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ABSTRACT Vegetation indexes help perform precision farming because they provide useful information
regarding moisture, nutrient content, and crop health. Primary sources of those indexes are satellites and
unmanned aerial vehicles equipped with expensive multispectral sensors. Reducing the price of obtaining
such information would increase the availability of precision farming. Several studies have proposed deep
neural network methods to estimate the indexes from RGB color images. However, these studies report
relatively large errors for mature plants, when highly non-linear relationships between image RGB bands and
vegetation indexes arise. One could applymultilayer random forest-basedmodels (Deep Forests) to solve this
problem, but they have limited discriminative power and ability on catching non-linear relationships between
image features. The cornerstone of the Deep Forests is that at each layer they enrich original features with
embeddings containing empiric class probabilities from previous layers, although these probabilities deliver
limited information. In this paper, we propose methods, which combine ideas of Deep Forests, Random
Forests of multivariate trees, and global pruning of Random Forests to tackle these problems. We applied
oblique (linear) and kernel (non-linear) trees as basic classifiers of the Deep Forest to improve discriminative
power. We also utilized a method to refine Random Forests with a global loss optimization. This method
helps to generate more expressive embeddings at each layer of the Deep Forest, which significantly improves
results of the data analysis. In the experiments, we compared those methods with AlexNet and ResNet-based
neural networks on several image classification datasets as well as on the NDVI prediction task. The
experiments on image classification show that the proposed Deep Forest-based methods provide competitive
results on datasets with small andmedium size of feature-set. The results of the NDVI prediction task indicate
that these methods are robust to senescence of plants and outperform neural network-based solutions.

INDEX TERMS Random forests, deep forest, oblique trees, multivariate trees, forest refinement, NDVI,
RGB images.

I. INTRODUCTION
Vegetation indexes help estimate many crucial agricultural
indicators such as moisture, nutrient content, and crop health.
One of the most frequently used vegetation indexes is NDVI
(normalized difference vegetation index). Primary sources
of those indexes are satellites and unmanned aerial vehi-
cles (UAV) equipped with expensive multispectral sensors.
Reducing the price of obtaining such information would
increase the availability of precision farming for small farms.
Several studies have proposed deep neural network methods
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to estimate the indexes from RGB color images. However,
as it is pointed out in [1] the framework provides accurate
results only for immature plants, and the reason is the
highly non-linear relationship between RGB colors and veg-
etation for senescent plants. Consequently, the ‘‘frequency
bias’’ phenomenon in neural network training comes into
effect [2], [3].

In this paper, we propose to utilize a Deep Forest
to deal with that issue because this approach does not
use smooth models, but at the same time, it provides
competitive results on image processing [4]. Deep forest uses
a cascade structure to perform layer-by-layer processing of
raw features. However, several studies report that Deep Forest
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has a limited ability to catch dependencies between features,
which can lead to poor performance in some cases [5]. It also
uses Extremely RandomForests to control over-fitting, which
in practice can lead to unstable results. We modified Deep
Forest to overcome those issues as follows:

1) The use of Random Forests of decision trees with
multivariate oblique or non-linear splits as the basic
classification algorithm allows considering the rela-
tionships between the features of the analyzed objects,
reducing the number of data processing layers and,
consequently, improving performance [6], [7].

2) Instead of using Extremely Random Forests to control
over-fitting, we apply refinement and pruning from
study [8]. This approach also helps to generate more
useful layer-level feature embeddings because the
refinement utilizes a regularized ensemble-level loss
optimization. This way we increase both the accuracy
and the stability of the Deep Forest method.

II. RELATED WORK
Visual analysis of land is the primary tool of precision
agriculture. For example, vegetation indices obtained by the
analysis of multispectral images help monitor crop health.
Paper [9] proposes a remote sensing recognition method
based on a convolutional neural network. They combine
4 channels (red, green, blue, and near-infrared) to reveal the
changing features of the landslide. Finally, the convolutional
neural network was applied to solve the problem. The
experiments showed that the method is more accurate than
traditional methods. The high cost of multispectral cameras
led researchers to focus on the analysis of pure RGB
color images. The paper [1] uses a convolutional neural
network to reveal the non-linear relationship between a color
land image and related vegetation indexes. This network
obtains vegetation indexes of various crops. Experiment
results show that the obtained values agree with ground-
estimated indexes. However, they also revealed that the
method provides accurate outputs only until appearance of
senescence.

Paper [10] proposes a deep-learning-based method to
generate a multi-spectral (MSI) data from pure RGB images.
They first reproduced RGB images from multi-spectral ones
through a renderingmodel, which was built with a benchmark
hyperspectral image dataset. Then, they used the obtained
RGB and MSI pairs to train a reconstruction model. They
revealed that the mean relative absolute error and spectral
information divergence losses are the most effective in terms
of accuracy and robust to different seasons and plant species.
They also performed estimation of NDVI index based on
the obtained multispectral values to assess the reliability of
the proposed method to solve practical problems. They used
HSCNN+ convolution networks with residual connections as
the model to recover MSI from RGB. This model combines
multiple convolution layers with residual connections. It is
proven to provide accurate hyperspectral predictions based

on RGB inputs [11]. In this paper we also tested residual
and convolutional-based networks as competitive baselines
for the proposed method.

Paper [12] shows a method to estimate vegetation indexes
with a cheap RGBN (RGB + near infrared) camera and
machine learning algorithms. Experiment results provide
a comparison of the results obtained with a multispectral
camera and the predictions of the RGBN camera-based
solution to analyze corns under different nitrogen and water
treatments. They show that the proposed approach achieved
high performance at estimating vegetation indexes with the
machine learning model. Study [13] proposes a method to
process high-resolution drone images consisting of RGB
and near-infrared bands to detect vegetation indexes. The
experimental results provide insight into applying drones and
neural networks as a solution for precision agriculture.

In situations where there is no direct access to UAVs
or specific agricultural areas, researchers often use open
information from Sentinel satellites. For example, in the
paper [14] Sentinel 2 data and a multilayer perceptron
are used to classify a forest structure. The researchers
utilized field surveys to obtain forest vertical structures of a
particular forest region. Finally, they built the forest vertical
classification map, the perceptron based on the Sentine’s
RGB images. The evaluation shows that the model achieves
fair level of classification accuracy.

All the studies above utilize neural networks to estimate
vegetation levels. However, as it was pointed out above
the framework provides accurate results only for immature
plants. We believe the reason is that the ‘‘frequency bias’’
phenomenon of training comes into effect [3]. Besides, as is
pointed out in [4], modern deep neural network require a lot
of labeled data to be trained reliably.

One of the possible solutions to that problem is to use
Random Forest-based ensembles. These models are widely
utilized in different areas because they achieve more robust
and stable performance than others [15]. Deep Forest is
a multilayer cascade model based on non-differentiable
modules (Random Forests) in contrast to deep neural
networks. Deep forests were initially proposed to solve
classification tasks [4]. Paper [16] proposes a modified Deep
Forest where prediction values of the input layer forest
module are processed to obtain the layer regression vector,
which is combined with the raw feature vector as the input
of the middle layer forest model. This method has the
advantages of simple hyper-parameter setting criteria.

Paper [17] presents a detailed analysis that shows Deep
Forests have sufficient model complexity with enough depth,
and the cascaded structure boosts the feature representations
layer by layer instead of the predictions. Many experiments
show that Deep Forest has comparable performance to deep
neural networks; therefore, it has been applied to solve many
real-world data and text mining problems. Primary efforts
in developing this approach focus on tuning it to solve
various machine learning settings. For example, study [18]
proposes a Deep Forest algorithm for multi-instance learning.
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The experiments show this algorithm achieves competitive
results. Yang with colleagues present a multi-label learning
Deep Forest algorithm, which utilized measure-aware feature
re-use and layer growth to solve a multi-label learning
problem [19]. Paper [20] presents an adaptive weighted Deep
Forest. The training procedure of this forest assigns weights
to each training sample at each level of the model just like the
AdaBoost approach.

Although Deep Forests show competitive results on many
problems, there is still room for improvements related to
considering various feature interactions.

For example, Chen et al. argue that the prediction-based
feature representation of Deep Forest is a critical deficiency
because the predicted class probabilities deliver very limited
information [5]. They present a deep forest model that utilizes
high-order interactions of input features to generate more
informative and diverse feature representations. They created
a generalized version of Random Intersection Trees to reveal
stable high-order relationships and apply detected linear
combinations to transform them into hierarchical distributed
representations. With these relationship-based representa-
tions one does not need to store Random Forest [21]
models for the front layers, which improves computational
efficiency. The provided experiment results show that the
proposed forest achieves competitive classification scores
with significantly reduced time and memory costs.

However, the method above can catch only linear feature
combination, which may limit it performance on data with
high-order dependencies. Another way to catch those feature
interactions is to use more complex decision splits in
ensemble trees. Recent studies propose to use deep neural
networks as those complex models [22], [23], although, this
way we lack primary benefits when analyze non-smooth
dependencies. In this paper, we replaced standard Random
forests in the layers withmore complex forests of multivariate
trees to tackle this problem [7].

III. METHODS TO PREDICT NDVI
A. CO2 FOREST
CO2 Forest (Forest of Continuously OptimizedOblique trees,
CO2) [7] contains trees with multivariate oblique (linear)
splitters. In the CO2 Forest, decision stump training is defined
as a structured prediction problem with latent variables [24].
A convex-concave loss function is used to solve the problem.
Note that this optimization can be done by the gradient
method proposed in [25]. Although the loss function is an
upper bound of empirical risk, the ‘‘smoothness’’ of that loss
and tightness on the bound are affected by hyperparameters
and scale of the features. In practice, that means the method
requires thorough fine-tuining of the hyperparameters.

B. KERNEL FOREST
Kernel Forest is a Random Forest built from trees with
multivariate non-linear decision splitters [26]. In general, the
algorithm to train those trees utilizes the same top-down

induction as for ordinary CART trees [27]. The primary
difference is that it trains multivariate decision splitters
via solving a convex optimization problem. Namely, for
each splitter, the algorithm greedily finds a quasi-optimal
distribution of classes to subtrees (in terms of impurity
minimization) and then uses this distribution as labeled data
to train this splitter as an SVM-like binary classifier. They
use a margin re-scaling approach [24] to optimize both the
margin between subtree data and arbitrary impurity criteria
(Gini impurity, Information gain, etc.).

For each decision stump, parameters of the decision sur-
face are obtained with the following optimization problem:

a∗
= argmax

a
−
1
2

n∑
i=1

n∑
j=1

aiajK (xi, xj) +

n∑
i=1

ai, (1)

s.t.
n∑
i=1

ai
L(hi, −hi)

≤
C
n

(2)

where xi is features of the object with index i, hi ∈

{−1, +1} defines the target subtree for the sample with index
i, aij is the weight of the training sample i (non-zero for
the support vectors), L(hi, −hi) reflects the growth of the
impurity criterion in case of miss-classification, K (xi, xj) :

Rf
× Rf

→ R is a kernel function for objects with the
feature-set size f , C is the regularization term, and n is the
size of the training dataset.

C. KERNEL FOREST REGRESSOR
Many practical applications in agriculture such as vegetation
index detection require solving regression problems. Regres-
sors map object features to some target real vectors X → Rm

with m dimensions. In this study, we propose a way how to
modify the classification method from [26] (Kernel Forest) to
solve those problems. Thismethod utilizes standard top-down
induction of a decision tree, and at each step of this induction,
it performs training of a kernel-based decision stump.

In a regression tree, the decision stump assigns some real
vectors R1 and R2 to the left and right subtrees. The Kernel
Forest requires those assignments to be done before actual
training of the decision split. Therefore, we need to pick up
those values in such away as tominimize the average distance
between all the training samples lying at each subtree. In this
study, we utilized the K-Means clustering algorithm with
K = 2 to find those values. K-Means algorithm clusters
samples by separating them into groups of equal variance,
minimizing within-cluster sum-of-squares, i.e. it fits out goal.
Finally, we use the found cluster centroids as values of
R1 and R2.

Another feature of the method [26] is that it scales the
training sample weights accordingly to their effect on the
impurity criterion (Gini impurity, information gain, etc.).
In case of regression, we use the mean square error (MSE)
between all the training samples of a particular subtree h to
the values assigned to this subtree instead of impurity growth.
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FIGURE 1. Training of the input layer of the proposed algorithm (Deep Kernel Forest/Deep Oblique Forest, DKF/DOF).
The input image size is 20 × 20, the sliding window size is 10 × 10, and the number of classes is 3. The Kernel Forest
contains 800 leaves and pruning removes 100 of them.

Lets the subtree has n training samples and the assigned real
vector R ∈ Rm. Therefore, the criterion for this subtree is:

g(h) =
1
nm

n∑
i=1

m∑
j=1

(
Rj − yij

)2 (3)

D. DEEP OBLIQUE FORESTS AND DEEP KERNEL FORESTS
The method is a modification of the Deep Forest, in which
data is processed sequentially on several layers. The input
layer has the following structure (Fig. 1). In that layer, the
multi-grained scanning [4] generates a set of objects based
on each sample from the training set and all those generated
objects are labeled with the class of the original sample. For
example, let the input image has the size 20× 20, the sliding
window has the size 10 × 10, and the classification problem
has 3 classes. Multi-grained scanning generates 121 feature
vectors. These vectors are used to train a Random Kernel
Forest [26] or CO2 Forest [7], then the trained forest is refined
and pruned with the method from [8]. Suppose the forest has
800 leaves, and the pruning procedure left only 700 of them.
All the leaves have correspondent 3-dimensional synthetic
probability vectors generated with the Ren’s method [8].
Finally, those 700 vectors are utilized to generate 121 feature
vectors that are used as the input together with the original
features in the next layer.

The basic idea of that refinement procedure is to replace the
original class empirical probabilities stored in all tree leaves
of a pre-trained forest with the synthetic ones generated
by explicitly minimizing a global ensemble loss function.
Suppose the forest has T trees with 0 leaves on each tree.

Let 8 : Rf
→ {0, 1}T0 be a function that for any sample x

returns the binary vector, whose elements are 1 if x goes to
the corresponding decision tree leaf and 0 otherwise.

8(x) = (φ1(x), φ2(x), . . . , φT0(x)) (4)

Let matrixW with nclasses × T0 holds the class probabili-
ties for all the leaves of decision trees in the Forest.

W = (w1,w2, . . . ,wT0) (5)

Then the refined classifier has the following decision rule:

y = W ∗8(x) (6)

whereW ∗ is the matrix of refined class probabilities. It can be
foundwith the following SVM-like optimization on a training
set with size n.

W ∗
= argmin

W

1
2
||W ||

2
+
C
n

n∑
i=1

l(yi, ŷi),

s.t.yi = W8(x), ∀i ∈ [1, n], (7)

where C is a regularization term, and l(yi, ŷi) is a loss
function.

This approach helps consider various relationship between
ensemble tree leaves and improve discriminative power of the
Forest. However, the global optimization (expression 7) can
lead to over-fitting of the Forest. To tackle this we use a Ren’s
global pruning that merges the insignificant leaves to reduce
the number of model parameters. Two neighbor leaves are
considered insignificant if the norm of their synthetic class
probability vectors are close to zero.
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FIGURE 2. Difference in the feature generation in Deep Forest (left) and
Deep Kernel (Oblique) Forest (right).

After the pruning procedure, the Random Kernel Forest
or CO2 Forest is used to form embeddings of processed
samples for the next layer. These embeddings represent
the generated synthetic class probabilities from trees of
the kernel forest. The embeddings also include the original
features. In practice, as in the original study [4] we utilize
cross-validation to estimate the embeddings because it
reduces the bias of the obtained values. Fig. 2 highlights
difference in the feature generation procedure in Deep
Forest and Deep Kernel or Oblique Forests. Deep Kernel
or Oblique Forests allow obtaining less fragmented regions
in the original feature-set. The global refinement procedure
leads to forming more helpful embeddings for the next
layer.

The next layer has the same structure, except it does not
perform multi-grained scanning. The following layers can be
added to the model until accuracy scores on cross-validation
keep growing. Implementation of the proposed Deep Forest
modifications together with experimental code is presented
online [28].

E. CONVOLUTION NETWORK-BASED METHODS
In this study, we tested two deep neural networks as
a baseline. AlexNet is a deep convolutional neural net-
work [29]. The network contains four convolution layers,
three pooling layers, a dropout mechanism for regularization,
and a multilayer dense network to produce output (Fig. 3).
On the one hand, AlexNet has a few hidden layers, which
means it has limited discriminative power. On the other hand
it has a relatively small number of parameters, which makes
it applicable to analyze small datasets.

Deeper networks allow for more complex relationship
detection in various features and classes. Recent experiments
show that specialized residual networks like HSCNN+ pro-
vide accurate results inmulti-spectral data recovery from pure
RGB images. In this study, we focused on a simpler problem
of NDVI prediction, which can be done with more general
residual architectures. Namely, we applied ResNet neural
network [30] with 9 convolutional layers, an average pooling
layer, dropout mechanism, and an output dense network.
ResNet also contains shortcut residual connections between

FIGURE 3. Architectures of the AlexNet (left) and ResNet-11 (right)
networks.

convolution layers which helps to speed the training up and
tackle gradient vanishing in large number of layers [31].

For the classification tasks we used Triplet loss [32]
because it was reported as one of the most suitable for image
classification tasks in several studies [33], [34]. The NDVI
prediction is a regression problem, therefore we used l2-loss,
presuming that the error is distributed normally.

In both models, the output dense layer outputs an
embedding with class probabilities for the classification
setting, and a single real value for the regression.

F. COMPLEXITY ANALYSIS
a: NEURAL NETWORK MODELS
Table 1 shows the training complexity scores for the
neural networks and their particular layers. Generally, these
models contain a 2 layer full-connected (dense) network,
convolutional, and pooling layers. Namely, for AlexNet we
have 4 convolutional and 3 pooling layers and one 2 layer
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dense network. For the ResNet-11 we have 9 convolutional
layers with residual connections, one pooling layer, and one
dense network with a hidden layer. As far as the training
loss for neural networks is generally non-convex, one cannot
guarantee a convergence of the training process to the global
optimum; therefore, we just set a fixed number of training
epochs p.
The training complexity for convolution and dense net-

works are well-known from literature [35], [36]. We stick the
following ideas to obtain the complexity for the pooling layer.
Pooling layers perform a finding of maximum or average
value inside the filter with size k for each sample from a
dataset with size m and input size f. In total, it processes
f−k + 1 filters, which is no bigger than f.
Although the training complexity for both networks is

generally linear from the number of samples, it is polynomial
from the number of features and sizes of layers. Therefore, the
number of calculations at each layer ∼ kfd is pretty large for
image classification and regression tasks, it can be compared
to the size of datasets. Besides, the number of epochs p to
perform training can also be pretty large (30-100).

b: DEEP FORESTS
Table 1 also shows the train complexity for the original
Deep Forest and the proposed modifications (Deep Oblique
Forest, Deep Kernel Forest). Training cost of Random Forests
linearly depends on the size of the dataset m. Besides, Deep
Forest performs k-fold cross-validation at each level to obtain
class probability estimates.

In general, kernel trees follow the same greedy procedure
to train as the univariate ones. However, the cost of decision
stump training, in that case, depends on the split type (linear
or more complex one) and on the particular optimization
method used to train the stump. Therefore, for the Deep
Kernel Forest with oblique decision splits the training cost is
linear. Table 1 shows the training cost linearly depends on the
number of training samples m; therefore, Deep Kernel Forest
with oblique decision splits can be trained on large data sets
effectively.

For the Deep Kernel Forest with non-linear decision splits
there is square dependence between the training cost and the
size of the dataset. That means, Deep Kernel Forest with
non-linear decision splits can hardly be trained on large-
scale datasets. However, the training process of the Random
Forest can be parallelized effectively even at the level of
decision stumps, which means the training can be performed
with several CPUs on a distributed or a virtual cluster in a
cloud. Besides, the dependence from the size of feature-set
f in contrast to neural networks is linear that reduces overall
complexity of the training for image processing.

IV. DATASETS
A. STANDARD IMAGE RECOGNITION DATASETS
First, we conducted experiments on three standard UCImulti-
class datasets, and the CIFAR-10 image dataset. We used

USPS, Letter, and MNIST from the UCI [37]. They are
devoted to image recognition problems. For example, the
MNIST and USPS datasets contain handwritten images of
digits, while the Letter dataset contains Latin letters. The
CIFAR-10 dataset is also related to image recognition [29].
It contains 32 by 32 colored images of 10 classes (airplane,
horse, bird, etc.) with eight gray levels. We apply a simple
preprocessing technique to all the image recognition datasets.
Namely, we perform feature-level normalization of the data
with ‘‘MinMaxScaler’’ and ‘‘Normalize’’ tools from Scikit-
Learn [38]. No other complex processing is used.

B. RGB-NDVI PREDICTION DATASET
We collected a dataset to evaluate RGB to NDVI models as
follows. Generally, we have stuck the procedure described
in [39]. First, we obtained several multispectral satellite
images of rural areas in Europe from April to October 2018.
We chose mostly rural areas with grain crops (wheat) and
manually filtered out images with clouds or other artifacts.
We got the high-resolutionmultispectral raster data (RGB and
Infrared) of the Sentinel-2 satellite from the Copernicus web
platform [40]. Then we applied QGIS Desktop software tool
to evaluateNDVI based on red and infrared bands.With those
bands one can use a simple expression to evaluate that index:

NDVI =
I − R
I + R

, (8)

where I is infrared level and R is red level.
Finally, we generated RGB and NDVI images with size

232× 232, then we store RGB images as the sample features
and NDVI average values as the labels. The size of the
obtained dataset is 1000 samples for training and 1000 for
validation. We also divided all the dataset into two pieces: the
first one covers the data range from April to June (Spring),
and the second one covers the range from July to October
(Summer/Autumn, Fig. 4). Here we utilize a presumption that
the first subset should contain mostly images of immature
plants, while the second one contains images of mature
ones. Therefore, accuracy scores would be different for those
subsets.

As for the classification datasets, we did not perform any
complex feature pre-processing, but just process the data with
‘‘MinMaxScaler’’ and ‘‘Normalize’’ tools from [38]. The
dataset is available in the RGB-NDVI repository [41].

V. EXPERIMENT RESULTS
In the experiments we tested the following models:

• Deep Forest: The original Deep Forest (gcForest) with
standard Random Forest and Extremely Random Forest
classifiers [4].

• Random Kernel Forest: a forest with multivariate
decision trees and non-linear decision splits [26].

• Deep Kernel Forest: the Deep Forest, in which basic
classifiers are replaced by Random Kernel Forests with
Gaussian kernel.
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TABLE 1. Training complexity of the considered methods, where k is the filter size, m is the size of the dataset, f is the feature set size, d is the output
dimension, p is the number of epochs, M is the maximum number of decision stumps in the forest trees (depends on the tree depth), T is the size of the
ensemble, K is the number of folds in the cross-validation, and n is the number of layers in the Deep Forest.

FIGURE 4. Samples of RGB and NDVI images from the dataset.

• Slide window + Deep Oblique Forest + prune: modifi-
cation of the Deep Forest with CO2 Forests [7] as basic
classifiers, pruning and sliding window.

• Slide window + Deep Kernel Forest + prune: modifica-
tion of the Deep Kernel Forest with pruning and sliding
window.

• AlexNet: deep network with 4 convolution, 3 pooling,
and 2 dense layers [29].

• ResNet-11: deep network with 9 convolutional, 2 dense
layers and residual connections [30].

In all the experiments we used Deep Forests with three
layers. We applied a commonly recognized grid search
with cross-validation technique to estimate the ensemble
hyperparameters: maximum tree depth {4, 5, 6, 7, 8}, the
proportion of features to be considered at each stump
{0.08, 0.1, 0.2}, pruning (up to 0.9) ratio. Size of the sliding

window [8 − 128], and size of the sliding window step
[2 − 32] depending on a dataset. We also estimated decision
stump regularization C = {100, 1000, 3000, 5000}, kernel
parameter gamma = {10, 100} for the Deep Kernel Forest
and regularization v = {0.1, 1, 10, 100} for the Deep Oblique
Forest. We applied the grid search on sampled subsets of
the original datasets because training time of Deep Forests
is really long. Finally, we used the obtained hyperparameter
values to perform tests on full datasets. For the neural
networks the only parameter we tuned with the grid search
is the dropout level {0.05, 0.1, 0.2}. All other parameters are
predefined by the model architectures. Both networks have
been trained from scratch on the analyzed datasets without
any pre-training.

In the first experiment, we assessed the classification
quality on commonly recognized datasets. We used accuracy,
precision, and recall with macro-averaging to evaluate the
classification quality because most studies on UCI and Cifar-
10 datasets utilize those scores, so we can stay comparable
with these results.We did not test Cifar-10 with DeepOblique
(CO2) Forest because of hardware limitations.

Table 2 shows that further complexification of the basic
estimators in the Deep Forest without any additional reg-
ularization does not lead to any significant improvements
in quality scores (see ‘‘Deep Kernel Forest’’ column).
We believe that means the complexity of Deep Forest is pretty
high, and further increasing that complexity leads to over-
fitting. On the other hand, adding a simple tree refinement
and pruning [8] leads to notable accuracy growth. Namely, the
results become comparable to the ResNet in low-resolution
datasets. It is also worth noting that Deep Forests with oblique
(CO2) trees show competitive results on small low-feature
datasets like USPS and Letter. We believe, this is because
oblique CO2 trees has better generalization than trees with
non-linear kernel splitters.

The feature and sample re-generation with the sliding
window approach [4] leads to significant improvement for
Cifar-10 only. We believe this is because images from this
dataset have higher resolution and provide more diversity in
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TABLE 2. Classification scores of the tested methods.

TABLE 3. Accuracy of Deep Forests with particular share of univariate
trees.

terms of represented objects, which means the image scaling
and transforming can have much effect on classification
accuracy. However, on this dataset with a relatively large
feature-set, deep networks still significantly outperformDeep
Forests.

In the second experiment we tested how particular shares
of univariate trees in layers of Deep Kernel and Oblique
Forests affect the generalization and classification accuracy.
We consider a particular share of such trees as a probability
that a tree from an ensemble is univariate. Therefore, when
we train the ensemble tree we randomly decide if it is
multivariate or parallel-axis. The univariate trees had the
same maximum depth, impurity criterion, and the number of
features to consider as the multivariate ones. Table 3 shows
that the use of parallel-axis trees helps to slightly increase
the accuracy of Deep Oblique Forests. The best results in

TABLE 4. MSE scores of the NDVI prediction.

this case are achieved if the share of those trees lies between
70-90 percent. However, in the case of forests with non-
linear (gaussian) kernels we detected an improvement for
MNIST dataset only. Optimal share of univariate trees for
DeepKernel Forests in that case lies between 0 and 50 percent
depending on the dataset.

In the third experiment we assessed the quality of
NDVI prediction with the Deep Forest, Deep Kernel and
Oblique Forests (with pruing and sliding window), AlexNet
and ResNet neural networks [29]. In the experiments we
evaluated mean squared error (MSE) of the predictions.
Results from Table 4 show that Deep Kernel Forest can
predict theNDVI levelmore accurately than the original Deep
Forest or AlexNet network model. Also, we did not detect
any dramatic differences for NDVI evaluation in ‘‘Spring’’
and ‘‘Summer/Autumn’’ subsets with AlexNet, but in general
the obtained scores are worse than for the Deep Forests.
We believe this is because first of all, the season-based
division we used to separate immature plants from senescent
ones is pretty fuzzy. In [1] they also use larger scaled UAV
images, when non-linear dependencies between RGB levels
and vegetation are easier to reveal. In contrast, a more
complex ResNet shows the best results for the ‘‘Spring’’
subset, but the MSE for the ‘‘Summer/Autumn’’ subset is
significantly lower, as in [1]. In general, the obtained NDVI
prediction error is pretty low, although we did not perform
any complex image pre-processing. Therefore, the proposed
modified models can be applied to assess NDVI in practical
software applications for precise farming.

VI. TRAINING TIME
We assessed the time needed to train the original and
modified Deep Forests and AlexNet neural network. We set
the ensemble layer number to 3, forest size to 30 trees
and tree depth to 4 for all the forest-based approaches. All
the experiments were performed on a computer with the
following hardware: 12-Core CPUAMDRyzen Threadripper
1920, 256 GB RAM, Nvidia GeForce RTX 3090Ti.

We randomly sampled batches of fixed size (from 1K to
10K) from MNIST dataset and estimated the training time
(Fig. 5).We used the stochastic gradient descent method from
Scikit-Learn to train Deep Oblique Forest, dual LibSVM
solver to train Deep Kernel Forest (gaussian kernel) on CPU,
and ThunderSVM solver to train Deep Kernel Forest on
GPU. The obtained scores agree with the theoretical results of
complexity analysis. We revealed that most of the considered
approaches show linear dependence from the dataset size for a
fixed tree depth. However, Deep Forests with non-linear splits
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FIGURE 5. Training time of Deep Forests and AlexNet on subsamples of
MNIST dataset.

show a polynomial trend both in GPU and CPU. The results
show that further research in dual SVM solvers is required to
make Deep Kernel Forests with non-linear kernels trainable
on large datasets.

VII. DISCUSSION
The experiments show that the proposed modifications
of Deep Forests improve quality for both classification
and regression tasks. Besides, they can model non-smooth
dependencies more accurately than considered neural net-
works. On the one hand, accurate and informative feature
representation generation is a cornerstone of cascade models.
Each layer of Deep Forest for each data sample encodes
a feature subspace related to this sample. Kernel Forest
detects more homogeneous subspaces than Random Forest
and considers complex feature relationships (Fig. 2), while
Ren’s refinement approach helps directly improve those
feature representations via optimization of a global loss [8].
On the other hand, algorithms to generate multivariate tree
ensembles have significantly low training speed [26], which
remains an open problem. Despite the use of more complex
basic classifiers, Deep Forests still shows lower classification
accuracy for data with high-dimensional feature sets like
Cifar-10 than deep networks. Therefore, further research
related to enforcing Deep Forests without introducing
additional complexity like [20] is required.

VIII. CONCLUSION
The paper presents a modified Deep Forest that combines
the Kernel and Oblique (CO2) Forest model and random
forest refinement technique. In this modification, we use
forests of multivariate trees to enforce discriminative power
of the model at each level, and apply the refinement
technique to generate informative embeddings. Experiments
on commonly recognized image classification datasets show
that the proposed method significantly outperforms the
original Deep Forest. It also provides results similar to
ResNet-11 in the data with a small feature-set. Tests on

the RGB-NDVI datasets confirm that the proposed methods
outperform neural network-based models and form accurate
predictions for immature and senescent plants. In terms
of training complexity, the proposed models are more
effective than neural-network based models in data with
a small feature-set. Besides, the training process of the
Deep Forest can be effectively paralleled at the level of
decision stamps. Therefore, the training can be performed on
distributed heterogeneous cloud clusters temporarily built to
run particular task, which is cheaper and more approachable
for small farms or companies than the use of GPU cards in
case of neural networks. In practice, this possibility becomes
more important in case of modern GPU deficiency and high
cost.

We believe the proposed combination of multi-layer Deep
Forests and refined multivariate forests can be helpful
in many practical tasks where frequency bias effect in
the training process of neural networks prevent them
from revealing required non-smooth dependencies without
complex feature pre-processing [2]. Those tasks vary from
obtaining vegetation indices and yield forecasting to MRI
reconstruction and inverse 3D rendering [3].

The remaining issue of Deep Kernel Forests is that the
multi-grained scanning procedure leads to an exponential
growth of the training dataset. In the future, we will try to
develop an online modification of the proposed method to
tackle that problem. We are also going to manually verify the
immature/senescent split in our RGB-NDVI dataset, so it can
be used as gold data in future research.
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