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ABSTRACT Gastric cancer is high-risk cancer in terms of both incidence and mortality. However, if it
is diagnosed early, there is a high chance of survival. Therefore, an early diagnosis of gastric cancer and
precancerous lesions is very important. Gastroscopy is one of the best methods for diagnosing gastric cancer
and precancerous lesions, but it relies on visual observation by medical specialists. Accordingly, factors
such as the experience or fatigue of specialists can influence diagnosis results. To alleviate these problems,
we propose a computer-aided diagnosis system that can improve the efficiency of diagnosis and reduce
misdiagnoses by providing a second opinion. We aimed to classify healthy tissue, gastric lesions, and early
gastric cancer using a Transformer-based deep-learning classification model called Vision Transformer,
which has achieved the best performance in transfer learning. We also proposed aMulti-Filter AutoAugment
(MFAA) method, which increases the classification performance of the model given small amounts of
medical data. The medical data augmented using MFAA are better for training deep-learning models than
conventionally augmented data; we effectively enhanced the classification performance of the model using
MFAA. In experiments, the model achieved an F1-score of 0.87 and area under the curve of 0.94 in the
classification of abnormalities (gastric lesions including early gastric cancer) and healthy tissue. In addition,
it obtained an F1-score of 0.92 and area under the curve of 0.97 in the classification of early gastric cancer
and non-cancerous gastric lesions.

INDEX TERMS Computer-aided diagnosis (CADx), deep-learning, early gastric cancer, gastric lesions,
gastroscopy, medical data, multi-filter AutoAugment (MFAA).

I. INTRODUCTION
Gastric cancer, also known as stomach cancer, has the fifth
highest incidence worldwide in both sexes according to the
Global Cancer Observatory of the World Health Organiza-
tion [1]. In addition, its mortality is ranked fourth. Consid-
ering both its incidence and mortality, it can be considered a
high-risk cancer. There is a large difference in the survival
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rate of patients with gastric cancer depending on when it
is diagnosed. A survival rate of >90% is expected when
gastric cancer is diagnosed early [2]. However, if diagnosis
is delayed, the survival rate decreases sharply. Therefore, the
early diagnosis of gastric cancer is an important factor for
patient survival. However, early diagnosis of asymptomatic
gastric cancer can be difficult [3].

Gastroscopy is one of the best methods for the early diag-
nosis of gastric cancer [4]. It is a common method in many
countries, and a variety of high-performance equipment is
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used to develop this technique.Moreover, it has the advantage
of being able to assist a medical specialist to diagnose early
gastric cancer and precancerous lesions at a reasonable cost
without any adverse effects on the patient. However, gas-
troscopy is limited in that it requires visual observation by
a specialist. Therefore, factors such as fatigue and the skill of
the specialist can influence the diagnosis results. Computer-
aided diagnosis (CADx) systems can solve this problem by
analyzing medical data and providing a second opinion to
specialists [5]. Recently, research on deep-learning-based
CADx systems has been actively conducted. Such systems
quickly provide useful information to specialists based on
accumulated medical data. Furthermore, the accuracy of the
diagnosis can be improved by preventing subjective judgment
or misdiagnosis by a specialist, thereby reducing the burden
on the specialist. However, collecting medical data, which is
themost important step in the development of CADx based on
deep-learning, is difficult because of the process limitations.
The premise that a lesion has occurred is first required, and
then an approval process to protect patient information along
with patient consent is essential [6]. The volume of medical
data that can be obtained through this process is inevitably
smaller than the volume of other types of data, and this is a
disadvantage for deep-learning-based CADx systems, where
the quantity and quality of the data are the most important
factors affecting performance.

In this study, we propose an enhanced computer-aided gas-
troscopy diagnosis system that uses a Multi-Filter AutoAug-
ment (MFAA) to address the problems mentioned above.
The computer-aided gastroscopy diagnosis system uses a
deep-learning-based classification model and aims to clas-
sify healthy tissue, gastric lesions, and early gastric cancer.
MFAA is based on AutoAugment [7] and is a new data-
augmentation method. This approach can reduce the quality
degradation caused by conventionally augmenting medical
data, which is a problem in CADx systems, where accuracy
is the most important factor. In addition, it can effectively
improve the performance of CADx systems with only a small
amount of medical data.

II. RELATED WORK
Various studies have been conducted to diagnose gastric
lesions or cancers using a CADx system. Muto et al. [8]
recommended a diagnostic algorithm for early gastric cancer
using magnifying endoscopy. The aim of this study was to
distinguish between cancerous and non-cancerous but suspi-
cious lesions. The vessel plus surface classification system
developed by Yao et al. [9] was used. The system achieved
an accuracy of 0.95, positive predictive value of 0.79, and
negative predictive value of 0.99 in the diagnosis of gastric
cancer. However, it was difficult for the system to diagnose
lesions that exhibited contact bleeding or were covered with
mucus.

Zhu et al. [10] developed a convolutional neural network
(CNN) that automatically detected gastric cancer in endo-
scopic images. Their proposed diagnostic system was based

on a single-shot multi-box detector [11]. A total of 13,584
endoscopic images of gastric cancer were used for learning
and 2,296 images were used for testing. It obtained an over-
all sensitivity of 0.92, and 161 non-cancerous lesions were
detected as gastric cancer, resulting in a positive predictive
value of 0.31.

Hirasawa et al. [12] constructed a CNN-based computer-
aided detection system based on endoscopic images to deter-
mine invasion depth. Two classes, P0 and P1, were classified
according to the invasion depth of the tumor. They used
the ResNet-50 architecture [13], 790 images as the training
dataset, and 203 images as the test dataset. The area under
the curve (AUC) of the proposed method was 0.94, which
was equivalent to that of experienced endoscopists and higher
than that of junior endoscopists.

Horiuchi et al. [14] investigated the differences in diag-
nostic performance between expert endoscopists and a CADx
system using magnifying endoscopy with narrow-band imag-
ing. A total of 1,492 cancerous and 1,078 non-cancerous
images were used to fine-tune a pre-trained GoogLeNet
model [15]. A total of 174 videos (87 cancerous and 87 non-
cancerous) were used to evaluate the diagnostic performance
of the proposed system along with 11 experts. The proposed
system achieved an AUC of 0.87, which was equivalent to or
better than that of several experts.

Ali et al. [16] compared color features in different color
spaces to detect abnormal areas in chromoendoscopy. A sup-
port vector machine [17] classifier was trained on color
features and hybrid color–texture characteristics for gastric
lesions. A total of 176 normal and gastric lesions images
were used for the performance evaluation, and the proposed
method achieved an accuracy of 0.87 and AUC of 0.91 in the
classification of gastric lesions.

Iizuka et al. [18] trained a CNN based on an Inception-v3
network architecture [19] and a recurrent neural network
consisting of two long short-term memory networks [20]
on biopsy histopathology whole-slide images (WSIs) of the
stomach and colon. The models were trained to classify
WSIs as adenocarcinomas, adenomas, and non-neoplastic.
The stomach dataset used for training and testing consisted of
4,128 WSIs and the colon dataset consisted of 4,036 WSIs.
This approach yielded AUCs of 0.97 and 0.99 for gastric
adenocarcinoma and adenoma, respectively, and 0.96 and
0.99 for colonic adenocarcinoma and adenoma, respectively.

Ueyama et al. [21] constructed an artificial intelligence
(AI) assisted CNN CADx system to diagnose early gas-
tric cancer using a ResNet-50 architecture based on mag-
nifying narrow-band imaging (ME-NBI) images. It was
trained and validated on a dataset of 5,574 ME-NBI images
(3,797 images of early gastric cancers (EGCs) and
1,777 images of non-cancerous lesions). To evaluate the
diagnostic accuracy, a separate test dataset of 2,300 ME-
NBI images (1,430 images of EGCs and 870 images of non-
cancerous lesions) was used. The proposed system required
60 s to analyze 2,300 test images and exhibited a sensitivity
of 0.98.

29392 VOLUME 11, 2023



J.-W. Chae, H.-C. Cho: Enhanced Classification of Gastric Lesions and Early Gastric Cancer Diagnosis

Chen et al. [22] proposed a GasHis-Transformer model and
its lightweight version, called the LW-GasHis-Transformer,
to detect gastric cancer in histopathological images. A pub-
licly available hematoxylin and eosin stained gastric
histopathological image dataset was used for training and
testing. They used image augmentation with a normalization
process to speed up the model learning, and training was
conducted using the global information module, following
the concept of BoTNet-50 [23] and the local information
module, which is based on the concept of Inception-v3. The
results of the two models achieved accuracies of 97.97% and
96.43% on the gastric cancer histopathology dataset.

The related literature reveals that various CADx systems
have been used with gastroscopy. Studies have been con-
ducted to diagnose various factors such as early gastric
cancer, gastric lesions, and the invasion depth of a tumor.
All the studies have shown that CADx systems for gas-
troscopy can be helpful. They have also exhibited very
high performance owing to the application of deep-learning
techniques.

Our study proposes a model to classify healthy tissue, gas-
tric lesions, and early gastric cancer using a very recent and
best-performing deep-learning model, Vision Transformer
(ViT). However, the amount of medical data used in the above
studies is limited compared to the amount of data used in stud-
ies in other fields. Despite the long collection periods or the
collaboration of several institutions, the amount of available
data was not significant compared with that available in other
fields. Accordingly, we also propose the MFAA, which can
address the difficulty in medical data collection.

III. MATERIALS AND METHODS
This study aimed to develop a deep-learning-based CADx
system for gastroscopy. This system consists of two parts.

First, abnormalities (gastric lesions, including early gastric
cancer) and healthy tissue are classified, and then early gas-
tric cancer and non-cancerous gastric lesions are classified.
In addition, we use MFAA on all images to improve the
classification performance even when only a small amount
of medical data is used. The overall structure of the proposed
method is illustrated in Fig. 1.

A. GASTROSCOPY DATASET
Gastroscopic images of healthy tissue, abnormalities, and
early gastric cancer were collected from the Department of
Internal Medicine of Gyeongsang National University Hos-
pital, South Korea. All gastroscopic images were approved
by the Institutional Review Board (IRB File No. GNUH
2022-05-033), and biopsy-verified. Gastroscopic imageswith
a resolution of 1242 × 1080 pixels were obtained from
192 patients. For the images of healthy tissue, 600 gas-
troscopic images were obtained from 96 patients. For the
images of abnormalities such as benign gastric ulcers,
bleeding, blood clots, chronic gastritis, erosive gastritis, ery-
thema, hemorrhages, metaplastic gastritis, polyps, submu-
cosal tumors, and xanthoma, 300 gastroscopic images were

FIGURE 1. Structure of the proposed gastroscopy diagnosis system.

obtained from 48 patients. A further 300 gastroscopic images
of early gastric cancer were obtained from 48 patients.

Two datasets were constructed using the obtained gas-
troscopic images. Dataset A was used for the classification
of abnormalities and healthy tissue, while Dataset B was
used for the classification of early gastric cancer and gastric
lesions. The gastroscopic images included in each dataset
were divided for training and performance evaluation. They
were divided as evenly as possible, and care was taken not
to include gastroscopic images of the same patient in both
datasets. Moreover, to increase the reliability of the study,
gastroscopic images of early gastric cancer obtained from
the Catholic University of Korea St. Mary’s Hospital pro-
vided by the AI Hub of the National Information Society
Agency were used for performance evaluation [24]. A total of
3,285 gastroscopic images of early gastric cancer obtained
from 225 patients were used; the resolution was 640 × 480,
and none were not used for training, only for performance
evaluation. The configurations of Datasets A and B are shown
in Table 1, and examples of the gastroscopic images are
shown in Fig. 2.
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TABLE 1. Specification of the gastroscopy dataset.

FIGURE 2. Examples of images obtained during gastroscopy.

B. CLASSIFICATION MODELS
ViT was used to classify the gastroscopic images [25].
Among the ViT models, ViT-H/14 pre-trained on the public
ImageNet-21k dataset was used [26]. The ViT uses a Trans-
former architecture for classification using fixed-size image
patches as the input. The detailed training procedure is as
follows.

z0 =

[
xclass; x1pE; x2pE; · · ·; xNp E

]
+ EposE ∈ R(P

2
·C)×D, E ∈ R(N+1)×D (1)

Equation (1) corresponds to the input of the ViT, where xclass
represents a classification token and xNp E represents an image
sequence divided into patches.

zl = MSA (LN (zl−1)) + zl−1, l = 1 . . . L

zl = MLP (LN (zl)) + zl, l = 1 . . . L (2)

Equation (2) is used in the transformer architecture. Layer
normalization is applied to the previous input value and

multi-head attention is employed. Subsequently, a skip con-
nection is added. In this procedure, z′l is the output from the
transformer, and zl is the output of the multi-layer perceptron
head of the ViT, which takes z′l ,as its input. Finally, classifi-
cation is performed as follows:

y = LN (z0L) (3)

ViT does not have inductive biases because of the char-
acteristics of the transformer architecture. It also does not
have the locality and translation equivariance characteristics
of CNNs. Therefore, it is not necessary to use a large amount
of data for training because it does not use a local receptive
field but determines the position of an instance of a class
by perceiving the global image. However, if pre-training
is performed using a large amount of data, the model can
identify both local and global features and perform better on
highly complex images. This can be a strength in medical
data, which are high in complexity and often used for transfer
learning, mainly because of the small amount of data.
Moreover, the transformer architecture of the ViT models

does not have parameter limitations. As a result, the possibil-
ity of overfitting is very small, and the probability of making
a biased diagnosis using pre-training data is low. Therefore,
it was determined that the use of a ViT is appropriate for
medical tasks, where accurate and unbiased diagnoses are the
most important factors.
An additional classificationmodel formulti-filter data aug-

mentation called big transfer (BiT) was used [27]. BiT is a
model that aims to achieve the best performance in transfer
learning. A ResNet architecture is used as the backbone, and
during transfer learning, the upstream layers corresponding
to pre-training and the downstream layers corresponding to
fine-tuning, are separated. The BiT-HyperRule, which is a set
of parameter values that obtains the highest transfer-learning
and classification performance, was also reported. Accord-
ingly, it was found that BiT achieves acceptable performance
on medical data tasks. Among the BiT models, BiT-L, which
is pre-trained on the public ImageNet-21k dataset, was used.
In summary, ViT-H/14 was used as the main classification
model and for filtering, and BiT-L was used for filtering the
augmented medical data.

C. MFAA
In this study, we present MFAA, which can effectively
improve classification performance even in situations where
there are small amounts of data. MFAA is based on AutoAug-
ment, which selects the optimal sub-policy for the train-
ing dataset. AutoAugment sets the augmentation policy S
and validation accuracy R and then adjusts S to increase R
through a recurrent neural network. Thus, the 25 sub-polices
that obtained the best performance in the training dataset
were selected. Each sub-policy consists of two augmenta-
tion operations, which are composed of operations such as
changes to brightness, contrast, equalization, inversion, pos-
terization, and shear. AutoAugment provides augmentation
policies based on three datasets: CIFAR-10, ImageNet, and
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FIGURE 3. Operation of MFAA.

street view house numbers (SVHN). However, the use of an
augmentation policy for the SVHN dataset, which consists
of street view house numbers, was considered inappropri-
ate for this study and was excluded [28]. Therefore, aug-
mentation policies obtained using CIFAR-10 and ImageNet
were applied to the gastroscopic images, and the number
of gastroscopic images was increased 50-fold through the
25 sub-policies for CIFAR-10 and 25 sub-policies for Ima-
geNet. Even if AutoAugment is used for data augmentation,
the features in the augmented data necessary to classify the
target object can be incorrectly added, transformed, or lost.
Therefore, using all augmented data may interfere with the
performance or may not result in significant improvement.
MFAA can be a solution to this problem.

MFAA is configured by adding a data filtering proce-
dure using the classification model for augmented data
through AutoAugment. The weights of the classification
model trained using the original data contain the necessary
feature information of the target object. Using these points,
we filter the augmented data. As a result, it is possible to leave
only the appropriate augmented data generated by AutoAug-
ment. Furthermore, classification models extract and use
different features to classify objects depending on their archi-
tecture and purpose. Accordingly, when filtering using vari-
ous classification models, as shown in Fig. 3, only augmented
data with essential features for classifying objects are left,
and this is the main advantage of MFAA. In the proposed
study, two classification models, ViT and BiT, were trained
and used for MFAA. Filtering through the two classification
models for augmented gastroscopic images leaves only gas-
troscopic images with classification accuracies higher than
0.9. Descriptions of trainingmethods for ViT andBiT are pro-
vided in the following sections. The detailed specifications

TABLE 2. Specifications of the augmented gastroscopy datasets.

of the dataset obtained using AutoAugment and MFAA are
presented in Table 2.

D. ENVIRONMENTAL SETUP AND TRAINING
All training and performance evaluations were conducted on
a system using Windows 10 × 64, CUDA 11.3 with cuDNN,
Python 3.9.6, and PyTorch 1.12, with the following configu-
ration: Intel® Core™ i9-12900KS Processor, NVIDIA RTX
A6000, and 64GB RAM.

First, the model for the classification of abnormalities
and healthy condition was trained. The ViT-H/14 model
pre-trained on ImageNet-21k was used as the classification
model. Gastroscopic images belonging to the training set of
Dataset A and gastroscopic images augmented by MFAA
were used for training. The training dataset was divided
randomly using a ratio of 8:2 for training and validation.
However, when the training dataset contained augmented
data, the entire training dataset was not randomly divided into
an 8:2 ratio. A division of 8:2 was applied to each set of the
original and augmented data constituting the training dataset.
This prevents biased configurations.

During the training of the classification model, the weights
were selected using objective judgment and the selection was
based on the validation loss. If the validation loss of the
weights did not improve within five epochs or showed only a
very small change, the first of the five epochs was considered
the optimal point of training, and the weights for that epoch
were selected. Using this approach, we generated and com-
pared four methods (original, AutoAugment, 1-Filter, and our
MFAA method) for the classification of abnormalities and
healthy tissues.

Second, training for the classification of early gastric
cancer and non-cancerous gastric lesions was also con-
ducted. Gastroscopic images belonging to the training set
of Dataset B and gastroscopic images augmented by MFAA
were used for training. All other training procedures were
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conducted using the same conditions as those used in the
previous training method. Using this approach, we developed
and compared the same four methods for the classification of
early gastric cancer and gastric lesions.

For MFAA, two sets of weights trained using the ViT-H/14
classification model from the original gastroscopic images
belonging to Dataset A and Dataset B were used. We used
two sets of weights generated by changing the ViT-H/14
classification model to BiT-L classification model. The ViT-
H/14 and BiT-L are model types based on the model sizes of
ViT and BiT, respectively, and these two models yield stable
classification performance because of their large model sizes
compared with other model types.

IV. RESULTS AND DISCUSSION
The results of the proposed study were evaluated based on
classification performance. Sensitivity, F1-score, and AUC
were used as the key indicators for performance evaluation.
Sensitivity was used to confirm the number of abnormalities
correctly classified in the class of abnormalities and healthy
tissues as well as the number of EGCs correctly classified
in the class of early gastric cancer and gastric lesions. The
F1-score was used to verify the overall performance instead
of accuracy because the data used in the test differed in
proportions. The AUC, which is mainly used in performance
evaluation in medical research, was obtained by calculating
the receiver operating characteristic (ROC) curve. The ROC
curves obtained for the datasets by each method are shown in
Fig. 4. The overall performance of the proposed method with
detailed criteria such as the numbers of TP (true positives),
TN (true negatives), FP (false positives), and FN (false neg-
ative) is summarized in Table 3. The highest performances
in terms of precision, sensitivity, F1-score, and AUC of each
part are indicated in bold.

In the first experiment, the classification performance of
abnormalities and healthy tissues was evaluated. The abnor-
malities include gastric lesions and early gastric cancer.
A performance evaluation was conducted on 300 gastro-
scopic images of abnormalities obtained from 48 patients and
300 gastroscopic images of healthy tissues obtained from the
48 patients included in Dataset A.

The first row shows the results of the trained weights
obtained from the original data without augmentation. The
second row lists the performance of the model trained
on the original data and data augmented using AutoAugment.
The third row lists the performance of the model trained on
the original data and augmented data filtered by a single
classification model. The last row lists the performance of the
model trained on the original data and augmented data filtered
through two classification models according to the proposed
MFAA approach. The classification performance obtained
using MFAA was the highest overall. Both the F1-score and
AUC showed a performance improvement of approximately
2% compared to the original values. In the case of sensitivity,
the original model yielded the highest performance but was
very close to the value obtained using MFAA.

FIGURE 4. ROC curves according to the dataset and methods.

In this classification, healthy tissue has one category. How-
ever, abnormalities, although grouped into one category, are
composed of various gastric lesions. Accordingly, unlike the
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TABLE 3. Performance evaluation of gastroscopy classification.

augmentation for healthy tissue images, augmentation was
achieved for each lesion and led to abnormalities includ-
ing too many features. Therefore, worthless augmented data
were added to the training dataset. This can be confirmed
by the decrease in sensitivity caused by AutoAugment and
1-Filter. Therefore, it is concluded that some of the worth-
less augmented data were filtered out by MFAA, and the
performance improved again in the proposed model (2-Filter,
MFAA). Although the sensitivity was very slightly lower, a
clear performance improvement in the F1-score and AUC
was confirmed, which means that the proposed MFAA per-
formed effectively in improving the classification of medical
data.

In the second experiment, the early gastric cancer and
gastric lesions classification performance was evaluated.
This was performed to confirm whether early gastric can-
cer could be accurately diagnosed from data that includes
various gastric lesions. The evaluation was conducted on
148 gastroscopic images of early gastric cancer obtained
from 24 patients and 152 gastroscopic images of gastric
lesions obtained from 24 patients. The evaluation process
and arrangement of rows were the same as those described
in the previous experiment. The results of the application of
the proposed method also yielded the highest overall perfor-
mance. Compared to the original values, the F1-score was

improved by approximately 3%, and theAUCwasmaximized
with a slight increase. In the case of sensitivity, the 1-Filter
augmented data obtained the best performance, which was
approximately 1% higher than that of the proposed method.
However, there was a difference of 3% in the F1-score and
2% in the AUC; it can be observed that the performance of the
classification model based on the proposed method is much
better than when the 1-Filter is used.

Finally, to increase the reliability of the proposed study,
early gastric cancer and gastric lesions were classified using
extra-gastroscopic images of early gastric cancer obtained
from other institutions.We used 3,285 gastroscopic images of
early gastric cancer from 225 patients provided by the AI Hub
of the National Information Society Agency, South Korea.
There was no separate training for this evaluation, and only
tests were conducted. The evaluation process was the same
as that described for the previous experiments. The only
difference was that the gastroscopic images of early gastric
cancer used in the performance evaluation were replaced
with data from the AI Hub. Using the proposed method
yielded the highest performance in terms of sensitivity, F1-
score, and AUC. Sensitivity was very low for all methods
except for the proposed method. MFAA led to a performance
improvement of 30%. Even the overall performance of the
F1-score was low, but MFAA substantially improved it by
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approximately 25%. The AUC also improved by 5% com-
pared to the original AUC.

The time complexity of the proposed study was confirmed
through big O notation. The classification models of the pro-
posed study have a process from training to testing. Training
proceeds by repeatedly analyzing the dataset according to
epoch and the testing proceeds to check the dataset once.
Therefore, the dataset is set to n, and the original method can
be expressed as (4):

f (n) + f (1) = f (n) = O (n) = n, f (x) = O (g (x)) (4)

In the case of the proposed MFAA, it consists of training
twice to generate the weights to be used as filters, testing
twice for filtering, training once through the MFAA dataset,
and testing once. It also has an augmentation process that
multiplies the dataset. The MFAA method can be expressed
as (5):

3f (n) + 3f (1) + f (n) = f (n) = O(n) (5)

To sum it up, execution time increases as the number of
training and testing increase. However, the time complexity
remains the same as O(n). Further, the procedure of the
MFAAmethod, which takes additional time, does not need to
be repeated. Accordingly, there is no difference in execution
time between the original method and the proposed MFAA
method after training.

In conclusion, it was confirmed that the application of
MFAA led to higher performance in most situations. This
means that the overall performance of the model was
improved in the classification of healthy tissues, gastric
lesions, and early gastric cancer. Moreover, it was confirmed
that the performance improvement was not as high when
AutoAugment was applied or when only one classification
model was used for data filtering. This supports the finding
that the proposed MFAA, which leaves only data with essen-
tial features, works better. In the classification of early gastric
cancer data from other institutions, MFAA resulted in high
performance improvements in all metrics. Objectively, it can
be concluded that the performance was not remarkably high
compared to research in other fields. However, the training
was conducted based on a very small number of gastroscopic
images of early gastric cancer (148), and 3,285 gastroscopic
images of early gastric cancer were classified. Therefore,
it can be considered that the performance is relatively good,
and the performance improvement obtained using the pro-
posed method is encouraging.

V. CONCLUSION
In this study, we proposed a CADx system that can classify
healthy tissues, gastric lesions, and early gastric cancer. The
transformer-based deep-learning model ViT, which obtains
the best classification performance and good characteristics
for transfer learning using small amounts of medical data,
was used as the classification model. We also proposed
MFAA, which can effectively increase the classification per-
formance of models trained on small amounts of medical

data. We experimentally verified the proposed gastroscopy
classification using MFAA. The application of the proposed
method to the data used to train the classification model led
to high performance improvements in all classifications of
healthy tissues, gastric lesions, and early gastric cancer, with
an F1-score of 0.92 and AUC of 0.97. We also obtained
very effective performance improvements in the classifica-
tion of extra gastroscopy data obtained from an independent
institution.

Although the proposed study obtained encouraging results,
many challenges remain for future research. First, we intend
to confirm the potential of the proposed MFAA with medical
data from various fields beyond gastroscopy. Second, we plan
to collect more gastroscopic images and apply MFAA to
compare the performance improvements. In this study, two
classification models were used for filtering, and we would
like to determine whether a higher performance improvement
is possible by increasing the number of classification models
used for filtering. Finally, we would like to apply various
classification models as well as ViT and BiT to gastroscopy
diagnosis, select an optimized classification model, and con-
duct a study to improve the classification performance by
changing the structure of the selected model.
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