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ABSTRACT The time-variant Lyapunov equation (TVLE) has played an important role in many fields due
to its ubiquity and many neural dynamics models have been developed to obtain the online solution of the
TVLE. In prevalent methods, the gradient neural dynamics (GND)models suffer from the large residual error
due to the lack of predictive computing, while the zero neural dynamics (ZND) models have large computing
complexity because of the inverse of the mass matrix in models. To mitigate these deficiencies, an adaptive
parameter containing the time-derivative of time-variant parameters in the TVLE is added to the GNDmodel
to form the adaptive GND (AGND) model, which enables the AGND model predictive computing as ZND
models and inherits the free of matrix inverse from the GND models. Moreover, two strategies are proposed
to design the accelerated AGND (AAGND) models that enjoy a faster convergence rate. The accuracy and
the convergence rate of AAGNDmodels are theoretically analyzed, indicating that AAGNDmodels achieve
zero residual error and a faster convergence rate. In addition, numerical simulations and two applications are
provided to verify the theoretical analyses and the efficiency of AAGND models. The experimental results
demonstrate that the AAGND model can solve the TVLE with high accuracy and have great potentialities
in applications.

INDEX TERMS Neural dynamics, time-variant Lyapunov equation, convergence, adaptive parameter,
robotic control.

I. INTRODUCTION
Since the Lyapunov equation was proposed, it has attracted
much attention from numerous scholars due to its ubiquity
in image processing [1], optimization [2], and stability anal-
ysis [3]. Moreover, the Lyapunov equation is widely used
in many fields of adaptive control [4], filter design [5], and
neural networks [6]. In the past few decades, many different
approaches have been developed for solving and applying
the Lyapunov equation. For example, Win et al. proposed a
novel geometric algorithm based on the fiber bundle to solve
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the statics Lyapunov equation, in which the experimental
results demonstrated that it can have a faster convergence
speed compared with other algorithms [7]. Furthermore,
based on the control theory, an integration-enhanced Newton
algorithm was designed as a proportional-integral feedback
control system, which is superior in accuracy and robustness
when solving time-variant Lyapunov equation (TVLE) [8].
However, traditional numerical methods are usually used to
solve time-invariant problems. When using them to deal with
time-variant problems, the accuracy of these algorithms is
low due to the lack of predictive calculation [9], [10], [11].

For sake of improving the accuracy of the solution, various
neural dynamics models are developed to solve the TVLE.
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TABLE 1. Comparison among various models for solving time-variant problems.

In the last decades, the zeroing neural dynamics (ZND)
model originated from the Hopfield neural network has been
widely investigated and applied [12], [13], [14]. It is endowed
with predictive computing due to the utilization of the time
derivative of time-variant parameters, which can effectively
solve various time-variant problems with zero theoretical
analyses. For example, from a control-theoretic point of
view, a novel ZND model is proposed by Sun et al. for
solving time-variant zero-finding problems, which can tol-
erate and suppress noises [15]. Besides this, regarding the
complex-valued TVLE, a ZND model with predefined-time
convergence was proposed by utilizing a particular activation
function [16]. Furthermore, Jiang et al. utilized an adaptive
control strategy to design the ZND model for solving time-
variant matrix square root. Though the efficiency and feasibil-
ity of ZND models have been proven, limitations may occur
due to involving an inversion of the mass matrix existing in
ZND models. On the one hand, it requires the time-variant
mass matrix always be invertible. On the other hand, the
calculation of matrix inversion would significantly increase
the computing workload.

As the model is widely used to solve equations, gradient
neural dynamics (GND) models also have attracted much
attention [17], [18], [19]. For example, a linear GND model
was designed to solve the periodic Sylvester equation with
a superior convergence effect [20]. In addition, Xiao et al.
utilized the conventional gradient neural dynamics (CGND)
model to solve time-variant linear inequality [17]. Compared
with ZNDmodels, the CGNDmodel eliminates the inversion
of the mass matrix, while it suffers from low accuracy when
solving time-variant problems. To improve the accuracy of
the GND model, a hybrid GND-ZND model was presented
to solve time-variant matrix inversion in [21], whose solution
can converge to the theoretical solution. However, it also
suffers from the inversion of the mass matrix because it con-
tains the ZND model. Moreover, a gradient-feedback ZND
model, which also is a variant of the CGND model, was
proposed to solve time-variant optimization with superior
performance [22].

In this paper, taking the advantage of eliminating the
matrix inversion in the CGND model and the predictive
computing of ZND models, a novel accelerated adaptive
GND (AAGND) model is proposed for solving the TVLE,
which utilizes an adaptive parameter that contains the time
derivative of time-variant parameters. Employing the adap-
tive parameter, the AAGND model acquires the property
of predictive computing as well as zero theoretical error.
Besides this, the AAGND retains the elimination of matrix
inversion as the CGND model. Furthermore, for the sake of

accelerating the convergence rate, two strategies are proposed
and employed in the AAGND model. Both the zero theoreti-
cal error and the accelerated convergence rate are proven and
verified by theoretical analyses and numerical simulation.
Meanwhile, two applications of the AAGND model are also
demonstrated in this paper.

The rest of this paper is structured as follows. Section II
introduces the form of the TVLE and the model of the tradi-
tional GND and ZNDmodels. After that, Section III proposes
the AAGNDmodel and performs theoretical analyses regard-
ing its superiorities. In addition, the results of numerical sim-
ulation and application are presented in Section IV. Finally,
SectionV concludes this paper. Themain contributions of this
paper are as below.
(1) Novel AAGND models are proposed to solve the

TVLE, which have advantages in the elimination of
matrix inversion and predictive computing.

(2) Two strategies are provided to accelerate the conver-
gence of the proposed model.

(3) The efficiency of the AAGND model is demonstrated
with theoretical analyses, numerical simulations, and
applications.

II. FORMULATION OF THE PROBLEM AND
RELATED WORKS
A. PROBLEM STATEMENT
Generally, the TVLE can be depicted as

AT(t)X (t) + X (t)A(t) + S(t) = 0, (1)

where A(t) ∈ Rn×n is a time-variant smooth coefficient
matrix and S(t) ∈ Rn×n is a time-variant symmetric positive-
definite coefficient matrix. In addition, X (t) ∈ Rn×n is the
time-variant solution of the TVLE to be solved [23], [24].

B. CONVENTIONAL SOLVING MODELS
1) THE ZEROING NEURAL DYNAMICS MODEL
The ZND model is a class of neural networks dedicated to
finding zeros of equations and solving time-variant problems,
which has the characteristics of zero residual error [25]. The
core of the ZND is to construct an error function and track the
time-variant solution by using the time derivative of the time-
variant parameter [26]. The steps to build the ZNDmodel are
as below.

Defining an error function as

E(t) = AT(t)X (t) + X (t)A(t) + S(t). (2)

Then, vectorizing both sides of (2) can get

e(t) = N (t)x(t) + s(t), (3)
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where e(t) ∈ Rn×n, x(t) ∈ Rn×n, and s(t) ∈ Rn×n are the
vectorization of E(t), X (t), and S(t), respectively. In addition,
N (t) = I⊗AT(t)+AT(t)⊗I ∈ Rn2×n2 , where I is the identity
matrix and ⊗ denotes the Kronecker product. According to
(3), the derivative of e(t) can be expressed as

ė(t) = Ṅ (t)x(t) + N (t)ẋ(t) + ṡ(t). (4)

Based on the conception of the ZND model, an ordinary
differential equation is defined as

ė(t) = −γ2(e(t)), (5)

where γ is a positive number affecting the convergence speed
of the ZNDmodel. The bigger the γ is, the faster convergence
speed the ZND model has. Besides this, 2(·) is the activation
function. Inserting (4) into (5) can obtain

ẋ(t) = N−1(t)(−Ṅ (t)x(t) − ṡ(t) − γ2(e(t))). (6)

In the conventional ZND (CZND) model, 2(·) is a linear
equation. It is notable that constructing (6) involves the
inversion of a matrix that requires much more floating-point
operations compared with other arithmetic operations like
multiplication and addition among matrices and vectors [27].
To find out the solution x(t) ∈ Rn2 , the ZNDmodel consumes
O((n2)3) floating-point operations at each time instant.

2) THE GRADIENT NEURAL DYNAMICS MODEL
The GND model defines a non-negative energy function in
scalar norm values and then updates the solution along the
negative gradient until the minimum value is found. The steps
of constructing the GND model are as follows.

Set an energy function that is based on the scalar value
2-norm as

ε(t) =
1
2
∥e(t)∥22 =

1
2
eT(t)e(t) ∈ R, (7)

where ∥ · ∥2 represents the 2-norm of the matrix. When
ε(t) = 0, the corresponding x(t) is the required theoretical
solution. To get the theoretical solution, the GND model
estimates the solution as

ẋ(t) = −λ
∂e(t)
∂x(t)

e(t) = −λNT(t)e(t). (8)

where λ > 0 is designed to adjust the convergence rate
and accuracy of (8). Compared with the ZND model, the
GND model calculates the transpose of N (t) rather than
its inversion, which effectively reduces the computing com-
plexity. To construct (8), it requires O((n2)2) floating-point
operations.

III. THE NOVEL AAGND MODEL
In this section, inheriting the advantages of the GND model,
an adaptive GND (AGND) model is proposed by replacing
the parameter λ in (8) with an adaptive parameter σ (t). There-
fore, the AGND model can be expressed as

ẋ(t) = −σ (t)NT(t)e(t), (9)

where

σ (t) = α

∣∣eT(t)(Ṅ (t)x(t) + ṡ(t))
∣∣

∥eT(t)N (t)∥22
. (10)

Besides this, α > 1 is designed to adjust the convergence
rate of (9). The AGNDmodel (9) has additional computing of
σ (t), which also requires O((n2)2) floating-point operations.
Therefore, the AGND model (9) requires more but the same
level computing complexity compared with the GND model
(8), while has a lower complexity than the ZND model (6).
Regarding the global convergence of the AGND model (9),
the following theorem is provided.
Theorem 1: When solving the TVLE (1) with the AGND

model (9), the solution globally converges to the theoretical
solution.
Proof: A Lyapunov candidate is defined as

L(t) =
1
2
∥e(t)∥22 =

1
2
eT(t)e(t) ≥ 0, (11)

where L(t) = 0 if and only if e(t) = 0. Thus, L(t) is positive
definite. Furthermore, its time derivative L̇(t) is

L̇(t) = eT(t)ė(t) = eT(t)(N (t)ẋ(t) + Ṅ (t)x(t) + ṡ(t)). (12)

Inserting (9) into (12) can get

L̇(t) = eT(t)(−σ (t)N (t)NT(t)e(t) + Ṅ (t)x(t) + ṡ(t))

= −σ (t)∥eT(t)N (t)∥22 + eT(t)(Ṅ (t)x(t) + ṡ(t))

= −α|eT(t)(Ṅ (t)x(t) + ṡ(t))| + eT(t)(Ṅ (t)x(t)

+ ṡ(t)). (13)

Since α > 1, thus L̇(t) ≤ 0, indicating it is negative
definite. According to the Lyapunov stability theorem [28],
the solution synthesized by the AGND model (9) globally
converges to the theoretical one. The proof is thus complete.

With the purpose of accelerating the convergence speed of
the AGND model, two strategies are proposed to construct
the AAGND model. The first AAGND (AAGND-1) model
can be expressed as

ẋ(t) = −exp(||e(t)||2)σ (t)NT(t)e(t). (14)

Furthermore, in view of previous studies of ZND models,
activation functions are utilized to improve the convergence
rate. Therefore, the activation function is employed to con-
struct the second AAGND (AAGND-2) model as

ẋ(t) = −σ (t)NT(t)0(e(t)), (15)

where 0(·) denotes the activation function. Compared the
original AGND model (9) with the AAGND-2 model (15),
the AGND model (9) is a special case of the AAGND-2
model (15) with a linear activation equation expressed as
0(ei(t)) = ei(t). In addition, the hyperbolic sine activation
functions are employed to accelerate the convergence rate.
An example is formulated as

0(ei(t)) =
exp(2ei(t))

3
−

exp(−2ei(t))
3

. (16)
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Regarding the convergence of the proposed AAGND-1
models (14), the following theorems have been provided.
Theorem 2: When solving the TVLE (1) with the

AAGND-1 model (14), the obtained solution globally con-
verges to its theoretical value with a faster convergence rate
compared with the AGND model (9).
Proof: Defining a positive definite Lyapunov candidate

L1(t) = eT(t)ė(t), its time derivative can be expressed as

L̇1(t) = eT(t)(−exp(||e(t)||2)σ (t)N (t)NT(t)e(t)

+ Ṅ (t)x(t) + ṡ(t))

= −αexp(||e(t)||2)|eT(t)(Ṅ (t)x(t) + ṡ(t)|

+ eT(t)(Ṅ (t)x(t) + ṡ(t)). (17)

Since exp(||e(t)||2) ≥ 1 when t ≥ 0 and α > 1, L̇1(t) ≤ 0
in the AAGND-1 model (14). According to the Lyapunov
stability theorem, the solution estimated by the AAGND-1
model (14) globally converges to the theoretical one. In addi-
tion, since αexp(||e(t)||2) > α when t ≥ 0, |L̇1(t)| in the
AAGND-1 model (14) is larger than |L̇(t)| in the AGND
model (9), indicating that the AAGND-1 model (14) has a
faster convergence rate compared with the AGND model (9).
The proof is thus complete.

Regarding the AAGND-2 model (15), its convergence is
discussed as the following theorem.
Theorem 3: When solving the TVLE (1) with the

AAGND-2 model (15), the obtained solution globally con-
verges to its theoretical value with a faster convergence rate
compared with the AGND model (9).
Proof: Defining a positive definite Lyapunov candidate as

L2(t) = eT(t)ė(t), its time derivative can be expressed as

L̇2(t) = eT(t)(−σ (t)N (t)NT(t)0(e(t)) + Ṅ (t)x(t) + ṡ(t))

= −σ (t)eT(t)N (t)NT(t)0(e(t)) + Q(t), (18)

where Q(t) = eT(t)Ṅ (t)x(t) + eT(t)ṡ(t). According to the
proof in Theorem 1, L̇(t) = −σ (t)eT(t)N (t)NT(t)e(t) +

Q(t) < 0. Based on the definition of the activation function
(16), we have |0(e(t))| ≥ e(t). Thus, L̇2(t) < L̇(t) < 0.

Therefore, the AAGND-2 model (15) can solve the TVLE
(1) with zero residual error and has a faster convergence
rate compared with the AGND model (9). The proof is thus
complete.

IV. EXPERIMENTAL RESULTS
In previous sections, AAGND models and their conver-
gence have been investigated. To demonstrate their efficiency,
numerical simulations solving a TVLE (1) are performed.
Furthermore, AAGND models are exploited in two appli-
cations to demonstrate their feasibility. All the experiments
are performed in MATLAB 2019b on a desktop computer
with a Core i7-4770 @3.40 GHz CPU, 16 GB memory, and
Microsoft Windows 10.

FIGURE 1. The profiles of residual errors synthesized by various models.

A. NUMERICAL SIMULATIONS
Considering an example of a TVLE with parameter matri-
ces as

A(t) =

[
−1 − 0.5 cos(2t) 0.5 sin(2t)

0.5 sin(2t) −1 + 0.5 cos(2t)

]
∈ R2×2,

S(t) =

[
sin(2t) cos(2t)

− cos(2t) sin(2t)

]
∈ R2×2, (19)

various models are exploited to solve it. In the beginning, the
comparison simulation among the CZND model (6), CGND
model (7), and AGND model (9) is performed. With γ =

λ = α = 2, the trajectories of residual errors synthesized
by these models are plotted in Fig. 1. As shown in Fig. 1,
the CGND model (1) has much larger steady residual error
compared with the CZND (6) and AGND (9) model. The
steady-state residual error of the AGND (9) model converges
to zero, demonstrating its property of zero theoretical error
discussed in Theorem 1.
With the sameα, the simulations solving the TVLE (19) are

performed. Fig. 2 depicts the results obtained by the AGND
model (9) from five random initial states x(0), where Fig. 2(a)
illustrates the trajectories of solutions and Fig. 2(b) shows
the trajectories of residual errors. In Fig. 2(a), the computing
solutions (blue-solid curves) can precisely track the theoreti-
cal solution (red-dotted curve). Regarding the residual errors,
they can be steady and converge to zero. Specifically, as indi-
cated in Fig. 2(b), the convergence times range from 1.66 s
to 2.60 s. The same simulations with the AAGND-1 (14) and
AAGND-2 (15) models are performed and results are demon-
strated in Fig. 3 and Fig. 4, respectively. As shown in Fig. 3
and 4, both models can effectively solve the TVLE (19) with
negligible steady residual error. Moreover, compared with the
AGND model (9), the AAGND-1 (14) and AAGND-2 (15)
models require less convergence time. In other words, these
two models enjoy a faster convergence rate, verifying the
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FIGURE 2. Simulative results of solving the TVLE problem (19) by the AGND model (9) with five random initial states.
(a) The trajectories of elements of solution x(t), where the blue-solid curves denote the computing solution and the
red-dotted curve denotes the theoretical solution. (b) The trajectories of residual error ||e(t)||2.

FIGURE 3. Simulative results of solving the TVLE problem (19) by the AAGND-1 model (14) with five random initial states.
(a) The trajectories of elements of solution x(t), where the blue-solid curves denote the computing solution and the
red-dotted curve denotes the theoretical solution. (b) The trajectories of residual error ||e(t)||2.

FIGURE 4. Simulative results of solving the TVLE problem (19) by the AAGND-2 model (15) with five random initial states.
(a) The trajectories of elements of solution x(t), where the blue-solid curves denote the computing solution and the
red-dotted curve denotes the theoretical solution. (b) The trajectories of residual error ||e(t)||2.

correctness of Theorem 2 and 3. Specifically, the convergence
time of the AAGND-1 (14) model ranges from 0.84 s to
1.37 s, while the convergence time of the AAGND-2 (15)
model ranges from 0.89 s to 1.48 s.

B. APPLICATIONS
In this part, two applications of AAGND models are demon-
strated. One is an application on controlling a robotic
manipulator, the other is acoustic location.
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FIGURE 5. Results of application on robot control. (a) Demonstration of movements of the whole wheeled mobile manipulator
synthesized by the AAGND-1 model (22). (b) Position error of the end-effector synthesized by the AAGND-1 model (22).
(c) Demonstration of movements of the whole wheeled mobile manipulator synthesized by the AAGND-2 model (24). (d) Position
error of the end-effector synthesized by the AAGND-2 model (24).

1) APPLICATION ON ROBOT CONTROL
In the application on robot control, a mobile robotic manip-
ulator is required to generate a circular path. Generally, the
typical model of a kinematic model can be expressed as

r(t) = f (θ (t)), (20)

in which r(t) is the position vector of the end-effort of the
manipulator, f (·) is a smooth nonlinear projected function,
and θ (t) represents a vector combing the angle of the mobile
platform and the joint-space of the manipulator [29]. Then,
an error function can be constructed as

e1(t) = r(t) − f (θ (t)). (21)

Following the derivation of AAGNDmodels, the correspond-
ing AAGND-1 model in this application is

θ̇(t) = −exp(||e1(t)||2)σ1(t)(
∂f (θ (t))
∂θ (t)

)Te1(t). (22)

FIGURE 6. The diagram of the AOA technology for acoustic location.

where

σ1(t) = α

∣∣eT1 (t)ṙ(t))∣∣
∥eT1 (t)

∂f (θ (t))
∂θ (t) ∥

2
2

. (23)
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FIGURE 7. Results of application on acoustic location. (a) Demonstration of the trajectory generated by the AAGND-1 model (14).
(b) Absolute values of the position errors in the X-axis and Y-axis generated by the AAGND-1 model (14). (c) Demonstration of the
trajectory generated by the AAGND-2 model (15). (d) Absolute values of the position errors in the X-axis and Y-axis generated by
the AAGND-2 model (15).

Similarly, the AAGND-2 model in this application can be
expressed as

θ̇ (t) = −σ1(t)(
∂f (θ (t))
∂θ (t)

)T0(e1(t)). (24)

With α = 2 and the initial state θ (0) = [0, 0, π
12 ,

π
3 , π

3 , π
3 ,

π
3 , π

3 ], experimental results are shown in Fig. 5, where the
first row illustrates the results of the AAGND-1 model (22)
and the second row illustrates results of the AAGND-2 model
(24). According to Fig. 5(a) and (c), both the end-efforts
controlled by the AAGND-1 model (22) and the AAGND-2
model (24) can generate the circle path. Moreover, their
position errors are shown in Fig. 5(b) and (d), respectively.
The maximum position of the AAGND-1 model (22) is about
10−3 m, while the one of the AAGND-2 model (24) is about
4−3 m. Consequently, the proposed AAGND models are
efficient in the application on robot control.

2) APPLICATION ON ACOUSTIC LOCATION
Among prevalent technologies of acoustic location, many
models of these technologies are formulated as time-variant
linear equations that could be solved by the AAGND mod-
els [9], [30], [31]. For brevity and simplification, a demon-
stration of the two-dimension arrival of angle (AOA) acoustic
location is provided, whose diagram is shown in Fig. 6.
As indicated in Fig. 6, a simple moving object located at
(Ox(t),Oy(t)) reflects the acoustic wave to two sensors S1 and
S2 with arrival angles ϕ1(t) and ϕ2(t), respectively. Moreover,
the location of S1 is (a1, b1), while the one of S2 is (a2, b2).
Therefore, according to the geometry of the AOA model,
we have

tan(ϕ1(t)) =
Oy(t) − b1
Ox(t) − a1

,

tan(ϕ2(t)) =
Oy(t) − b2
Ox(t) − a2

. (25)
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After reconstruction, (25) can be transformed into a linear
equation as[

−tan(ϕ1(t)) 1
−tan(ϕ2(t)) 1

]
×

[
Ox(t)
Oy(t)

]
=

[
b1 − a1tan(ϕ1(t))
b2 − a2tan(ϕ2(t))

]
, (26)

which is a special case of (3). Therefore, AAGNDmodels can
be exploited in AOA acoustic location.

With α = 2 and initial solution (0, 0), the results of this
application are shown in Fig. 7. In Fig. 7(a) and (c), blue
circles denote the sensors, black-solid curve denotes the real
trajectory of the moving object, and the red-dotted curve
denotes the estimated trajectory synthesized by the proposed
model. As indicated in these figures, the estimated trajectory
of themoving object well traces the real trajectory, illustrating
the efficiency of AAGND models. Moreover, the profiles of
the absolute value of position error in the X-axis and Y-axis
are shown in Fig. 7 (c) and (d), where the position errors are at
the level of 10−2 m. Over all, the proposed AAGND models
can successfully solve the acoustic location problem.

V. CONCLUSION
This paper revisits the limitations among prevalent models for
solving the TVLE and presents AAGNDmodels for improve-
ment. With an adaptive parameter, the AAGND model can
eliminate not only the theoretical error but also the matrix
inverse. Moreover, by inserting a time-variant coefficient or
employing an activation function, AAGND models have a
faster convergence rate. These superior properties have been
theoretically proven and experimentally validated. Further-
more, applications on robot control and acoustic location
utilizing AAGND models are demonstrated, where AAGND
models can successfully complete these tasks. In the future,
we will look for further improvement in the accuracy and
convergence rate of the proposed models. Besides this, more
practical application scenarios should be investigated.
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