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ABSTRACT This paper presents an efficient control allocation (CA) strategy which significantly improves
the flight performance of a planar hexacopter. This allocation maps the desired control vector composed
of the thrust and torques in roll, pitch, and yaw axis, respectively, to propellers’ speed. This paper shows
that a CA strategy based on the classical approach of pseudo-inverse matrix only exploits a limited range of
the vehicle capabilities to generate thrust and moments. A novel approach is presented, which is based on
a weighted pseudo-inverse matrix method, called WCA, capable of exploiting a much larger domain in the
control vector. The three weights involved inWCA are adapted online according to nonlinear laws which are
analytically derived by solving symbolically the equivalent constraint least-squares problem, thus removing
the need for online-optimization calculations. This solution allows for very fast real-time operations, suitable
for autopilots with limited computing resources. This paper provides 1) a detailed analysis of the limitations
of the classical control allocation scheme, 2) the mathematical development of the WCA algorithm,
3) simulations and real experiments which show that this WCA strategy outperforms the classical CA
approach in terms of a) capability to generate the maximum roll and pitch torques possible, without
generating undesired yaw torques, b) prioritizing the generation of thrust over attitude torques, thus achieving
better altitude tracking despite aggressive maneuvers or the presence of a payload, and c) better behavior in
case of actuator saturation, faults or even failures.

INDEX TERMS Hexacopter, multirotor UAVs, nonlinear adaptive control allocation, weighted pseudo-
inverse matrix.

I. INTRODUCTION
Unmanned multirotor helicopters are very attractive because
they can take-off and land vertically, hover, and lift significant
payloads. For example, the six-rotor helicopter of this work,
shown in Fig. 1, weighs 2.8 kg and can lift off a payload of
about 1.2 kg. However, the payload may significantly affect
the flight performance of the vehicle, and cause motor speed
saturation when maneuvering. Indeed, for each propeller the
remaining thrust between the maximum thrust and the thrust
required to hover is used to produce roll, pitch and yaw
torques. However, if due to a payload for example, the total
weight of the flying vehicles increases, the amount of remain-
ing thrust is diminished, thus limiting the amount of torques
that can be produced. As a consequence, the vehicle is less
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agile to compensate for significant wind gusts or to perform
aggressive maneuvers. The heavier the vehicle, the easier it
is to saturate the motor speeds, and to degenerate the ability
to control attitude and altitude at the same time. This can
result in a crash as shown later in this article, when using
a control allocation approach based on the classical Moore-
Penrose pseudo-inverse matrix of the control input matrix.
The flight control system of this research [1] features several
dedicated control loops to achieve stable flight and tracking of
desired attitude, speed, and position. In themost inner-control
loop, the control allocation algorithm assigns motors’ speed
commands. It turns out that flight performance, not only
depend on the flight controllers (attitude, speeds, positions),
but also on the CA strategy. Indeed, if able to handle motor-
speed saturations adequately, the control allocation has a
decisive influence on the ability of the vehicle to maintain its
altitude despite aggressive maneuvers, external disturbances,
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FIGURE 1. Hexacopter used and corresponding propeller arrangement.

poor gain tuning, and presence of an attached payload or of
actuator saturation, faults or failures.

A. CONTROL ALLOCATION: PROBLEM STATEMENT
Control allocation for multirotor helicopters consists in cal-
culating the propellers’ speed needed to generate the desired
total thrust T̂ and the desired roll-, pitch-, and yaw torques,
L̂, M̂ , N̂ , respectively. The control allocation problem can be
summarized as follows:

1) the flight controller generates a virtual control
input vector of desired thrust and torques v̂ =

[T̂ , L̂, M̂ , N̂ ]⊤,
2) next, find the desired propeller-speed vector �̂ :=

[ω̂2
1; · · · ; ω̂2

n]
⊤, for n propellers, and for the allocation

matrix A ∈ R4×n defined in (6), such that

v̂ = A�̂, (1)

3) while respecting the constraints

ω i
2(t) ≤ ωi

2(t) ≤ ωi
2(t),

with the constraints

ω i(t) = max{ωi,min, ωi(t − Ts) + ρi,down Ts}

ωi(t) = min{ωi,max, ωi(t − Ts) + ρi,up Ts}

where ωi,max, ωi,min are the ith-motor speed limits,
ρi,up and ρi,down are the ith-motor acceleration and
de-acceleration limits respectively, and Ts is the sam-
pling time of the digital control system. Note that in
the context of this work, actuators’ dynamics are not
considered and all motors are identical, and thus the
constraints simplify to

ω2
min ≤ ω̂2

i ≤ ω2
max, ∀i, i = 1 . . . n. (2)

The control allocation technique brings its full potential
for over-actuated systems, where the control system can be
designed in two steps, namely 1) derivation of the control
laws, and 2) actuator assignment. This approach allows for
the following three benefits [2], [3]:

1) actuator constraints can be taken into account, such as
speed and speed-rate limits [4], [5]. If one or more
actuators saturate, the others actuators are used to gen-
erate the commanded control action [6]. This technique

has been successfully applied to fixed-wing aircraft
[2], [7], [8], multirotor helicopters [9], and convertible
UAVs [10].

2) the system’s actuation redundancy can be advanta-
geously used to optimize for certain objectives, such
as power consumption, drag, etc. [8], [11].

3) When actuator faults or failures occur, the control
allocator can be reconfigured to compensate for these
deficiencies without changing the control laws [7].

B. RELATED WORK
In the context of multirotor helicopters, the problem of con-
trol allocation has been approached with two main avenues,
namely a) optimization-based methods, and b) control allo-
cation consisting of the Moore-Penrose pseudo inverse of the
control input matrix A of (1) and defined as

A+
= A⊤(AA⊤)−1, (3)

which is referred in this paper as classical control
allocation (CCA).

1) PSEUDO-INVERSE-BASED CA
Control allocation and the issue of motor-speed saturation
for a hexacopter has been discussed first in the work in [9]
in 2011. Building upon this observation, the current paper
explains in details how CCA only accesses a limited region
of the space of feasible torques for planar hexacopters.

The CCA method is widely employed in the context of
fault-tolerant control of hexacopters. For example, the work
in [12] presents an adaptive fault-tolerant scheme for a hexa-
copter based on a static pseudo-inverse matrix A+. In case of
reduced propeller effectiveness or actuator failure, the control
allocation matrix A+ remains unchanged but an adaptive
fault-compensation signal �ad is added to the nominal signal
�0, leading to the total propeller speed command vector �̂ as
follows:

�̂ = �0 + �ad = A+v̂ + 2̂ v̂. (4)

where the matrix 2̂ ∈ R6×4 is an estimate of the
compensation allocation matrix 2 fulfilling the condition
A3

(
A+

+ 2
)

= I , where I is the identity matrix. The
matrix 3 is a square diagonal matrix ∈ R6×6, each element
of which is in [0, 1], where 0 means failed, 1 means nominal,
and ]0, 1[ corresponds to reduced effectiveness.

The work in [13] takes motor saturation into account
through a motor-saturation prioritization scheme. This strat-
egy has been flight tested on a quadrotor, demonstrating better
attitude control, in particular for the yaw motion.

Different control allocation schemes are compared in [14]
in case of actuator saturation for a multirotor fixed on a lab
testbench. The study is limited to the case of a quadcopter.

The work in [15] presents a daisy-chaining control alloca-
tion [16] for a hybrid UAV with four tiltable rotors, which
saturates first a predefined group of actuators before using
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the second group. The work reported in [17] uses a classi-
cal control allocation approach for a hexacopter, which is
used in the case of exactly one rotor failure, in a so called
proposed Degraded Control Strategy (DCS). First, the yaw
states are left uncontrolled. Second, the technique reallocates
the desired reduced-virtual-control vector v̂r =

[
T L M

]
r

using a reduced control effectiveness matrix Ar ∈ R3×6 and
the Moore-Penrose pseudo-inverse method according to

�̂ = AT
r (ArAT

r )
−1vr = A+

r v̂r (5)

In the research in [18], the propeller control signal vec-

tor is calculated as �̂ = L(t)A⊤
(
AL2(t)A⊤

)−1 v̂, with
L(t) = (1 − β(t)) L̂(t), where L̂(t) is the fault-estimation
matrix and where the fault-estimation-error matrix is β(t) =

diag (β1(t), . . . β6(t)), where each βi ∈ [0, 1], i =

1 . . . 6 represents each actuator effectiveness, βi = 0meaning
complete failure and βi = 1 in no-fault case. Simulations only
are provided in [18].

In [19], a sliding-mode controller is developed for a
hexacopter to accommodate actuator failures. In nominal
condition the control allocation is based on the classi-
cal Moore-Penrose pseudo-inverse matrix. The approach
is demonstrated in simulations where up to two actua-
tors have reduced effectiveness. The accommodation is
achieved through the classical pseudo-inverse scheme �̂ =

(A3(t))+ v̂, and 3(t) = diag (λ1(t), · · · , λ6(t)) , λi ∈ [0, 1]
designates the effectiveness matrix of actuators, with λi = 1
in the nominal case, λi = 0 for the complete failure case,
λi ∈]0, 1[ in case of loss of effectiveness. A similar approach
is found in [20], where the controllability of the vehicle under
complete motor failures is further studied.

2) OPTIMIZATION-BASED CA
The paper [21] first formulated in 2012 the control allo-
cation problem for a hexacopter as a parametric program,
which is solved off-line, and the actuator-allocation solu-
tions are stored in lookup tables. This approach allows to
accommodate predefined scenarios of actuator faults and
failures by selecting the precomputed allocation solution cor-
responding to the fault scenario. Up to two-opposite motor
complete failures could be handled. A similar approach is
employed in [22].

A sliding-mode control allocation scheme is presented
in [23] for a quadrotor-like multirotor having 8 motors
in a push-pull configuration. The control allocation there
developed employs a constrained optimization method. This
dynamic programming approach consists in minimizing the
control input, under the constraint v̂ = A�̂, and under the
possible occurrence of simultaneous actuator faults. How-
ever, this solution does not seem to take into account actuator
saturations.

In [24], an hexacopter with tilted rotors is studied. The
control allocation developed there relies on an optimiza-
tion algorithm that minimizes the maximum force generated
by rotors, while taking into account actuators constraints.

This strategy improves the maneuverability of the vehicle
compared to the classical method but is more computationally
demanding.

The control allocation module in [25] is modified in case
of actuator fault to reallocate healthy actuators using a fuzzy-
logic approach, which is tuned via an optimization technique
called bacterial foraging algorithm.

3) CONCLUSION ON RELATED WORK
From this literature review, it appears that most of the con-
tributions about control allocation for hexacopters are about
strategies to accommodate actuator fault(s) or failure(s).
It turns out that most methods used for fault-tolerance employ
the classical Moore Penrose pseudo-inverse matrix, which
is usually modified through an actuator-efficiency matrix
estimated by a fault diagnosis system. However, control allo-
cation based on the classical Moore Penrose pseudo-inverse
matrix for hexacopters -even in the nominal case (no actuator
fault or failure)- possesses inherent major limitations, namely
1) only a limited space in the 3-axis-torque volume is mathe-
matically accessible by CCA, and 2) it does take into account
actuator saturations. Indeed, in most cases, if due to large
requested torques, the CCA solution commands motor speeds
beyond their maximum values, those speeds are usually sim-
ply saturated at their maximum limit. However, such handling
of saturation leads to actual torques that do no longer scale
along the direction of the desired torque vector. In addition
the CCA solution usually sacrifices the generation of thrust
in favor of torques, thus jeopardizing the whole stability of
the vehicle and leading to crashes as explained later in this
article. The current paper explains in detail the above two
mentioned CCA limitations and provides a solution that takes
into account motor-speed saturation right from the start (not
aposteriori) of the CA calculations. Although not designed for
actuator fault-tolerance, the presented approach is capable of
handling up to two opposite complete motor failures without
the need for fault detection and isolation.

C. CONTRIBUTIONS OF THIS RESEARCH
This paper builds upon preliminary results presented by the
authors in [9] and [26], where for the first time in the literature
in 2011 the limitations of standard control allocation for
multirotors were pointed out. The main contributions of the
current paper are the:

1) in-depth analysis of the physical capabilities of the hex-
acopter to produce the torques L,M ,N as a function of
the thrust T .

2) detailed analysis of the limitations of the classical con-
trol allocation (CCA) approach based on

a) computing the Moore Penrose pseudo-inverse of
the matrix A in (1) or (9),

b) and saturating the computed propeller speeds in
between the minimum and the maximum pro-
peller speeds possible,

and to show that such CCA approach

37716 VOLUME 11, 2023



G. Ducard, M.-D. Hua: WCA: A New Efficient Nonlinear Adaptive Control Allocation for Planar Hexacopters

a) only exploits a limited range of the vehicle capa-
bilities to produce thrust and torques,

b) and may actually cause crashes when aggressive
torque actions are requested.

3) development of a novel approach based on a weighted
pseudo-inverse matrix able to exploit the full domain
of producible roll torques and pitch torques which does
not generate undesired yaw torques.

4) derivation of the explicit and analytical solutions to
the least-squares problem allowing to compute �̂ as
function of v̂, while taking into account the propeller
speed min- and max- rotational speeds. The approach
is based on a weighted pseudo-inverse matrix and is
named ‘‘WCA’’. The weights are constantly adapted in
real time according to nonlinear laws depending on the
control signals.

5) ability of the WCA approach to be executed very fast
with very a low computational load, because WCA is
formulated in terms of explicit laws, removing the need
for on-line optimization.

6) geometric interpretation of the WCA method,
7) comprehensive maths explanations in Appendix to sup-

port the main results,
8) and finally validation of the approach through a) simu-

lations, and b) real flight tests and comparison with the
classical approach in case of: a) motor saturation during
aggressive maneuvers, b) vehicle’s mass change, c)
poorly tuned flight-controller gains, d) and some rotor
faults or failures.

II. ANALYSIS OF ACHIEVABLE TORQUE GENERATION
FOR A PLANAR 6-ROTOR HELICOPTER
In this study, the multirotor helicopter considered in shown
and sketched in Fig. 1. The vehicle’s arm-length is l, the total
thrust force is T and the 3 axes torques L,M ,N relate to the
motors’ speed ωi according to:
T
L
M
N


︸ ︷︷ ︸

v

=


µ µ µ µ µ µ

0 −

√
3lµ
2

−

√
3lµ
2

0

√
3lµ
2

√
3lµ
2

lµ
lµ
2

−
lµ
2

−lµ −
lµ
2

lµ
2

−κ κ −κ κ −κ κ


︸ ︷︷ ︸

A

×



ω1
2

ω2
2

ω3
2

ω4
2

ω5
2

ω6
2


︸ ︷︷ ︸

�

which is formulated in a concise manner as

v = A�, (6)

and where the propeller thrust coefficient is µ and the
reactive-torque coefficient is κ . The control allocation task
consists in finding the six desired speeds ω̂i, ∀i = 1 · · · 6 of
the motors so that v̂ = A�̂, with �̂ := [ω̂2

1; · · · ; ω̂2
6]

⊤, while
respecting the constraint:

ω2
min ≤ ω̂2

i ≤ ω2
max, ∀i. (7)

A. ROLL TORQUE GENERATION
The roll torque that is physically producible by the vehi-
cle as a function of the total thrust T is shown in Fig. 2.
The maximum positive roll torque Lmax is first achieved
as soon as propellers 5 and 6 are rotating at ωmax while
propellers 2 and 3 are rotating at ωmin. Figure 2 shows the
existence of a plateau at Lmax when increasing the total thrust
T by having propellers 1 and 4 to both increase their velocity
from ωmin to ωmax. For T > 2Tmax+Tmin

3 , the maximum
achievable roll torque decreases linearly to zero as the thrust
produced by both propellers 2 and 3 linearly increases to its
maximum.When themaximum thrust Tmax is reached, no roll
torque can be produced as all propellers are rotating at the
same maximum speed ωmax.

FIGURE 2. The physically producible roll torque L as a function of the
total thrust T is contained in the blue hexagon.

B. PITCH TORQUE GENERATION
The pitch torque that is physically producible by the vehicle
as a function of the total thrust T is shown in Fig. 3. The
maximum producible positive pitch torque is obtained when
propellers 6, 1, 2 spin at ωmax, and propellers 3, 4, 5 at ωmin,
which happens at the ‘‘middle thrust’’ Tmid =

Tmin+Tmax
2 .

C. YAW TORQUE GENERATION
The yaw torque that is physically producible by the vehicle as
a function of the thrust T is shown in Fig. 4. The maximum
positive yaw torque is achieved when propellers 2, 4, 6 are
spinning at ωmax and propellers 1, 3, 5 at ωmin. This yields

|Nmax| =
κ

2µ
(Tmax − Tmin) . (8)

Figures 2 - 4 show that the maximum control authority in
roll, pitch, and yaw torque is simultaneously achieved for the
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FIGURE 3. The physically producible pitch torque M as a function of the
total thrust T is contained in the blue polygon.

FIGURE 4. The physically producible yaw torque N as a function of the
total thrust T is contained in the blue polygon.

middle thrust Tmid . This observation tells us that in order to
operate the multirotor at the condition of maximum torque
authority, it is desirable to design the multirotor so that the
thrust needed to hover with the weight of both the vehicle
itself and its payload equates Tmid .

III. CLASSICAL CONTROL ALLOCATION METHOD:
PSEUDO-INVERSE MATRIX APPROACH
A. DEFINITION
A common solution to find the desired motors’ speed vec-
tor �̂ from the desired command v̂ consists in comput-
ing the pseudo-inverse matrix of the non-square matrix A.
In this case, the inverse of AA⊤ exists and the corresponding
pseudo-inverse matrix is given by

A+
=A⊤(AA⊤)−1

=
1

6µl



l 0 2 −µlκ−1

l −
√
3 1 µlκ−1

l −
√
3 −1 −µlκ−1

l 0 −2 µlκ−1

l
√
3 −1 −µlκ−1

l
√
3 1 µlκ−1

 .

(9)

In turn, the desired motors’ speeds vector �̂ can be calculated
according to

�̂ = A+v̂. (10)

B. LIMITATIONS OF CONTROL ALLOCATION BASED ON
CLASSICAL PSEUDO-INVERSE MATRIX
In the rest of this paper classical control allocation (CCA)
refers to as control allocation based on the classical pseudo-
inverse matrix defined in (9). In this method, the propeller
speeds are actually obtained by solving the correspond-
ing least-squares problem by prioritizing all control inputs
equally. The major limitation of CCA is that the rotors’ speed
constraints provided in (7) are not taken into account. There-
fore, theminimum ormaximum rotor speed ofω1 . . . ω6 may
be exceeded by the solution provided by CCA.

A popular solution to this issue consists in saturating �̂

calculated in (10) in order to meet the constraints of (7).
However, the saturation of �̂ -which corresponds to actual
motor saturation- causes the generated total thrust T , roll
torque L, pitch torqueM , and yaw torqueN to be dramatically
different from their desired values respectively, which can
cause the vehicle to crash, as explained in Section III-G.

C. MAXIMUM FEASIBLE TORQUES WITH CCA
This section characterizes the attainable domain with the
CCA method in terms of L,M , and N as a function of T .
The desired motors’ speeds ω̂i calculated according to (10)
satisfy the constraints of (7) if and only if

Tminl ≤ T̂ l + 2M̂ − µlκ−1N̂ ≤ Tmaxl
Tminl ≤ T̂ l − 2M̂ + µlκ−1N̂ ≤ Tmaxl
Tminl ≤ T̂ l −

√
3L̂ + M̂ + µlκ−1N̂ ≤ Tmaxl

Tminl ≤ T̂ l +
√
3L̂ − M̂ − µlκ−1N̂ ≤ Tmaxl

Tminl ≤ T̂ l −
√
3L̂ − M̂ − µlκ−1N̂ ≤ Tmaxl

Tminl ≤ T̂ l +
√
3L̂ + M̂ + µlκ−1N̂ ≤ Tmaxl.

(11)

For attitude stabilization, roll and pitch torques are usually
given priority over the yaw torque, thus when N̂ = 0 Eq. (11)
simplifies to2|M̂ | ≤ min

{
(T̂ − Tmin)l, (Tmax − T̂ )l

}
√
3|L̂| + |M̂ | ≤ min

{
(T̂ − Tmin)l, (Tmax − T̂ )l

}
.

(12)

The above two inequalities will be used in the next three
sections to study the maximum roll, pitch and yaw torques
that are attainable with the CCA method.

D. MAXIMUM ROLL TORQUE GENERATION WITH CCA
By setting the term M̂ = 0 in the second inequality in (12),
the maximum roll torque accessible with the CCA method is
given by:

|L̂| <
l

√
3
(T − Tmin) if T <

Tmin + Tmax

2
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FIGURE 5. Comparison between the maximum roll torque physically
possible (blue line) and the maximum roll torque attainable with the CCA
method (red line) as a function of the thrust T .

|L̂max| =
l

√
3

(
Tmax − Tmin

2

)
if T =

Tmin + Tmax

2

|L̂| <
l

√
3
(Tmax − T ) if T >

Tmin + Tmax

2
(13)

Inequalities of (13) are represented by the red curve in
Fig. 5, which clearly shows that the classical pseudo-inverse
matrix method (CCA) cannot exploit the full capabilities of
the vehicle (blue line) to generate roll torques. In fact, in the
two gray areas in Fig. 5, the maximum CCA torque is always
2
3 of the maximum roll torque that the vehicle can physically
produce for a given thrust T .

E. MAXIMUM PITCH TORQUE GENERATION WITH CCA
In order to analyse the maximum pitch torque that the CCA
method can access, the command L̂ is set to zero in (12). The
first inequality provides the boundaries for M̂ as follows:

−
l
2
(T−Tmin) ≤ M̂ ≤ −

l
2
(T − Tmax)

l
2
(T−Tmax) ≤ M̂ ≤

l
2
(T − Tmin).

(14)

The inequalities of (14) are shown with the red curve in
Fig. 6, which clearly show the domain attainable with the
classical pseudo-inverse matrix method (CCA) to generate
pitch torques with no undersired yaw torque, i.e. N̂ = 0.
In this condition, the maximum pitch torque generated by the
CCA approach is always 75% (50%, resp.) of the maximum
pitch torque that the vehicle can physically produce for a
given thrust T in the range [T1−T5] (in the range [Tmin−T1]
and [T5 − Tmax], respectively).

F. MAXIMUM YAW TORQUE GENERATION WITH CCA
In order to compute the desired yaw-torques attainable by the
CCA method, consider the inequalities of (11), in which the
desired torques L̂ and M̂ are set to zero. The set of inequalities

FIGURE 6. Comparison between the maximum pitch torque physically
possible (blue line) and the maximum pitch torque attainable with the
CCA method (red line) as a function of the thrust T . The maximum pitch
torque generated by the CCA approach, which respects the condistion
N̂ = 0, is always 75% of the maximum pitch torque that the vehicle can
physically produce for a given thrust T in the range [T1 − T5].

simplifies to{
Tminl ≤ T̂ l − µlκ−1N̂ ≤ Tmaxl
Tminl ≤ T̂ l + µlκ−1N̂ ≤ Tmaxl,

(15)

which can be rearranged as
κ

µ

(
T̂ − Tmax

)
≤ N̂ ≤

κ

µ

(
T̂ − Tmin

)
κ

µ

(
Tmin − T̂

)
≤ N̂ ≤

κ

µ

(
Tmax − T̂

)
.

(16)

Half of the sum of the two inequalities in (16) provides
the range of yaw torques attainable with the CCA method,
namely

−
κ

2µ
(Tmax − Tmin) ≤ N̂ ≤

κ

2µ
(Tmax − Tmin) . (17)

Therefore, the yaw torques that are attainable with the CCA
method are identical to those shown in Fig. 4, thus corre-
sponding to themaximum physically producible yaw torques.
Contrary to roll and pitch torques, the CCA method is able
to attain all the possible yaw torques that the vehicle can
produce.

G. PERFORMANCE OF CCA IN CASE OF
MOTOR-SPEED SATURATION
Due to motor speed saturation, the desired motor-speeds
vector �̂ generated by the CCA in (10) is truncated at ωmin or
ωmax, respectively. This results in a non-least square solution
which will cause unexpected flight behavior, as shown in the
next three cases.
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FIGURE 7. The red area represents the combinations of thrust and roll
torque that are physically possible. The commanded setpoint is labeled
‘‘CV’’, it corresponds to v̂ = [45 N, 6 Nm, 0 Nm, 0 Nm]. The solution
provided by the CCA allocation with motor speed saturations is labeled
‘‘CCA’’ and values to [39.3 N, 4.63 Nm, 0 Nm, 0 Nm].

In the results presented below, the CCA solution is first
computed according to (10), then each motor speed is trun-
cated at ωmin or ωmax if constraints are exceeded. Then,
based on the truncated motor speeds �̄, the corresponding
thrust, roll, pitch and yaw torques are recalculated by apply-
ing (6), they correspond to actual torques produced by the
vehicle. The result is displayed in Fig. 7 under the label
‘‘CCA’’. The desired setpoint in terms of thrust, roll, pitch
or yaw torque is labeled ‘‘CV’’. The red-diamond shape
represents the combinations of thrust and roll torques that
are physically possible given the motor speed constraints.
All the actual hexacopter’s parameters are summarized in
Table 1.

1) EFFECT OF MOTOR-SPEED SATURATION IN CASE OF A
NOT-ACHIEVABLE DESIRED SETPOINT
In this scenario, CV is chosen outside the red-diamond shape
to cause motor saturation, with the flight controller asking
for a thrust of T̂ = 45 N and a large roll torque L̂ = 6 Nm.
The results are shown in Fig. 7. CV is outside the red zone,
thus motor speed saturation will occur. The truncated CCA
solution, labeled ‘‘CCA’’ in Fig. 7, reaches neither the desired
roll torque nor the desired thrust.

2) MOTOR SATURATION CAUSING WRONG SIGN IN
PRODUCED TORQUES
Another phenomenon worth noting is the production of roll,
pitch or yaw torques having a wrong sign, due to motor satu-
ration truncating the calculated CCA solution. This scenario
is highlighted in Fig. 8, where the commanded input vector
is v̂ = [45N, 4Nm, 1Nm, 0.65Nm]. The CCA method pro-
vides propellers’ speed, some of which exceeding the ωmax
constraint. The truncated-CCA solution due to motor-speed
saturation is labeled ‘‘CCA’’ in Fig. 8. It produces a thrust of
40N and a pitch torque of−0.2 Nm. Therefore, the generated

FIGURE 8. The commanded control vector is CV [T̂ = 45 N, L̂ = 4 Nm,
M̂ = 1 Nm, N̂ = 0.65 Nm]. The label ‘‘CCA’’ indicates the CCA solution once
motor saturations are applied, which results in the actual
effort [T = 39 N, L = 0.7 Nm, M = −0.2 Nm, N = 0.44 Nm]. Therefore, the
thrust is lower than expected by 6 N, and the yaw torque is lower than
expected by 33%. Most importantly, the achieved pitch torque has
opposite sign and wrong value compared to the commanded one.

pitch torque is wrong both in its value and -even worse- in its
sign. The generated thrust is also lower than expected.

3) MOTOR SATURATION IN CASE OF A LARGE YAW TORQUE
COMMAND, RESULTING IN NO ROLL AND PITCH TORQUES
AND ONLY HALF OF MAXIMUM THRUST
This last scenario emphasizes the effect of motor-speed satu-
ration when a too-large yaw torque is commanded. The CCA
method generates propellers’ speed resulting in zero-roll and
-pitch torques while the thrust produced is only half of the
maximum producible thrust. The reason behind this behavior
is that the CCA method allocates all the resources possible
to generate the requested yaw torque to the detriment of the
other torques and total thrust. Indeed, as shown in Fig. 4,
the maximum yaw torque happens at T =

Tmin+Tmax
2 . This

thrust corresponds to the three clockwise (CW) propellers
turning full speed, whereas the other three counterclock-
wise (CCW) propellers are spinning at minimum speed (and
vice versa).

This behavior can also happen due to the following causes:
• yaw angle-rate gains and yaw-angle gains chosen too
high, in their respective controllers,

• mass moment of inertia wrongly estimated,
• too aggressive maneuvers in the yaw axis.
These points can be explained further as follows: the ability

of the vehicle used in this paper to produce some yaw torque
as a function of thrust is shown in Fig. 9. Clearly the maxi-
mum yaw torque is achieved in the ‘‘middle-thrust’’ setpoint,
in this case 36N. For a large yaw-torque command, close
to or beyond the maximum yaw-torque producible for the
current amount of thrust, the CCAmethod will systematically
compute a solution that will result in a total thrust close to
the ‘‘middle-thrust’’ setpoint Tmid. Indeed, the maximum yaw
torque (0.5 Nm in this case) is achieved when the CW (CCW
resp.) are spinning full speed while the CCW (CW resp.) are
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spinning minimum speed, resulting in a total thrust equal to

Tmid =
Tmin+Tmax

2 .
This is an important observation, because it means that

any total-thrust command different from the ‘‘middle-thrust’’
setpoint can no longer be achieved with the CCA approach,
during a large yaw-torque command (N > 0.5 Nm in this
case). Therefore, two cases arise:

• case 1 − vehicle lighter than ‘‘middle-thrust’’ setpoint,
i.e. m < Tmin+Tmax

2g : the vehicle will gain altitude,
although this is not desired.

• case 2 − vehicle heavier than ‘‘middle-thrust’’ setpoint,
i.e. m > Tmin+Tmax

2g : the vehicle will loose altitude, and
possibly crash (which happened during our real recorded
flight tests in the Video 1, available at [27]).

In addition, Fig. 10 shows that during a large yaw-torque
request, the CCA approach 1) produces almost no roll torque,
2) produces the mean total thrust only, but 3) generates the
maximum yaw torque possible.

FIGURE 9. The maximum possible yaw torque happens for a total thrust
equal to the mean of the maximum and minimum total thrust possible.
This result is valid for all types of planar multirotor helicopters.

The combined effects of a) what the CCA method outputs,
and b) the motor-speed saturation, have a direct influence
on the flight behavior and stability of the vehicle. In par-
ticular, if a commanded thrust cannot be guaranteed by the
control allocation method because of large attitude torques,
the vehicle will be unable to track the desired altitude.
In addition, if the roll and pitch torques are decreased by
the CCA approach to prioritize a large yaw-torque com-
mand, an imbalanced vehicle is likely to loose stability and
to crash.

In order to circumvent the deficiencies of the CCA
approach and to handle optimally the motor-speed con-
straints, a new control allocation approach has been designed.
It is presented in the next section.

IV. WEIGHTED PSEUDO-INVERSE MATRIX METHOD:
A NEW CONTROL ALLOCATION FOR HEXACOPTERS
This new proposed control allocation method is based on a
weighted pseudo-inverse matrix and is thus called ‘‘WCA’’.
It consists in introducing a diagonal weighting matrix

W := diag([a; b; c; a; b; c]) , (18)

where a, b, c are non-negative and fulfill the condition

a+ b+ c = 1 , (19)

FIGURE 10. The commanded control vector is CV [T̂ = 45 N, L̂ = 6 Nm,
M̂ = 0 Nm, N̂ = 1.2 Nm]. The achieved actuation vector is CCA [T = 36 N,
L = 0.3 Nm, M = −0.2 Nm, N = 0.5 Nm]. Thus, because of the large yaw
torque request, the CCA approach a) almost completely zeros the
produced roll torque, b) supplies only the mean thrust, but c) provides
the maximum yaw torque possible: N = 0.5 Nm in this case.

to compute the following weighted pseudo-inverse matrix:

A+

W = WA⊤(AWA⊤)−1

=
1

6µl



3al 0 2 −µlκ−1

3bl −
√
3 1 µlκ−1

3cl −
√
3 −1 −µlκ−1

3al 0 −2 µlκ−1

3bl
√
3 −1 −µlκ−1

3cl
√
3 1 µlκ−1

 .

(20)

The desired motors’ speed vector �̂ is calculated with

�̂ = A+

Wv̂ , (21)

and the constraints in (7) are satisfied if and only if
Tminl ≤ 3la T̂ ± 2M̂ ∓ µlκ−1N̂ ≤ Tmaxl
Tminl ≤ 3lb T̂ ∓

√
3L̂ ± M̂ ± µlκ−1N̂ ≤ Tmaxl

Tminl ≤ 3lc T̂ ∓
√
3L̂ ∓ M̂ ∓ µlκ−1N̂ ≤ Tmaxl.

(22)

In the rest of this study, normalized variables for thrust and
torques will be used, they are defined as:

e :=
Tmin

3T
, E :=

Tmax

3T
, L̄ :=

L
Tl

, M̄ :=
M
Tl

, N̄ :=
N
Tl

.

(23)

For compact notations, we also define:

T2 :=
2Tmin + Tmax

3
Tmid :=

Tmin + Tmax

2

T4 :=
Tmin + 2Tmax

3
Two cases are highlighted in the subsections below, namely
1) when the three weights are equal to 1

3 , in which case the
CCA approach is retrieved, 2) when a, b, c ̸=

1
3 which allows

to reach roll and pitch torques beyond those accessible with
the CCA approach.
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A. CASE 1: FIXED VALUES a = b = c =
1
3 , CLASSICAL CASE

Control allocation using the classical pseudo-inverse matrix,
called here CCA, actually corresponds to the particular case
of the WCA method when a = b = c = 1/3. In such a
case, it is found from (22) that themaximum actual roll torque
achievable: LCCAmax is

∣∣∣LCCAmax

∣∣∣ =


(T − Tmin)l

√
3

, if T ≤ Tmid

(Tmax − T )l
√
3

, if T > Tmid

(24)

which is the same result as found in (13) and shown in Fig. 5.
In turn, the maximum normalized roll torque that the CCA
method can reach is L̄CCAmax = LCCAmax /T l expressed as follows:∣∣∣L̄CCAmax

∣∣∣ =

{
(1 − 3e)/

√
3 , if E + e ≥ 2/3

(3E − 1)/
√
3 , if E + e < 2/3.

The maximum pitch torque that is achievable with the CCA
method is calculated from (22) with a =

1
3 and N̂ = 0 as

follows

2|M | ≤ min {(T−Tmin) l, (Tmax − T ) l} , (25)

which can be rewritten as

|M̂ | <
l
2
(T − Tmin) , if T ≤ Tmid

|M̂ | <
l
2
(Tmax − T ) , if T > Tmid (26)

as shown in the red curve in Fig. 6. The maximum normal-
ized pitch torque that is achievable with the CCA method is
M̄CCA

max = MCCA
max /T l as follows:∣∣∣M̄CCA
max

∣∣∣ =

{
(1 − 3e)/2 , if E + e ≥ 2/3
(3E − 1)/2 , if E + e < 2/3

When N̂ = 0, the reachable desired pitch torque M̂ with the
CCAmethod is a tetragon as shown in Fig. 11. The reachable
zone of {L̄, M̄}with the CCAmethod is a symmetric-centered
hexagon, as shown in Figs. 19 and 21.

B. CASE 2: ADAPTIVE VALUES for a, b, c ̸=
1
3

In the case where a, b, c ̸=
1
3 , it becomes possible to reach

roll and pitch torques beyond those accessible with the CCA
approach, as shown in Fig. 11 with the green hexagon and
in Fig. 12 with the blue hexagon. The major challenges are
thus to:

1) determine mathematically the accessible domain of
{T ,L,M ,N } with the WCA allocation method,

2) and calculate the appropriate set (a, b, c) in real time
which satisfy the constraints in (22).

In the following discussions, the WCA approach is presented
in two steps:

• first, considering the case where the desired yaw-torque
control signal is set to zero (i.e., N̂ = 0).

FIGURE 11. Reachable pitch torques M̂ with the CCA method (inside the
red tetragon) vs. the WCA method (inside the green hexagon), for N̂ = 0.
The yellow areas correspond to torque space when pitch torques cannot
be produced alone, they are producing undesired yaw torques as well.
Thus, the area inside the green hexagon corresponds to the space of pitch
torque which can be generated alone without undesired yaw torque. This
region is fully attainable with the WCA method, but not fully by the CCA
method defined by the inside area of the red tetragon.

• second, considering the extension of the method when
the desired-yaw torque control signal is chosen different
from zero (i.e., N̂ ̸= 0).

Finally, performance comparisons are made between the
CCA and the WCA control allocation methods.

V. WCA: CASE OF ZERO-DESIRED YAW-TORQUE
CONTROL SIGNAL, I.E., N̂ = 0
The case of zero-desired yaw-torque control (i.e. N̂ = 0) is
first considered, and will be adapted to the case of non-zero
desired yaw-torque control, i.e. N̂ ̸= 0 in Section VI. Thus,
Equation (22) is first evaluated with N̂ = 0, which yields
2|M̂ | ≤ min

{(
3aT̂ − Tmin

)
l,
(
Tmax − 3aT̂

)
l
}

|
√
3L̂ − M̂ | ≤ min

{(
3bT̂ − Tmin

)
l,
(
Tmax − 3bT̂

)
l
}

|
√
3L̂ + M̂ | ≤ min

{(
3cT̂ − Tmin

)
l,
(
Tmax − 3cT̂

)
l
}
(27)

which can be written in a compact form using the notations
defined in (23) as follows:

2| ˆ̄M | ≤ 3 min
{
a− ê, Ê − a

}
|
√
3 ˆ̄L −

ˆ̄M | ≤ 3 min
{
b− ê, Ê − b

}
|
√
3 ˆ̄L +

ˆ̄M | ≤ 3 min
{
c− ê, Ê − c

} (28)
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where one notes that ê ≤ 1/3 and Ê ≥ 1/3 . Now, the
challenge consists in analytically identifying the maximum
reachable values of L̄ and M̄ , respectively, with the WCA
method. This is the purpose of the next sections, which will
show that the constraints given in (28) are satisfied for sets
(a, b, c) that depend on the commanded thrust T , resulting in
centered-symmetric quadrilaterals or hexagons, as the maxi-
mum boundaries for ˆ̄L and ˆ̄M .

A. ANALYSIS OF ROLL TORQUE GENERATION
WITH THE WCA METHOD
In the WCA method, the reachable roll torques are those
constrained by the inequalities in (27). The maximum roll
torque reachable can be computed by setting M̂ = 0. This
yields the following set of inequalities, which must be all
satisfied at the same time:

l
√
3
(3 bT̂ − Tmax) ≤ L̂ ≤

l
√
3
(3 bT̂ − Tmin) (29)

l
√
3
(3 cT̂ − Tmax) ≤ L̂ ≤

l
√
3
(3 cT̂ − Tmin) (30)

l
√
3
(Tmin − 3 bT̂ ) ≤ L̂ ≤

l
√
3
(Tmax − 3 bT̂ ) (31)

l
√
3
(Tmin − 3 cT̂ ) ≤ L̂ ≤

l
√
3
(Tmax − 3 cT̂ ) (32)

If Eqs. (29) and (31), or if Eqs. (30) and (32) are added,
respectively, the upper and lower bounds of M̂ are found as:

−
l

2
√
3
(Tmax − Tmin) ≤ M̂ ≤

l

2
√
3
(Tmax − Tmin) (33)

By adding Eqs. (29) and (30), and adding Eqs. (31) and (32),
two additional inequalities are available as follows:

l

2
√
3
(3 (b+ c)T̂ − 2Tmax)

≤ L̂ ≤
l

2
√
3
(3 (b+ c)T̂ − 2Tmin)

l

2
√
3
(2Tmin − 3 (b+ c)T̂ )

≤ L̂ ≤
l

2
√
3
(2Tmax − 3 (b+ c)T̂ ) (34)

Equations (33) and (34) completely define an hexagon, which
is shown in green in Fig. 13, and whose equation is:

LWCA
max = TlL̄WCA

max

=



√
3(T − Tmin)l

2
if Tmin ≤ T ≤ T2

√
3(Tmax − Tmin)l

6
if T2 < T ≤ T4

√
3(Tmax − T )l

2
if T4 < T ≤ Tmax

(35)

It turns out that with an appropriate choice of parameters
{a, b, c} (see Section V-A1) theWCAmethod can completely
access all the physically producible roll torques and thus

outperforms the CCA method which can only access part of
it. Figure 12 compares LWCA

max (T ) and LCCAmax (T ) as a function

of thrust T , and shows that LWCA
max =

3
2L

CCA
max , for all T ∈

[Tmin,T2] and T ∈ [T4,Tmax]. For T = Tmid, both method
produce the same maximum roll torque, i.e., LWCA

max (Tmid) =

LCCAmax (Tmid) = Lmax.

FIGURE 12. Maximum roll torques achievable with the WCA method:
LWCA

max (blue line), and with the CCA method: LCCA
max (red line), as a function

of thrust.

1) CONSTRAINTS RELATED TO PARAMETERS a, b AND c
The WCA constraints for the maximum desired roll torque
L̂WCA
max involve the parameters b and c. From the upper bounds

of L̂ expressed in Eq. (34), it is found that L̂WCA
max is reached

for T = Tmid and b+c =
2
3 (like in the CCA case). However,

contrary to the CCA case where Lmax is only reached for
T = Tmid, with the WCA method it is possible to generate
Lmax over the range of thrust T2 < T < T4 if the product
(b+ c)T remains equal to 2

3Tmid, which yields a condition on
the selection of b+ c as follows:

b(T ) + c(T ) =
Tmin + Tmax

3T
, T2 < T < T4 . (36)

In addition, in order to generate a roll torque without gen-
erating an undesired pitch torque, an additional constraint is
added as follows:

b(T ) = c(T ) =
Tmid

3T
. T2 < T < T4 . (37)

because weight b influences propellers 2 and 5, and weight c
influences propellers 3 and 6.

Finally, the parameter a is found by the constraint among
parameters, i.e.

a(T ) = 1 − b(T ) − c(T ) . (38)

All the roll torques lying on the physically-feasible hexagon
ABCDEF shown in Fig. 13 are attainable as follows:

• at point A: a = b = c =
1
3 ,

• fromA to B: b(T ) =
1
2

(
1 −

Tmin
3T

)
and a(T ) = 1−2b(T )

for Tmin < T < T2,
• at point B: b = bmax =

Tmin+Tmax
2(2Tmin+Tmax)

=
Tmid
3T2

= 0.4722,
and a = amin =

Tmin
3T2

= 0.0555,
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FIGURE 13. Maximum roll torques achievable in the WCA allocation
method LWCA

max as a function of thrust T . The green-dashed line
corresponds to the case when a = b = c =

1
3 , which is equivalent to the

CCA case where the maximum roll torque achievable is denoted LCCA
max(T ).

The continuous-green line corresponds to the WCA method. Clearly, the
WCA outperforms the CCA method because WCA can completely access
all the feasible roll torques. In particular, LWCA

max (T ) =
3
2 LCCA

max(T ), for all

T ∈ [Tmin, T2] and T ∈ [T4, Tmax]. At middle thrust, one has LWCA
max (Tmid) =

LCCA
max(Tmid) = Lmax.

• from B to C: c(T ) = b(T ) =
Tmid
3T , a = 1 − 2b(T ),

• at point C: c = b = bmin =
Tmid
3T4

= 0.25758,
a = amax = 1 − 2b = 0.48485,

• from C to D: b(T ) =
1
2

(
1 −

Tmax
3T

)
,

• at point D: a = b = c =
1
3 .

Clearly, the parameters a, b, c are nonlinear functions of the
thrust T as shown in Fig. 14.

In summary, with theWCAmethod, all the roll torques that
the vehicle can physically produce are accessible, contrary
to the CCA method. Using the normalized variables defined
in (23), the hexagon defining the maximum roll torque pro-
ducible with the WCA approach without generating unde-
sired yaw torque is parameterized in compact form by the
following set of inequalities:

−L̄WCA
max ≤ L̄ ≤ L̄WCA

max

FIGURE 14. Evolution of parameters a, b, c along the maximum reachable
values of L̂ with WCA for M̂ = 0 and N̂ = 0 as a function of thrust T .

with

L̄WCA
max =



√
3(1 − 3e)

2
, if E ≥ 1 − 2e

√
3(E − e)

2
, if

1 − e
2

≤ E < 1 − 2e
√
3(3E − 1)

2
, if E <

1 − e
2

(39)

which, according to Appendix A-A, is equivalent to

L̄WCA
max =

√
3
2

α,with α := min(1 − 3e,E − e, 3E − 1) .

(40)

The corresponding parameters a, b, c are summarized as
follows

b =


1 − e
2

, e ≥
1 − E
2

e+ E
2

, 1 − 2E < e <
1 − E
2

1 − E
2

, e < 1 − 2E

(41)

and c = b, a = 1 − 2b.

B. ANALYSIS OF PITCH TORQUE GENERATION
WITH THE WCA METHOD
With the WCA method, the reachable pitch torques are those
constrained by the inequalities in (27). In order to compute the
maximum pitch torque reachable, let us set L̂ = 0. This yields
the following set of inequalities, which must all be satisfied
at the same time:

−
l
4
(Tmax − Tmin) ≤ M̂ ≤

l
4
(Tmax − Tmin)

3l
4
(Tmin − (a+ b+ c)T̂ ) ≤ M̂ ≤

3l
4
(Tmax − (a+ b+ c)T̂ )

3l
4
((a+ b+ c)T̂ − Tmax) ≤ M̂ ≤

3l
4
((a+ b+ c)T̂ − Tmin)

(42)
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Given the constraint a + b + c = 1, the set of inequalities
in (42) completely defines an hexagon shape as shown with
the green line in Fig. 11. The boundaries of such hexagon are
function of the thrust as summarized below:

−M̂WCA
max (T̂ ) ≤ M̂WCA(T̂ ) ≤ M̂WCA

max (T̂ )

with

M̂WCA
max (T̂ ) =


3l
4
(T̂ − Tmin), Tmin < T̂ < T2

l
4
(Tmax − Tmin), T2 < T̂ < T4

3l
4
(Tmax − T̂ ), T4 < T̂ < Tmax.

In order to span this entire hexagon, the values of a, b, c
must continuously be adapted according to the current control
demand in pitch torque M̂ and current desired thrust T̂ . There
is already one known case, when a = b = c = 1/3 the
WCA method is able to access all the torques inside the red
tetragon shown in Fig. 11, this corresponds to the CCA case.
In order to illustrate how the values of a, b, c influence the
shape of this tetragon and thus allow to reach all the possible
pitch torques within the ‘‘WCA-pitch hexagon’’, consider
Fig. 15. Therein, the yellow area corresponds to physically-
feasible pitch torques, but which are produced together with
an undesired yaw torque. Therefore the largest area in the
(T ,M ) space which only produces the desired pitch torque
without other undesired torques is contained inside the green
hexagon.

1) CONSTRAINTS RELATED TO PARAMETER a
As shown in Fig. 15 with red-dotted lines, the constraints
involving the parameter a correspond to tetragons which size
are defined by a as follows:

−
l
2
(3aT̂ − Tmin) ≤ M̂ ≤ −

l
2
(3aT̂ − Tmax)

l
2
(3aT̂ − Tmax) ≤ M̂ ≤

l
2
(3aT̂ − Tmin).

(43)

The corresponding tetragons widen out as the value of
a decreases from amax =

Tmin+Tmax
2(Tmax+2Tmin)

(= 0.4722 in the case

of our hexacopter) to amin =
Tmin+Tmax

2(2Tmax+Tmin)
(= 0.2576). The

top point of this tetragon translates along the segment [BC]
at the constant pitch-torque value Ma,max =

l
4 (Tmax − Tmin),

whereas the bottom point translates along the segment [FE]
at the value−Ma,max. All the pitch torques permitted by these
a−related constraints are contained inside the red tetragons.

2) CONSTRAINTS RELATED TO PARAMETERS b AND c
The constraints involving the parameters b and c correspond
to the green-dotted tetragons shown in Fig. 15 which shapes
and sizes are defined as follows:{

l(−3bT̂ + Tmin) ≤ M̂ ≤ l(−3bT̂ + Tmax)
l(3bT̂ − Tmax) ≤ M̂ ≤ l(3bT̂ − Tmin)

(44){
l(−3cT̂ + Tmin) ≤ M̂ ≤ l(−3cT̂ + Tmax)
l(3cT̂ − Tmax) ≤ M̂ ≤ l(3cT̂ − Tmin)

(45)

These green tetragons widen out as the value of b (resp. c)
decreases from bmax =

1
4
Tmin+3Tmax
Tmin+2Tmax

=
3T5−Tmax

6T4
(= 0.3712 in

the case of our hexacopter) to bmin =
1
4
3Tmin+Tmax
2Tmin+Tmax

=

3T1−Tmin
6T2

(=0.2639). The top point of this tetragon translates
along a segment [C’B’] at the constant pitch-torque value
Mb,max =

l
2 (Tmax−Tmin), whereas the bottom point translates

along the segment [E’F’] at the value −Mb,max. All the pitch
torques permitted by these (b, c)−related constraints are con-
tained inside the green tetragons. The attainable area in the
(T−M ) plane with the (b, c)−related constraints is the largest
if b = c as shown in Fig. 15 and as proved in Appendix A-C.

3) CONSTRAINTS INVOLVING a, b, c SIMULTANEOUSLY
When all the constraints involving parameters a, b, c are
simultaneously satisfied, the maximum pitch-torque attain-
able by the WCA is represented by the area delimited by
the green solid-line hexagon with corner points: ABCDEF,
as shown in Fig. 15. This corresponds to the area spanned
by the intersecting tetragons corresponding to a−related
and (b, c)−related constraints simultaneously. All the desired
pitch torques exactly lying on the WCA max-pitch torque
hexagon are attainable by varying the parameters a, b, c as
shown in Fig. 16, according to the following equations:

• at point A: a = b = c =
1
3 ,

• from A to B: a(T ) =
1
2

(
1 −

Tmin
3T

)
and b = c =

1−a(T )
2

for Tmin < T < T2.
• at point B: a = amax =

Tmin+Tmax
2(2Tmin+Tmax)

=
Tmid
3T2

= 0.4722,
with Tmid =

Tmin+Tmax
2 , and b = c = bmin, cmin =

1
4
3Tmin+Tmax
2Tmin+Tmax

= 0.2639,

• fromB to C: a(T ) =
1
2
Tmin+Tmax

3T =
Tmid
3T , b = c =

1−a(T )
2

• at point C: a = amin =
Tmid
3T4

, b, c = (b, c)max =

1
4
Tmin+3Tmax
Tmin+2Tmax

= 0.3712.

• from C to D: a(T ) =
1
2

(
1 −

Tmax
3T

)
• at point D: a = b = c =

1
3 .

Clearly, the parameters a, b, c are nonlinear functions of T ,
they are shown in Fig. 17.

In summary, the maximum pitch torque the WCA can
produce without undesired yaw torque is written in a
compact form with normalized variables as follows (See
Appendix A-B):

∣∣∣M̄WCA
max

∣∣∣ =



3
4
(1 − 3e), e ≥

1 − E
2

3
4
(E − e), 1 − 2E < e <

1 − E
2

3
4
(3E − 1), e < 1 − 2E,

with the corresponding parameters a, b, c defined as

a =



1 − e
2

, e ≥
1 − E
2

e+ E
2

, 1 − 2E < e <
1 − E
2

1 − E
2

, e < 1 − 2E

(46)
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FIGURE 15. Effects of changing parameters a, b, c on the reachable areas
in the T − M plane. Changing the parameter a changes the slopes of all
constraints drawn in red-dotted lines. They form a tetragon whose width
increases as a increases. Changing the parameter b = c changes the
slopes of all constraints drawn in green-dotted lines. They form tetragons
whose width increases as b decreases. Note that the height of both
tetragons remains the same for each tetragon despite changes in width,
respectively. For a set {a, b, c}, all the accessible points with WCA are
inside the intersection of the two (red- and green-doted line, resp.)
tetragons. All the points inside the continuous-green-line hexagon
ABCDEF correspond to pitch torques which are producible and attainable
by the WCA method by varying the set of weights {a, b, c}.

and

b = c =
1 − a
2

.

The expression of the normalized maximum pitch torque
reachable with WCA is M̄WCA

max and is summarized with∣∣∣M̄WCA
max

∣∣∣ =
3
4

α, with α = min(1 − 3e,E − e, 3E − 1).

(47)

Remarks: The main differences between WCA constraints
involving the maximum roll and pitch torques (see green

FIGURE 16. Evolution of parameters a, b, c along the maximum reachable
values of desired M̂ with the WCA method for L̂ = 0 and N̂ = 0 in the
T − M plane. Changing the value of a (b, c respectively) changes the slope
of the corresponding dotted line and thus of the edges of the
corresponding tetragon representing the set of constraints, respectively.
As the slope is changing it becomes possible for the constraint lines
(red-dotted line and green dotted line) to intersect together at a certain
point O lying on the green hexagon ABCDEF. This intersection at point O
corresponds to a point fulfilling all constraints. By modifying continuously
and nonlinearly the parameters {a, b, c} according to the values reported
in Fig. 17, it is possible to translate the point O along each segment [AB],
[BC], [CD], etc., in order to fully span the green hexagon ABCDEF
corresponding to the maximum achievable pitch torques as a function of
thrust: M̂WCA

max (T ) which the WCA can generate without inducing an
undesired roll or yaw torque.

FIGURE 17. Evolution of parameters a, b, c along the maximum reachable
values of M̂ with the WCA for L̂ = 0 and N̂ = 0 in the T − M plane.

hexagon in Fig. 13 and the green hexagon in Fig. 15,
respectively) are that:

• the constraints involving the parameter a only concern
the pitch axis,

• the constraints involving the parameters b and c are
almost same for both axes, since a coefficient

√
3

transform the roll torque constraints into pitch torques
constraints.

• Figures 14 and 17 show that the evolution of parameters
a, b, c for the roll and pitch torques are opposite in
direction w.r.t. the line a = b = c =

1
3 . This is

visible by the fact that values taken by parameter b
for roll-torque generation in (41) are exactly the same
values taken by the parameter a in the pitch-torque
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generation in (46). This clearly indicates that when large
roll and pitch torques need to be produced simultane-
ously, a compromise in the parameters a, b, c needs to
be found, as it is not possible to produce maximum roll
and pitch torques at the same time. Therefore, it becomes
relevant to study the properties of the WCA method
to generate simultaneously roll and pitch torques and
to characterise the reachable region with WCA in the
(L,M )−plane as a function of thrust. This is the purpose
of the next section.

C. PERFORMANCE OF THE WCA METHOD IN THE 3D
(L, M, T )−SPACE, FOR N̂ = 0
1) MOTIVATION OF THE NECESSITY TO WORK IN THE
3D-{L, M, T } SPACE
The previous sections were dedicated to show how the WCA
method outperforms the classical CCA method, and that
WCA is able to fully cover the capabilities of the vehicle in
terms of roll and pitch torque generation without generating
an undesired yaw torque. For each axis, roll torque and pitch
torque, respectively, it has been shown how the parameters
a, b, c should be selected to generate the desired roll- or pitch
torques, separately. It has also been shown that values of
a, b, c generating large roll torques would not allow to gener-
ate large pitch torques at the same time, and vice versa. How-
ever in practice, roll and pitch torques need to be produced
simultaneously, thus this calls for the need to find a strategy
to continuously adapt the values of a, b, c to best generate the
requested roll and pitch torques simultaneously. To this end,
it is necessary to work in the 3D (L,M ,T )−space.

2) 3D REPRESENTATION OF THE WCA-REACHABLE
SPACE IN {L, M, T }

Figure 18 shows the shape of the ‘‘WCA-reachable’’ hexagon
of {L,M} as a function of T (when N̂ = 0). This defines a
volume which has a ‘‘diamond’’ shape, whose ‘‘diameter’’
D(T ) is defined as the diameter of the circle contained in
the hexagon L,M for a thrust T . One notices that D(T )
increases linearly for T ∈ [Tmin,T2], remains constant for
T ∈ [T2,T4], and decreases linearly to zero for T ∈

[T4,Tmax]. From a practical point of view, it appears that
hexacopters should be designed such that they can gen-
erate a total thrust T remaining in [T2,T4] during opera-
tions, because in this range the maximum roll- and pitch
torques are achievable, even without generating adverse yaw
motion. In view of the WCA-diamond shape of the volume
{L,M ,T } in Fig. 18, and of Eqs. (24) and (35), one deduces
that the diameter of the WCA-reachable hexagon of {L,M}

is always larger than the one obtained with CCA, i.e. the
classical pseudo-inverse matrix method. The next section is
dedicated to:

• characterize the size of this WCA-reachable space of
{L,M ,T } and compare it with its CCA counterpart,

• design an algorithm to compute the set of parameters
(a, b, c) at a given desired thrust T̂ for a given desired

FIGURE 18. WCA-reachable hexagon of {L, M} as a function of thrust T
(with N̂ = 0).

FIGURE 19. WCA-reachable hexagon (in yellow) in the
normalized-variable space {L̄, M̄} at a certain thrust T . Definition of edges
equations. The yellow hexagon scales up or down depending on the value
of α = min(1 − 3e, E − e, 3E − 1), which itself depends on the current
value of thrust.

setpoint (L̂, M̂ ), which stays inside or on the edges of
the WCA-reachable hexagon of {L,M} at T = T̂ .

D. 2D CHARACTERIZATION OF THE WCA-REACHABLE
HEXAGON
For a given thrust T ∈ [Tmin,Tmax], the edges of the WCA-
reachable hexagon in the L − M domain for N̂ = 0 are
now characterized. To this end, it is easier to use the ‘‘thrust-
normalized’’ variables L̄, M̄ defined in (23). With Eq. (39)
and the definition of the auxiliary variable α in (40) or (47),
one deduces that the obtained hexagon shown in yellow in
Fig. 19 is defined by the equation of its edges as follows:

• Top (resp. bottom) line: L̄ ∈

[
−

√
3α

4 ,
√
3α
4

]
and M̄ =

3α/4
(
resp. M̄ = −3α/4

)
.

• Top-left line: L̄ ∈

[
−

√
3α

2 , −
√
3α

4

]
, M̄ =

√
3L̄ +

3α
2 .
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• Top-right line: L̄ ∈

[√
3α
4 ,

√
3α
2

]
, M̄ = −

√
3L̄ +

3α
2 .

• Bottom-left line: L̄ ∈

[
−

√
3α

2 , −
√
3α

4

]
, M̄ = −

√
3L̄−

3α
2 .

• Bottom-right line: L̄ ∈

[√
3α
4 ,

√
3α
2

]
, M̄ =

√
3L̄ −

3α
2 .

E. WCA METHOD: CALCULATION OF (a, b, c) AS A
FUNCTION OF THE DESIRED T̂ , L̂, M̂
The multirotor flight controller generates a set of desired
thrust and torques T̂ , L̂, M̂ , which are passed on to the control
allocation algorithm to calculate the corresponding propeller
speeds. With the WCA approach, the weighting parameters
a, b, c must be calculated in real time at each control cycle.
To this end, let us assume that desired L̂ and M̂ are such that
the corresponding normalized setpoint ( ˆ̄L, ˆ̄M ) stays on the
edges or inside the reachable-WCA hexagon in the {L̄, M̄}

domain as shown in Fig. 19. If this is not the case, one can

project the setpoint ( ˆ̄L, ˆ̄M ) onto theWCA-reachable hexagon
along the line joining ( ˆ̄L, ˆ̄M ) and the origin. Two cases are
distinguished and discussed in the next two sections:

• case i): setpoint ( ˆ̄L, ˆ̄M ) is on the {L̄, M̄}-WCA-reachable
hexagon edges,

• case ii): setpoint ( ˆ̄L, ˆ̄M ) is inside the {L̄, M̄}-WCA-
reachable hexagon

1) CASE i): EVALUATION OF (a, b, c) FOR A SETPOINT ( ˆ̄L,
ˆ̄M)

ON THE EDGES OF THE WCA-REACHABLE HEXAGON
For each setpoint ( ˆ̄L, ˆ̄M ) on the edges of the WCA-
reachable hexagon in (L̄, M̄ )−plane, the calculation of appro-
priate parameters a, b, c needs to consider three possible
cases depending on thrust, guaranteeing that the constraints
in (27) are respected, as follows (complete derivation in
Appendix B):
Case 1: E ≥ 1 − 2e, i.e., Tmin ≤ T ≤ T2
• Top and bottom edges:

b =
1 + e
4

− sign(M̄ )
L̄

√
3
, a =

1 − e
2

, c = 1 − a− b.

• Top-left and bottom-right edges:

c =
−1 + 5e

2
+

2|L̄|
√
3

, b =
1 − e
2

, a = 1 − b− c.

• Top-right and bottom-left edges:

b =
−1 + 5e

2
+

2|L̄|
√
3

, c =
1 − e
2

, a = 1 − b− c.

Case 2: 1−e
2 ≤ E < 1 − 2e, i.e., T2 < T ≤ T4

• Top and bottom edges:

b =
2 − E − e

4
− sign

((
E + e−

2
3

)
L̄M̄

)
· min

(
|L̄|
√
3
,
|3E + 3e− 2|

4

)
a =

E + e
2

, c = 1 − a− b.

• Top-left and bottom-right edges:

c =



1 − 2E + e
2

+max
(
min

(
2|L̄|
√
3

,
3E − 1

2

)
,
1 − 3e

2

)
,

if E + e ≥
2
3

1 + E − 2e
2

−min
(
max

(
2|L̄|
√
3

,
3E − 1

2

)
,
1 − 3e

2

)
,

otherwise

b =
E + e
2

, a = 1 − b− c.

• Top-right and bottom-left edges:

b =



1 − 2E + e
2

+max
(
min

(
2|L̄|
√
3

,
3E − 1

2

)
,
1 − 3e

2

)
,

if E + e ≥
2
3

1 + E − 2e
2

−min
(
max

(
2|L̄|
√
3

,
3E − 1

2

)
,
1 − 3e

2

)
,

otherwise

c =
E + e
2

, a = 1 − b− c.

Case 3: E < 1−e
2 , i.e., T4 < T ≤ Tmax

• Top and bottom edges:

b =
1 + E
4

+sign(M̄ )
L̄

√
3
, a =

1 − E
2

, c = 1 − a− b.

• Top-left and bottom-right edges:

c =
−1 + 5E

2
−

2|L̄|
√
3

, b =
1 − E
2

, a = 1 − b− c.

• Top-right and bottom-left edges:

b =
−1 + 5E

2
−

2|L̄|
√
3

, c =
1 − E
2

, a = 1 − b− c.

Discussion: The nonlinear adaptive laws to compute a, b, c
are derived in Appendix B. These derivations rely on the
evaluation of intersection points of six lines given by the
constraints in (28). The provided solutions for a, b, c ensure
that when the reference setpoint ( ˆ̄L, ˆ̄M ) = (L̄r , M̄r ) translates
continuously on the edges of the {L̄, M̄}-WCA-reachable
hexagon, the parameters a, b, c also vary continuously.
Figure 20 shows an example where T = 0.42Tmax and
1.67Tmin, which corresponds to E = 0.8 and e = 0.2
(i.e., Case 1 above). The tiny green circles correspond to
successive setpoints (L̄r , M̄r ) translating along the edges of
the WCA-reachable hexagon of {L̄, M̄}. The red tetragons
are areas limited by constraints in (28) with the parameters
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a, b, c calculated with the adaptation laws presented above.
It appears that each reference setpoint (L̄r , M̄r ) perfectly
coincides with a corner of the corresponding quadrilateral,
which confirms that the constraints in (28) (i.e., (27)) are
satisfied.

FIGURE 20. Reference points {L̄r , M̄r } (green circles) and corresponding
reachable polygons {L̄, M̄} (in red) with a, b, c calculated according to
Case 1 in Section V-E1, because in this example e = 0.2 and E = 0.8.

Remark: when E + e = 2/3 in Case 2, the weighting
parameters are a = b = c = 1/3, and are same as in the
classical pseudo-inverse matrix case.

2) CASE ii): EVALUATION OF (a, b, c) FOR (L̄r , M̄r ) INSIDE
THE WCA-REACHABLE HEXAGON
When the reference setpoint (L̄r , M̄r ) is inside the WCA-
reachable hexagon of {L̄, M̄}, the adaptive weights a, b, c
may be evaluated according to two possible approaches.

a: APPROACH 1: WCA ALLOCATION METHOD IN THE
WHOLE WCA-REACHABLE HEXAGON

• project the reference setpoint (L̄r , M̄r ) on the edges of
the WCA-reachable hexagon along the direction joining
the origin with the setpoint (L̄r , M̄r ), as shown in Fig. 21,

• and then apply the method proposed previously so as to
calculate the parameters a, b, c based on the obtained
projected setpoint (L̄w, M̄w). The obtained values of
a, b, c enable theWCAmethod to reach awhole tetragon
as shown in Fig. 20 whose corner is (L̄w, M̄w) which
contains (L̄r , M̄r ).
Discussion: with this strategy, when the reference set-
point (L̄r , M̄r ) varies inside the classically-reachable
hexagon (see Fig. 21) corresponding to the set of {L̄, M̄}

obtained by the classical pseudo-inverse matrix method
(CCA method), the parameters a, b, c also vary accord-
ingly, whereas in the CCA method the weights are
always a = b = c = 1/3. This homogeneity property is
an advantage of the CCA method. In order to keep such

an homogeneity property also for the WCA method,
the weights a, b, c are computed according to a second
approach as follows:

b: APPROACH 2: CCA ALLOCATION IN THE CCA-REACHABLE
HEXAGON AND WCA ALLOCATION OTHERWISE

• If the reference point (L̄r , M̄r ) is inside or on the edges
of the CCA-reachable hexagon, set a = b = c = 1/3.

• If the reference point (L̄r , M̄r ) stays outside the
CCA-reachable hexagon but inside the WCA-reachable
hexagon, use the interpolation method shown in Fig. 21
and which proceeds as follows:
1) First, project the setpoint (L̄r , M̄r ) onto the edges

of the CCA- and WCA- reachable hexagons,
respectively, to obtain two key points (L̄c, M̄c) and
(L̄w, M̄w), respectively.

2) Second, calculate the parameters a, b, c for the
setpoint (L̄w, M̄w) lying on the edges of the WCA-
reachable hexagon, using the results shown in
Section V-E1 Case i), and denote the correspond-
ing values as aw, bw, cw.

3) Third, the desired values of a, b, c are obtained by
interpolation according to

a =
1
3

+

(
aw −

1
3

)
δ

b =
1
3

+

(
bw −

1
3

)
δ

c = 1 − a− b

(48)

with

δ :=


L̄r − L̄c
L̄w − L̄c

if M̄w = M̄c

M̄r − M̄c

M̄w − M̄c
otherwise .

Figure 21 shows an example where the commanded
torques L̄r , M̄r are lying outside the CCA-reachable domain
and within the WCA-reachable hexagon. Using the inter-
polation method (Approach 2 above), the parameters a, b, c
are calculated, leading to the red hexagon. It crosses the
reference setpoint (L̄r , M̄r ), thus satisfying the constraints
in (28) (i.e., (27)).
Discussion: This interpolation method makes sure that the

values of a, b, c vary continuously, if the normalized torque
setpoint (L̄r , M̄r ) also varies continuously over time. This is
of hight practical importance because it guarantees that the
commanded motors’ speeds ω̂i computed with (20), i.e. �̂ =

A+

WCAv̂, vary also continuously if the desired virtual control
vector v̂ is time continuous.

VI. EXTENSION OF THE WCA METHOD IN CASE OF
NON-ZERO DESIRED YAW TORQUE
CONTROL, I.E. N̂ ̸= 0
In practice, a certain amount of yaw-control authority must
be provided. However, in view of (22) the larger the value
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FIGURE 21. Reachable {L̄, M̄}-space with the CCA vs. WCA methods for
N̂ = 0. The WCA-reachable hexagon corresponds to the set of (L̄, M̄)
which can be reached by the WCA allocation method, described in
Section V-E1 Case i). The CCA-reachable hexagon corresponds to the set
of (L̄, M̄) which can be reached by the CCA allocation method, i.e. with
the classical pseudo-inverse matrix method, which corresponds to (20)
with a = b = c =

1
3 . The red hexagon corresponds to the reachable area

with the weighted pseudo-inverse matrix in (20) and interpolated
parameters a, b, c calculated according to (48).

of N̂ the smaller the dimensions of the remaining zone for
producing {L̂, M̂}. This assessment calls for a compromise,
which consists in leaving some yaw torque control margin for
N̂ , i.e. |N̂ | ≤ Nmax, whereNmax remains rather small compare
to the other torques. To this end, define TN a thrust margin
dedicated for yaw torque generation as

TN := µκ−1Nmax,

T̄min := Tmin + TN , T̄max = Tmax − TN .

Method: Compute the WCA-reachable torques in the
(L,M )-space and the corresponding dynamic weights a, b, c
according to the constraints given in (27), where Tmin and
Tmax are replaced by T̄min and T̄max, respectively, leading to

2|M | ≤ min
{(
3aT − T̄min

)
l,
(
T̄max − 3aT

)
l
}

|
√
3L −M | ≤ min

{(
3bT − T̄min

)
l,
(
T̄max − 3bT

)
l
}

|
√
3L +M | ≤ min

{(
3cT − T̄min

)
l,
(
T̄max − 3cT

)
l
}
.

(49)

Then, the calculations of a, b, c can be made exactly as in the
case of N̂ = 0 (see Section V-E1) but using T̄min and T̄max
instead of Tmin and Tmax, respectively.

VII. SIMULATIONS, REAL EXPERIMENTS,
AND DISCUSSIONS
The weighted pseudo-inverse control allocation (WCA)
method is now compared to the classical pseudo-inverse con-
trol allocation (CCA) method, both in simulation and in real-
flight experiments. The vehicle’s main physical properties are
summarized in Table 1.

A. SIMULATIONS
For the simulations, a nonlinear six degree-of-freedommodel
of the hexacopter shown in Figs. 1 and 34 is used. Simulations

TABLE 1. Vehicle main physical properties.

are run in Matlab/Simulink®, where the flight controller [1]
is providing the commands for the desired thrust, and roll-,
pitch- and yaw torques, which are passed to the control
allocation module.

1) SENSITIVITY COMPARISON TO EXTERNAL DISTURBANCES
In order to show the superior performance of the WCA
method compared to the CCA method, significant external
perturbations are introduced, similar to strong wing gusts.
In order that the performance of both control allocation
methods may be fairly compared, they are both subject to
the exact same and deterministic disturbance signal on each
axis and the exact same flight controller is used to produce
the commands (T̂ , L̂, M̂ , N̂ ). The external perturbations are
introduced as wind, through the following vector:

Vwind = Vw [sin (2π fwt) cos (2π fwt) 0]⊤ , (50)

with the amplitude velocity Vw = 7 m/s and frequency
fw = 0.5 Hz in the time interval t = [0 . . . 20] s. At time
t = 20 s, the wind amplitude and frequency is slightly
changed to Vw = 7.5 m/s and fw = 0.4 Hz. The results
are shown in Figs. 22 and 23, where the vehicle is tasked to
hover at constant horizontal position and altitude. The results
indicate comparable performance for both methods on the x
and y axes The deviations observed on those axes are due to
the fact that the wind aerodynamic force on the aircraft is
not compensated in the position controller. However, on the z
axis, theWCAmethod outperforms the CCAmethod. Indeed,
with WCA there is almost a perfect tracking of the altitude
commands, contrary to the CCA case. The z−position error
is reduced by a factor 100. This performance improvement is
very relevant for applications like payload transport or visual
inspection tasks, where external perturbations may occur due
to the balancing of an attached payload or windy conditions,
and where flight precision is required.

2) SENSITIVITY TO TUNING OF FLIGHT-CONTROLLER GAINS
In this part, the hexacopter is tasked to hover at the same
altitude and to track a yaw-angle trajectory as shown in
Figs. 24 and 25.

a: SIMULATIONS WITH THE CCA METHOD
Figure 24 shows the tracking of a yaw-angle-reference
signal for three different tunings of the yaw-angle and
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FIGURE 22. Simulations with the CCA method: position-tracking error in
North, East and Down directions, during hover flight with external
perturbations.

FIGURE 23. Simulations with the WCA method: position-tracking error in
North, East and Down directions, during hover flight with external
perturbations.

FIGURE 24. Simulations of the yaw-angle tracking with CCA and three
different tunings of the pair of {yaw angle and yaw-angle rate} controller
gains.

yaw-angle-rate controllers. The case Tuned refers to a
well-chosen set of yaw-rate proportional (P) gain and
yaw-angle P gain, whereas Slow corresponds to a set of small
gains, and Detuned to a set of too large gains. According to
Fig. 24, a large pair of {yaw-angle and yaw-angle-rate} gains
seems preferable. However, it turns out that the corresponding
error in altitude tracking significantly increases as shown
in Fig. 25, where the hexacopter makes about half-a-meter
altitude jumps, whenever a yaw-angle step is requested. The
bar plots in Figs. 26 and 27 summarize the simulation results,
where increasing the gains in the yaw controllers causes a

FIGURE 25. Simulations of constant altitude-tracking with the CCA
method for three different tunings of the pair {yaw angle and yaw-angle
rate} controller gains.

FIGURE 26. Simulations with CCA: the root-mean-square error (RMSE) in
altitude tracking increases when the yaw P or yaw-rate P gains increase.

FIGURE 27. Simulations with CCA: the root-mean-square error (RMSE) in
yaw-angle tracking decreases when the yaw P or yaw-rate P gains
increase.

better yaw-angle tracking but degrades altitude tracking. This
is due to the third saturation phenomena shown in Fig. 10 and
explained in Section III-G3.

b: SIMULATIONS WITH THE WCA METHOD
The above simulations are repeated with the WCA method,
and the two approaches are compared in Figs. 28 and 29. It is
remarkable that the altitude-tracking performance withWCA
is alsmot insensitive to the tuning of the yaw- and yaw-rate
proportional (P) gains. The performance of altitude tracking
with WCA is also the best, as it is equal in all tuning cases

VOLUME 11, 2023 37731



G. Ducard, M.-D. Hua: WCA: A New Efficient Nonlinear Adaptive Control Allocation for Planar Hexacopters

to the performance obtained with CCA in the ‘‘slow’’ tuning
case, which is the tuning where CCA performs the best in
terms of altitude tracking, according to Fig. 25. On the other
hand, the yaw-angle tracking is worse with WCA than with
CCA, becauseWCA intrinsically prioritizes thrust generation
over yaw-torque generation and only 5%of the total thrust has
been reserved to produce yaw torque in this simulation.

FIGURE 28. Simulation comparison between CCA and WCA for altitude
tracking. In the CCA case: the altitude-tracking RMSE increases with
increasing gains, whereas it remains same in the WCA case (γ = 5%).

3) INSENSITIVITY OF WCA TO VEHICLE’s MASS CHANGES
The WCA method always produces the commanded thrust
–if the latter remains feasible. This property makes the
whole flight controller able to accommodate vehicle’s mass
changes. This is desirable as it removes the issue of the
multirotor changing altitude whenever an aggressive attitude
maneuver is commanded, in particular when the vehicle
carries a payload. This property is well shown in Fig. 30,
where CCA and WCA are compared to each other in the
exact same settings, namely same attitude controller, same
reference trajectories: constant altitude and yaw maneuvers,
as in Fig. 24. To remove the influence of possible external
perturbations, and to guarantee a fair comparison, simulations
are run with the two methods for different payload weights
ranging from 2.8 kg, 3.2 kg, 3.4 kg, and 3.6 kg. At the same
time, the influence of the controller tuning is highlighted.

Figure 30 shows that the altitude-tracking performance of
WCA is almost insensitive to a) mass changes, and b) to
attitude controller tuning. The major reason is that WCA is
designed to prioritize thrust generation over torques, and thus
the desired thrust needed to hover is achieved. For CCA,
the altitude-tracking error is between 2 to 17 times the error
of WCA, this is significant. One observes that the CCA-
altitude error decreases until a mass of 3.4 kg is reached.
As the mass is further increased the CCA-altitude tracking
error rises again. This is due to the fact that, as soon as motor-
speed saturation occurs, a total thrust of around 34.8 N is
produced with CCA. This is exactly what the controller asks
for, as the combination {vehicle+payload} has a weight of
3.48 kg. However, if the {vehicle+payload} is lighter than
3.48 kg, a saturation in motor-speeds will cause the vehicle

FIGURE 29. Simulation comparison between CCA and WCA for yaw-angle
tracking. In the WCA case, only 5% of the total thrust is reserved for the
yaw motion (γ = 5%). CCA performs better than WCA to track yaw-angle
commands.

FIGURE 30. Simulation data with CCA and WCA during constant-altitude
tracking while following the yaw motion shown in Fig. 24, with different
payload weights.

to jump upward, whereas the {vehicle+payload} will fall if
it is heavier than 3.48 kg. Note that as soon as the vehicle
is not exactly horizontal, the commanded thrust increases
to keep compensating for the weight gravity force, if the
vehicle cannot produce additional thrust, a loss of altitude is
inevitable. This has been experienced in the real-flight crash
recorded in Video 1 in [27].

B. FAULT-TOLERANCE PROPERTIES OF WCA VS. CCA
Although the WCA algorithm is not designed to address
specifically actuator faults or failures, this section evalu-
ates whether the WCA method has intrinsic fault-tolerance
capabilities. It turns out that because WCA prioritizes thrust
while producing as much roll and pitch torques as possible
despite motor-speed saturation, the motor-fault (partial loss
of effectiveness) and motor-failure (complete stop or total
loss of effectiveness) tolerance of WCA is higher than of the
CCA approach. These properties are illustrated in simula-
tions, where the vehicle is commanded to hover at constant
position and constant yaw angle, while one or two simulta-
neous motor failures are introduced. Figure 31 shows all the
failure scenarios considered.
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FIGURE 31. Motor-failure configurations considered. The configuration
where two consecutive motors fail is not considered because both WCA
and CCA fail to stabilize it.

FIGURE 32. With CCA allocation, during hover at constant position and
heading. At t = 5 s a motor failure occurs. At t = 20 s, a wind gust is
applied for 3 seconds. The plots follow the NED convention.

At t = 5 s one or two motors completely fail. In addition,
from t = 20 s until t = 23 s a wind gust is introduced.
Figure 32 shows the flight results when the CCA allocation is
used.With CCA, it is not possible to handle any of the failures
considered, as all the three-axis positions diverge quickly,
resulting in a crash in all three cases.

Figure 33 shows the flight results when the WCA allo-
cation is used. With WCA, the vehicle can be stabilized if
either one or two opposite motors fail. In the first scenario, the
vehicle’s oscillations in the x− and y− directions are bounded
within ±1.1 m, whereas the altitude remains almost perfectly
controlled. In the second scenario, two opposite motors fail
at t = 5 s. Figure 33 shows that these failures have almost no
influence on the x− and y− positions, whereas the altitude
being perturbed by a loss of 0.3 m is regained after a duration
of 4 s. At t = 20 s, when the wind gust is applied, the
position deviations in x− and y− directions do not exceed
1 m, whereas the altitude remains between±0.1 m. However,
in the last scenario it is visible that WCA fails to stabilize the
hexacopter when two non-opposite motors fail.
Remark: Note that in these simulations, no fault detection

is used, the control allocation system is not aware of the pres-
ence of one or two motor failures, thus no control allocation
reconfiguration here happens. Still it turns out that the WCA
allocation strategy has superior fault-tolerance capability than
CCA, because it can still stabilize the vehicle when onemotor
fails or two opposite motors fail, whereas the CCA approach
is not capable of handling any of these failures.

C. EXPERIMENTAL RESULTS
a: EXPERIMENTAL SETUP
The hexacopter is based on a DJI 550 airframe, equipped
with a Pixhawk1 autopilot, and a real-time kinematic (RTK)

FIGURE 33. With WCA allocation, during hover at constant position and
heading. At t = 5 s a motor failure occurs. At t = 20 s, a wind gust is
applied for 3 seconds. The plots follow the NED convention.

FIGURE 34. Setup used for field testing. Left: Hexacopter used in the
flight test, with it differential GPS receiver, and DGPS base station on the
bottom right. Right: The RTK base station is positioned as high as possible
not to be disturbed by other electric devices. It should not be moved after
initialization. The laptop is connected wirelessly to the vehicle through
QGroundControl, and to the onboard Raspberry’s Wifi network. Bottom:
the autopilot used on the vehicle is a Pixhawk1 model. It is connected to
a companion computer, a Raspberry 3B, which generates reference
signals for altitude and yaw motion.

Drotek differential GPS as shown in Fig. 34. The vehicle is
tasked to hover and is excited with either manual or automatic
yaw commands generated by a Raspberry 3B companion
computer.

b: REAL-FLIGHT EXPERIMENTS WITH THE CCA APPROACH
Figures 35, 36 and 37 show real-flight data during an experi-
ment with the CCA approach. The vehicle is tasked to hover,
while aggressive yaw maneuvers are manually commanded.
As soon as the commanded yaw torque exceeds themaximum
yaw torque, it is noticeable that the thrust command is no
longer well tracked, and actually reaches the middle-thrust
values of 34.8 N as visible in Fig. 36. Because in this experi-
ment the vehicles weight is 2.8 kg, the vehicle jumps upward
everytime a strong yaw torques is requested. Therefore, the
behavior observed in simulations and reported in Fig. 25 is
confirmed in real experiments shown in Fig. 37. Should the
vehicle have been heavier than the ‘‘middle-thrust,’’ in this
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FIGURE 35. CCA approach: real-flight data during manual yaw-angle
commands. Top plot: thrust commanded vs. produced. Bottom plot: yaw
torque commanded vs. produced.

FIGURE 36. CCA approach: real-flight data. As soon as the commanded
yaw-torques exceeds the maximum yaw torque, the produced thrust does
no longer track the desired thrust, resulted in either a systematic gain or
loss of altitude depending on vehicle’s weight.

FIGURE 37. CCA approach: real-flight data of the altitude error during the
same experiment reported in Fig. 35. Altitude measured with DGPS setup.
The red dashed lines represented the standard deviation of the DGPS
position measurements. The altitude error peaks up every time a strong
yaw-torque step is commanded.

case 3.48 kg, then every strong yaw-torque commands would
have resulted in a loss of altitude, possibly leading to a crash,
similar to the one recorded in Video1 in [27].

FIGURE 38. Real flight data with CCA in the top plot and WCA iin the
bottom plot. This figure shows the altitude tracking-behavior of a real
flight. The altitude has been measured using a real-time kinematics (RTK)
GPS. Yaw angle commands are generated by the Raspberry Pi 3B to allow
for fair and reproducible comparisons between the two methods.

TABLE 2. Property comparison of CCA vs. WCA.

c: REAL-FLIGHT EXPERIMENTS WITH WCA VS.
CCA METHODS
Figure 38 shows the flight data of the exact same scenario
performed first with the CCA and then with the WCA alloca-
tion algorithm, respectively. The hexacopter is still tasked to
hover at constant altitude, whereas the yaw-rate commands
are generated by the Raspberry Pi companion computer,
so that the two successive experiments can be identically
reproduced and thus allow for a fair comparison between
the CCA and WCA methods. The red-dashed line indicates
the standard deviation of the estimator, this is being mea-
sured by placing the vehicle on the ground and analyzing
the estimated altitude which should not change. The black-
dashed line shows the standard deviation of the trajectory for
each control allocation method. The altitude jumps of CCA
go up to 15 cm, whereas the maximum altitude difference
producedwithWCA is around 5 cm. The flight experiments is
recorded in the Video 2 at [27]. Therefore, theWCA approach
provides a significant improvement of about 3 times better
altitude tracking compared to the CCA method, which is the
commonly-used allocation approach.

A third supportive video, also available at [27], shows some
aggressive attitude maneuvers. The hexacopter is hovering
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and changing aggressively its attitude. Thanks to the newly
developed WCA control allocation method, there is almost
no altitude change during the high turn-rates maneuvers. The
vehicle can also translate at high-horizontal speed without
any change of altitude.

Finally, the main properties of the CCA and WCA alloca-
tion methods are summarized in Table 2.

VIII. CONCLUSION
This paper provides the complete theoretical derivation of the
weighted pseudo-inverse matrix control allocation approach,
named in this work ‘‘WCA’’. This approach corresponds to a
nonlinear adaptive control allocationmethodwhich computes
in real-time the propeller speeds of a circular and planar hex-
acopter, which fulfills a number of desired properties. These
properties are: 1) respect of propeller min and max rotational
speeds, 2) the thrust generation is prioritized over torques
generation, 3) the maximum roll and pitch torques that are
physically producible can be fully accessed without generat-
ing an undesired yaw torque. These properties result in addi-
tional benefits, namely that with WCA, the altitude tracking
is less sensitive to a) controller gains’ tuning, b) changes in
attached payload mass, c) to external disturbances: such as
wind gusts or the balancing of an attached payload. In cases
of motor saturation, the conventional pseudo-inverse allo-
cation method, named here ‘‘CCA method’’, may result in
a crash of the vehicle depending on its weight, whereas in
the same condition, the WCA will keep the vehicle safely
airborne. In addition, the WCA algorithm is made of explicit
and analytical laws enabling for very-fast operation while
requiring very-low computing resources. The practical flight
experiments have validated the WCA approach and have
clearly demonstrated its superiority over the conventional
CCA method.

APPENDIX A
DERIVATION OF THE MAXIMUM PRODUCIBLE
NORMALIZED ROLL AND PITCH TORQUES
L̄max , M̄max AS A FUNCTION OF NORMALIZED
THRUST PARAMETERS e, E
In the case of zero-desired yaw-torque control (i.e. N̂ = 0),
(22) is evaluated with N̂ = 0 and is written in a compact form
using the notations defined in (23) as follows:

2|M̄ | ≤ 3 min {a− e,E − a}

|
√
3L̄ − M̄ | ≤ 3 min {b− e,E − b}

|
√
3L̄ + M̄ | ≤ 3 min {c− e,E − c}

(51)

A. CALCULATION OF L̄max WITH NORMALIZED-THRUST
VARIABLES
From the second and third inequalities in (51), we have:

−3min {b− e,E − b} ≤
√
3L̄ − M̄ ≤ 3min {b− e,E − b}

−3min {c− e,E − c} ≤
√
3L̄ + M̄ ≤ 3min {c− e,E − c}

(52)

Summing up the two inequalities gives:

−L̄max ≤ L̄ ≤ L̄max

with

L̄max =

√
3
2

sup
b, c ∈ [e,E]
a+ b+ c = 1

(
min(b− e,E − b) +

min(c− e,E − c)

)

According to Appendix A-C, L̄max simplifies to

L̄max =

√
3
2

α, with α = min(1 − 3e,E − e, 3E − 1).

B. CALCULATION OF M̄max WITH NORMALIZED-THRUST
VARIABLES
Subtracting the last two equations in (51), one gets two
inequalities{

2|M̄ | ≤ 3 min {a− e,E − a}

2|M̄ | ≤ 3 [min {b− e,E − b} + min {c− e,E − c}]

Therefore, we conclude that |M̄ | < M̄max with

M̄max =
3
2

sup
a, b, c ∈ [e,E]
a+ b+ c = 1

min


min {a− e,E − a} ,

min {b− e,E − b} +

min {c− e,E − c}


=

3
2

sup
a, b, c ∈ [e,E]
a+ b+ c = 1

min
{
f1(a), supb,c∈[e,E] f2(b, c)

}

with the auxiliary functions

f1(a) = min {a− e,E − a}

f2(b, c) = min {b− e,E − b} + min {c− e,E − c} .

The term supb,c∈[e,E] f2(b, c) is obtained when b = c (see
Annex A-C), therefore M̄max can be rewritten as

=
3
2

sup
a, b ∈ [e,E]
a+ 2b = 1

min
{
min {a− e,E − a} ,

2min {b− e,E − b}

}

Using the condition a + 2b = 1, the above equality is
rewritten as

M̄max =
3
2

sup
a∈[e,E]

min
{
min {a− e,E − a} ,

min {1 − 2e− a, 2E − 1 + a}

}
From thereon, the value of M̄max will be evaluated by

studying the function y(a) defined by

y(a) = min {min ( y1(a) , y2(a) ) ,min ( y3(a) , y4(a) )}

with the subfunctions defined as

y1(a) = a− e, y2(a) = −a+ E,

y3(a) = a+ 2E − 1, y4(a) = −a+ 1 − 2e.
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FIGURE 39. Evaluation of the function y (a) in case 1.

Wenotice that the lines defined by y1 and y3 are parallel, same
holds for y2 and y4. These four lines intersect at the following
four points:

P1 :(a =
e+ E
2

, y1 = y2 =
E − e
2

)

P2 :(a =
1 − e
2

, y1 = y4 =
1 − 3e

2
)

P3 :(a = 1 − e− E, y3 = y4 = E − e)

P4 :(a =
1 − E
2

, y2 = y3 =
3E − 1

2
)

From the knowledge of E ≥
1
3 and e ≤

1
3 , we can conclude

that

1 − 2E ≤ E e ≤ 1 − 2e (53)

From the coordinates of points P1 and P3 above, one
notices that yP3 = 2yP1 . Therefore, there are three possible
cases as described below.
Case 1 (Line y2 Above y4, and Line y3 Above y1): This

case corresponds to the condition y2(a) > y4(a), which leads
to E > 1 − 2e, and the condition y3(a) > y1(a) leading to
1 − 2E < e. Using (53), we conclude:

1 − 2E < e < 1 − 2e < E

It is now possible to draw the schematic shown in Fig. 39
The function y(a) is thus found to be the thick blue line in

Fig. 39. Therefore, the ordinate of P2 corresponds to M̄max,
such as

M̄max =
3
2
1 − 3e

2
=

3
4
(1 − 3e), with a =

1 − e
2

Case 2 (Line y4 Above y2, and Line y3 Above y1): This case
corresponds to the condition y2(a) < y4(a), which leads to

E < 1 − 2e ⇐⇒ e <
1 − E
2

,

and the condition y3(a) > y1(a) leading to 1 − 2E < e:

1 − 2E < e <
1 − E
2

using the condition 1
3 < E ⇐⇒

1−E
2 < E , therefore

1 − 2E < e <
1 − E
2

< E < 1 − 2e

It is now possible to draw the schematic shown in Fig. 40
The function y(a) is thus found to be the thick blue line in

FIGURE 40. Evaluation of the function y (a) in case 2.

FIGURE 41. Evaluation of the function y (a) in case 3.

Fig. 40. Therefore, we conclude that the ordinate of P1 cor-
responds to M̄max, such as

M̄max =
3
2
yP1 =

3
4
(E − e), with a =

e+ E
2

(54)

Case 3 (Line y4 Above y2, and Line y1 Above y3): This
case corresponds to the condition y2(a) < y4(a), which leads
to E < 1 − 2e, and the condition y1(a) > y3(a) leading to
e < 1 − 2E . Assembling the inequalities gives

e < 1 − 2E < E < 1 − 2e

It is now possible to draw the schematic shown in Fig. 41.
The function y(a) is thus found to be the thick blue line in

Fig. 41. Therefore, the ordinate of P4 corresponds to M̄max,
such as

M̄max =
3
2
yP4 =

3
4
(3E − 1), with a =

1 − E
2

(55)

Calculation of M̄max, Summary of Cases 1,2,3:

M̄max =
3
2

sup
a∈[e,E]

y(a)

=



3
4
(1 − 3e), e ≥

1 − E
2

3
4
(E − e), 1 − 2E < e <

1 − E
2

3
4
(3E − 1), e < 1 − 2E

(56)

with the corresponding parameter a defined as

a =



1 − e
2

, e ≥
1 − E
2

e+ E
2

, 1 − 2E < e <
1 − E
2

1 − E
2

, e < 1 − 2E

(57)
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The expression of M̄max is summarized with

M̄max =
3
4

α, with α = min(1 − 3e,E − e, 3E − 1).

C. DISCUSSION OF THE TERM sup(b,c∈[e,E ]) f2(b, c)

sup
b, c ∈ [e,E]
b+ c = 1 − a

f2(b, c)

= sup
b, c ∈ [e,E]
b+ c = 1 − a

(
min {b− e,E − b} +

min {c− e,E − c}

)

Four cases can be distinguished as summarized in Table 3.

TABLE 3. Evaluation of f2(b, c).

The term sup(b,c∈[e,E]) f2(b, c) is obtained when b = c,
in which case b+ c = 2b = 1 − a. According to Table 3

sup
b,c∈[e,E]

f2(b, c)

= sup
a∈[e,E]

min(1 − a− 2e,E − e, 2E − 1 + a)

= min

 supa∈[e,E](1 − a− 2e),
supa∈[e,E](E − e),
supa∈[e,E](2E − 1 − a)


= min(1 − 3e,E − e, 3E − 1) := α (58)

APPENDIX B
DERIVATION OF THE PARAMETERS a, b, c ALONG THE
EDGES OF THE WCA-REACHABLE HEXAGON
The nonlinear adaptive laws to compute a, b, c are derived
in this section. These derivations rely on the evaluation of the
intersection points of six lines given by the constraints in (28),
which can be expanded as follows:

3
2
(e− a) ≤ M̄ ≤

3
2
(E − a) (59)

3
2
(a− E) ≤ M̄ ≤

3
2
(a− e) (60)

√
3L̄ − 3(b− e) ≤ M̄ ≤

√
3L̄ + 3(E − b) (61)

√
3L̄ − 3(E − b) ≤ M̄ ≤

√
3L̄ + 3(b− e) (62)

−
√
3L̄ − 3(E − c) ≤ M̄ ≤ −

√
3L̄ + 3(c− e) (63)

−
√
3L̄ − 3(c− e) ≤ M̄ ≤ −

√
3L̄ + 3(E − c) (64)

e ≤ a ≤ E, e ≤ b ≤ E, e ≤ c ≤ E

(65)

FIGURE 42. Equivalence between thrust T in [N] and normalized thrust
e =

Tmin
3T [-] and E =

Tmax
3T [-].

A. TOP EDGE OF THE WCA-REACHABLE
HEXAGON IN {L̄ − M̄} SPACE
On the top edge of the WCA-reachable hexagon shown in
Fig. 52, the value of M̄ is equal to M̄max =

3
4α, in which case

the parameter a verifies (57), which can take three different
values and thus three cases are to be distinguished, depending
on the considered range in thrust as shown in Fig. 42. The
values of the parameters b and cwill be found by using the last
two inequalities of (51), with M̄ = M̄max, such that the two
intersection points also belong to the top line of the hexagon,
as follows:{

M̄max =
√
3L̄ + 3min(b− e,E − b)

M̄max = −
√
3L̄ + 3min(c− e,E − c)

Therefore, the normalized roll torque is found to be

L̄ =

√
3
2

[min(c− e,E − c) − min(b− e,E − b)] . (66)

1) CASE 1: 1
3 ≥ e ≥

1−E
2 (⇐⇒ Tmin ≤ T ≤ T2)

In this range, according to (57), the parameter a is equal to

a =
1−e
2 , and M̄max =

3(1−3e)
4 according to (56). Because of

the constraint a + b + c = 1 and that in this case a =
1−e
2 ,

the parameter c is found to be c =
1+e
2 − b. Therefore, (66)

is rewritten as

L̄ =

√
3
2

[min(
1 − e
2

− b,
2E − e− 1

2
+ b)

· · · − min(b− e,E − b)]
(67)

The next step consists in evaluating (67) by taking into
account e ≤ c ≤ E and c =

1+e
2 − b, which leads to

e ≤
1+e
2 − b ≤ E , ⇐⇒ −e ≥ b −

1+e
2 ≥ −E ,

⇐⇒ −e+
1+e
2 ≥ b ≥ −E +

1+e
2 , yielding

1 + e− 2E
2

≤ b ≤
1 − e
2

. (68)

Since e ≤ b ≤ E , the parameter b is therefore bounded as
follows:

max
(
1 + e− 2E

2
, e
)

≤ b ≤ min
(
1 − e
2

,E
)

. (69)
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In addition, the constraints e ≥
1−E
2 (hypothesis of Case 1)

provides 2e ≥ 1−E ⇐⇒ e+e ≥ 1−E ⇐⇒ e+E ≥ 1−e,
and knowing that e ≤ E ⇐⇒ e + E ≤ 2E which leads to
1 − e ≤ e + E ≤ 2E . This last inequality indicates that
1 − e ≤ 2E which enables to conclude that

1 − e
2

≤ E H⇒ min
(
1 − e
2

,E
)

=
1 − e
2

. (70)

From (70), it is possible to write that 1−e
2 ≤ E ⇐⇒

1−e
2 +

e ≤ E + e ⇐⇒
1+e
2 − E ≤ e, which eventually leads to

1 + e− 2E
2

≤ e H⇒ max
(
1 + e− 2E

2
, e
)

= e , (71)

and thus the inequality (69) can be evaluated and the bounds
of b be further refined as

e ≤ b ≤
1 − e
2

. (72)

Because of the hypothesis of Case 1, i.e. e ≥
1−E
2 and (72),

the parameter b can be lower bounded as b ≥
1−E
2 . This is

equivalent to 1 − E ≤ 2b ⇐⇒ −2b ≤
2E−2
2 ⇐⇒ −b ≤

2E−2
2 + b which leads to 1−e

2 − b ≤
1−e
2 +

2E−2
2 + b and

finally

1 − e
2

− b ≤
2E − e− 1

2
+ b

H⇒ min
(
1 − e
2

− b,
2E − e− 1

2
+ b

)
=

1 − e
2

−b . (73)

The hypothesis of Case 1: e ≥
1−E
2 can be rewritten as 2e ≥

1 − E ⇐⇒ e + e ≥ 1 − E , ⇐⇒ e + E ≥ 1 − e,
⇐⇒

e+E
2 ≥

1−e
2 . With inequality (68), it can be concluded

that b ≤
E+e
2 , which is equivalent to 2b ≤ e+ E , and finally

b− e ≤ E − b H⇒ min (b− e,E − b) = b− e . (74)

Therefore, in view of (73) and (74), Eq. (67) is evaluated as:

L̄ =

√
3
2

[(
1 − e
2

−b
)

− (b− e)
]

=

√
3
4

(1 + e− 4b) .

Finally, the parameter b can be computed as a function of L̄
as follows:

b =
1 + e
4

−
L̄

√
3
.

Top Edge of the WCA Hexagon - Summary of Case 1: in
the thrust range such that e ≥

1−E
2 , the WCA parameters are:

a =
1 − e
2

, b =
1 + e
4

−
L̄

√
3

, c = 1 − a− b. (75)

2) CASE 2: 1 − 2E ≤ e ≤
1−E

2
In this case, according to (57), the coefficient a is equal to
a =

e+E
2 . The evaluation of the normalized roll torque L̄

in (66) proceeds by taking into account a + b + c = 1 and
a =

e+E
2 , leading to c =

2−E−e
2 − b, and therefore:

L̄ =

√
3
2

[
min

(
2−3e−E

2 − b, −2+e+3E
2 + b

)
− . . .

min (b− e,E − b)

]
(76)

The evaluation of (76) requires to take into account the fact
that

• e ≤ c ≤ E , yielding 2−e−3E
2 ≤ b ≤

2−3e−E
2

• and e ≤ b ≤ E , yielding

max
(
2 − e− 3E

2
, e
)

≤ b ≤ min
(
2 − 3e− E

2
,E
)

(77)

The evaluation of inequality (77) requires to distinguish the
following two subcases:

max
(
2 − e− 3E

2
, e
)

= e, if e+ E ≥ 2/3

=
2 − e− 3E

2
, if e+ E ≤ 2/3

min
(
2 − 3e− E

2
,E
)

=
2 − 3e− E

2
, if e+ E ≥ 2/3

= E, if e+ E ≤ 2/3

The objective is to evaluate (76). To this end, consider each
subcases.

a: CASE 2.1: e + E ≥
2
3

In this case, one verifies

e+ E ≥
2
3

⇐⇒ 3e+ 3E ≥ 2

⇐⇒ 2e ≥ 2 − e− 3E ⇐⇒ e ≥
2 − e− 3E

2

⇐⇒ 2E ≥ 2 − 3e− E ⇐⇒ E ≥
2 − 3e− E

2
and thus (77) is evaluated as follows:

e ≤ b ≤
2 − 3e− E

2
. (78)

Let us denote b0 =
2−e−3E

2 and b1 =
2−3e−E

2 , it is possible
to show that b1 − b0 = E − e > 0, thus b1 > b0. Because
b0 < e and b1 < E , this yields b0+b1

2 = 1 − e − E < e+E
2 .

Also b1 −
e+E
2 = 1 − 2e − E ≥ 0 because of the condition

of case 2: e ≤
1−E
2 . Eventually, this leads to the following

inequalities:

2 − e− 3E
2

≤ e ≤ 1 − E − e ≤
e+ E
2

≤
2 − 3e− E

2
(79)

which are graphically shown in Fig. 43.
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FIGURE 43. Graphical ranking of the boundaries of b given the conditions
of Case 2.1: 1 − 2E ≤ e ≤

1−E
2 and E + e ≥

2
3 .

FIGURE 44. Case 2.1: 1 − 2E ≤ e ≤
1−E

2 and e + E ≥
2
3 - Left: L̄ as a

function of b. Right: b as a function of L̄.

In addition, the term min (b− e,E − b) is evaluated as
follows:

min (b− e,E − b) = b− e, if b <
e+ E
2

= E − b, if b >
e+ E
2

. (80)

With the help of (79) and (80), Equation (76) can be finally
evaluated as follows:

L̄=



√
3
4

(−2 + 3e+ 3E) , e ≤ b ≤ 1 − e− E
√
3
4

(2−e− E − 4b) , 1 − e− E ≤ b ≤
e+ E
2

−

√
3
4

(−2 + 3e+ 3E) ,
e+ E
2

≤ b ≤
2 − 3e− E

2
(81)

The definition of L̄ in (81) is shown in Fig. 44 and allows to
find an expression for b ∈

[
1 − e− E, e+E2

]
:

b =
2 − e− E

4
− sign(L̄) min

(
|L̄|
√
3
,
−2 + 3e+ 3E

4

)
.

(82)

b: CASE 2.2: e + E ≤
2
3

In this case, e ≤
2−e−3E

2 = b0 and E ≤
2−3e−E

2 = b1,
we conclude that e+E

2 ≤
b0+b1

2 = 1 − e − E . It can also
be shown that e+E2 − b0 = −1 + e+ 2E ≥ 0 because of the
condition of case 2, i.e. 1−2E ≤ e. Thus, it can be established
that e ≤ b0 ≤

e+E
2 ≤

b0+b1
2 < E ≤ b1 . It is now possible to

FIGURE 45. Graphical ranking of the boundaries of b given the conditions
1 − 2E ≤ e ≤

1−E
2 and e + E ≤

2
3 .

FIGURE 46. Case 2.2: 1 − 2E ≤ e ≤
1−E

2 and e + E ≤
2
3 - Left: L̄ as a

function of b. Right: b as a function of L̄.

evaluate (77) as follows:

b0 ≤ b ≤ E . (83)

The goal is to evaluate (76), which requires to consider three
cases corresponding to b taking values in the three successive
intervals shown in Fig. 45 and summarized in (84).

L̄ =



√
3
4

(−2 + 3e+ 3E) , b0 ≤ b ≤
e+ E
2

−

√
3
4

(2−e− E − 4b) ,
e+ E
2

≤ b ≤ 1 − e− E

−

√
3
4

(−2 + 3e+ 3E) , 1 − e− E ≤ b ≤ E

(84)

The second line in (84) allows to find an expression for
b ∈

[ e+E
2 , 1 − e− E

]
, which is also shown in Fig. 46:

b =
2 − e− E

4
+ sign(L̄) min

(
|L̄|
√
3
,
2 − 3e− 3E

4

)
.

(85)

Top Edge of the WCA Hexagon - Summary of Case 2: in
the thrust range such that 1− 2E ≤ e ≤

1−E
2 , it is possible

to fuse the two subcases 2.1 and 2.2 by fusing (81) and (84),
which yields the WCA parameters:

a =
e+ E
2

b =
2 − e− E

4
− sign

(
L̄
(
e+ E −

2
3

))
min

(
|L̄|
√
3
,
|2 − 3e− 3E|

4

)
c = 1 − a−b (86)
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3) CASE 3: e ≤ 1 − 2E
The evaluation of the normalized roll torque L̄ in (66) pro-
ceeds by taking into account a + b + c = 1 and a =

1−E
2

according to (57), leading to c =
1+E
2 − b, and therefore:

L̄ =

√
3
2

min
(
1 − 2e+ E

2
− b, b−

1−E
2

)
− . . .

min (b− e,E − b)


(87)

The evaluation of (87) requires to take into account the fact
that

• e ≤ c ≤ E , yielding 1−E
2 ≤ b ≤

1+E
2 − e

• and e ≤ b ≤ E , yielding

max
(
1 − E
2

, e
)

≤ b ≤ min
(
1 − 2e+ E

2
,E
)

.

(88)

In order to evaluate (88), let us compute

1 − E
2

− e =
1 − 2e− E

2

=

≥0︷ ︸︸ ︷
1−e− 2E +

≥0︷ ︸︸ ︷
E − e

2
≥ 0

E −
1 − 2e+ E

2
=

−1 + 2e+ E
2

=

≤0︷ ︸︸ ︷
−1 + e+ 2E +

≤0︷ ︸︸ ︷
e− E

2
≤ 0

therefore 1−E
2 ≤ b ≤ E . In addition, let us evaluate

e+ E
2

−
1 − E
2

=

≤0︷ ︸︸ ︷
−1 + e+ 2E

2
⇐⇒

e+ E
2

≤
1 − E
2

E −
1 − E
2

=
3

E≥
1
3︷︸︸︷

E −1
2

≥ 0 ⇐⇒
1 − E
2

≤ E

E −
1 − e
2

=
−1 + e+ 2E

2
≤ 0 ⇐⇒ E ≤

1 − e
2

realizing that 1−e
2 is the middle point between 1−E

2 and
1−2e+E

2 yields e ≤
e+E
2 ≤

1−E
2 ≤ E ≤

1−e
2 ≤

1−2e+E
2 ,

which is shown in Fig. 47.

FIGURE 47. Graphical ranking of the boundaries of b given the condition
e ≤ 1 − 2E .

It becomes clear that min
(
1−2e+E

2 − b, b−
1−E
2

)
=

b −
1−E
2 and min (b− e,E − b) = E − b, and thus (87) is

FIGURE 48. Change of variables for the determination of parameters
a, b, c along the top-left edge of the WCA-reachable hexagon in the
{L̄ − M̄}-space for L̄ < 0.

evaluated as

L̄ =

√
3
2

(
b−

1 − E
2

− (E − b)
)

=
√
3
(
b−

1 + E
4

)
.

Top Edge of the WCA Hexagon - Summary of Case 3: in
the thrust range such that e ≤ 1 − 2E , the WCA parameters
are given by:

a =
1 − E
2

b =
1

√
3
L̄ +

1 + E
4

c = 1 − a− b. (89)

B. TOP-LEFT EDGE OF THE WCA-REACHABLE HEXAGON
IN THE {L̄ − M̄}-SPACE FOR L̄ < 0
In order to facilitate the determination of the parameters
a, b, c for any couple (L̄, M̄ ) on the top-left border of the
WCA-reachable hexagon in the {L̄ − M̄}-space shown in
Fig. 48, the following change of variable is introduced in
order that the results from Appendix B-A may be advanta-
geously reused:

¯̄L =
1
2
L̄ +

√
3
2
M̄

¯̄M = −

√
3
2
L̄ +

1
2
M̄ ,

[
¯̄L
¯̄M

]

=

 cos
π

3
sin π

3

− sin
π

3
cos π

3


︸ ︷︷ ︸

rotation of π
3

[
L̄
M̄

]
(90)

This corresponds to an anti-clockwise rotation of the axes
by an angle π

3 , which is equivalent to:
L̄ =

1
2

¯̄L −

√
3
2

¯̄M

M̄ =

√
3
2

¯̄L +
1
2

¯̄M .

(91)
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Interestingly, by replacing (91) in (51) and reordering the
equations, the following set of inequalities is obtained:

2| ¯̄M | ≤ 3 min {b− e,E − b}

|
√
3 ¯̄L −

¯̄M | ≤ 3 min {c− e,E − c}

|
√
3 ¯̄L +

¯̄M | ≤ 3 min {a− e,E − a} ,

(92)

where the variables ¯̄L, ¯̄M and weights b, c, a in (92) play
the role of L̄, M̄ and weights a, b, c, respectively, in (51).
Therefore, the weights (a, b, c) of the top-left edge of the
WCA-reachable hexagon will be deduced from the weights
(c, a, b) of the top edge of the WCA-reachable hexagon from
Appendix B-A.

1) CASE 1: 1
3 ≥ e ≥

1−E
2 ( ⇐⇒ Tmin ≤ T ≤ T2)

As stated above, the expression of b is found to be equal to the
expression of a in (75) of the top edge of the WCA-reachable
hexagon, which means that

b =
1 − e
2

.

Likewise, the expresion of c comes from the expression of b
of the top edge, yielding

c =
1 + e
4

−

¯̄L
√
3

=
1 + e
4

−
1

√
3

(
1
2
L̄ +

√
3
2
M̄

)
. (93)

From Section V-D and Fig. 19, the expression for M̄ is:

M̄ =
√
3L̄ +

3α
2

,with α = min (1 − 3e,E − e, 3E − 1)

(94)

In order to evaluate α, the following two differences are
computed:

E − e− (1 − 3e) = E + 2e− 1 ≥ 0 due to e

≥
1 − E
2

(case 1)

3E − 1 − (1 − 3e) = 3(e+ E) − 2 ≥ 0 due to e+ E ≥
2
3

Therefore, in the conditions of Case 1, α = 1 − 3e and M̄ =
√
3L̄ +

3
2 (1− 3e) is inserted in (93), which allows to express

the weight c as follows:

c =
−1 + 5e

2
−

2L̄
√
3

,

and finally

a = 1 − b− c .

2) CASE 2: 1 − 2E ≤ e ≤
1−E

2
In this thrust range, the weight b is equal to the weight a in
(86) of the top edge of the WCA hexagon, leading to

b =
e+ E
2

.

a: CASE 2.1: e + E ≥
2
3

In this case, the expression of c is found from (82) in which
b is replaced by c and L̄ is replaced by ¯̄L leading to:

c =
2 − e− E

4
− sign

(
¯̄L
)
min

(
|
¯̄L|

√
3
,
−2 + 3e+ 3E

4

)
.

With (90) and (94), one has

¯̄L =
1
2
L̄ +

√
3
2
M̄ =

1
2
L̄ +

√
3
2

(
√
3L̄ +

3α
2

)
,

with α = min (1 − 3e,E − e, 3E − 1) . (95)

In order to evaluate α, the following two differences are
computed:

E − e− (1 − 3e) = E + 2e− 1 ≤ 0 due to e

≤
1 − E
2

(case 2)

E − e− (3E − 1) = 1 − e− 2E ≤ 0 due to 1 − 2E ≤ e

Therefore, in the conditions of Case 2, α = E − e, and (95)
is evaluated to

¯̄L = 2L̄ +
3
√
3

4
(E − e) .

Case 2.1.1: L̄ ≥
−3

√
3

8 (E − e) ⇐⇒
¯̄L ≥ 0:

In this case, the evaluation of weight c is further calculated as

c =
2 − e− E

4
− min

(
¯̄L

√
3
,
−2 + 3e+ 3E

4

)

=
2 − e− E

4
− min

(
2

√
3
L̄ +

3
4
(E − e),

−2 + 3e+ 3E
4

)
=

1 + e− 2E
2

− min
(
2L̄
√
3
,
−1 + 3e

2

)
=

1 + e− 2E
2

+ max
(

−
2L̄
√
3
,
1 − 3e

2

)
Let us prove that:

max
(

−
2L̄
√
3
,
1 − 3e

2

)
= max

(
min

(
−

2L̄
√
3
,
−1 + 3E

2

)
,
1 − 3e

2

)
.

For this, it suffices to show that min
(
−

2L̄
√
3
, −1+3E

2

)
= −

2L̄
√
3
,

the proof starts with the condition of Case 2.1.1:

L̄ ≥
−3

√
3

8
(E − e)

−L̄ ≤
3
√
3

8
(E − e)

−
2

√
3
L̄ ≤

3
4

(E − e)

It is further possible to upper bound 3
4 (E − e) with −1+3E

2 ,
indeed −1+3E

2 −
3
4 (E − e) =

−2+3(e+E)
4 ≥ 0, because of
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condition of Case 2: e+E ≥
2
3 . Thus, −

2
√
3
L̄ ≤

3
4 (E − e) ≤

−1+3E
2 , leading to min

(
−

2L̄
√
3
, −1+3E

2

)
= −

2L̄
√
3
.

Conclusion on Case 2.1.1: Eventually, the weight c can be
calculated as:

c =
1 + e− 2E

2

+ max
(
min

(
−

2L̄
√
3
,
−1 + 3E

2

)
,
1 − 3e

2

)
.

(96)

Case 2.1.2: L̄ ≤
−3

√
3

8 (E − e) ⇐⇒
¯̄L ≤ 0:

In this case, the evaluation of weight c is further calculated
as

c =
2 − e− E

4
− (−1)min

(
−

¯̄L
√
3
,
−2 + 3e+ 3E

4

)

=
2 − e− E

4
+min

(
−

2
√
3
L̄−

3
4
(E − e),

−2 + 3e+ 3E
4

)
=

1 + e− 2E
2

+ min
(

−
2L̄
√
3
,
−1 + 3E

2

)
In order to evaluate min

(
−

2L̄
√
3
, −1+3E

2

)
, let us consider

the following two cases: Case 2.1.2.1:

min
(

−
2L̄
√
3
,
−1 + 3E

2

)
=

−1 + 3E
2

⇐⇒ −
2L̄
√
3

≥
−1 + 3E

2

⇐⇒ L̄ ≤ (1 − 3E)

√
3
4

It is also possible to prove that

(1 − 3E)

√
3
4

≤
−3

√
3

8
(E − e) ≤ 0 ,

because

−3
√
3

8
(E − e) − (1 − 3E)

√
3
4

=

√
3
8

(3(e+ E) − 2)︸ ︷︷ ︸
≥0, as e+E≥

2
3 (Case 2.1)

.

It is also possible to show that

1 − 3e
2

≤
3
4

(E − e) ≤
−1 + 3E

2
(97)

because
−1 + 3E

2
−

1 − 3e
2

= −2 + 3(e+ E) ≥ 0︸ ︷︷ ︸
as in Case 2.1: e+E≥

2
3

and
1
2

(
1 − 3e

2
+

−1 + 3E
2

)
=

3
4

(E − e)︸ ︷︷ ︸
middle point of

[
1−3e
2 , −1+3E

2

]
Conclusion on Case 2.1.2.1:

min
(

−
2L̄
√
3
,
−1 + 3E

2

)

=
−1 + 3E

2

= max
(

−1 + 3E
2

,
1 − 3e

2

)
= max

(
min

(
−

2L̄
√
3
,
−1 + 3E

2

)
,
1 − 3e

2

)
And finally, the weight c from (98) can be calculated as:

c =
1 + e− 2E

2

+ max
(
min

(
−

2L̄
√
3
,
−1 + 3E

2

)
,
1 − 3e

2

)
.

(98)

Case 2.1.2.2: (1 − 3E)
√
3
4 ≤ L̄ ≤

−3
√
3

8 (E − e):
In this case, the condition of Case 2.1.2.2 is equivalent to:

3
4
(E − e) ≤

−2L̄
√
3

≤
−1 + 3E

2

Therefore, it can be concluded that

min
(

−
2L̄
√
3
,
−1 + 3E

2

)
= −

2L̄
√
3

≥
3
4
(E − e) ≥

1 − 3e
2︸ ︷︷ ︸

according to (97)

= max
(
min

(
−

2L̄
√
3
,
−1 + 3E

2

)
,
1 − 3e

2

)
Therefore the evaluation of the weight c from (98) is

c =
1 + e− 2E

2
+ min

(
−

2L̄
√
3
,
−1 + 3E

2

)
=

1 + e− 2E
2

+ max
(
min

(
−

2L̄
√
3
,
−1 + 3E

2

)
,
1 − 3e

2

)
.

Finally, all the different cases of Case 2.1 are summarized
in a single equation, as follows

c=
1 + e− 2E

2
+max

(
min

(
−
2L̄
√
3
,
−1+3E

2

)
,
1 − 3e

2

)
,

which is shown in Fig. 49.

b: CASE 2.2: e + E ≤
2
3

From (85), by replacing b by c and L̄ by ¯̄L, the expression of
the weight c is as follows:

c =
2 − e− E

4
+ sign

(
¯̄L
)
min

(
|
¯̄L|

√
3
,
2 − 3e− 3E

4

)
,

with ¯̄L = 2L̄ +
3
√
3

4 (E − e) .
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FIGURE 49. Top-left edge of the WCA-reachable hexagon, Case 2.1:
1 − 2E ≤ e ≤

1−E
2 and e + E ≥

2
3 - Left: hierarchy of key values involved in

this case. Right: Weight c as a function of L̄.

Case 2.2.1: L̄ ≥
−3

√
3

8 (E − e) ⇐⇒
¯̄L ≥ 0: In this case,

the evaluation of weight c is further calculated as

c =
2 − e− E

4

+ min

(
1

√
3

(
2L̄ +

3
√
3

4
(E − e)

)
,
2 − 3e− 3E

4

)
=

2 − e− E
4

+
3
4

(E − e)

+ min
(

2
√
3
L̄,

2 − 3e− 3E − 3(E − e)
4

)
=

1 − 2e+ E
2

+ min
(

2
√
3
L̄,

1 − 3E
2

)
=

1 − 2e+ E
2

− max
(

−
2

√
3
L̄,

−1 + 3E
2

)
Case 2.2.2: L̄ ≤

−3
√
3

8 (E − e) ⇐⇒
¯̄L ≤ 0:

In this case, the evaluation of weight c is further calcu-
lated as

c =
2 − e− E

4

− min

(
1

√
3
(−2L̄ −

3
√
3

4
(E − e)),

2 − 3e− 3E
4

)
=

2 − e− E
4

+
3
4

(E − e)

− min
(

−2L̄
√
3

,
2 − 3e− 3E

4
−

3
4

(E − e)
)

=
1 − 2e+ E

2
− min

(
−2L̄
√
3

,
1 − 3e

2

)
Above Cases 2.2.1 and 2.2.2 can be summarized in a single
equation, as follows

c =
1 − 2e+ E

2
− min

(
max

(
−2L̄
√
3

,
−1 + 3E

2

)
,
1 − 3e

2

)
which is also equivalent to:

c =
1 − 2e+ E

2
− max

(
min

(
−2L̄
√
3

,
1 − 3e

2

)
,
−1 + 3E

2

)
and which is shown in Fig. 50.

Proof: First of all, it can be shown that

−
√
3

4
(1 − 3e) ≤

−3
√
3

8
(E − e)

≤

√
3
4

(1 − 3E) ≤ 0

because
√
3
4

(1 − 3E) −
−3

√
3

8
(E − e) =

√
3
8

(2 − 3e− 3E)︸ ︷︷ ︸
≥0 as e+E≤

2
3

−3
√
3

8
(E − e) −

√
−3
4

(1 − 3e) =

√
3
8

(2 − 3e− 3E)︸ ︷︷ ︸
≥0 as e+E≤

2
3

and equivalently, the following inequality also holds
−1 + 3E

2
≤

3
4
(E − e) ≤

1 − 3e
2

In Case 2.1.1, two subcases can be distinguished

• If −3
√
3

8 (E − e) ≤ L̄ ≤
−

√
3

4 (−1 + 3E): In this
case, −1+3E

2 ≤
−2L̄
√
3

≤
3
4 (E − e) ≤

1−3e
2 . Thus,

min(−2L̄
√
3

, 1−3e
2 ) =

−2L̄
√
3
, and max(−2L̄

√
3

, −1+3E
2 ) =

−2L̄
√
3

leading to

max(
−2L̄
√
3

,
−1 + 3E

2
)

= min(
−2L̄
√
3

,
1 − 3e

2
)

= min
(
max(

−2L̄
√
3

,
−1 + 3E

2
),
1 − 3e

2

)
• If L̄ ≥

−
√
3

4 (−1 + 3E):
This is equivalent to −2L̄

√
3

≤
−1+3E

2 Therefore,

max(
−2L̄
√
3

,
−1 + 3E

2
)

=
−1 + 3E

2

= min(
−1 + 3E

2
,
1 − 3e

2
)︸ ︷︷ ︸

as −1+3E
2 ≤

1−3e
2

= min
(
max(

−2L̄
√
3

,
−1 + 3E

2
),
1 − 3e

2

)
In Case 2.2.2, two subcases can be distinguished

• If L̄ ≤
−

√
3

4 (1 − 3e), this means that −2L
√
3

≥
1−3e
2 , thus

max(
−2L
√
3

,
−1 + 3E

2
)

=
−2L
√
3

as
−2L
√
3

≥
1 − 3e

2
≥

−1 + 3E
2

min(
−2L
√
3

,
1 − 3e

2
)

= min
(
max(

−2L
√
3

,
−1 + 3E

2
),
1 − 3e

2

)
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FIGURE 50. Top-left edge of the WCA-reachable hexagon, Case 2.2:
1 − 2E ≤ e ≤

1−E
2 and e + E ≤

2
3 - Left: hierarchy of key values involved in

this case. Right: Weight c as a function of L̄.

• If −
√
3

4 (1 − 3e) ≤ L̄ ≤
−3

√
3

8 (E − e), this means that

−1 + 3E
2

≤
3
4
(E − e) ≤

−2L̄
√
3

≤
1 − 3e

2

and therefore

min
(

−2L
√
3

,
1 − 3e

2

)
= min(max(

−2L
√
3

,
−1 + 3E

2
)︸ ︷︷ ︸

=
−2L
√
3

≥
−1+3E

2

,
1 − 3e

2
)

■

3) CASE 3: e ≤ 1 − 2E
The value of weight b is equal to the value of a in (89) in the
top edge of the WCA-reachable hexagon, thus

b =
1 − E
2

.

From (89), by replacing b by c and replacing L̄ by ¯̄L, the
weight c is obtained as follows

c =
1

√
3

¯̄L +
1 + E
4

From (90), one has ¯̄L =
1
2 L̄ +

√
3
2 M̄ and from (94) the

expression of M̄ is found with α = 3E − 1 (also see (56)),
which allows to complete the evaluation of c as follows:

c =
1

√
3

(
2L̄ +

3
√
3

4
α

)
+

1 + E
4

=
2L̄
√
3

+
−1 + 5E

2
.

C. TOP-RIGHT EDGE OF THE WCA-REACHABLE HEXAGON
IN THE {L̄ − M̄}-SPACE FOR L̄ > 0
In order to facilitate the determination of the parameters
a, b, c for any couple (L̄, M̄ ) on the top-right border of the
WCA-reachable hexagon in the {L̄ − M̄}-space shown in

FIGURE 51. Change of variables for the determination of parameters
a, b, c along the top-right edge of the WCA-reachable hexagon in the
{L̄ − M̄}-space for L̄ > 0.

Fig. 51, the following change of variable is introduced in
order that the results from Appendix B-A may be advanta-
geously reused:

¯̄
L̄ =

1
2
L̄ −

√
3
2
M̄

¯̄
M̄ =

√
3
2
L̄ +

1
2
M̄ ,

[
¯̄
L̄
¯̄
M̄

]

=

 cos
π

3
− sin

π

3
sin

π

3
cos

π

3


︸ ︷︷ ︸

rotation of −
π
3

[
L̄
M̄

]
(99)

This corresponds to a clockwise rotation of the axes by an
angle −

π
3 , which is equivalent to:

L̄ =
1
2

¯̄
L̄ +

√
3
2

¯̄
M̄

M̄ = −

√
3
2

¯̄
L̄ +

1
2

¯̄
M̄ .

(100)

Interestingly, by replacing (100) in (51) and reordering the
equations, the following set of inequalities is obtained:

2|
¯̄
M̄ | ≤ 3 min {c− e,E − c}

|
√
3
¯̄
L̄ −

¯̄
M̄ | ≤ 3 min {a− e,E − a}

|
√
3
¯̄
L̄ +

¯̄
M̄ | ≤ 3 min {b− e,E − b} ,

(101)

where the variables
¯̄
L̄,

¯̄
M̄ and weights c, a, b in (101) play

the role of L̄, M̄ and weights a, b, c in (51). Therefore, the
weights (c, a, b) of the top-right edge of the WCA-reachable
hexagon will be deduced from the weights (a, b, c) of the top
edge of the WCA-reachable hexagon from Appendix B-A.

1) CASE 1: 1
3 ≥ e ≥

1−E
2 ( ⇐⇒ Tmin ≤ T ≤ T2)

As stated above, the expression of c is found to be equal to the
expression of a in (75) of the top edge of the WCA-reachable
hexagon, which means that

c =
1 − e
2

.
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Likewise, the expression of a comes from the expression of b
in (75) of the top edge, yielding

a =
1 + e
4

−

¯̄
L̄

√
3

=
1 + e
4

−
1

√
3

(
1
2
L̄ −

√
3
2
M̄

)
.

From Section V-D and Fig. 19, there is an expression for M̄
that can be exploited:

M̄ = −
√
3L̄ +

3α
2

, with α = min (1 − 3e,E − e, 3E − 1) .

In order to evaluate α, the following two differences are
computed:

E − e− (1 − 3e) = E + 2e− 1 ≥ 0 due to e

≥
1 − E
2

(case 1)

3E − 1 − (1 − 3e) = 3(e+ E) − 2 ≥ 0 due to e+ E ≥
2
3

Therefore, in the conditions of Case 1, α = 1 − 3e and M̄ =

−
√
3L̄ +

3
2 (1 − 3e) and the expression for the weight a is

evaluated as follows:

a = (1 − 2e) −
2

√
3
L̄

and finally the weight b is computed as follows:

b = 1 − a− c =
−1 + 5e

2
+

2
√
3
L̄ .

2) CASE 2: 1 − 2E ≤ e ≤
1−E

2
In this thrust range, the weight c is equal to the weight a in
(86) of the top edge of the WCA hexagon, leading to

c =
e+ E
2

.

a: CASE 2.1: e + E ≥
2
3

In this case, the expression of a is found from (82) in which

b is replaced by a and L̄ is replaced by
¯̄
L̄ leading to:

a =
2 − e− E

4
− sign

(
¯̄
L̄
)
min

 |
¯̄
L̄|

√
3
,
−2 + 3e+ 3E

4

 .

With (99), one has

¯̄
L̄ =

1
2
L̄ −

√
3
2
M̄ =

1
2
L̄ −

√
3
2

(
−

√
3L̄ +

3α
2

)
,

with α = min (1 − 3e,E − e, 3E − 1) . (102)

In order to evaluate α, the following two differences are
computed:

E − e− (1 − 3e) = E + 2e− 1 ≤ 0 due to e

≤
1 − E
2

(case 2)

E − e− (3E − 1) = 1 − e− 2E ≤ 0 due to 1 − 2E ≤ e

Therefore, in the conditions of Case 2, α = E − e, and (102)
is evaluated to

¯̄
L̄ = 2L̄ −

3
√
3

4
(E − e) .

Case 2.1.1: L̄ ≥
3
√
3

8 (E − e) ⇐⇒
¯̄
L̄ ≥ 0:

In this case, the evaluation of weight a is further calcu-
lated as

a =
2 − e− E

4

− min

(
1

√
3

(
2L̄ −

3
√
3

4
(E − e)

)
,
−2 + 3e+ 3E

4

)
=

2 − e− E
4

+
3
4

(E − e)

− min
(

2
√
3
L̄,

−2 + 3e+ 3E + 3(E − e)
4

)
=

1 − 2e+ E
2

− min
(

2
√
3
L̄,

−1 + 3E
2

)

The weight b is computed by

b = 1 − c− a = 1 −
e+ E
2

−
1 − 2e+ E

2

+ min
(

2
√
3
L̄,

−1 + 3E
2

)
=

1 + e− 2E
2

+ min
(

2
√
3
L̄,

−1 + 3E
2

)
Case 2.1.2: L̄ ≤

3
√
3

8 (E − e) ⇐⇒
¯̄
L̄ ≤ 0:

In this case, the evaluation of weight a is further calcu-
lated as

a =
2 − e− E

4

+ min

(
1

√
3
(−2L̄ +

3
√
3

4
(E − e)),

−2 + 3e+ 3E
4

)
=

2 − e− E
4

+
3
4

(E − e)

+ min
(

−2L̄
√
3

,
−2 + 3e+ 3E

4
−

3
4

(E − e)
)

=
1 − 2e+ E

2
+ min

(
−2L̄
√
3

,
−1 + 3e

2

)
=

1 − 2e+ E
2

− max
(
2L̄
√
3
,
1 − 3e

2

)
The weight b is computed by

b = 1 − c− a = 1 −
e+ E
2

−
1 − 2e+ E

2

+ max
(
2L̄
√
3
,
1 − 3e

2

)
=

1 + e− 2E
2

+ max
(
2L̄
√
3
,
1 − 3e

2

)
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Summary of Top-Right Edge, Case 2.1: Regrouping the
expressions of a and b of Cases 2.1.1 and 2.1.2 yields

a =
1 − 2e+ E

2
− max

(
min(

2L̄
√
3
,
−1 + 3E

2
),
1 − 3e

2

)
b =

1 + e− 2E
2

+ max
(
min(

2L̄
√
3
,
−1 + 3E

2
),
1 − 3e

2

)
c =

e+ E
2

Proof: In the conditions of Case 2.1, it is easily possible
to show that 1−3e

2 ≤
3
4 (E − e) ≤

−1+3E
2 . In case 2.1.1, L̄ ≥

3
√
3

8 (E − e), which is equivalent to 2
√
3
L̄ ≥

3
4 (E − e). Two

subcases can be distinguished:
•

3
4 (E − e) ≤

2
√
3
L̄ ≤

−1+3E
2 : In this case,

min(
2

√
3
L̄,

−1 + 3E
2

)

=
2

√
3
L̄

= max(
2

√
3
L̄,

1 − 3e
2

)

= max(min(
2

√
3
L̄,

−1 + 3E
2

),
1 − 3e

2
)

•
2

√
3
L̄ ≥

−1+3E
2 : In this case

min(
2

√
3
L̄,

−1 + 3E
2

)

=
−1 + 3E

2

= max(
−1 + 3E

2
,
1 − 3e

2
)

= max(min(
2

√
3
L̄,

−1 + 3E
2

),
1 − 3e

2
)

In case 2.1.2, L̄ ≤
3
√
3

8 (E− e), which is equivalent to 2
√
3
L̄ ≤

3
4 (E − e). Two subcases can be distinguished:

•
1−3e
2 ≤

2
√
3
L̄ ≤

3
4 (E − e) ≤

−1+3E
2 : In this case,

max(
2

√
3
L̄,

1 − 3e
2

)

=
2

√
3
L̄

= max(min(
2

√
3
L̄,

−1 + 3E
2

),
1 − 3e

2
)

•
2

√
3
L̄ ≤

1−3e
2 : In this case

max(
2

√
3
L̄,

1 − 3e
2

)

=
1 − 3e

2

= max(min(
2

√
3
L̄,

−1 + 3E
2

),
1 − 3e

2
)

■

b: CASE 2.2: e + E ≤
2
3

From (85), by replacing b by a and L̄ by
¯̄
L̄, the expression of

the weight a is as follows:

a =
2 − e− E

4
+ sign

(
¯̄
L̄
)
min

 |
¯̄
L̄|

√
3
,
2 − 3e− 3E

4

 .

Similarly to Case 2.1, it is possible to compute the expression
of the dynamic weights as follows

a =
1 + e− 2E

2
+ min

(
max(

2L̄
√
3
,
−1 + 3E

2
),
1 − 3e

2

)
b =

1 − 2e+ E
2

− min
(
max(

2L̄
√
3
,
−1 + 3E

2
),
1 − 3e

2

)
c =

e+ E
2

3) CASE 3: e ≤ 1 − 2E
The value of weight c is equal to the value of a in (89) in the
top edge of the WCA-reachable hexagon, thus

c =
1 − E
2

.

From (89), by replacing b by a and replacing L̄ by
¯̄
L̄, the

weight a is obtained as follows

a =
1

√
3

¯̄
L̄ +

1 + E
4

=
1

√
3
(
1
2
L̄ −

√
3
2
M̄ ) +

1 + E
4

=
1

√
3

(
2L̄ −

3
√
3

4
α

)
+

1 + E
4

,with α

= 3E − 1 , see (56)

=
2L̄
√
3

+ 1 − 2E

And finally, the weight b is computed as

b = 1 − c− a = 1 −

(
1 − E
2

)
−

2L̄
√
3

− (1 − 2E)

=
−1 + 5E

2
−

2L̄
√
3
.

D. BOTTOM, BOTTOM-LEFT, BOTTOM-RIGHT EDGES OF
THE WCA-REACHABLE HEXAGON IN THE {L̄ − M̄}-SPACE
The expressions for the dynamic weights (a, b, c) for the bot-
tom (B), bottom-right (BR), bottom-left (BL), are obtained
by inverting the sign of L̄ and M̄ in the formula of (a, b, c)
for the top (T), top-left (TL), top-right (TR) edges, respec-
tively, of the WCA-reachable hexagon in the {L̄ − M̄}-space,
as shown in Fig. 52.
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FIGURE 52. Definition of the edges of the WCA-reachable hexagon in the
{L̄ − M̄}-space.

1) CASE 1: e ≥
1−E

2
• On the T and B edges:

a =
1 − e
2

b =
1 + e
4

− sign(M̄ )
L̄

√
3
c = 1−a− b

• On the TL and BR edges:

b =
1 − e
2

c =
−1 + 5e

2
+

2|L̄|
√
3
a = 1−b− c

• On the TR and BL edges:

c =
1 − e
2

a = 1 − 2e−
2|L̄|
√
3
b = 1−c− a

2) CASE 2: 1 − 2E ≤ e ≤
1−E

2
On the T and B edges:

a =
e+ E
2

c = 1−a−b

b =
2 − e− E

4
− sign

(
(e+ E −

2
3
)L̄M̄

)
min

(
|L̄|
√
3
,
|3e+ 3E − 2|

4

)
On the TL and BR edges:

b =
e+ E
2

a = 1−b−c

c =



1 + e− 2E
2

+ max(min(
2|L̄|
√
3

,
−1 + 3E

2
),
1 − 3e

2
),

if e+ E ≥
2
3

1 − 2e+ E
2

− min(max(
2|L̄|
√
3

,
−1 + 3E

2
),
1 − 3e

2
),

otherwise

On the TR and BL edges:

c =
e+ E
2

b = 1−c−a

a =



1 − 2e+ E
2

− max(min(
2|L̄|
√
3

,
−1 + 3E

2
),
1 − 3e

2
),

if e+ E ≥
2
3

1 + e− 2E
2

+ min(max(
2|L̄|
√
3

,
−1 + 3E

2
),
1 − 3e

2
),

otherwise

3) CASE 3: e ≤ 1 − 2E
• On the T and B edges:

a =
1 − E
2

b =
1 + E
4

+ sign(M̄ )
L̄

√
3
c = 1−a− b

• On the TL and BR edges:

b =
1 − E
2

c =
−1 + 5E

2
−

2|L̄|
√
3
a = 1−b− c

• On the TR and BL edges:

c =
1 − E
2

a = 1 − 2E +
2|L̄|
√
3
b = 1−c− a
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