radar [20] in non-intrusive way,
and roadside camera using computer vision. The new data
collection method by UAVs reduces the infrastructure cost
and maximizes the accuracy. Vehicle detection by UAV uses
computer vision methods for video processing and object
detection.

The most widely used object detection methods for com-
puter vision are feature extraction by histogram of ori-
ented gradient (HOG) [21], scale-invariant feature transform
(SIFT) [22], and speeded up robust features (SURF) [23].
To identify objects in the images, the extracted features
are used as the inputs for the training process performed
by machine learning methods, such as SVM [24] and
Adaboost [25].

Recently, the deep learning network has vigorously been
developed due to the advancement of computer hardware.
The Convolutional Neural Network (CNN), which is a classic
deep learning network, has made a breakthrough in computer
vision analysis, and aims to learn features in each layer using
different filters [26]. The filters extract the characteristics
of objects from the images as the features, then the deeper
filters will elicit themore complicated features like patterns or
shapes. A well-designed network with a large number of fil-
ters in different layers can extract better features to strengthen
the performance of object detection. Nowadays, most of the

CNN based object detection methods can be classified into
two categories, which are region-based methods and region-
free methods.

The region-based methods generate a lot of region propos-
als, then detect the objects and their position with specific
regions. R-CNN, Fast R-CNN, and Faster R-CNN are the
most popular region-based object detection networks [27].
These networks use CNN to extract features from specific
regions, which are selected from the region proposals in
different ways, then they use SVM or regressor to classify
and position the objects.

The region-free methods take the whole frame as the input
without generating region proposals to detect the objects [28].
The region-free methods also divide a frame into several
small regions, and detect objects from these regions. Some of
the region-free object detection networks add anchor boxes
in every small region before detecting objects to reduce
the calculation. The You Only Look Once (YOLO) is a
famous region-free object detection network [29]. YOLO is
a real-time object detection network proposed in 2015 and
extracts features from the entire image. The original concept
of YOLO is dividing an image into S × S grids. For the iden-
tification, the grid image is divided into two parts. The first
part provides several bounding boxes in different scales to
identify the target position and confidence, and the other part
forms small areas to distinguish classes. YOLOv1’s network
architecture has a final output dimension of 7×7×30 which
means 7×7×(2 × 5 + 20). Each small area predicts 4 param-
eters and 1 credibility of 2 identification frames, and 20 class
probabilities of each small area.

YOLOv3 introduced residual network (ResNet) and fea-
ture pyramid to improve the detection performance in small
objects [30], [31]. The architecture of YOLOv3 is shown in
Figure 1. The features of an input image are extracted by
several ResNet in different scales. Then, the feature pyramid
structure is adopted to generate three feature maps. Similar to
YOLOv1, input image of YOLOv3 is also divided into several
grids for predicting objects. Three prior anchors in different
scales are utilized for three feature maps to predict objects.
In Figure 1, the size of output from three feature maps is
(5 + class) × 3, where 5 represents the 4 parameters and the
confidence of the predicting box, class is the probability of
the object class, and 3 means the predicting boxes from the
three different prior anchors. Although the detection accuracy
of YOLO is not as high as that of the faster R-CNN, its
ultra-fast calculation and medium-to-high accuracy rate are
effective for object detection [28].

Object detection algorithms usually take an image as the
input of the network to detect and recognize objects. How-
ever, the applications in the field of smart transportation,
city, and sport often require extraction of trajectories of
the objects after the detection to analyze the behavior from
them. In Section II, several multiple object tracking algo-
rithms using object bounding boxes are introduced. In these
works, objects occluded by obstacles and other objects will
often lead to detecting errors. Their trajectories will then
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FIGURE 2. The concept of detection by tracking in tennis to reduce the
effect of occlusion [9].

FIGURE 3. The architecture of TrackNet [9].

be interrupted in the tracking algorithm, which will con-
sequently result in tracking errors. Therefore, a concept,
called detection by tracking, has been proposed to reduce
the errors caused from object occlusions. TrackNet [9] is a
deep learning network for tracking a tennis ball at high speed.
In Figure 2, (a)-(c) are the three consecutive frames from a
video where the tennis ball is occluded by the tennis player in
frame (b). The concept of detection by tracking is shown in
Figure 2 (d)-(f). The tennis ball can be detected and tracked
in the previous and the next frames, then the position of the
occluded tennis ball in the middle frame (e) can be predicted.
Figure 3 shows the architecture of TrackNet, and the input

is three consecutive frames of the video to realize detection
by tracking.

IV. METHOD
A. PairingNet
PairingNet proposed in this research is inspired by YOLOv3
and TrackNet [9]. In TrackNet, the tennis ball is tracked with
three input frames to solve the issue caused by occlusions,
as shown in Figure 2. YOLOv3 integrates ResNet and fea-
ture pyramid to improve the performance of detecting small
objects. The proposed PairingNet takes three consecutive
images as an input and targets multiple objects in differ-
ent frames for detection and tracking. For tracking detected
objects, PairingNet uses the feature extraction framework
ResNet in YOLOv3 to extract similar features from images,
and then calculates the information for each object in the
consecutive frames. The information consists of the locations

of the object in the three frames and the algorithm uses the
information to obtain the trajectory of an object. The archi-
tecture of PairingNet is shown in Figure 4. From the input,
the network extracts features by ResNet, then builds feature
pyramid with top-down manner and lateral connections to
improve the capability of predicting small objects.

The feature pyramid consists of three feature maps, which
are 13× 13× 1024, 26× 26× 512, and 52× 52× 256. Pair-
ingNet also predicts three bounding boxes at each scale. The
output of the network contains the original five parameters
of a bounding box, which are the center coordinates, width,
height, confidence, and the additional four new parameters of
a predicting pair, which are the coordinates of the predicting
position, past confidence, and future confidence, as depicted
in Figure 5. In the figure, (fx , fy) represents the coordinates of
the predicting pair. The parameters Past and Future are the
past and future confidence of the pair, respectively. In addi-
tion to the coordinates of the object and the pair, the network
also considers the object confidence in previous frame Past
and next frame Future to determine if the object is entering
or leaving the section.

In addition to the original loss function of YOLOv3, Pair-
ingNet loss Lpair includes four new loss terms: Lfx ,Lfy,LPast ,
andLFuture. Lfx and Lfy are the Mean Square Error (MSE) of
the x and y coordinates, respectively. LPast and the LFuture
are the Binary Cross-Entropy (BCE) of the past and future
confidence, respectively, as the past and future confidence
are binary. The used BCE is different from the original BCE
Loss calculation method since a weight α is added to make
the calculation of the loss function more consistent with the
results of the experiment. The modified BCE is given by
Equation 3.

WeightedBCE=−
1
n

n∑
i=1

[x̂ilog(xi)+ α × (1 − x̂i)log(1 − xi)]

(3)

When analyzing the dataset and the two parameters, future
and past, we can see that the probability of these parameters
to be zero is low. For example, a car takes about 5 seconds
from appearing on one side of the screen to driving away from
the other side when there is no red light. If the experiment
used eight FPS to train the network, as in the benchmark, the
probability of the past or future parameter to be 0 is only about
1
40 . The past parameter is zero at the moment when the car
has just entered the screen, and the future parameter is zero at
the moment when the car is about to leave the screen. For all
remaining frames, these parameters are all ones. To prevent
the network from biasing towards predicting one, the error
when the standard is zero is given a relatively large weight.

The newly added four loss terms all rely on the effective-
ness of the original YOLOv3 object detection. If the object
detection performance of PairingNet is not as expected, the
subsequent calculation of each pair is severely limited by
detection errors, which will make the network meaningless.
Therefore, in the calculation of PairingNet loss function Lpair ,
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FIGURE 4. The architecture of PairingNet, which is based on YOLOv3 and Tracknet.

FIGURE 5. Pairing output, including original YOLOv3 output (green) and
our new output (yellow).

a weight value β is added to distinguish the original Lyolov3
from other newly added Loss, as shown in Equation 4.

Lpair = β × Lyolov3 + [Lfx + Lfy + Lpast + Lfuture]. (4)

It is expected that the coordinates of each pair can be found
without reducing the detection performance, as illuminated
in Equation 4.

Three consecutive images from the video are used as the
inputs of PairingNet to extract additional features from the
detected vehicle. Compared to the single image as the input
of YOLOv3 [29], PairingNet consumes more time to load
multiple images during inference. To reduce the data loading
latency, a pipeline is introduced to load the images from
the video. At first, PairingNet loads the first three frames of
the video, then the first of the three frames will be deleted
after inference. The next frame right after the first three
frames will be loaded for the next inference. This process is
repeated so that at each inference, only one frame needs to be

loaded. As will be shown in Section VI-B, this pipeline trick
significantly improves the inference speed of PairingNet to
be comparable to YOLOv3’s.

B. MULTIPLE OBJECT TRACKING ALGORITHM
The vehicle information extracted from every three consecu-
tive frames can be paired via the MOT algorithm. Hungarian
algorithm, one of the most popular algorithms of MOT, is a
minimum loss optimization algorithm to solve assignment
problems. For example, Equation 5 shows a loss matrix of
vehicle trajectories, each row in the matrix is a detected
vehicle in the current frame, and each column is a trajectory
extracted from previous frames. End each element of the
matrix denotes the loss of the detected vehicle referring to
the trajectory. The multiple vehicle tracking task is to find
out the optimal solution to assign the detected vehicle to a
trajectory, and each trajectory can only be paired to a single
vehicle of the current frame. In this case, the optimal solution
of Equation 5 using Hungarian algorithm is L11, L23, and L32.
The total loss of the solution is 2 + 1 + 0 = 3, which is the
lowest loss.

L =

2 3 0
4 5 1
1 0 5

 (5)

In this paper, Hungarian algorithm is used for track-
ing vehicles, and the results are optimized using additional
parameters, which are the threshold of distance and vehi-
cle status. Vehicles detected from object detection algorithm
contain true positive results, false positive results, and false
negative results. The higher performance of the algorithm
causes smaller quantities of false positive and false negative
results. To reduce the incorrect tracking results affected by
the object detection, the distance between detected vehicles in
consecutive frames is utilized for optimization. Note that the

29570 VOLUME 11, 2023



G.-W. Chen et al.: PairingNet: A Multi-Frame Based Vehicle Trajectory Prediction Deep Learning Network

driving speed of the same vehicle should be in a reasonable
range and the driving speed of different vehicles in the same
direction are close to each other. As a consequence, a distance
threshold is used as a filter, which will remove the tracking
results if the vehicle distance between the last frame in the
trajectory and the current frame is more than the threshold.
On the other hand, parked vehicles on the roadside also may
cause mismatches of the tracking results when a detected
vehicle is driving through. In this paper, each detected vehicle
in the video will be marked with a tag after PairingNet to
determine its status, whether the vehicle is moving or not.
There are two cases when a vehicle is tagged to be not
moving. The first case is the vehicle is parked, and the second
case is that it is waiting for a traffic light. In the case when
a detected vehicle in the current frame is marked as moving
and is assigned to a trajectory, but the vehicle in the latest
frame is marked as stop, the assignment will be removed if
the distance between the vehicle in those two frames is higher
than a different threshold.

After most of the detected vehicles are assigned to existing
trajectories using Hungarian algorithm with optimization,
some of the vehicles may not belong to any trajectory because
they are just entering the road section in the video. Therefore,
the values ofPast andFuture, part of the output of PairingNet,
can be used to identify the unassigned vehicles. When Past
is false and Future is true, it means the last frame of the
input of PairingNet does not contain the unassigned vehicle.
So the vehicle can be treated as an entering vehicle to the
road section in the video. In this case, a new trajectory will
be created to record the unassigned vehicle. After all detected
vehicles are assigned to a trajectory, some of the existing
trajectories will be removed if no updated vehicle is assigned
to them for a duration longer than a threshold.

V. DATASET
The dataset used in this study is recorded from aerial videos
with the versatile action camera at an altitude of 25 and
50 meters over an intersection in Hsinchu, Taiwan, as shown
in Figure 6. The vehicles and pedestrians in the videos are
labeled for object detection and tracking, and the labels
are classified into eight categories: pedestrian, bike, scooter,
sedan, bus, s_Truck for small truck, l_Truck for large truck,
and trailer, as shown in Figure 7. In the s_Truck category, the
length of the truck is less than 3 meters.

GoPro Hero 7 [32], a versatile action camera, is used for
recording the video in this paper. The camera has several
operational modes with different points of view (PoV) in
vertical, horizontal, and diagonal view, as shown in Table 1.
Each video in the dataset has a resolution of 1920 × 1080 in
wide mode, and its horizontal PoV is 118.2◦. In most videos,
the altitude of UAV is 50 meters, so the frame width in
the video is about 173 meters. Two image sizes, 416 and
608 pixels as frame width, are used as the input of PairingNet,
so the scales are 0.416 and 0.285 meter per pixel in the two
frame sizes. However, small objects like pedestrians, bikes,
and scooters are more difficult to be detected than large

FIGURE 6. Aerial scenes in dataset.

FIGURE 7. Category of object detection dataset, including pedestrian and
vehicle.

TABLE 1. Degree of camera view.

TABLE 2. Small object scale.

objects. To improve small object detection, additional videos
with the altitude of UAV being 25 meters are collected. The
configurations used to collect all videos are listed in Table 2.

An open-source online labeling tool, called Video Anno-
tation Tool from Irvine, California (VATIC) [33], is used
in this research. The design of the user interface is suitable
for labeling consecutive frames with multiple objects. In our
dataset, all the objects of interest are labeled by VATIC for
PairingNet. There are 9 parameters to be marked, which are
TrackID, xmin, ymin, xmax, ymax, FrameID, Lost ,Occluded ,
and Label. TrackID denotes the object in the same track,
so the objects with the same TrackID in different frames can
be identified as the same object. The xmin, ymin, xmax, and
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FIGURE 8. Object detection and pairing results in the test data. (a) and
(b) show the appearing status and leaving status separately, and (c) is a
situation of many vehicles that are closed.

ymax are the upper-left and the lower-right corners of the
bounding box that locates an object in the frame. FrameID
marks the identity of current frame to the objects. The label
Lost is 1 if the object is outside of the screen. Occluded
will be marked 1 if the object is occluded. Label denotes
the category that the object belongs to. The label data of the
objects in each frame are exported to a different annotation
file separately.

VI. RESULT AND EVALUATION
The results of object detection, pairing, and tracking are
presented in this section. Section VI-A shows the experiment
results using test data from the dataset. Then Section VI-B
compares the results of object detection and pairing between
YOLOv3 and ours, and Section VI-C exhibits the perfor-
mance of the multiple object tracking algorithm.

A. DETECTION AND TRACKING RESULT
The output of PairingNet includes the vehicle location,
predicted moving vector, vehicle state, and object con-
fidence. The confidence threshold is preset to 0.8, and
the Non-Maximum Suppression (NMS) threshold is 0.25.
As shown in Figure 8, the first number on top of the bounding
box of the vehicle in the picture represents its condition.
Condition 1, 2, and 3 indicate the three instantaneous situa-
tions, i.e., just enter the screen, move in the screen, and about
to leave the screen. The second number is the confidence
of prediction. The vector in the bounding box represents
the vehicle direction and speed. For example, the scooter in
Figure 8c has condition 2, and its vector points from the right
to the left in the screen. It means that this scooter is clearly
visible in the screen in last frame and also moves in the same
direction as the predicted vector. In Figure 8a, the vehicle is
leaving the section, so its condition is 3. In addition, because
we cannot see this vehicle in the next frame, the vector will
not be shown in the bounding box. Figure 9 shows tracking
result in two consecutive frames. The number on top of the
bounding box of the vehicle is the tracking ID, so each vehicle
will have a unique tracking ID in the consecutive frames.

FIGURE 9. Visualization of the tracking results.

B. EVALUATION OF PairingNet
To evaluate the proposed PairingNet, a total of 13312 images
are used as training data, and 3328 images are used as testing
data. We start with the detection evaluation, and then show
the pairing evaluation. The performance of object detection
result is evaluated by mean average precision (mAP), which
is determined by the value of Precision and Recall. Precision
and Recall are calculated by the number of true positive (TP),
false positive (FP), and false negative (FN). TP means the
detected vehicle is the same as the ground truth. FP means the
detected vehicle does not exist in the ground truth. FN indi-
cates the object in the ground truth is not detected by the
network. Precision is defined as TP/(TP+FP), and Recall =

TP/(TP + FN ). Intersection over union (IoU) is used to
determine the correctness of detected object with ground
truth, which is calculated by the ratio of the area of overlap
and the area of union between two bounding boxes. In our
experiment, a detected vehicle will be a TP instance while
the IoU between the bounding boxes of detected vehicle and
the ground truth is higher than 0.5, which is the same as in
YOLOv3 [29].

1) DETECTION EVALUATION
Table 3 shows the detection results of the test data by Pair-
ingNet. The mAP in the table reaches 96.4% for the five cat-
egories. The accuracy and recognition rate of each category
exceed 90%; the precision and recall reach 96.1% and 98.6%
respectively. Comparing these results with those of YOLOv3
in Table 4, PairingNet results have higher recognition accu-
racy through the feature fusion of consecutive images. Also,
the recognition of small objects, including pedestrians and
scooters, has improved significantly. In particular, the pedes-
trian recognition increases by 27.7%. However, in multiple
consecutive images, s_Truck has obviously more FN because
the only recognition difference between s_Truck and l_Truck
is the size. The probability of s_Truck to be misjudged as
l_Truck increases after the feature fusion of multiple images.
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TABLE 3. The detection result of PairingNet.

TABLE 4. The detection result of YOLOv3.

TABLE 5. The detection result of PairingNet when training on 3 FPS.

One of the advantages of PairingNet is that it achieves
tracking at different sampling rates. Table 5 shows the train-
ing results in 3 FPS. As can be seen in the table, each category
exhibits a high recognition rate at both high and low sampling
rates. In the data collection of this experiment, the amount of
data for pedestrians is low and the frequency for pedestrians
to appear in the images is low. As a consequence, the result of
the low sampling rate for pedestrian detection is worse than
that of the high sampling rate. If the amount of pedestrian
information is increased, this issue should be solved.

In order to test the ability of generalization of the network
on the training data set, the model is also trained by half of
the training dataset, which is 6700 images, and the test data
remained the same. Table 6 shows that most of the results are
slightly worse than the training results of the original data.
Particularly, the performance results of pedestrians and trucks
have significantly reduced. The reason for this phenomenon
is that the frequency that pedestrians and trucks appear in the
original training data is very low. As a result, the reduction
of the training data leads to insufficient training for these two
categories. Therefore, a certain amount of training materials
must be collected. Although the size of training data can be
appropriately reduced for faster network training, it is still
recommended to use more training data to achieve a better
tracking performance.

PairingNet increases the input to three consecutive images
and adds four additional output parameters. This may
increase the inference time because of the additional network
calculations. To evaluate the efficiency of the network under
different sizes of input and output, the input of PairingNet is
modified to take either one image, two consecutive images,

TABLE 6. The detection result of PairingNet when training on
6700 images.

TABLE 7. Comparing inference time between different input and output
in milliseconds.

and three consecutive images. In addition, the output of
PairingNet is modified to be either with or without the four
additional parameters.

Table 7 shows the inference time of YOLOv3 and Pair-
ingNet with different input and output settings. The first
number following PairingNet is the number of consecutive
input images, and the second number denotes the output with
or without four additional parameters. The second column of
Table 7 shows the total inference consuming time, and can be
split into two processes, which are the network and the data
loading. It can be seen that there is not much difference in the
time required for the calculation of theNetworks, but the time
difference in DataLoading is large. Each additional image
increases the loading time by approximately 70 milliseconds,
which dramatically affects the overall computation speed.
This explains that the network itself has little effect on the
computation time. In order to speed up data loading, the input
images need to be loaded in pipeline. That is, at each times-
tamp, the latest two input images of the previous timestamp
are kept and only one additional image is loaded. In this way,
except for the first two timestamps, the data loading time can
be greatly reduced, which will bring our ParingNet close to
the time consumption of the original YOLOv3. The results of
PairingNet after the input pipeline implementation are shown
in the last row.

2) PAIRING EVALUATION
In addition to the detection results, the performance of vehicle
pairing prediction is shown in Table 8. We notice that the
number of TP and Pair TP are the same, while Pair FP is
zero. It means that if a vehicle is detected by PairingNet, then
the pair of this vehicle will also be detected. The accuracy
of predicting the past and future parameters is 99.9%, and the
relatively important negative situation in the evaluation of the
access status has also reached 100% prediction. In addition,
the average error of the motion vector prediction is about
1.1 pixels, a very small gap, which shows that PairingNet
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TABLE 8. PairingNet pairing result.

TABLE 9. MOT result.

has high vehicle motion estimation accuracy. PairingNet also
greatly improves the accuracy of the vehicle pairing as it
reaches 98.1%.

C. EXPERIMENT OF TRACKING ALGORITHM
Table 9 shows the result of the trajectory tracking algorithm
using CLEAR MOT as the evaluation method. The Ground
Truth (GT) shows the number of objects in the test data.
The Mismatch Error (MME) is the number of the vehicles
in different tracking id. In the table, PairingNet has as high
as 82.7% MOTP accuracy on IoU and 91.6% MOTA accu-
racy. The results show that PairingNet method improves the
performance of MOT.

VII. CONCLUSION AND FUTURE WORKS
This research proposes PairingNet which is a new
multi-object tracking method. Different from the previous
tracking algorithms that are based on object identification,
PairingNet uses the features of multiple consecutive images
to integrate the feature extraction and regression calculations
of the original object detection network. PairingNet success-
fully adds the object tracking function into the YOLOv3 end-
to-end object detection network and reduces the accumulated
difference between object detection and trajectory prediction.
In addition, because of the feature fusion and the extraction
application, the calculation of trajectory prediction is no
longer just the result of a single feature of speed and position
but refers to a large number of related multiple features.
The feature fusion of continuous images slightly improves
the effect of object detection. The object detection mAP of
PairingNet reached 96.4%, and the prediction of the pair
position reached a success rate of nearly 100%. The overall
computing time has also been improved to achieve the same
real-time performance as YOLOv3. In terms of trajectory
prediction, using Hungarian algorithm and the prediction
of the pair position, CLEAR MOT’s MOTP achieves an
accuracy of 82.7% of the IoU standard, and MOTA also has
an accuracy rate of 91.6%. PairingNet has demonstrated sig-
nificant research results in real-time object tracking projects.

At present, the application environment of PairingNet uses
drones to collect and analyze information on flat roads. In the
future, we expect PairingNet to be applied to low angle
cameras at intersections and to be transplanted to the analysis
of highway monitoring cameras. In addition, although Pair-
ingNet has integrated the functions of trajectory prediction
and object detection, multi-object tracking has additional

operations for object pairing in addition to the aforemen-
tioned calculations. In the future, we will merge the object
pairing operation with PairingNet to achieve the end-to-end
operation of multi-object tracking.
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