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ABSTRACT This paper presents a novel method for registering panoramic images and 3D point clouds using
the shape of the overall ground object in the scene as registration primitives. Firstly, a semantic segmentation
method is applied to the panoramic image to extract the ground object and remove the sky. Next, the cloth
simulation filtering algorithm (CSF) is employed to eliminate the ground points in the 3D point cloud. The
remaining 3D ground objects are then projected onto a two-dimensional plane using the imaging model of
the panoramic camera to obtain the registration primitives. Finally, we adopt the whale algorithm to perform
a coarse-to-fine registration, utilizing overlap degree and mutual information as the similarity measures. The
proposed method is evaluated in four different scenes and compared with the other four registration methods.
The results demonstrate that the proposed method is accurate and effective, with an average registration
error of 11.48 pixels (image resolution is 11000 x 5500 pixels) compared to the EOPs of the system of

101.67 pixels.

INDEX TERMS Point cloud, panoramic image, semantic segmentation, registration.

I. INTRODUCTION

The mobile measurement systems (MMS) is a novel sur-
veying and mapping system that integrates various sensors
including LiDAR, panoramic camera, global satellite posi-
tioning system (GPS), and inertial navigation system (IMU)
[1]. LiDAR is capable of acquiring point cloud of buildings
on both sides of the street in the scene to obtain highly
accurate position information, while the panoramic camera
can capture high-resolution, large-angle panoramic image
data of the same scene to obtain rich texture information.
These two types of data complement each other in describing
the scene, and their combination can provide the best results
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for 3D scene reconstruction in the digital city, infrastructure
maintenance, and engineering planning applications [1], [2],
(31, [4].

During the actual measurement process, the GPS signal can
be obstructed by buildings or trees, resulting in localization
errors [5]. Furthermore, panoramic images captured by mul-
tiple fisheye lenses may introduce errors during the stitching
process [6]. These issues make it impossible to directly and
accurately integrate the point cloud and the panoramic image.
To achieve this, data registration is required, which involves
calculating a transformation matrix that converts the two sets
of data into the same coordinate system and eliminates any
geometric inconsistencies. As point clouds and panoramic
images are cross-modal data, existing registration methods
mostly rely on the initial EOPs provided by GPS/IMU [7],
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which unfortunately results in poor registration accuracy.
For the 2D-3D registration problem, scholars have proposed
many solutions.

The existing registration methods can be divided into three
categories [8]: Feature-based methods, regional statistics-
based methods, and multi-view geometry-based registration
methods.

The feature-based registration approach involves extract-
ing homologous feature points from both images and point
clouds, which are then used as registration primitives to
establish a transformation model for matching. Such features
typically include points (such as endpoints of road lamps and
lanes [6], skyline points [9], [10], or key-points at line inter-
sections [11], lines (such as street light poles [12], building
boundary lines [13], roof edge [14], or intersection points of
two planes [15]), planes (such as roof planes [16]), or hybrid
features [17]. Although feature-based registration can achieve
higher accuracy, it remains a challenge to automatically
extract homonymous features from point clouds and images
due to their significant differences.

The region-based registration method by converting the
point cloud into an intensity or distance image, and then
comparing the pixel similarity between the point cloud image
and the optical image for registration. This comparison can be
done using various metrics such as gradient information [18],
phase correlation [19], mutual information [5], [20], [21],
normalized joint mutual information [22], joint entropy [23],
etc. Unlike feature-based registration methods, the region-
based approach does not require feature extraction from the
data and instead compares the data’s correlation in the corre-
sponding regions. This makes it robust to noise and grayscale
differences in optical images, but it ignores the spatial loca-
tion information that corresponds to grayscale features in
the image. Moreover, this method is only suitable for urban
scenes and not natural scenes [24].

The multi-view geometry registration method employs a
two-step approach for precise registration. Initially, the opti-
cal image is reconstructed in 3D using either Structure from
Motion (SfM) or multi-view stereo (MVS) techniques to
generate an image reconstruction point cloud. Subsequently,
the 3D-3D registration technique is employed with laser point
cloud data, (such as ICP [2], 4PCS [25], etc.) to register the
reconstructed image point cloud with the laser point cloud
data. However, this method generally requires the system to
provide more accurate initial parameters.

In summary, the registration of 3D laser point cloud and
optical image can be divided into three parts: extraction of
registration primitives, selection of registration model and
parameter optimization. The accuracy of the selection of
registration primitives is directly related to the accuracy
of registration. Due to the discreteness of point cloud and
the special imaging model of panoramic image, errors will
inevitably occur when extracting registration primitives. How
to extract and match the registration primitives robustly and
automatically is a challenge for 2D-3D registration.

VOLUME 11, 2023

LiDAR point Panoramic
cloud image
CSF Sematic
filter segmentation
i Y l A4 1
Ground Ground object Ground Ground object Sky
projection l l
Ground object Ground object
of point doud of panorama

Registration
parameters

FIGURE 1. Flow chart of the proposed registration method.

Most current researches use traditional feature extraction
methods to extract features from point clouds and optical
images. In recent years, deep learning has developed rapidly
and has played a significant role in the fields of feature
extraction, object recognition and semantic segmentation.
Since deep learning does not rely on prior knowledge to
manually design features and parameters, new and effec-
tive feature representations can be quickly learned from
training data for new applications, we propose to com-
bine the deep learning with the registration of point cloud
and optical image, and automatically extract the registra-
tion primitives to improve the automation and accuracy of
registration. The overall registration method is shown in
Figure 1.

The main contributions of this paper are as follows:

1) we utilize the shape of ground objects in the scene to
perform registration of the laser point cloud and panoramic
image. This approach solely relies on straightforward seman-
tic segmentation of panoramic images, eliminating the need
for extracting geometrical characteristics from point clouds
and images.

2) Based on the mutual information method, we incor-
porate spatial location information into the matching pro-
cess, which enhances the accuracy and efficiency of
matching.

The rest of the paper is organized as follows: Section II
describe the principle of the proposed method in detail. Sec-
tion III conducts the experiment, then compare with other
methods and conducts simulation experiments to discuss the
characteristics of the method. Finally, Section IV summarizes
the article.
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Il. PROPOSED METHOD

A. GROUND OBJECT SHAPE EXTRACTION FROM THE
PANORAMIC IMAGE

Panoramic images often contain complex features that are
distorted, posing a challenge for image segmentation. Tra-
ditional segmentation methods (such as the threshold and
boundary detection techniques) rely on low-level semantic
features of images (such as color and shape, etc.), which are
insufficient to obtain optimal segmentation results in real-
world scenarios. In contrast, deep learning methods are capa-
ble of automatically learning complex features and exhibit
good generalization. In this study, we employ Deeplabv3+
[26] as the segmentation network to perform semantic seg-
mentation of panoramic images. The network identifies the
type of each pixel in the image and categorizes the image
into three categories: sky, ground, or ground objects. It is
worth noting that buildings, plants, vehicles, and other objects
present in the scene all belong to the overall ground object
category. Subsequently, we remove the sky and ground parts
from the image and convert the remaining portion containing
only ground objects into a binary image. Due to limitations
in segmentation accuracy, we down-sample the panoramic
image to reduce subsequent errors, yielding the shape of the
ground objects in the panoramic image. The entire process is
illustrated in Figure 2.

B. GROUND OBJECT SHAPE EXTRACTION

FROM POINT CLOUD

Initially, statistical filtering is applied to the point cloud to
eliminate noise points and outliers. Subsequently, the cloth
simulation filtering algorithm (CSF) [27] is used to divide the
point cloud into two parts: the ground object and the ground.
Ground points adhered to ground objects are removed, and
only the point cloud data corresponding to the ground object
is preserved.

As point clouds and panoramic images belong to different
dimensions, direct comparison between them is not feasible.
Therefore, it is necessary to transform them into a common
frame of reference. To achieve this, we utilize the imaging
model of the panoramic image to transform the point cloud
from the three-dimensional space (the LIDAR coordinate sys-
tem) to a two-dimensional plane (the image coordinate sys-
tem). Figure 3 illustrates the transformation from the LiDAR
coordinate system to the image coordinate system.

Initially, the point cloud is transformed from the world
coordinate system to the local coordinate system within the
POS system. Subsequently, the point cloud is mapped onto
the camera coordinate system by utilizing the initial EOPs of
the system, which can be achieved through equation (1):

X X
Y |=R||Y |+T (1)
Z Z
Tx
T=|Ty (2)
17
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where, the [X,Y,Z] is the camera coordinate system,
[X, Y, Z]is the LIDAR coordinate system, T is the translation
vector between the LiDAR coordinate system and the camera
coordinate system, and R is the rotation matrix between two
coordinate systems, Tx, Ty, Tz are the translation vectors in
the X, Y, Z directions respectively, Oy, 6y, 6z are the rotation
angles about the X, Y, Z axes respectively.

Next, Equation (4) is used to convert the point cloud from
the camera coordinate system to the spherical coordinate
system, with the camera location serving as the center.

R/
@ =sin~ —
Jr
6 —tan~' © @
r=X>+v>+2°
where, 6 and ¢ represent the angle between the target point
and the X-axis and Z-axis in the spherical coordinate system
respectively.

Then, equation (5) is utilized to transfer the point cloud
from the spherical coordinate system to the image coordinate
system, where the panoramic image is located. As a result,
the point cloud is converted from three-dimensional space to
the corresponding two-dimensional panoramic image plane.

(1 9) )
u=(--—)w
2 2n

where, H and W are the height and width of the panoramic
image respectively, u and v are the image coordinates in the
image.

As point clouds are composed of discrete points with rel-
atively low resolution, they are susceptible to noise. To mit-
igate this, we down-sample the point cloud image and apply
Gaussian filtering to smooth out the point cloud data. Next,
we utilize the boundary tracking algorithm [28] for topolog-
ical analysis of the point cloud image to automatically detect
the boundary of ground objects from the binary image. We fill
the closed polygon formed by the contour to obtain the shape
of the ground object from the point cloud image. The whole
process is shown in Figure 4.

C. REGISTRATION BASED ON GROUND OBJECT

SHAPE MATCHING

The overall shape of ground objects extracted from the
panoramic image is denoted as ¢, while the shape of
the ground objects extracted from the point cloud data of the

VOLUME 11, 2023



B. Wang et al.: Automatic Registration of Panoramic Image and Point Cloud

IEEE Access

Panoramic image

Semantic
segmentation

FIGURE 2. Extraction of ground objects from the panoramic image.
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FIGURE 3. The transformation of coordinate systems.

Point cloud

CSF filter Intensity image

——)

projection

FIGURE 4. Extraction of ground objects from the point cloud.

corresponding region is represented as {P¢. The objective is
to minimize the difference between ¢¢ and ¢P¢ by finding
the registration parameters between the LiDAR and camera
coordinate systems, thus achieving spatial alignment of the
two types of data.

1) GROUND OBJECT SHAPE DIFFERENCE

The alignment of the point cloud and the panoramic image
is achieved by minimizing the difference area between ¢ 8
and ¢P¢. To obtain the shape of the ground objects £P€ in the
point cloud, the point cloud is projected and converted into
a binary image using the method in 2.3. On the other hand,
the panoramic image is subjected to semantic segmentation,
and the pixel values of the ground object are set to 255 while
those of the sky and ground are set to O, thus obtaining
the ground object shape £7"¢. Subsequently, the difference
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operation between ¢"¢ and ¢P¢ is performed, where if the
pixel values of £7¢ and ¢P¢ at (u, v) are non-zero, the pixel
value at (u, v) is set to 0. On the other hand, if "¢ has a
non-zero pixel at (u, v) and the pixel value of {P¢ is 0, the
pixel is filled with a value of 255, and vice versa.
Consequently, the dissimilarity between the shapes of the
overall ground objects is computed, yielding the difference
image S. The alignment degree of the point cloud and
panoramic image can be quantified by the ratio ¢; between the
number of non-zero pixels Pixel in S and the number of non-
zero pixels Pixel;pe in £P°. A smaller value of &1 indicates
a higher degree of matching between the point cloud and
panoramic image. The whole process is shown in Figure 5.
Pixelg

= — x 100% 6
! Pixel cpe x 0 ©)
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FIGURE 5. Ground object difference.

2) MUTUAL INFORMATION ENTROPY MATCHING OF
GROUND OBIJECT SHAPE

In the field of information theory, entropy is commonly
used to quantify the degree of uncertainty of a random
variable. Specifically, larger entropy values correspond to
greater levels of uncertainty. The joint entropy of two random
variables, as derived from their joint distribution, represents
the uncertainty that arises when both variables are observed
simultaneously. Meanwhile, mutual information serves as a
measure of the extent to which one random variable contains
information about another, and it can be used to describe
the statistical correlation between two random variables.
A higher mutual information value (MI) indicates a stronger
correlation between the two variables [20].

We regard the reflection intensity of the LiDAR point and
the gray value of the corresponding panoramic image pixel
point as two random variables. The part of the ground object
in the image is used to replace the whole image to participate
in the calculation of mutual information.

For the panoramic image, we perform semantic segmen-
tation on the panoramic image to extract the overall ground
objects, which are then converted into grayscale images
with values of 0-255 to obtain the ground object repre-
sentation IP%"?; for point cloud, we normalize the inten-
sity values of the point cloud data to the same range, and
then project it onto a blank image using equation (1-5),
where the intensity value of each pixel is taken as the corre-
sponding grayscale value to generate the point cloud feature
image 17¢.

The probability of IP¢ and IP*" is defined as HP¢ and

HP respectively, and their joint probability is defined as
Hjoint:

HP = =% p{"log () (7)

Hpano — _ Zplgano log (pi'mno) (8)
HIM == D" log (™) ©)
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The difference image

where, p! and p/“"” are respectively the frequency of pixel i
in point cloud image and panoramic image. pf anofpe g
obtained by counting the position of the pixel i in I”¢ and
calculating the frequency of the pixel value in the same posi-
tion in IP*" Then, we can calculate the mutual information
entropy M between the /7 and the IP“"?:Based on these
values, the mutual information entropy M between I7¢ and
1P can be calculated.

M = HP¢ + HPano _ Hjoint (10)

The greater the value of M, the greater the correlation
between the panoramic image and the intensity image. There-
fore, we can use f to describe the degree of matching between
the point cloud and the panoramic image, where a smaller f
value indicates a higher degree of matching.

f=e—& (11)

where &0 = oM, « is the weight coefficient, which is set to
5 after many trials.

3) MATCHING BASED ON THE WHALE

OPTIMIZATION ALGORITHM

The primary objective of the cost function is to minimize
the shape matching coefficient &1 and the shape mutual
information entropy &, to correct the translation vector
T(Tx,Ty,Tz) and the rotation angle 6(6x, 6y, 67). How-
ever, solving this problem using numerical methods like
Newton’s method or gradient descent may lead to local
optima due to the non-convexity of the optimization prob-
lem. To tackle this, we utilize the whale optimization algo-
rithm (WOA) [29] to find a nearly optimal set of orientation
parameters.

WOA is a meta-heuristic optimization algorithm that aims
to find global optimal solutions. Its fundamental concept
is to simulate the hunting behavior of humpback whales,
the search range of whales is the global solution space.
While hunting, each whale updates its position using one of
two behaviors selected at random with a 50% probability:
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(1) Searching, which involves moving towards other whales
to surround the prey, or (2) Hunting, which entails spewing
a spiral bubble-net to encircle and capture the prey. These
behaviors are mathematically represented by equations (12)
and (13) respectively:

t t t
t+1 _ Xbest —A ‘beest — X Al <1 (12)
i t t t
Xrand —A |mend BRAR Al =1

Equation (12) describes two movements in the WOA. The
first movement involves moving towards the optimal posi-
tion represented by x;,,, while the second movement entails
moving towards a randomly selected position, represented
by x!,,,- Here, x! and x! *+1 denote the current and updated
positions of the i whale, respectively. Additionally, C is a
random number within the interval [0 2], and A is a random
number within the range [—a, a].

The mathematical model simulates the process of a whale
searching and approaching its prey by reducing the value
of A, which decreases from 2 to 0 with an increase in the
number of iterations, resulting in a reduced range of A.
When |A>1|, the individual updates its positions based on
the positions of randomly selected whales, forcing the whale
to deviate from its current prey and search for more suit-
able prey, Conversely, when |A<l1|, the individual moves
in the direction of the current optimal value to update its
position, narrowing the search range for a more precise
search.

t+1

X = |xh e — x| % € % cos @ml) +xp,,  (13)

where b is a constant 1, 1 is a random number uniformly
distributed in [—1,1], xém represents the position of the
individual with the best value currently, in this case, the whale
group moves along a spiral path.

Based on the WOA, we take |A| =1 as the dividing point,
and divide the process of searching for the optimal solution
into two stages, corresponding to the rough registration and
the fine registration:

Stage 1: During this stage, the value of |A| is randomly
generated from the range (1,2) and the search range is set to be
around the initial registration parameter. The shape matching
coefficient &1 is used as the cost function for this stage.
Multiple whales are used to form the initial whale group,
with each whale calculating its fitness &1 at the beginning of
the algorithm, and the minimum value in the current group is
recorded as the global optimal value x}i o+ Subsequently, each
individual randomly selects whether to search or hunt based
on xj,,, leading to continuous updates of their respective
positions and the optimal value of the population xj,.

Stage 2: During this stage, the value of |A| is randomly
generated from the interval (0, a), where a linearly decreases
from 1 to O with an increase in the number of iterations.
Following this, we employ the parameter associated with the
optimal value of group x; ., from stage 1 as the search cen-
ter. Equation (11) serves as the cost function for successive
iterative computations.
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FIGURE 6. Ground object in panoramic image.

FIGURE 7. Ground object in intensity image.

Algorithm 1 Automated Registration By Shape Matching
Input: Point Cloud Shape (P°, Panoramic Image Shape (P4,
Reflectivity, Initial Extrinsic Parameter ©;(R|T)

Output: Estimated Extrinsic Parameter O(R|T);

1: Initialize: maxiter, Tpest, Ypest:
2: for i = 1,2, ..., (maxiter/2) do
3 Calculate The Shape Matching Coefficient €(¢P¢, (P*"°|©;)
4 if € < Ypest then
5 Ybest =€
6: Xpest =0
7
8
9

end if
. end for
. for i = (maaiter/2), ..., maxiter do
10: Calculate The Shape Matching Coefficient €((?¢, (P**°|©;)
11: Calculate Mutual Information MI(¢P¢, (P*"°|©;)
12: Calculate f(¢P°, (P*°|©;) = € - MI*5
13: if f < Ypest then

14: Ybest = f

15: Estimated Extrinsic Parameter = ©
16: end if

17: end for

FIGURE 8. Automatic registration method based on the shape matching.

Where, stage 1 is to maximize the overlap of the shape of
the ground objects in the point cloud image and the panoramic
image, which enables a rough alignment of the two; Stage 2 is
to maximize mutual information of ground objects based on
stage 1, so as to achieve more accurate matching. Ultimately,
the two-stage WOA search is utilized to determine a set of
orientation parameters 7 (Tx, Ty, Tz) and 6(0yx, Oy, 67) that
enable the best approximate match between point cloud and
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5

FIGURE 9. Panoramic images and point clouds used in the experiment. The 1-4 are panoramic images and the 5-8 are point clouds in the

corresponding areas.

TABLE 1. Automatic registration method based on the shape matching.

Number of points Number of panoramas

Scene I 6,789,923 31
Scene 11 7,880,755 23
Scene ITT 5,685,755 27
Scene IV 8,455,287 19

panoramic image objects. The complete method is shown in
Figure 8.

lIl. EXPERIMENTS AND RESULTS

A. DATA PREPARATION

The experimental data was acquired primarily using the
GeoSLAM backpack-type mobile measurement device ZEB
Discovery, equipped with a Velodyne VLP-16 LiDAR and
a panoramic camera consisting of four fisheye lenses. The
lidar has a scanning range of 100m and a field of view of
360°x 270°, generating high-density point clouds with an
average minimum spacing of 0.03m. The internal parame-
ters of the panoramic camera have been calibrated, and the
captured panoramic images have a resolution of 5500 x
11000. The equipment was used to collect 3D point cloud
and panoramic images in the main campus of Zhengzhou
University, from which we selected data in four different
scenarios for the experiment. Figure 9 depicts the panoramic
image data and laser point cloud data used in the exper-
iment, and Table 1 provides a detailed description of the
dataset.

B. RESULT OF EXPERIMENT

We performed semantic annotation on 100 panoramic images
with a high resolution of 5500 x 11000 pixels in our dataset
and expanded the dataset through various data augmentation
techniques such as rotation, flipping, and cropping. Ulti-
mately, we obtained 5600 images with a lower resolution of
1375 x 655, which we used as our training dataset. To train
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our model, we utilized the deeplabv3+ network for semantic
segmentation on the panoramic images across four different
scenes to obtain the overall ground object present in each
panoramic image.

By equation (1-5), the overall ground objects of the point
cloud are projected as the image, then use the whale algorithm
for optimization. The parameters involved in our method
include: iteration number, population number, angle error
range and distance error range. After several experiments,
we set the total number of iterations to 100 and the number
of populations to 60, and then took the initial parameters
provided by GPS/IMU system as the starting point for search,
and set the search range of distance and angle to £0.1 m and
+2° respectively.

The registration quality can be evaluated visually by pro-
jecting the point cloud into the image space using the regis-
tration parameters and overlaying the panoramic image. This
comparison is illustrated in Figure 9 and Figure 10, which
demonstrate the differences between the images before and
after the registration process.

Figure 10 and Figure 11 reveal significant discrepancies
in the initial state, indicating errors in the initial EOPs of
the MMS. The coarse registration procedure achieves rough
alignment of the point cloud and panoramic images, albeit
with some residual errors that maximize the overlap of the
ground object shapes. Subsequently, fine registration enables
optimal optimization, yielding point cloud and panoramic
image alignment with high accuracy across all four
scenes.

To quantitatively evaluate the method, we selected
15 groups of corresponding checkpoints from panoramic
images and point clouds. The checkpoints were chosen as
prominent corners or inflection points that were evenly dis-
tributed throughout the scene, as illustrated in Figure 12.
Subsequently, we projected the 3D checkpoints from the
point cloud onto the panoramic image, and calculated the
pixel offset between them and the image checkpoints as a
quantitative measure of the accuracy of the algorithm [6], [8],
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FIGURE 10. Comparison of registration results. (a) Results of original EOPs. (b) Results of the rough registration. (c) Results of the fine registration.
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13 14

FIGURE 11. Local enlargement of registration results. From top to bottom are (1) the results of the initial EOPs, (Il) rough registration

and (INl) fine registration respectively.

[10], [29]. Figure 13 shows the statistics of registration errors
in four different scenes.

As depicted in Figure 13, the effect of coarse-to-fine regis-
tration is evident as the error reduces in a progressive manner.
Specifically, the average error of the four scenes after regis-
tration drops from an initial value of 101.67 pixels to 11.48
pixels, indicating the efficacy of the registration approach in
enhancing the accuracy of the system’s initial EOPs.

VOLUME 11, 2023

C. COMPARISON WITH OTHER METHOD

To verify the accuracy of the method, we compare our method
with the method based on area overlap maximization, the
method based on mutual information maximization [5], [20],
[21], the skyline-based matching method [10], and the control
point based method [30] (referred to as methods I, II, III
and IV, respectively). Method I takes the overlap degree of
ground object area as the similarity measure to optimize.
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13

10

9
14

FIGURE 12. Checkpoints in scene I. The black cross mark is the location of the real checkpoint in the panoramic
image, the green point is the projection result of the initial EOPs of the system, the blue is the rough registration

result, and the red is the fine registration result.

Method IT uses the mutual information between the intensity
image of the point cloud and the gray scale image of the image
as the similarity measure, and then performs the optimization.
In Method III, 2D skyline pixels and 3D skyline points were
extracted from the image and point cloud respectively, and
then 3D points were projected into 2D points by coordinate
transformation. Finally, the matching number between 2D
skyline points was used as the cost function, and then the
optimization was carried out. Method IV is to manually select
several pairs of corresponding control points in the image and
the Point cloud respectively, and then use these correspond-
ing 3D-2D pairs of points to solve the relative conversion
between camera and lidar by the UPnP (Unified Perspective-
n-Point) method [30].

Since our method and Method I, II, III are both based
on iterative optimization, for the convenience of compari-
son, we both choose the whale algorithm for optimization.
We set the same overall size and maximum number of itera-
tions for comparison experiments. To better compare the two

30154

registration methods, we calculated the checkpoint projection
errors and the time required for single calculation of the
five methods in all scenarios. Table 2 and Table 3 show
the registration errors and operational efficiency of each
method.

As shown in Table 2, method IV has the highest accuracy
among all methods, with an average error of 11.10 pixels.
However, the method based on control point requires manual
selection of corresponding 2D and 3D control points, which
has a low level of automation and is difficult to be effectively
applied in real large scenes. The average error of our method
is 11.48 pixels, which is better than methods I, II and III,
indicating that our method can achieve automatic extraction
of registration primitives on the premise of ensuring high
registration accuracy.

As for the comparison of computational efficiency,
as shown in Table 3, Method III takes the shortest time
to calculate. However, Method III relies on skyline in the
scene for registration. In some cases, skyline in the image
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FIGURE 13. The registration error in the registration process of four different scenes. The orange, green and
purple columns correspond to the checkpoints error of initial parameters, rough registration and fine

registration respectively.

TABLE 2. The registration errors of different methods.

Our Method Method I Method 11 Method II1 Method IV
Scene I 11.21 21.26 31.27 38.11 10.10
Scene II 8.94 15.53 10.47 18.10 6.69
Checkpoint
projection Scene III 11.32 43.32 19.84 27.39 7.85
error
Scene IV 14.46 33.11 25.26 29.53 19.75
Average 11.48 28.30 21.71 28.28 11.10

records distant objects, while lidar is difficult to collect dis-
tant objects, so skyline cannot be well matched; Method
IT can achieve relatively good registration accuracy, but it
requires all point clouds and the whole panoramic image
to participate in the mutual information calculation, which
consumes a lot of time. Meanwhile, our method combines
the shape of ground objects and mutual information as the
constraint condition. Since the background in the data (i.e.
the sky and ground pixels in the panoramic image and ground
points in the point cloud) are eliminated in advance, the calcu-
lation time is significantly faster than Method II, which indi-
cates that our method can still achieve good computational
efficiency while maintaining a relatively high precision and
degree of automation. It shows that this method is accurate
and effective.

D. THE INFLUENCE OF INCOMPLETE DATA
Our method mainly registers point cloud and panoramic
image by matching the shape of the overall ground object.
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However, the semantic segmentation of the image and
the limitation of the sensor may lead to the incomplete
acquisition of the ground object, which may affect the reg-
istration results. Therefore, in order to verify the robustness
of our method, we use the method in [8] to add noise points
with different radii and intervals into the panoramic image
segmentation results, so as to simulate the over-segmentation
and under-segmentation of the image. Similarly, we add noise
points in the process of point cloud intensity image generation
to simulate possible holes and incompleteness in point cloud
data.

As shown in Figure 14, we simulated three different levels
of noise points and applied them to our method. Table 4 shows
the average error of 15 groups of checkpoints under the
influence of different degrees of simulated noise points and
the deviation between them and the original results. The
findings show that the addition of noise has a greater impact
on the results of the rough registration stage than on the fine
registration stage. This is attributed to the fact that the rough
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TABLE 3. The operational efficiency of different methods.

Our Method Method I Method IT Method I1I
Scene I 13.43 8.53 23.47 8.33
Scene IT 17.64 12.27 28.67 13.28
Time of each
. ] Scene IIT 18.57 13.13 29.33 8.43
registration
Scene IV 14.00 9.15 21.75 11.63
Average 15.91 10.77 25.81 10.41

7 8

FIGURE 14. Data incomplete simulation. The top line and the bottom line respectively represent the incomplete data of the image and point cloud
simulated by adding noise points. (1) and (5) are the initial results. (2) and (6) the radius of noise points is 70 pixels, and the interval is 350 pixels;
(3) and (7) the radius of noise points is 90 pixels, and the interval is 400 pixels; (4) and (8) Noise points with a radius of 100 pixels and an interval of

430 pixels.

TABLE 4. The average error under different noise interference. (Unit: pixel).

Panoramic image with noise

Point cloud with noise

Rough registration Fine registration Rough registration Fine registration
Average A Average A Average A Average A
error error error error
original 15.77 11.32 15.77 11.32
Noise I 20.59 4.82 14 2.68 24.00 8.23 15.06 3.74
Noise II 34.58 18.81 17.46 6.14 30.89 15.12 18.88 7.56
Noise III 25.78 10.01 17.54 6.22 20.34 4.57 11.55 0.23

* A is the deviation between the result of adding noise and the original segmentation.

registration stage heavily relies on the area difference of the
overall ground object shapes, thus image segmentation errors
have a greater impact. Conversely, the fine registration stage
leverages the mutual information between the point cloud
image and the panoramic image, and the similarity of the
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background sky region in both images partially offsets the
impact of segmentation errors [21]. Therefore, although noise
points can influence the cost function calculation, our method
can still achieve good registration accuracy. In summary, our
proposed method maintains a good registration effect under
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various noise point interferences and demonstrates robustness
against data incompleteness caused by sensor limitations or
false segmentation.

IV. CONCLUSION

This paper proposes a novel automatic registration method
to address the registration problem between LiDAR point
clouds and panoramic images. Unlike traditional methods
that extract geometric features, our method uses the over-
lap of the overall ground object shapes and the mutual
information between the two types of data to estimate the
rigid body transformation between the panoramic camera and
LiDAR. We conducted experiments in four different scenes
and compared our approach to the other four. Our method
achieved an average error of 11.48 pixels on panoramic
images with a resolution of 11000 x 5500 pixels, resulting in
a0.73% (error/image diagonal line) improvement in accuracy
compared to the initial EOPs. Additionally, simulation exper-
iments were conducted to test the method’s robustness against
different levels of noise point interference, and the results
showed that our method has excellent robustness. Finally,
simulation experiments are carried out for different noise
point interference, the results show that the method has good
robustness.

Despite the promising results of our proposed method,
some limitations must be acknowledged. Firstly, as our
approach utilizes the overall ground object shape as the
registration primitive, it may face difficulties in scenarios
where there are fewer objects or smaller targets. Addition-
ally, our method is currently optimized for low-resolution
images, and its performance for high-resolution images,
such as aerial or terrestrial frame camera images, remains
an area for further exploration. Addressing these chal-
lenges and expanding our method’s capabilities in more
complex scenarios will be crucial directions for our future
research.
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