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ABSTRACT Monitoring disease evolution in Multiple sclerosis (MS) subjects may aid in decision making
for personalizing treatment and disease evolution prediction.We investigate the use of disability progression,
using clinical features, the expanded disability status scale (EDSS), and their relationship with texture
features and Amplitude Modulation-Frequency Modulation (AM-FM) features extracted from MRI MS
detectable lesions for the prognosis of future disability onmagnetic resonance imaging (MRI).MS detectable
brain lesions fromN=38 symptomatic untreated subjects diagnosed with clinically isolated syndrome (CIS),
were manually segmented, by an experienced MS neurologist, on transverse T2-weighted (T2W) images
obtained from serial brain MRI scans at the baseline (Time0M) and the repeat (Time6−12M) examinations.
The subjects were separated into two different groups based on their EDSS: (G1: 1≤EDSS2Y ≤3.5 (N=26)
and G2: 3.5<EDSS2Y ≤8.5 (N=12) and were monitored over ten years’ time (Time10Y). After intensity
normalization and image registration, texture and AM-FM features were extracted from all MS lesions at
Time0M and Time6−12M. The extracted features were used to develop models that correlated with the disease
progression in Time10Y. We found statistically significant differences for features extracted from the two
different groups (G1 vs G2 at Time10Y) and these might be used to predict the development and or the severity
of the MS disease. The best model for classifying G1 vs G2 subjects at Time10Y included information taken
from the MS lesion images, texture features and AM-FM features extracted from those MS lesion images
(with a correct classification score of %CC=94). The proposed methodology may contribute to additional
factors for predicting the development and assessing the severity of the MS disease. However, a larger scale
study is needed to establish the application in clinical practice and for computing additional features that
may provide information for better and earlier differentiation between normal tissue and MS lesions.

INDEX TERMS MRI, multiple sclerosis, disease evolution, EDSS, texture analysis, AM-FM analysis,
classification analysis.
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NOMENCLATURE
The following abbreviations were used in this study:

AM-FM: Amplitude Modulation-Frequency Modula-
tion.

ASM: Angular second moment.
AUC: Area under the ROC curve.
CDF: Cumulative distribution function.
CIS: Clinical Isolated Syndrome.
CSF: Cerebrovascular fluid.
%CC: Percentage of correct classifications score.
DE: Difference entropy.
DV: Difference variance.
EDSS2Y: Expanded disability status scale at year 2.
EDSS5Y: Expanded disability status scale at year 5.
EDSS10Y: Expanded disability status scale at year 10.
FDTA: Fractal dimension texture analysis.
FPS: Fourier power spectrum.
G1, G2: Two different groups of subjects investigated.
GLD: Gray level distribution.
GLDS: Gray level statistics.
IA: Instantaneous amplitude.
IP: Instantaneous phase.
IDM: Inverse difference moment.
IF: Instantaneous frequency.
|IF|: IF magnitude.
IMC: Information measures of correlation.
IQR: Interquartile range.
LRE: Long run emphasis.
LTEM: Laws texture energy measures.
MAE: Mean absolute error.
MRI: Magnetic resonance image.
MS: Multiple sclerosis.
N: Number of cases investigated.
NAWM: Normal appearing white matter at Time0M.
NGTDM: Neighborhood gray tone difference matrix.
NS: Non-statistically significant different.
NWM: Normal white matter.
PLD: Run length distribution.
RAE: Relative absolute error.
RBF: Gaussian radial basis function.
RMSE: Root mean squared error.
ROC: Receiver operating characteristics.
ROI: Region of interest.
RP: Run percentage.
RRSE: Root relative squared error.
RUN: Gray level run length statistics.
S: Statistically significant difference.
SA: Sum average.
SE: Sum entropy.
SF: Statistical features.
SFM: Statistical feature matrix.
SGLDM: Spatial gray level dependence matrices.
SGLDS: Gray level difference statistics.
SOSV: Sum of squares variance.
SP: Shape parameters.

SRE: Short run emphasis.
SV: Sum variance.
SVM: Support vector machines.
T2W: T2 weighted MR images.
Time0M: Examination at baseline (initial examina-

tion).
Time5Y: Examination at 5 years after Time0.
Time10Y: Examination at 10 years after Time0.
Time6−12M: Examination at follow-up scan after 6-12

months.
TP / FP: True positives / false positives.

I. INTRODUCTION
Multiple Sclerosis (MS) is a potentially disabling disease of
the central nervous system (brain and spinal cord) [1]. In MS,
the immune system attacks the protective sheath (myelin)
that covers nerve fibers and causes communication problems
between the brain and the rest of the body. MS can cause
permanent damage or deterioration of the nerves, includ-
ing inflammation, demyelination, axonal degeneration, and
neuronal loss [1]. The EDSS assessment scores may vary
among clinicians, particularly regarding the development of
disability [2], [3]. A specialized neurologist’s evaluation of
MS is often based on clinical signs and symptoms, conven-
tional magnetic resonance imaging (MRI), and theMcDonald
criteria, which were first proposed in [4] and modified in [5]
and [6]. Changes in disability are strongly correlated with
the development of new brain MS lesions [3]. Disability
progression in MS is mediated by acute inflammation as
well as chronic inflammation and neurodegeneration [3], [4],
[5], [6], [7], [8]. The clinical disability is assessed at the
time of each scan, using the McDonald Expanded Disability
Status Scale (EDSS) [4], [5], [6], [7]. It was shown that brain
and focal lesion volume measures, magnetization transfer
ratio and texture features extracted from the MS lesions can
provide new information in diagnosing MS [8], [9]. Texture
[9] and Amplitude Modulation-Frequency-Modulation (AM-
FM) features [10] characterize MRI MS lesions and also the
macroscopic abnormalities that may be unnoticeable using
conventional measures of lesion volume and number [11].
The motivation of this study was to investigate the usefulness
of texture and AM-FM feature analysis for following up MS
disease evolution.

It was shown in [12] that baseline MRI findings maybe
predictive for development of clinically definite MS using
the lesion volume and that its change at earlier time can be
correlated with disability. More specifically, it was shown in
[12], that the EDSS correlated moderately with lesion volume
in MRI at 5 years (ρ = 0.60), and with an increase of lesion
volume over the first 5 years of the MS disease (ρ = 0.61)
[13]. It was also shown in [14] that higher EDSS correlates
with lower volumes of brain, grey and white matter, and some
subcortical structures, but also with higher T2 lesion load.
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TABLE 1. Median (IQR) demographics and EDSS groups of the study (N=38). EDSS score at year 10 was used for studying MS disease evolution.

In another study [15], it was shown that radiomics texture
analysis may be used to predict normal appearing white
matter (NAWM), which will evolve into MS lesions. In [16],
texture analysis has been applied in cross-sectional studies
of patients with small vessel diseases. It was shown that
radiomics may be used to investigate the microstructural
changes of NAWM. It was also recently documented in [17]
that the high number of relapses can be used as an early
marker for identifying patients worsening in the presence of
MS activity. Finally, in [18] the disability evolution in MS
patients was predicted using a latent class linear mixed model
with an accuracy of 94%. Demographic, clinical and imaging
variables were used for the classification.

Other studies have discussed how texture features can be
used for the assessment of MS lesions in: (i) differentiating
between lesions for normal white matter (NWM), and the
so called NAWM, and (ii) monitoring the progression of the
disease over longitudinal scans [8], [9], [10], [11], [19], [20],
[21], [22], [23], [24], [25], [26], which is the objective of
this paper as well. In [26] the performance of texture analysis
concerning discrimination between MS lesions, NAWM and
NWM from healthy controls was investigated by using lin-
ear discriminant analysis. The results suggested that texture
features can support early diagnosis in MS.

Our primary objective in this study was to investigate
whether disease evolution in MS subjects maybe predicted
using the EDSS, and its relationship with texture and AM-FM
features extracted from MRI MS detectable lesions at the
baseline examination. This will aid in decision making in
the prognosis of future disability for personalizing treatment
and disease evolution prediction. Since the use of quantitative
MRI analysis as a surrogate outcome is also used as a replace-
ment measure in clinical trials, we hypothesize that there
is a close relationship between the change in the extracted
features and the clinical status and the rate of development
of disability. We analyzed subject’s images acquired at the
initial (Time0M) and repeat (Time6−12M) examinations and
we correlated texture and AM-FM feature findings with dis-
ability assessment scales. We analyze how the EDSS scores
relate with standard shape, texture, AM-FM and other image
features.

In comparison to previous studies, the current paper makes
three distinct contributions. First, the current paper is focused

on a new application. The current application is focused on
the early detection of AM-FM features that can be used to
predict significant advancement in the EDSS scores. Second,
the paper introduces a new set of AM-FM features. We intro-
duce the use of the cumulative distribution functions (CDF) of
the instantaneous frequency (IF) at different scales. Third, the
paper uses a new Gabor filterbank that was first introduced
in [27].

The layout of the paper is as follows: Section II presents the
materials and methods, while section III presents the results
of the study. Finally, Section IV presents the discussion, the
limitations of the study and the future work.

II. MATERIALS AND METHODS
The system diagram presented in Fig. 1 illustrates the process
followed in the MRI NAWM and lesion analysis performed
in this study. The different processing steps for the analysis
of the extracted ROIs are analyzed herein below.

To introduce the objective of our study, an example in Fig. 2
is presented. Here, we show two transaxial T2W MR images
acquired from a subject with an EDSS≤3.5 in a) and a subject
with an EDSS>3.5 in Fig. 2b). Segmented MS lesions are
shown with outlines for both subjects.

A. STUDY GROUP AND MRI ACQUISITION
The characteristics of the group investigated in this study are
summarized in Table 1. All subjects with a suggestive clinical
isolated syndrome (CIS) and MRI-detectable brain lesions
were scanned at baseline (Time0M) and with an interval of
6-12 months (Time6−12M). The transverse MR images used
for analysis were obtained using a T2W turbo spin echo pulse
sequence (repetition time = 4408 ms, echo time = 100 ms,
echo spacing= 10.8 ms). The reconstructed image had a slice
thickness of 5 mm and a field of view of 230 mm with a
pixel resolution of 2.226 pixels per mm. Standardized plan-
ning procedures were applied during each MRI examination.
The MR images were acquired using a 1.5T whole body
Philips ACS NT MR imager (Philips Medical Systems, Best,
the Netherlands). A built-in quadrature radiofrequency body
coil and a quadrature radio frequency head coil were used for
proton excitation and signal detection respectively. The MRI
protocol and the acquisition parameters were also given in
detail in [9] and [10]. It is noted that CIS is a single episode
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FIGURE 1. MRI image analysis system diagram for MS disease evolution assessment. MRI:
Magnetic Resonance Imaging. EDSS score at year 10 was used for studying MS disease evolution
in this study.

of neurological symptoms that need treatment with various
outcomes depending on the severity of symptoms and the
residual symptoms after treatment. The repeat MRI scans at
Time6−12M were not related to the outcome of the CIS but
rather to depicting new T2W lesions which were correlated
with an increased probability of transformation of CIS to
clinically definite MS. The mean time difference between
Time0M and Time6−12MMRI examinations was about 8.5
months. The investigation and follow-up were based on the
analysis of T2 lesions from MRI images. This imaging has
always been used in clinical and MRI studies in MS and also
for the assessment of the MS MacDonald’s MRI diagnostic
criteria [4], [5], [6], [7].

Initial clinical evaluation was made by an experienced
MS neurologist (co-author, M. Pantzaris) who referred the
38 subjects for a baseline MRI (Time0M), upon diagnosis and
clinically followed all subjects for over ten years. All sub-
jects remained untreated between Time0M and Time6−12M.

At Time0M the stage of the disease was evaluated using the
EDSS score [4], [5], [6], [7]. All subjects were also examined
two years after initial diagnosis to quantify disability [4],
[5], [6], [7] (EDSS2Y), and then again in five (EDSS5Y),
and ten (EDSS10Y), years. The subjects were also separated
into two different EDSS groups (i.e. G1: EDSS≤3.5 and G2:
EDSS>3.5), (see also Table 1 and Fig. 3). Figure 3 illustrates
box plots for the two EDSS groups distribution at years two,
five and ten. The reason for selecting an EDSS cutoff point
of 3.5 is that for an EDSS>3.5 the physician can assess
neurological signs, meaning that the subject starts showing
signs of disability progression. As a result, any subject having
an EDSS≤3.5 at two, five and ten years after the initial MRI
scan can be regarded as having a rather benign course of
the disease. It is known that the initial (presenting) EDSS
is not strongly associated with future disability [4], [5], [6],
[7]. It is noted that EDSS at baseline (Time0M), was not used
since our study focuses on texture analysis of T2 brain MRI
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FIGURE 2. ROIs drawn on MR image of the brain at Time0Y, obtained
from: a) a 42-year-old female MS patient with an EDSS 2.0/2.5/3.0 and
b) a 45-year-old male subject with an EDSS 2.5/4.5/7.5 (measured in
Time2Y -/, Time5Y /-/ and Time10Y /- after the initial examination).
Segmented MS lesions are shown with outlines for both patients,
acquired at a pixel resolution of 2.226 pixels per mm. The average gray
scale median of all lesions was 91±12 and 140±14 (max=255) for the
images in a) and b) respectively.

scans and future disability progression, as measured at two
and five years after the initial (Time0M) MRI scan. Additional
acquisition parameters used in this study may also be found
in [7], [9], and [10].

Additionally, brain imaging from 20 healthy, age-matched
(mean ± SD: 30.8 ± 7.6) volunteers (8 males, and
12 females) were carried out to allow segmentation and anal-
ysis of brain NWM as it was also documented in [9] and [10].

B. REGISTRATION AND INTERSCAN INTENSITY
NORMALIZATION
Time6−12MMRI images were registered to Time0M images
using the method introduced in [28] and used in [29], and
the registration process was also applied to the lesion masks.
For the registration, 6 degrees-of-freedom were used to pro-
vide rigid body transformation between the Time0M and
Time6−12M.
All images used in this work were intensity normalized as

introduced in [28] and documented in [9] and [10] where all
additional details about the algorithm may be found. A nor-
malization algorithm adjusted distributions of each follow-
up scan (Time6−12M), to match those of the chosen baseline
(Time0M) scan in order to improve image visibility, reduce

FIGURE 3. Box plots for the EDSS distribution at years two (EDSS2Y), five
(EDSS5Y), and ten (EDSS10Y), for two different groups (G1: EDSS≤3.5, full
line plots) vs G2: EDSS>3.5, dotted line plots). EDSS score at year 10 was
used for studying MS disease evolution in this study.

partial volume effects and facilitate MR image comparability
between serialMR scans [23], such as those obtained from the
MS group of this work. For the purpose of intensity normal-
ization, the neurologist manually segmented cerebrovascular
fluid (CSF) areas as well as areas with air (sinuses) from all
MS brain scans as will be described in the next subsection.

C. MANUAL DELINEATION OF LESIONS, REGIONS OF
INTEREST, AND NAWM
All MRI-detectable brain lesions were identified and seg-
mented by an experienced MS neurologist and confirmed
by a radiologist (see also Fig. 2). Only well-defined areas
of hyper intensity on T2W MR images were considered as
MS plaques. The neurologist manually delineated the brain
lesions by selecting consecutive points at the visually defined
borders between the lesions and the adjacent NAWM on the
acquired transverse T2W sections. The manual delineations
were performed using a graphical user inter-face imple-
mented in Matlab® developed by our group. Every effort
was made to avoid white matter areas with subtle, patchy and
diffuse abnormal signal intensities. Finally, the neurologist
manually segmented cerebrovascular fluid (CSF) areas as
well as areas with air (sinuses) from all MS brain scans
based on the method introduced in [9]. Similarly, regions of
interest (ROIs) representing NWM, CSF and air from the
sinuses were segmented from 20 MRI scans acquired from
healthy subjects. Manual segmentation by the MS expert was
performed in a blinded manner (without knowledge of the
MRI-subject time-point relationships), without the possibility
of identifying the subject, the time-point of the exam or the
clinical findings. The selected points and delineations were
saved to be used for texture feature extraction and AM-FM
analysis (see also subsections II.E and II.F).

D. ROIS IDENTIFICATION
ROIS were identified by the experienced neurologist
in three steps. First, the corresponding slices between
Time0M and Time6−12Mwere registered. Second, NAWM
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regionswere segmented at Time0M and Time6−12M(NAWM0,
NAWM6−12). Third, NWM and CSF regions from healthy
MRI brain scans were also segmented.

E. FEATURE EXTRACTION: SHAPE AND TEXTURE
Shape features and texture features were extracted from all
MS lesions detected and segmented, from the segmented
ROIs, NAWM regions as well as from the brain scan of
20 healthy subjects. The overall shape and texture features
for each subject were then estimated by averaging the cor-
responding values for all lesions for each group of sub-
jects. The following group of features were extracted: 12
Shape Parameters (SP) [26], [29], [30], 5 Statistical Features
(SF) [30], [31], 14 Spatial Gray Level Dependence Matri-
ces (SGLDM) as proposed by Haralick et al. [31], 5 Gray
Level Difference Statistics (GLDS) [32], 5 Neighborhood
Gray Tone Difference Matrix (NGTDM) [33], 4 Statistical
FeatureMatrix (SFM) [34], 6 Laws Texture EnergyMeasures
(LTEM) [34], 4 Fractal Dimension Texture Analysis (FDTA)
and 5 Gray Level Run Length Statistics (RUNL) [35]. These
features were computed using the IDF toolbox implemented
inMatlab®R2015 software toolbox, where additional details
may also be found in [9] and [10].

F. AM-FM ANALYSIS
AM-FM analysis extracts AM-FM features at different fre-
quency scales. Here, we note that frequency measurements
are expressed in terms of cycles per mm based on a resolu-
tion of 2.226 pixels per mm. Furthermore, frequency angle
is expressed in radians and is physically meaningful due
to image registration. Similarly, amplitude components are
also standardized due to scan normalization. Then, over each
segmented region, we compute a multiscale AM-FM decom-
position using [27] (also see [36]):

I(x, y) =

M∑
n=1

an (x, y) cosφn (x, y)

where n= 1, 2, 3 correspond to the low, medium, and high
scales, an(x, y) denote the instantaneous amplitude (IA) com-
ponents, and ϕn(x, y) denote the instantaneous phase compo-
nents. For each AM-FM component, we have the associated
instantaneous frequency (IF): ∇ϕn(x, y) that is estimated as
described in [27].

As an image representation, we note that the FM images
cosϕn(x, y) describe fast changing texture components. The
IA components an(x, y) can be used to quantify the con-
tributions of each component. We extract AM-FM features
for each lesion. Over each lesion, for each one of the three
scales, we compute 14-bin histograms of the IA, IF angle,
and IF magnitude. To differentiate among scales, we refer
to each AM-FM feature by its frequency scale. Thus, low-
IA, medium-IA and high-IA refer to IA components from
the low, medium, and high frequency scales. For each
AM-FM feature, we compute cumulative distribution func-
tions (CDFs) at Time0M and Time6−12M.

G. STATISTICAL ANALYSIS
The Mann-Whitney non-parametric rank sum test (for inde-
pendent samples of different sizes) [36] was used in order
to identify if there were significant differences (S) at
p<0.05 or not (NS) at p≥0.05, between the extracted tex-
ture and AM-FM features from the two different groups
(G1 vs G2). The median values over the segmented com-
ponents (NWM, NAWM, and MS lesions) were used for
investigating the relationships between the texture features
extracted from all brain structures between Time0M and
Time6−12M intervals. Additionally, the test was performed
for subjects with an EDSS≤3.5 versus EDSS>3.5, evaluated
two years after the initial MRI examination. Subjects with
EDSS≤3.5were assigned the binary number 0, while subjects
with EDSS>3.5 were assigned the binary number 1. This was
carried out to investigate whether texture features extracted
from the above areas of the brain may be able to distin-
guish between the two different EDSS groups. Similarly, for
comparing independent samples from equal populations, the
Wilcoxon non-parametric rank sum test was used [37]. Above
statistical tests were also applied on the CDF plots generated
from the AM-FM derived MS lesions to establish which
feature shows statistically significant group difference (S),
at p<0.05 or not (NS), at p≥0.05.

Box plots were used to compare the texture and AM-FM
features between the brain structures extracted from the two
different EDSS groups. Furthermore, boxplots were used to
demonstrate the difference of the grayscale values in the
two different groups. Because the data were not normally
distributed 1st, 2nd and 3rdquartiles were used.

The analysis was performed using the Matlab® R2015
software package and theMedCalc® software (Ostend, Bel-
gium) version 19.0.3 for the statistical analysis. Bonferroni
correction was used to adjust p-values and confidence inter-
vals for the multiple comparisons performed in this study.
This correction was applied in a leave-one-out fashion to get
the most significant features.

H. CLASSIFICATION ANALYSIS
Texture classification modelling was used to predict
EDSS score at year 10. Models to predict subjects with
EDSS≤3.5 versus those with EDSS>3.5 based on texture
and AM-FM features, and lesion images were developed.
The Weka 3.8 workbench [38], and two different classifiers
were investigated. The classifier features were selected based
on statistically significant differences as given by the Mann-
Whitney rank sum tests between the two groups investigated
in this study (G1 vs G2, see also Table 2 and Table 3).
Only the most significant bins from the AM-FM features that
showed statistical significant difference at p<0.05, between
groups were selected (see underlined features in Table 3). The
classification analysis performance metrics documented in
this study were based on the evaluation set.

We investigated the Support Vector Machines (SVM) [39]
classifier and the Deeplearning4j package [40].
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TABLE 2. Texture features median (IQR) values for the MS lesions at time 0M and time 6 − 12M for two different EDSS groups (g). (G1: EDSS≤3.5/ G2:
EDSS>3.5) at year 10, that showed statistical significance. ∗ mann whitney rank-sum test at P<0.05. the number of subjects in G1 and G2 were 26 and
12 respectivel.

TABLE 3. AM-FM median (IQR) texture features between the high if features extracted from the MS lesions at time 0M and time 6−12M for the two
different edss groups (g 1: EDSS ≤3.5/ g 2: EDSS>3.5) at year 10, which showed statistical significance. ∗ Mann-Whitney rank-sum test at p<0.05.

The SVM classifier [39], is a widely used model for classi-
fication analysis and it is generally accepted that it performs
well compared to many other methods when applied to brain

classification [41]. The SVMmaps the input space to a higher
dimension via a kernel function to find a hyperplane that will
result in maximal discrimination. In SVM, a kernel matrix
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TABLE 4. MRI MS lesions texture, AM-FM and image classification evaluation results between the two different groups at year 10 investigated in this
study for time0M(-/) and time0M+time6−12M (/-), using all features that were statistically significantly different at p<0.05 (see also underlined features
in table iii). svm and deep learning models (see first and second part of the table) were trained and evaluated using 10-fold cross validation, and the RBF
kernel with C=1 and gamma=0.01. the third part of the table shows the MRI image classification results on all lesion images at time0M(-/) and time0M+

time6−12M (/-) using deep learning.

is used that encodes the similarities between features that
can be used to achieve discrimination between classes that
are not linearly separable [42]. The SVM was trained and
evaluated using leave-one-out 10-fold cross-validation using
Gaussian Radial Basis Function (RBF) kernel with a c=1
and γ =0.01. The classifier features were selected to have
statistically significant difference based on the Wilcoxon and
Mann-Whitney rank sum tests between the different classes
investigated.

The Deeplearning4j [40] classifier, performs classifica-
tion using deep learning and convolutional neural networks.
Lesion images were initially preprocessed with the Fuzzy
opponent histogram filter, the edge histogram filter, and the
auto correlogram filter [38], where a significantly higher
number of features was generated than the number of
lesion pixels (Model 7-10, see also Table 4). The lesion
image features from all subjects were divided into 10 ran-
dom groups and the correct classification performance was
tested trained and evaluated using 10-fold cross-validation.
For each set of lesion image features the procedure was
repeated 10 times and the average results were com-
puted. For Model 7-10 we used the K-Star Beta version
classifier (B 20-Ma), from the Weka 3.8 neural network
toolbox [40].

The performance of the classifier models was measured
using the percentage of correct classifications score (%CC)
based on the correctly and incorrectly classified cases and
the receiver operating characteristic (ROC) metrics: true
positives (TP), false positives (FP), Precision=TP/(TP+FP),
Recall=TP/(TP+FN), ROC: Area under the ROC curve
(AUC), mean absolute error (MAE), root mean squared error
(RMSE), relative absolute error (RAE), root relative squared
error (RRSE). Models based on texture and AM-FM features
and lesion images were investigated.

III. RESULTS
In Table 1 we provided a summary of the demographics and
the clinical characteristics of the study population used in this
work. We observe an increase in the EDSS for both groups
of subjects (G1 and G2), with an increasing duration of the
disease. There are also statistically significant differences
for the EDSS scores, between the two EDSS groups both
at Time2Y (p=0.0003), and at Time10Y (p=0.0001). Statis-
tically significant differences were also found between G1 vs
G2 for the EDSS2Y vs EDSS10Y.

A. TEXTURE ANALYSIS
In Table 2 we present the texture features median (IQR)
values extracted from the brain MS lesions at Time0M
(left column of Table 2), and Time6−12M(right column of
Table 2), that were statistically significantly different at
p<0.05, between the two different EDSS groups (G1 vs G2)
investigated in this study. Feature groups with the higher
number of statistically different features were the RUNL,
NGTDM, SGLDMm, FDTA and SGLDMr. Figure 4 displays
box plots for the median (IQR) for a selection of texture
features from Table 2, that at year 10, exhibited statistically
significant differences between the two groups (G1 vs G2),
for Time0M (left panel) and Time6−12M (right panel), for all
subjects examined in this study (G1: EDSS≤3.5, full line
plots, G2: EDSS>3.5, doted lines plots).

B. AM-FM ANALYSIS
We present high-scale AM-FM features for a G1 lesion
(EDSS=1.5) and a G2 lesion (EDSS=9) in Fig. 5 at
Time6−12M. From the plots in Fig. 5 the high-scale IA image
is much darker for G2 than for G1. Similarly, the high-scale
IFmagnitude for G2 clearly contains muchmore lower values
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FIGURE 4. Box plots for texture features extracted from lesions at Time0M and Time6−12M, for year 10:
The texture futures Coarseness (Coar), H2, Radial Sum (RS) and Run length distribution (RLRLD) for
Time0M (left panel) and Time6−12M (right panel), for the two different groups investigated in this study
(G1: Full line plots, G2: Doted line plots).

FIGURE 5. a) MS brain lesion (37pix-by-45pix) from a subject at G1
(EDSS=1.5) at Time6−12M and a lesion (21pix-by-13pix) from a subject at
G2 (EDSS=9) in the left and right columns respectively (measured in
Time10Y). b) HIA, c) high |IF|, d) high angle IF, and e) high scale cos ϕn
respectively.

than for G1. The corresponding CDF plots for the two lesions
are shown in Fig. 6. In Fig. 6, the lower IA and IF magnitude
components result in early rises of the CDF plots for G2 as
compared to the CDF plots for G1. The CDFs for the high IF
magnitude exhibit the most significant differences between
the two groups.

In Fig. 7, we show plots of G1 vs G2 median CDF as well
as their corresponding shaded (IQR) values at Time6−12M

based on the same AM-FM features presented in Fig. 6 using
14 bins. As before, there is a significant difference in the
high-scale IF magnitude between the two groups.

Table 3 illustrates the AM-FM features median (IQR) val-
ues for the High-IF CDF component bins, extracted from the
brain MS lesions at Time0M (left column) and Time6−12M
months (right column), that were statistically significantly
different between the two different groups (G1/G2) investi-
gated in this study at year 10. It is shown that for the fea-
tures at Time0M a better separation between the two different
groups may be achieved, when using the High-IF CDF for
bins 2 to 5 and the High-IF Angle CDF for bins 2 to 5. For
the features at Time6−12Ma better separation between the two
different groups may be achieved when using the HIF CDF
for bins 2 to 9 and the HIF Angle CDF for bins 5 and 6.

C. CLASSIFICATION ANALYSIS
Table 4 tabulates the texture, AM-FM and MS lesion image
classification evaluation results for the 10 different mod-
els investigated in this study. As shown, the deep learning
classifier 4j, could achieve %CC of up to 87% when using
Model 3, i.e., when combining both texture and AM-FM
features together. When using the K-star by using all the
information taken from the lesion images, the %CC shows
considerable improvement. Model 10, which uses informa-
tion from texture, AM-FM features and the lesion images
could achieve a %CC of 94%.

IV. DISCUSSION
The main objective of the study was to determine whether
the EDSS score could be used to assess the evolution of
disease in MS patients to predict future disability by utiliz-
ing texture and AM-FM feature sets that were derived from
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FIGURE 6. CDF plots computed from: a) HIA, b) high |IF|, and c) high
angle IF respectively between a subject at G1 (EDSS=1.5, green line) and
a subject at G2 (EDSS=9, red line) at Time6−12M.

MRI MS detectable lesions. This will aid in decision making
for personalized treatment and disease evolution prediction.
We anticipate that we may thus be able to associate texture
features with the progression of the MS disease. Since the
use of quantitative MRI analysis as a surrogate outcome is
also used as a surrogate measure in clinical trials, we hypoth-
esize that there is a close relationship between the change in
the extracted features and the clinical status and the rate of
development of disability. We analyzed images acquired at
the initial (Time0M and Time6−12M) stages of the disease and
we correlated texture and AM-FM findings with disability
assessment scales. We interrelated therefore the EDSS scores
with texture features.

Analysis was carried out in this study, using the sample
of 38 subjects with CIS, also used in other earlier studies

FIGURE 7. CDF Plots of the resulting median and shaded (IQR) in green
for G1 subjects (EDSS≤3.5) and in red for G2 subjects (EDSS>3.5) at
Time6−12M for the AM-FM features: a) HIA, b) high |IF| and c) high
angle IF.

performed by our group [9], [10]. As also illustrated in
Fig. 3 the subjects were separated into non-overlapping
groups (G1 (full line plots) vs G2 (dotted line plots)),
in Time2Y, Time5Y and Time10Y based on their EDSS10Y
score. We based our analysis on the manually segmented
MS lesions from the acquired MRI scans at Time0M and
Time6−12M and used the EDSS scores taken 10 years after
the initial MRI examination to find features that will be able
to predict the outcome of the MS disease.

The main findings of our study can be summarized as fol-
lows: (i) We found several statistically significant texture (see
Table 2) and AM-FM (see Table 3) features that may be used
to distinguish between the two different groups investigated
in this study (G1 vs G2) at year 10. These features may thus
be used to follow up MS disease evolution. (ii) MS lesion
texture AM-FM and image classification models were used
to predict the EDSS score (EDSS≤3.5 vs 3.5<EDSS≤10.0)
(see also Table 4). (iii) It was found the HIF CDF AM-FM
component may be used to best separate the two groups
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TABLE 5. Selected studies predicting ms disease evolution.

(G1 vs G2) investigated in this study (see also Fig. 6, Fig. 7
and Table 3). (iv) The best classification results were obtained
when using the texture and AM-FM features extracted from
the MS lesions that were statistical significantly different
between the two groups (G1 vs G2) as well as features lesion
images, using the K-Star Beta (B 20-Ma) classifier from the
Weka image classification toolbox [40]. The classification
accuracy for predicting the two classes of the EDSS score
was %CC=91% for Time0M and %CC=94% for Time0M
+ Time6−12M feature sets respectively when using texture,
AM-FM as well as MS lesion images (see Table 4).

A comparative analysis table tabulating selected MS dis-
ease evolution studies is given in Table 5. This table summa-
rizes the prediction of EDSS score into two different groups
(G1 vs G2) at years one to three based on texture and AM-FM
feature sets and images of the ROI lesions. Based on this
table, the necessity and importance of this study is clearly
motivated as to the best of our knowledge, there is no other
study investigating MS disease prediction at year 10.

A. GENERAL DISCUSSION
A large number of studies were reported in the literature in
order to establish a relationship between the various gray
levels and texture features derived from brain scans [8], [9],
[10], [13], [14], [15], [16], [17], [18], [19], [25], [29]. It was
also documented that texture features (shown in Table 2 and
Table 3), might encode meaningful interpretations regarding
the clinical context of MS lesions and NAWM [30]. It was
furthermore shown in [17], that histograms can characterize
changes between MS lesions and NAWM. Table 5 tabulates
selected studies proposed in the literature for the prediction of
theMS disease evolution. An oblique random forest classifier
was used based on the shape parameters of the lesions, where
the conversion of CIS to MS was accurately predicted in
79% of the subjects (64 out of 84 subjects). In [44], it was
also shown that the fractal dimension features extracted from
the brain MS lesions in 146 subjects may to some extent
identify patients with brain damage at a higher risk of dis-
ability progression in short to mid-term. Linear mixedmodels
and the cumulative probability were used for the statistical
analysis. In all of the above studies texture and shape anal-
ysis was performed on MR images of MS subjects and a
combined set of texture features were investigated in order

to better discriminate tissue between MS lesions, NAWM
and NWM. Classification analysis was also performed for the
differentiation of malignant tissue masses in MRI images of
the brain [45]. In another study [46], a pattern recognition
system was used for the discrimination of clinical definitive
MS from clinically definitive microangiopathy lesions based
on computer-assisted texture analysis of MRI images.

A related field of texture analysis is the AM-FM anal-
ysis [10], of images such as the one presented in the cur-
rent study, where AM-FM characteristics are extracted from
images [27].

AM-FM models have also been used in a variety of appli-
cations including image reconstruction [27], image retrieval
[27], video processing such as motion estimation and video
analysis [27], and enhancement and classification of medical
images [47]. In [10], AM-FM analysis was performed on the
normal tissue, NAWM, and lesions, on 38 MR images with
a CIS of MS. MRI detectable brain lesions were scanned
twice with an interval of 6-12 months. The results indicate
that high-frequency IA can be used to differentiate between
early and advanced cases of MS lesions (see also Table 5).

In another study [47], a multiscale spectral approach was
introduced for the early disease detection in malignant brain
tumor MRI and lung computed tomographic images. It was
based on a dyadic filter bank extended to six scales for simul-
taneous modulation of the frequency and amplitude signal of
the medical image. The modulated signal strength was used
for enhancing the contrast of the image as a pre-processing
step. AM-FM features were extracted from the 32 bin spectral
image histogram and used with an SVM classifier for the
early detection of the abnormalities.

The gray scale median value is an index that intuitively
shows the brightness of each ROI. It was shown in [9] that
MS lesions are brighter than NWM and that MS regions had
higher contrast values than NWM regions. IDM is related
to lesions homogeneity [9], [30]. These findings agree with
observations by Mathias et al. [25] regarding MS lesions.
The latter were found with increased entropy and decreased
angular second moment, implying that MS lesion texture was
rough and of low homogeneity. This loss of homogeneity
in MS may be attributed to a number of processes such as
gliosis, inflammation, demyelination and changes in water
content that may disrupt MR signal intensity uniformity [25].
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Tozer et al. [16], estimated several texture features that were
significantly differed between subjects with MS and healthy
subjects. Texture feature abnormalities inMS suggested there
might be tissue damage beyond classic white matter lesions
and that these features show potential for quantifying the
severity of demyelination.

A deep learning convolutional neural network for the pre-
diction of future subject disability progression (one year from
baseline), based on multi-modal brain MRI MS images at
baseline, was applied on 465 patients with MS in [48]. Using
the baseline EDSS, it was shown that the model could predict
future disease progression, measured by a sustained increase
in the EDSS score over time.More specifically, if the baseline
EDSS=0 then an increase of 1.5 or more in EDSS could be
predicted in 12 weeks or more. The model was trained on two
proprietary, multi-scanner, multicentre, clinical trial datasets
of patients with relapsing-remitting MS by incorporating the
clinician’s assessment. The AUC was 0.701±0.027.

In [49], changes in MS lesions and relapses were followed
up for 2 years in 560 MS patients. It was revealed that the
combination of lesion changes and relapses may be used
as a combined measure to predict disability progression.
Likewise, in [50], MS disease severity prediction (EDSS
worsening), was correlated with reduced brain volume and
increased clinical relapses in 3635MS patients. Furthermore,
in [51] it was documented that gray matter atrophy was a
common denominator for disability in Japanese and White
patients. Additional contributory factors for future disability
included T2W-lesion volume in Japanese patients and white
matter atrophy in White patients. Similar findings were also
reported by Luchetti et al. [52], where 182 MS subjects were
investigated. It was shown that, patients that had a more
severe disease course showed a higher proportion of mixed
active/inactive lesions and a higher lesion load (p = 2e−04)
at the time of death. Patients with a progressive disease
course show a higher lesion load, and a lower proportion of
demyelinated lesions (p = 0.03) compared to patients with a
relapsing disease course.

Gumbez et al. [53], investigated the predictive value of
MRI classification criteria in high/low atrophy and inflam-
mation groups based on two consecutive routines MRI scans
for disability progression in 82 MS subjects based on their
EDSS (EDSS ≤1.5 and EDSS5.0) scores. Lower baseline
EDSS and higher grey matter atrophy were the best predic-
tors (ρ = 0.54) for EDSS progression, and the accuracy
was equal to 0.81. Likewise, in [54], it was shown that
a dissociation may occur between physical disability and
cerebral lesion volume in either direction in patients with
MS. Type of MS and brain lesions may help to bridge this
dissociation. In [55], brain atrophy was measured in 164
healthy, 1514 MS and 1137 CIS subjects and its association
with disability progression, was followed in a clinical routine
over 5 years. All brain volume measures differentiated MS
and healthy subjects and were associated with disability, but
the lateral ventricle volume assessment was the most fea-
sible. Furthermore, in [56] a deep learning neural network

was used to predict the development of new MS lesions in
1008 subjects. The AUCwhich was achieved was 0.82±0.02.
Cree et al. [57], characterized the long-term disease course of
theMS disease in 517MS subjects. They showed that clinical
and radiologic features at baseline and the change over 2 years
had predictive value for long-termMS disability. At a median
time of 16.8 years after disease onset, 10.7% of patients
reached an EDSS6, and 18.1% evolved from relapsing MS
to secondary progressive MS. In [58], machine learning was
used to identify four different MS groups (N=6322 MS sub-
jects) with similar features usingmultidimensional data based
on their clinical evolution (ACC=63%). MS lesions were
defined into four different MS subtypes (cortex-led, normal-
appearing white matter-led, and lesion-led). It was found that
MRI-based subtypes can successfully predict MS disability
progression and response to treatment and may be used to
define groups of patients in interventional trials.

Finally, in [59] an automated method for counting patho-
logically distinct lesions using images obtained at a single
time point, allowing for an accurate reconstruction of the
natural history of lesion formation without longitudinal data
was introduced. Lesion count was found to be significantly
associated with EDSS.

B. LIMITATIONS
Detailed discussion of the limitations of the present study has
also been discussed in other studies performed by our group
[9], [10].

MRI images may also suffer from artifacts of different
origins, such as image thermal noise, image background
non-uniformity from magnetic field inhomogeneities, and no
standardization of image gray-scale intensity. High image
quality and minimization of these artifacts are important for
performing quantitative analysis. The intensity normalization
method firstly proposed in [28] and then later applied in [24]
was used in this study. The proposed normalization method
allows the scanner sensitivity variations and variations due
to repeatability studies to be largely corrected and thereby
facilitating meaningful comparisons between MRI data sets
obtained at different times and/or different subjects. By nor-
malizing the histogram of the whole brain, we introduced
an automatic procedure with little sensitivity to pathological
or morphological changes between the different image data
sets. The method does not depend on knowledge of the scan-
ner calibration and thus can be used on retrospective data.
However, for the generalizability of the proposed methods
and classification models, it is essential that further testing
be conducted on a heterogeneous data set.

Furthermore, the 2-D images used for the analysis in
this study had a slice thickness of 5 mm and this could
introduce partial averaging that could compromise the qual-
ity of texture, AM-FM analysis, and classification. Higher-
spatial-resolution images that are typically acquired in the
three-dimensional mode would have been preferable [60].
Another limitation of this study was that it was based on
conventionalMRI sequences. AdvancedMRI sequences such
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as diffusion-weighted imaging, magnetization transfer ratio
imaging, andmyelin fraction mapping could be used. It might
be possible that the inclusion of these additional sequences
would increase the accuracy of identification of enhancing
lesions as it was shown in [61], [62], and [63]. It is also
anticipated that the inclusion of other MRI sequences may
further improve the deep learning and classification process.

Finally, the dataset used in this study might be considered
small, and it is therefore highly recommended to further
validate the present results on a dataset with a larger number
of subjects as well as on additional datasets collected from
different medical centers. The evaluation of the findings of
this study on datasets with a larger number of subjects will
result in more stable model parameter estimates and more
robust evaluation of model training and testing. Additionally,
it will aid in the computation of additional features that
may provide information for better and earlier differentiation
between normal tissue andMS lesions for an accurate disease
prognosis and follow up.

C. FUTURE WORK
In a future study we also intent to investigate how other
clinical and paraclinical parameters like age, gender, [64],
intrathecal synthesis of oligoclonal bands [65] or inflamma-
tory cerebrospinal fluid [66] can be used to further improve
prediction accuracy. Moreover, the disease course in MS
subjects is individual. Therefore, rather than only predicting
conversion in CIS subjects, it also appears promising to pre-
dict different disease courses and identify subjects who are
likely to profit most from early treatment, considering differ-
ent patterns of disease activity in MS subjects. Furthermore,
exploring ways to interpret the predictions of the model and
identify which regions of the brain contributed to the final
decisions could help reveal new MS biomarkers, guiding the
way of future research and furthering our understanding of the
disease. Further future directions include improvements in
the measurement and preprocessing of the image by applying
image normalization, and validation of the results in a larger
number of subjects. MRI texture, AM-FM and classification
analyses of lesions in MS can also help in specifying the
types of MS (CIS, primary progressive MS, progressive-
relapsing MS, relapsing-remitting MS), secondary progres-
sive MS based on the differences in analyses between the
groups.

In addition, ongoing work covers the extraction of rules
based on lesion texture features to provide explainability
functionality about the progression of the disease [67]. More-
over, work in progress by our group includes the integration of
the above with a semi-automated lesion segmentation system
combined with 3D brain MRI reconstruction towards provid-
ing an integrated lesion visualization tool to the neurologist
and neuro radiologist.
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