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ABSTRACT Simulated Quantum Annealing (SQA) is a heuristic algorithm which can solve Quadratic
Unconstrained Binary Optimization (QUBO) problems by emulating the exploration of the solution space
done by a quantum annealer. It mimics the quantum superposition and tunnelling effects through a set of
correlated replicas of the spins system representing the problem to be solved and performing Monte Carlo
steps. However, the effectiveness of SQA over a classical algorithm strictly depends on the cost/energy
profile of the target problem. In fact, quantum annealing only performs well in exploring functions with high
and narrow peaks, while classical annealing is better in overcoming flat and wide energy-profile barriers.
Unfortunately, real-world problems have a heterogeneous solution space and the probability of success of
each solver depends on the size of the energy profile region compatible with its exploration mechanism.
Therefore, significant advantages could be obtained by exploiting hybrid solvers, which combine SQA and
classical algorithms. This work proposes four new quantum-classical algorithms: Simulated Quantum Par-
allel Tempering (SQPT), Simulated Quantum Population Annealing (SQPA), Simulated Quantum Parallel
Tempering - Population Annealing v1 (SQPTPA1) and Simulated Quantum Parallel Tempering - Population
Annealing v2 (SQPTPA2). They are obtained by combining SQA, Parallel Tempering (PT), and Population
Annealing (PA). Their results are compared with those provided by SQA, considering benchmark QUBO
problems, characterized by different profiles. Even though this work is preliminary, the obtained results are
encouraging and prove hybrid solvers’ potential in solving a generic optimization problem.

INDEX TERMS Simulated quantum annealing, parallel tempering, population annealing, hybrid quantum-
classical algorithms, optimization problems, quadratic unconstrained binary optimization, Ising machine,
cost function, energy profile.

I. INTRODUCTION
Optimization target is finding a variableconfiguration that
minimizes a cost function or maximizes a fitness one.
It is relevant in many real-world applications, such as
chemical simulations [1], logical and physical VLSI cir-
cuit synthesis [2], resource allocation in industrial environ-
ments [3], structural optimization [4], [5], antenna design [6],
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and many others. It can be subdivided into two categories,
depending on the variables’ nature: discrete or combi-
natorial optimization (CO), in which variables are dis-
crete, and continuous optimization, in which the same are
continuous.

For some applications, not all solutions are feasible
and constraints must be applied to variable (constrained
optimization). They can be taken into account differently
depending on the solvers’ characteristics: inserting them
inside the objective function (through penalty functions) and
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FIGURE 1. Overview of the article. Starting from the simulated quantum annealing (SQA) algorithm for the emulation of quantum annealers, different
algorithms for solving Ising/QUBO problems — based on interfacing SQA with parallel tempering and population annealing — have been defined.
Comparisons between the proposed methodologies and that are already present in the literature were done for different real-world optimization
problems describable with Ising/QUBO formulation. Reminding that these algorithms are all iterative, the obtained results prove that, with the same
number of iterations, the proposed approaches can improve the quality of the obtained results with respect to SQA.

directly generating only feasible new configurations during
the exploration.

Moreover, in a real-world context, it could be necessary
to optimize more than one objective (fitness or cost func-
tion) at the same time. In this case, it is called multi-
objective or vector optimization (MO), and, in this case,
the solution is always a trade-off between functions involved
in the problem. The most preferred solution can be found
by computing a representative set of Pareto optimal solu-
tions (impartial approach), which a human decision marker
can evaluate during (interactive methods) or at the end of
optimization (a posteriori methods) expressing preferences,
or by combining objective functions into a higher scalar one
(only one objective function involved) through aggregation

approaches (a priori methods), which exploit a preference
criterion.

Several strategies were proposed for solving optimization,
and the best one commonly depends on the optimization
class.

A brute-force approach, i.e. the analysis of all possible
input variables combinations, always guarantees the achieve-
ment of the optimal solution. However, the execution time
increases exponentially with the problem size, thus making it
unfeasible in a real-world context.

Deterministic explorations can be grouped into three cat-
egories: second-order methods (such as Newton’s one [7]),
which are based on both gradient and hessian computation,
first-order methods (such as quasi-Newton one [8]), which
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FIGURE 2. Relationship between simulated quantum annealing, parallel tempering, population annealing
and the proposed algorithms.

exploit only the gradient, and zero-order methods (such as
pattern searched [9]), which use only the objective function.
They are effective only for some optimization problems, e.g.
the convex ones, which are characterized by the presence of
a single minimum (or maximum). Moreover, they can have a
significant latency for reaching convergence.

Therefore, heuristic approaches are currently the best
way to find optimal or sub-optimal solutions for large-scale
optimization problems. They are commonly inspired by nat-
ural phenomena and based on an equilibrium between the
exploration (divergence) of the feasible solutions space and
the exploitation (convergence) of the knowledge acquired
evaluating the previously obtained solutions. Furthermore,
several famous heuristic algorithms are population-based,
i.e. there are a set of elements (individuals) which explore the
solution space in parallel with specific rules deriving from
some natural or social phenomena.

Some of them emulate the behaviours of a set of individ-
uals or animals with the same target. They are also called
cooperative algorithms. The most famous algorithms in
this context are the particle swarm [10], which is based
on the behaviour of a flock of birds (candidate solutions)
looking for food (motion of the candidate solutions in the
objective function space for finding the optimum), and the
ant colony [11], which mimics the cooperative behaviour
of ants that communicate where is food. In the first one,
each element must follow its neighbours, stay in the flock
and avoid collisions. The exploration is guaranteed by the
possibility for an individual to get out of the flock if a promis-
ing region in the solution space is found (selfish behaviour),
while exploitation is associated with the tendency to stay in
the flock (social behaviour). At the same time, in the second
algorithm, ants randomly explore the area surrounding their
nest (exploration). When an ant finds a promising region,
it attracts others in the same area (exploitation).

In recent years, many other cooperative population-based
approaches have been proposed, for example, teaching-
learning optimization [12], [13], which mimics the learning
process of a class. In particular, there is a class of students,
whose scores are the quality of the associated solution. The

individual associated with the best solution is the teacher.
The learning process of each element depends on both the
classmates’ and teacher’s experience (exploitation).

Other population-based algorithms mimic the biological
evolution of a species, which modifies its characteristic to
better survive in the environment. They are also called evolu-
tionary algorithms and are based on the competition among
individuals in the population. The oldest and most popular in
this field are the evolutionary strategy [14] and the genetic
algorithms [15]. In the first, a population of individuals
(configurations) is generated. Then, their ability is measured
(quality of the solution) and a new generation of individuals is
generated by selecting in a deterministic way the best individ-
uals, associated with the best current solutions, by inheriting
the best characteristics of the previous one (genetic opera-
tion), i.e. combining two or more individuals (exploitation),
and also mimicking the genetic mutation, corresponding to
random events due to errors in the copy operation (explo-
ration). The second one is based on the same principles as
the previous, but with the following differences: the variable
representation is binary instead of a floating-point one, which
helps to implement a more complex individuals combination
mechanism and easier implementation of mutation, the selec-
tion mechanism is probabilistic instead of deterministic and
the genetic operation is fixed instead of changing during the
solution space exploration.

Also, in this context, many other evolutionary population-
based approaches have been proposed, in recent years. For
example, the follow-the-leader approach [16] is based on the
behaviour of a sheep within a flock foraging. In particular, the
sheep in the region with more green grass around (the current
best solution) is identified as the leader of the flock, while
the one with less or dry grass around (worst current solution)
is the rear one. The flock tends to follow the leader, so this
phenomenon corresponds to moving the search to the most
promising region (exploitation of the knowledge). The main
issue of the proposed original algorithm is that there is an
unbalance between exploitation and exploration, which can
compromise the quality of the results in non-convex (multi-
modal) optimization problems. The work presented in [17]
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tries to overcome this limitation, thus allowing the algorithm
to express its potential fully.

The last historical type of population-based algorithm
is the artificial immune one [18], which emulates a liv-
ing body’s defence from external biological enemies that
change with time. In these algorithms, the objective function
plays the role of antigen, i.e. a substance able to stimulate
the immune system response, while the antibodies repre-
sent the feasible solution, defining a binary code for each one.
In the beginning, an initial antibody population is generated.
The quality of each element is evaluated in terms of affinity
among antigens and antibodies. According to this value, the
antibodies are selected for cloning (exploitation) and a muta-
tion mechanism is applied (exploration). The perspective and
recent proposal of these approaches are summarized in [19].

Furthermore, many popular heuristic algorithms are
inspired by the evolution of a physical system. The most
iconic example is simulated annealing (SA) [20]. As the
name suggests, it mimics physical annealing, which is a
process exploited in materials science for removing reticular
defects of crystals based on two steps. The first one is heating
crystals over their re-crystallization temperature, to allow
the motion of the atoms in the lattice, the second one is
slow cooling of the same, to achieve the optimal settling of
atoms in the lattice. SA implements the exploration by accept-
ing with certain probability — depending on the tempera-
ture parameter (Metropolis-Hastings approach, explained in
Section II-B) — new solutions that can degrade the objective
function’s current value. On the other hand, exploitation is
done by adopting a neighbour exploration policy and by the
systematic acceptance of better new solutions. The conver-
gence is guaranteed by the gradual reduction of the temper-
ature parameter, i.e. the probability of accepting a degrading
solution. The interest in this approach is grown over the years:
several approaches for improving it have been proposed, e.g.
parallel tempering and population annealing (explained
in Section II), it is currently employed in many applica-
tions [21], [22], [23], [24], [25], and it has been exploited for
improving the balance between exploration and exploitation
of more complex optimization mechanisms [26], [27], [28].

Another algorithm exploiting thermodynamic laws is that
presented in [29]. This emulates the behaviour of a system
for reaching thermal equilibrium. It is also a population-based
approach, where each molecule of the system is an element
of the population. In particular, the simulated physical phe-
nomena are conduction, convection and radiation.

In the same context, another recent algorithm is plasma
generation optimization [4]. As the name suggests, it is
inspired by the plasma generation process, in which the
electrons play the role of elements of a population, and
the exploration of the solution space is performed by
emulating excitation modes, de-excitation and ionization
processes.

The presence of so many approaches in the state-of-art
proves that non-convex optimization is a crucial task in many

fields of application. Moreover, the available methods are
sometimes not entirely satisfactory in terms of the quality of
the results or the time required. This is also due to the fact that
the effectiveness of an exploration mechanism strongly
depends on the characteristics of the optimization prob-
lem of interest. For example, SA cannot effectively explore
an objective function with high and narrow peaks, while is
particularly efficient in exploring flat and wide regions. For
this reason, it is possible to conclude that, if the character-
istics of a non-convex optimization problem are unknown
or unpredictable, combining multiple algorithms effective on
complementary types of problems could improve the mean
quality of the obtained solutions.

A. RESEARCH GAP AND MOTIVATIONS OF THE STUDY
Interest in exploiting quantum computing for optimization
problems has grown in the last two decades to try to overcome
the limitations of the currently available classical algorithms.
In particular, the exploitation of quantum mechanics prin-
ciples like superposition, entanglement and tunneling can
help to define algorithms for data-intensive applications with
lower computational complexity; in the optimization con-
text, quantum procedures can achieve a good compromise
between solution quality, execution time and computational
complexity.

The most feasible formulations, introduced in Section II,
for solving CO with quantum-compliant approaches are
Ising and Quadratic Unconstrained Binary Optimization
(QUBO). There are two possibilities for exploiting the quan-
tum computing paradigm in the optimization context: exploit-
ing a quantum annealer — which is a special-purpose
quantum computer theorized in 1998 [30], [31], [32] and
exploiting the natural properties of a quantum system to
minimize a cost function (detailed in Section II-B) — and
proposing algorithms to be entirely or partially executed on
a general-purpose quantum computer compliant with the
quantum circuit model [33]. In the second context, quan-
tum computers are usually employed as sub-routines for the
acceleration of specific tasks of more complex algorithms
also involving classical computers. The Grover Adaptive
Search [34], [35] algorithm well describes this mechanism.
It is a successive approximation algorithm exploiting the
well-known quantum Grover’s search algorithm to find the
negative values of a cost function that is iteratively clas-
sically moved up of the value of the last negative sample
obtained. Other quantum-classical algorithms for solving
optimization problems are those based on variational routines
like the ones in [36], [37] or the quantum-genetic presented
in [38].

Nevertheless, quantum devices are currently in the so-
calledNoisy Intermediate-Scale Quantum (NISQ) era [39].
These are characterized by a very limited amount of
qubits, with limited connectivity and are subjected to non-
ideality phenomena. These conditions could make unfea-
sible their current employment in real-world applications.
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Consequently, the interest in quantum-inspired and quantum
emulation algorithms grows in the last years for exploiting
the quantum principles with classical devices and several
approaches have been proposed, e.g. Simulated Quantum
Annealing (explained in Section II), simulated adiabatic
bifurcation [40] and digital annealing [41]. In particular,
Simulated Quantum Annealing (SQA) mimics the solution
space exploration of a quantum annealer on digital hardware
by using quantum Monte Carlo simulation. It was proven
that SQA provides, for some types of problems, an exponen-
tial speed-up with respect to classical simulated anneal-
ing [42]. In particular, it provides a significant advantage
for problems with high and narrow peaks in the objective
function (spike problems).
However, real-world problems are heterogeneous, i.e.

composed of flat and wide regions and high and narrow barri-
ers. Consequently, new methods for exploring effectively this
kind of objective functions are required. As deeply explained
in Section III and in [43], a significant advantage could be
obtained with hybrid solvers, which can efficiently alternate
classical annealing (local search) and the simulated quantum
one (global search). In this way, the best of both exploration
mechanisms is taken.

As a result, this work is going to propose four new algo-
rithms: Simulated Quantum Parallel Tempering (SQPT),
Simulated Quantum Population Annealing (SQPA),
Simulated Quantum Parallel Tempering - Population
Annealing v1 (SQPTPA1) and Simulated Quantum Par-
allel Tempering - Population Annealing v2 (SQPTPA2).
They combine Parallel Tempering, Population Annealing and
SQA, as shown in Figure 2, for exploring effectively hetero-
geneous energy profile. These algorithms are compared with
SQA to prove their effectiveness and efficiency in solving
different CO problems. The identification of the best strategy
for each problem represents a milestone for developing an
automatic toolchain for improving QUBO solving.

Therefore, this work contributes to the research as
follows:
• adapts the effective temperature equation proposed in

[43] for the quantum annealer to the SQA;
• determines the meaning of a system copy for SQA;
• proposes Simulated Quantum Parallel Tempering algo-
rithm, which combines Parallel Tempering and SQA,
exploiting the obtained effective temperature equation
and the identified system copy concept;

• proposes Simulated Quantum Population Annealing
algorithm, which combines Population Annealing and
SQA, exploiting the obtained effective temperature
equation and the identified system copy concept;

• proposes Simulated Quantum Parallel Tempering - Pop-
ulation Annealing v1, which is the union of Simulated
Quantum Parallel Tempering and Simulated Quantum
Population Annealing;

• proposes Simulated Quantum Parallel Tempering -
Population Annealing v1, which is the itersection of
Simulated Quantum Parallel Tempering and Simulated

Quantum Population Annealing, defining a strategy to
manage a shared system copy among the two algorithms;

• tests the proposed algorithms with nine different fami-
lies of optimization problems and compares the results
with ones of SQA;

• proves that the best strategy is problem-dependent and
that the proposed approaches can significantly improve
the quality of the results with respect to SQA.

The manuscript content is summarized in the graphical
abstract reported in Figure 1.

The article is organized as follows. Section II reports
theoretical foundations, particularly the QUBO and Ising
formulation, the considered benchmark problems and an
explanation of Simulated Quantum Annealing, Parallel Tem-
pering and Population Annealing. Section III reports the pro-
posed algorithms, motivating the necessity of hybrid solvers.
In Section IV, the results are reported and discussed. Finally,
in Section V, conclusions are drawn, and future perspectives
are illustrated.

II. THEORETICAL FOUNDATION
A. OPTIMIZATION PROBLEMS FORMALISM
As mentioned, the most feasible formulations for solving
optimization problems with quantum approaches are the
Quadratic Unconstrained Binary Optimization (QUBO)
and the Ising ones, which are introduced in the following
paragraphs. The two models are strongly correlated, and it
is always possible to move from one to the other, exploiting
the relations reported in Paragraph II-A3.

1) QUBO FORMALISM
Quadratic Unconstrained Binary Optimization (QUBO)
is a mathematical formulation capable of describing many
real-world problems [44], such as placement [45], [46], rout-
ing [47] and scheduling [48]. It involves unipolar binary
variables, i.e. which can assume only 0 and 1 values, as the
terms Binary in the acronym suggest. Therefore, it can only
describe CO problems. TheQuadratic term refers instead to
the highest power applied to them, Unconstrained indicates
that the variable constraints cannot be explicitly taken into
account, andOptimization puts in evidence that this model is
exploited for minimizing or maximizing the obtained objec-
tive function, which can be written as:

Obj(c, ai, bij, xi) = c+
∑
i

xi · ai +
∑
i<j

bij · xixj, (1)

where xi ∈ [0, 1] is a binary variable, xixj is a coupler that
allows two variables to influence each other, ai is a weight or
bias associated with a single variable, bij is a strength which
controls the influence of variables i, and j and c is an offset,
which can be neglected during the optimization.

It can also be expressed as:

minimize/maximize y = x t · Q · x, (2)

where x is a vector of binary variables (e.g. [0,1,1,0,1]) and
Q is a square matrix of constants, depending on the problem.
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FIGURE 3. Influence of λ value on the solution quality. A too-low value (on the left) could give unreliable solutions because ones
which do not satisfy the constraint are not correctly penalized with respect to the other. While a too-high value makes all solutions
that satisfy the constraints equal from an energy point of view, thus implying that it is impossible to distinguish the optimal one
for the f (x) function.

The matrix Q can be symmetric or in upper triangular
form.

Despite what the name would suggest, the variable con-
straints can be taken into account by introducing quadratic
penalties to the objective function:

minimize/maximize y = f (x)+ λg(x), (3)

where λ is a positive penalty parameter to be multiplied
by the constraint function or penalty function g(x). In this
way, the constraints are evaluated during the optimizer exe-
cution. Nevertheless, sizing the variable λ is crucial. Indeed,
with a too-low value, the constraint could be neglected, thus
implying the unreliability of the obtained solutions. While a
too-high value makes the objective function too flat, compli-
cating the evaluation of the effective quality of the solution,
as shown in Figure 3. Tutorials [44] suggest taking λ as a
certain percentage of the original objective function (usually
in the range 75%-150%).

Multi-objective optimization can be also performed con-
sidering QUBO formulation by exploiting an aggregation
approach (ObjectiveWeighting), which combines objectives
into a single one as explained in [49].

2) ISING FORMALISM
The Isingmodel [50], [51] is a physical-mathematical model
of ferromagnetism used in statistical mechanics. It consists
of a system of atomic spins described as dipoles, each of
which can be in one among two discrete states +1 (spin-
up) or -1 (spin-down), depending on its orientation. Spins
are arranged in a lattice allowing each spin to interact with
its neighbours. The following Hamiltonian can describe this
model:

H (s) =
1
2

N−1∑
i=0

N−1∑
j=0,j̸=i

Jijsisj +
N−1∑
i=0

hisi, (4)

where N is the number of spins, si is the ith spin, Jij is
the interaction coefficient among the ith and the jth spins,
which is equal to the coefficient Jji (a symmetric for-
mat is considered for the interaction coefficients matrix J ),
and hi is the external magnetic field coefficient of the
ith spin. Therefore, the Hamiltonian includes two types of
interaction:

• External field h, whose sign determines if the spin
prefers up or down orientation. The size of h represents
the weight of the energy contribution of a single spin
with respect to the others.

• Interaction terms J between neighbor spin pairs. J
gives the weight of the coupling and the sign indicates if
neighbours prefer aligned or anti-aligned (more properly
ferromagnetic and anti-ferromagnetic) orientation. Each
pair contribution has to be summed to obtain the overall
interaction energy.

This model can be exploited to describe many types of sys-
tems, where each spin is associated with an involved element,
which can be paired with the others.

Ising model can be 1D, 2D, 3D, or fully-connected
depending on the number of interacting neighbours for
each spin (Figure 4). In a 1D structure, each spin has
two neighbours; in 2D, it has four neighbours; in 3D,
it has six ones; in a fully-connected structure, each spin
interacts with all the others. The last one is not feasible
in a physical system, but it is a useful theoretical exten-
sion which permits expressing any problem with very high
flexibility.

CO problems can be mapped onto the Ising model so
that the ground state corresponds to their optimal solu-
tion. Ground-state search is then executed by updating spins
stochastically. This update is performed by some algorithms
like simulated or quantum annealing.
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FIGURE 4. 1D, 2D, 3D and fully-connected Ising structures. In a 1D structure, each spin has two
neighbours; in 2D, it has four neighbours; in 3D, it has six ones; in a fully-connected structure, each spin
interacts with all the others. It is a virtual expansion of the physical model for describing any
optimization problems with very high flexibility.

3) QUBO-ISING RELATION
Ising and QUBO models are perfectly equivalent [51], and it
is always possible to move a problem from one formulation
to another, by exploiting the following relation:

qi =
1+ si
2

, (5)

and its counterpart:

si = 2qi − 1. (6)

The only difference between the two models is related to the
involved coefficients.

The formulation and this conversion can be assisted by
Python libraries, such as qubovert [52], PyQUBO [53], [54]
and dimod [55], characterized by routines for automatic inser-
tion of some relevant constraints in the problem function
and by the possibility of interfacing the defined QUBO or
Ising problems with different solvers, e.g. based on simulated
annealing [20].

4) BENCHMARK PROBLEMS CONSIDERED
This paragraph presents the problems considered for bench-
marking the proposed solvers, which are graphically
described in Figure 5. They were chosen because they dif-
fer significantly, especially regarding the energy profile,
as shown in Figure 6. It was chosen to report the objective
function because it is proven [43] that the effectiveness of
quantum-annealing-based exploration strictly depends on the
presence of high and narrow peaks, which profits from the
tunnelling effect, as explained in Section III.
Each benchmark problem was implemented in QUBO for-

mulation and converted in Ising one through the qubovert
library.

a: MAXCUT
Maxcut [56] [57] (Figure 5a) is one of the most relevant
CO problems, whose target is to partition a graph into

two complementary subsets, S and S, maximizing the
sum of weights over all the edges across the two vertices
subsets. This can be exploited to describe several real-world
problems in network design, statistical physics, VLSI design
and circuit layout design [58]. Its QUBO formulation requires
a binary variable for each node, whose value is 1 or 0,
depending on the subset to which the node belongs. A cut can
be seen as severing edges joining two sets, and consequently,
the quantity ϵ(i,j) = xi+xj−2xixj recognizes whether the edge
(i, j) is in the cut. In particular, the edge (i, j) is in the cut if
ϵ(i,j) = 1, a condition taking place only if xi ̸= xj. When
xi and xj are both equal to one or equal to zero, ϵ(i,j) = 0
Considering the contributions of each edge, the following
objective function is obtained:

Maximize y =
∑

(i,j)∈E

wi,jϵ(i,j)

=

∑
(i,j)∈E

wi,j · (xi + xj − 2xixj), (7)

where wi,j is the weight of the edge that connects the ith and
the jth node.
A peculiarity of maxcut problem regards its energy profile

is symmetric (as shown in Figure 6a). In fact, a solution
and its complement (e.g. [0,1,1,0,1] and [1,0,0,1,0]) have
the same energy because the obtained two subsets are inter-
changeable.

b: DATA CLUSTERING
Clustering is an essential task of unsupervised learning,
and its goal is to divide a group ofN data intoK subgroups
(cluster) of similar elements. Similarity criteria can be asso-
ciated with objective functions of optimization problems.
Figure 5b shows a four-subgroup clustering of thirteen data,
where closer data belong to the same cluster. The data dis-
tance is employed as a similarity metric to be minimized.
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FIGURE 5. Optimization problems considered for benchmarking.

In this article, we considered the simplest data clustering
QUBO formulation, which involves N ·K binary variables,
one for each data-cluster pair. The xnk variable assumes
value one if the nth data is in the k th cluster. Some require-
ments, which partially depend on the application, have to be
satisfied for obtaining valid results. First of all, each data can
be assigned to exactly one cluster:

∀n :
K∑
k=1

xnk = 1. (8)

In the considered case, data must be equally distributed
among the clusters:

∀k :
N∑
n=1

xnk =
N
K
. (9)

Finally, the optimization figure of merit is the minimization
of the total distance D among data in all clusters:

D =
N∑
i=1

N∑
j=1

K∑
k=1

dijxikxjk , (10)

where the distance between the ith and the jth data is computed
as:

dij =
√
(c1i − c1j)2 + (c2i − c2j)2 . . . , (11)

where c1, c2 . . . are the coordinates (or features) associated
with each data.

Summing all the contributions, the final objective function
can be written as:

fcluser(x) =
N∑
i=1

N∑
j=1

K∑
k=1

dijxikxjk + λ1
N∑
n=1

( K∑
k=1

xnk − 1
)2

+ λ2

K∑
k=1

( N∑
n=1

xnk −
N
K

)2

. (12)

In Figure 6b an example of a problem energy profile is
reported. It is possible to notice that several high peaks are
present, implying that quantum exploration is effective for
this application.
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FIGURE 6. Considered optimization problems energy profiles.

c: KNAPSACK
The knapsack problem [59] (Figure 5c) target consists in
defining for a set of objects X , each of which is labelled
as xi and is characterized by a weight wi, the best subset to
be put into a bag, guaranteeing that the total weight does not
exceed a thresholdW :

0 <
dim(X )∑
i=1

wixi ≤ W , (13)

while maximizing the total preference score:

P =
∑

i∈subset

pi, (14)

where pi is exploited for expressing the preference of the ith

object, which is higher for an object more preferred to be
put in the bag. When the terms pi are all equal, the problem

requires maximizing the total number of objects inserted in
the bag, considering the weight limitation.

Since a strict inequality has to be expressed, QUBO for-
mulation exploits auxiliary variables [44], [60]whose number
depends onW value and can be partially limited by involving
integer weights instead of real ones. Indeed, representing real
numbers requires a more complex, e.g. the floating-point one.

The final objective function can be written as follows:

fknapsack(x) = finequality(x)−
∑
i

pixi. (15)

The formulation is sufficiently generic to be arranged for
optimization problems concerning resource selection, e.g.
in industrial environments.

An example of a knapsack problem energy profile is
reported in Figure 6c.
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d: GARDEN OPTIMIZATION
An important category of optimization problems is optimal
placement. In this context, an interesting real-world applica-
tion is garden optimization [61], whose target is to opti-
mally place n plants in n pots (as shown in Figure 5d).
This problem can be written in QUBO formulation with
n2 binary variables, one for each plant-pot pair. The xij
variable assumes value one if the plant j is in pot i.
Some requests have to be satisfied to obtain a valid place-

ment. First of all, every available plant must be placed in the
garden:

∀j :
n∑
i=1

xij = 1. (16)

Then, each pot has to be filled with exactly one plant:

∀i :
n∑
j=1

xij = 1. (17)

Finally, tall plants shall not shadow smaller ones:

∀i, j : (i mod 2− sj)2xi,j = 0, (18)

where sj ∈ [0, 1] is a binary flag assuming value 0 (1) if the
jth plant is tall (small), forcing it into even (odd) rows.
The affinity among the plant species is the figure of merit

for optimizing the placement. Indeed, some species can be
placed close to each other, while others cannot.

The final objective function can be written as follows:

fgarden(x) = −
n∑

i,i′=1

Jii′
(
1+

n∑
j,j′=1

xijCjj′xi′j′
)

+ λ1

n∑
i=1

(
1−

n∑
j=1

xij

)2

+λ2

n∑
j=1

(
1−

n∑
i=1

xij

)2

+ λ3

n∑
i=1

n∑
j=1

(i mod 2− sj)2xij, (19)

where Cjj′ and Jii′ are the terms of the companions C and
adjacency J matrices, respectively. Cjj′ can assume values
+1, 0 or−1, depending on the antagonist, a neutral or positive
relationship among plants j and j′, while Jii′ is equal to 1 if
pots i and i′ are adjacent.
In Figure 6d, an example of a problem energy profile is

reported.

e: NURSE SCHEDULING
Another important category of optimization problems is
scheduling. A symbolic application example is nurse
scheduling optimization [48], which aims to find the opti-
mal assignment for nurses working in a hospital over a
fixed timetable of shifts (Figure 5e).

Considering N nurses and D working days, the QUBO
formulation involves N · D binary variables, one for each
nurse-day pair, which assumes value 1 if the nth nurse
works on the d th day. A valid schedule must satisfy three

conditions. The first one is called hard nurse constraint and
ensures that no nurse works for two consecutive days. This
is expressed by exploiting a positive correlation constant a,
which penalizes the schedule for two consecutive days of the
same nurse:

fnurse(x) =
N∑
n=1

D−1∑
d=1

a · xn,d · xn,d+1. (20)

The second one is called hard shift constraint and assures
that in each day d the nurse effort

∑N
n=1 E(n)xn,d is suffi-

cient to satisfy the associated workloadW (d):

∀d :
N∑
n=1

E(n)xn,d = W (d). (21)

Finally, the soft nurse constraint assures that all nurses
should work approximately the same number of days
F = D/N :

∀n :
D∑
d=1

xn,d = F . (22)

The final objective function can be written as follows:

fnurse(x) =
N∑
n=1

D−1∑
d=1

axn,dxn,d+1 + λ1
N∑
n=1

( D∑
d=1

xn,d−F
)2

+ λ2

D∑
d=1

( N∑
n=1

E(n)xn,d −W (d)
)2

. (23)

In Figure 6e an example of a problem energy profile is
reported.

f: GRAPH COLOURING
Graph colouring [44] is an optimization problem aiming to
assign different colour labels to adjacent nodes, as shown
in Figure 5f. This can be exploited in a wide range of applica-
tions in both industrial and scientific fields, e.g. printed circuit
design [62]. Given K colours and N nodes, the associated
QUBO formulation involves N ·K binary variables, i.e. one
for each node-colour pair, which assumes value one if the
k th colour is assigned to the nth node. Some requirements have
to be satisfied to obtain a valid solution.

First of all, adjacent nodes have to be assigned different
colours:

∀k : ∀(i, j) adjacent node : xik + xjk ≤ 1, (24)

which can be expressed as:

∀k :
∑
i,j∈E

xikxjk = 0, (25)

where E is the set of edges of the graph.
Moreover, each node has to be assigned exactly one colour:

∀n :
K∑
k=1

xnk = 1. (26)
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Finally, the objective function can be written as follows:

fcolouring(x) = λ1
N∑
n=1

( K∑
k=1

xnk − 1
)2

+ λ2

K∑
k=1

∑
i,j∈E

xikxjk .

(27)

In Figure 6f an example of a problem energy profile is
reported.

g: MINIMUM VERTEX COVER
Minimum vertex cover [44] is an optimization problem
involving an undirect graph with a set of vertices V and edges
E . A vertex cover is the subset of vertices such that each
edge is incident to at least one vertex of the subset itself.
Consequently, the problem goal is to find the cover with the
minimum number of vertices in the subset. For example,
in Figure 5g, light blue nodes form a vertex cover because
each edge of the considered graph is connected to at least one
of these. It is also the one with the lower number of involved
nodes, i.e. the optimal solution. Considering N vertices, the
QUBO formulation involves N binary variables, one for
each vertex xi, whose value is one if the node is in the cover,
i.e. in the subset. The final objective function is composed of
two parts. The first one minimizes the number of nodes in the
subset:

Minimize y1 =
∑
i∈V

xi. (28)

The second one assures that each edge is incident to at least
one vertex in the subset, forcing that xi + xj ≥ 1 for each
couple of nodes i and j:

y2 =
∑
i,j∈E

(
1− xi − xj + xixj

)
. (29)

Therefore, the final objective function can be written as
follows:

fvertex(x) =
∑
i∈V

xi + λ
∑
i,j∈E

(
1− xi − xj + xixj

)
. (30)

An example of a minimum vertex cover problem energy
profile is reported in Figure 6g.

h: NUMBER PARTITIONING
The goal of number partitioning [44] optimization is
to separate m positive integers belonging to a set S =
{s1, s2, . . . , sm}, into two subsets S1 and S2, having an equal
sum of their constituting numbers. An example is shown in
Figure 5h. A binary variable xi for each number in the initial
set S is required for obtaining the QUBO formulation, which
assumes a value of 0 if the ith number is assigned to the subset
S2 and 1 otherwise.

Therefore, the sum of the numbers in the first subset is
equal to:

sum1 =

m∑
i=1

sixi, (31)

while the sum of the numbers in the second one is equal to:

sum2 =

m∑
i=1

si −
m∑
i=1

sixi. (32)

Consequently, the difference between the two sums is equal
to:

diff = sum2 − sum1 =

m∑
i=1

si − 2
m∑
i=1

sixi, (33)

which must be minimized to achive the target of the problem,
so that the final objective function can be written as:

fnumber(x) =
( m∑
i=1

si − 2
m∑
i=1

sixi

)2

. (34)

Similarly to the maxcut problem, Number partitioning is
characterized by symmetric energy profiles (as shown in
Figure 6h); in fact, a solution and its complement (e.g.
[0,1,1,0,1] and [1,0,0,1,0]) have the same energy because the
obtained two subsets are interchangeable.

i: LINEAR REGRESSION
Linear regression is another relevant problem whose appli-
cations range from scientific research [63] to business [64].
It consists in finding a linear relationship between an indepen-
dent variable x, and a dependent one y. Linear regression is
also employed in supervised learning formodelling a target
prediction value based on independent variable.

A QUBO formulation of this problem can be obtained
following the steps reported in [65] and [66] in a supervised-
learning-compliant notation. Given X , which is the real
N · (d+1)×N · (d+1) matrix associated with the augmented
regression training data, Y ∈ RN , which is the vector of
training labels, and w ∈ Rd+1, which is a weights vector,
linear regression corresponds to:

minw∈Rd+1 E(w) = ∥Xw− Y∥2, (35)

where E(w) is the Euclidean error function.
In order to obtain the QUBO formulation, regression must

be rewritten as:

minw∈Rd+1 E(w) = wTXTXw− 2wTXTY + Y TY . (36)

Moreover, two vectors must be defined to obtain a binary
representation of weights wi of vector w. The first one is
a K -dimensional precision vector P = [p1, p2, . . . , pk ]T of
sorted powers of 2, the other is a K -dimensional vector ŵT

i
with binary coefficients such that ŵT

i P = wi. At this point,
defining the binary vector ŵ ∈ BK (d+1) as:

ŵ = [ŵ11 . . . ŵ1K ŵ21 . . . ŵ2K . . . ŵ(d+1)1 . . . ŵ(d+1)K ]T,

(37)

with all the binary variables required for representing the d+
1 weights on K bits, and a precision matrix P as:

P = Id+1 ⊗ PT, (38)
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FIGURE 7. Overview of quantum annealing.

FIGURE 8. The classical description of the transverse field Ising model through the addition of one dimension.
For simplicity all prime neighbor connections are represented.

where Id+1 is a (d + 1)-dimensional identity matrix and ⊗
is the Kronecker product, the original weight vector can be
binary-number approximated as:

w = Pŵ. (39)

Substituting Equation 39 in 36, the problem is written in an
equivalent QUBO form:

minw∈B(d+1)K E(ŵ)= ŵTPTXTXPŵ− 2ŵTPTXTY+Y TY ,

(40)

where Y TY can be neglected because it introduces a scalar
constant.

An example of a linear regression energy profile is reported
in Figure 6i.

B. SIMULATED QUANTUM ANNEALING
Simulated Quantum Annealing (SQA) algorithm is a
heuristic method which permits to solve combinatorial opti-
mization problems on digital computers by emulating the

exploration principles of a quantum annealer [67], [68],
[69], [70], [71], [72], [73], [74], [75], [76], [77]. In particu-
lar, the SQA tries to mimic the quantum tunnelling effect
(Figure 7c) and the superposition principle on classical
computers by exploiting a path integral quantum Monte
Carlo simulation (PI). In this way, this optimizer has the
potential to find the global minima of an objective function
faster than simulated annealing (SA) [42] and allows solving
larger-problem than current quantum annealers, which are
limited in terms of number of available qubits, have signifi-
cant connectivity limitations and are affected by phenomena
affecting the reliability of the obtained results.

The SQA algorithm emulates the behaviour of a quantum
annealer by computing the adiabatic evolution of the Hamil-
tonian of transverse-field Ising model, expressed as:

H (t) =
∑
ij

Jijσ
z
i σ

z
j + h

∑
i

σ zi + 0(t)
∑
i

σ xi

= H0 + 0(t)
∑
i

σ xi , (41)
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where H0 is the standard Ising model on which the problem
is mapped, 0(t) is a time-dependent transverse field which
causes quantum tunneling between system eigenstates and
has a similar role of temperature in simulated annealing, σ xi
and σ zi are the Pauli matrices associated, respectively, with
x and z components of the ith Ising Hamiltonian spin:

σx =

(
0 1
1 0

)
, (42)

σz =

(
1 0
0 −1

)
. (43)

A qualitative idea of the quantum annealer (QA) system
evolution can be given by comparing the evolution of the spin
in Figure 7a and the hydraulic model in Figure 7b.
The transverse field initially creates the superposition of all

possible states with equal weight (spins aligned on the x-axis).
This condition corresponds to making the bottom of the tank
flat; therefore, the water is uniformly distributed among the
solutions. Then the decrease of the transverse field’s strength
allows the system’s energy to gradually reproduce the prob-
lem’s energy profile; this can be interpreted as a gradual
deformation of the tank’s bottom for describing the objective
function, and the water begins to flow towards the lowest
points. Suppose the evolution is sufficiently slow (adiabatic).
In that case, the system can follow the ground state for
the entire evolution time. The final configuration is the
optimal solution, described in the hydraulic model as the
water concentrated in the lowest point.

The advantage of QA exploration is that the probability of
overcoming an energy barrier with height 1 is proportional

to e−
√
1w
0 (where w is the width of the energy barrier and 0

the strength of the transverse field). At the same time, in the

SA case, it is equal to e−
1
kBT (where T is the temperature

parameter and kB is the Boltzmann constant). Consequently,
quantum exploration is significantly more effective than clas-
sical one in case of problems with the energy landscape with a
high amount of perturbation with many high and thin barriers
(w≪ 1) [76].
In order to obtain an equivalent classical Ising model of the

transverse field one, an additional dimension has to be added
to the system. Indeed, an m-dimensional quantum space can
be emulated by an (m + 1) classical one [78]. The original
m-dimensional space is called real space, and the additional
dimension is composed of a set of interacting replicas called
Trotter slices (as shown in Figure 8b).
The Hamiltonian of the classical equivalent Ising model

can be expressed by:

H=
M∑
k=1

( ∑
ij

Jij
M
σi,kσj,k+

∑
i

hi
M
σi,k + J+

∑
i

σi,kσi,k+1

)
,

(44)

where J+ = T
2 log (cot ( 0

M ·T )) is the correlation factor
(corresponding to the strength of couplings between replicas),
depending on the temperature parameter T , the transverse

field 0 and M , which is the number of replicas considered.
T and 0 gradually decrease with the following schedules:
T = MC_step

(1− 1
8 )·(t+1)

and 0 = 00 · (1 − t
MC_step+1 ), where t is

the number of the current iteration, 00 the initial transverse
field [68] and MC_step is the total number of Monte Carlo
steps, corresponding to the update of all spins of all replicas.

The correlation factor is weak at the beginning to guar-
antee a search radius as larger as possible (exploration).
Afterwards, it increases for reaching a high probability of the
convergence of each replica to the same final configuration,
which should be the optimal one (exploitation).

The Trotters or replicas employment allows the emulation
of quantum system states superposition and, together with
the correlation factor, mimics the tunneling effect through
energy barriers, thus ensuring a faster algorithm convergence.

A higher number of Trotter M implies a higher fidelity of
the SQA in emulating the QA evolution.

From a certain point of view, Trotters can be seen as
individuals of a population-based algorithm. In particu-
lar, a theoretical comparison with cooperative population-
based algorithms, like ones in [10] and [13], can be done.
Indeed, the Trotters can be seen as individuals of a pop-
ulation that, in the beginning, tends to explore the solu-
tion space without considering other elements (selfish
behaviour), but gradually the tendency to stick together grows
(social behaviour).

The main steps of the algorithm are:
1) For each Trotter, an arbitrary solution is considered.
2) For each spin of each replica, an update is considered

and accepted according to the Metropolis-Hastings
algorithm.

3) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

4) Repeat from 2) decreasing 0 and T and updating J+

according to the explained formula until 0 = 0.
It is important to notice that steps from 2) to 4) constitute a
single Monte Carlo step of the algorithm.

The evaluation and storage for each Trotter of the best
current solution in each iteration (point 3) were inserted in the
algorithm to improve the probability of obtaining the optimal
solution.

The Metropolis-Hastings algorithm (MH) [79] is a pop-
ular Markov chain Monte Carlo mechanism for obtaining a
sequence of random samples associated with a complex non-
evaluable probability distribution. This allows the simulation
of random walks in the solution space, i.e. a random explo-
ration depending on the acceptance rate and generation of
new samples from the previous one.

Its pseudocode is reported in Algorithm 1.
In the SQA case, the MH acceptance rate of the nth spin of

the mth Trotter is:

A = min
(
1, e

−1E ·M
T

)
, (45)

30402 VOLUME 11, 2023



D. Volpe et al.: Integration of SQA in PT and PA for Heterogeneous-Profile QUBO Exploration

Algorithm 1Metropolis-Hasting

Start from an arbitrary sample x0
for i = 1 To i < UPDATE do

generate x∗i from xi−1
U = rand(0, 1)
//A(xi−1, xi) is the Acceptance Rate
//It depends on application
if u < A(xi−1, xi) then

//Accept the new sample
xi = x∗i

else
//Maintain the old sample
xi = xi−1

end if
end for

where:

1E =
1Epot
M
+1Ekin. (46)

Considering thatM and T are always both positive, if 1E ≤
0, the exponential e

−1E ·M
T is at least equal to 1, so the spin-flip

is accepted (A = 1), otherwise a positive1E implies a spin-
flip probability equal toA = e

−1E ·M
T . In SQA, the single-spin

state is changed if 1Epot is lower than 0, thus implying that
any energy improvement of the single replica is maintained.
Indeed,1Epot depends only on the configuration of the other
Trotter’s spins:

1Epot =
(N−1∑
k=0

(
2 · Jn,k · s_mm,n

)
hn

)
· (−2 · s_mm,n),

(47)

where J and h are the interaction matrix and external field
vector, respectively, of the problem, s_m is the spins matrix,
where each row is associated with the spins configuration
of a given Trotter, N the number of spins for each Trotter,
i.e. the number of involved binary variable and m and n are,
respectively, the Trotter and spin index for identifying the spin
to update, while k is an index for iterating among the other
spins of the same Trotter. This 1E contribution considers
each replica alone.

On the contrary, 1Ekin takes into account the correlation
among neighbor Trotters:

1Ekin = J+ · (s_mm_dx,n + s_mm_sx,n) · (−2 · s_mm,n),

(48)

where J+ is the correlation factor and m_dx and m_sx are the
index of the two neighbor Trotters ofmth one obtained asm+
1 and m− 1, respectively. This 1E component increases the
spin-flip acceptance if the new spin configuration is the same
as its neighbours to guarantee the convergence of all replicas
at the same solution. The strength of this component increases
during the algorithm execution as the correlation factor for

giving more freedom during the exploration beginning and
for gradually forcing the convergence.

Therefore, the Metropolis-Hastings method guarantees a
good balance between exploration and exploitation during the
algorithm evolution because the probability of accepting a
degrading solution better separates a Trotter’s configuration
from its neighbours (getting out of the flock) decreases during
the algorithm evolution.

A detailed and complete pseudo-code is reported in
Algorithm 2.

Algorithm 2 Simulated Quantum Annealing

Input: J matrix and h vector
Output: Solution vector s and Energy value

Initialize:
//Fill randomly spin configurations
//matrix with -1 or 1
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
1E_local← 0
0← 00
T ← MC_step

1− 1
8

J+ = T
2 log (cot ( 0

M ·T ))
//1E_local precomputation
//Current energy evaluation
for m = 0 To M − 1 do

for n = 0 To N − 1 do
for k = 0 To N − 1 do

//Symmetric J matrix considered
1E_localn,m += 2 · Jn,k · s_mm,n

end for
1E_localn,m += hn

end for
Energiesm = s_mm × (J× s_mT

m)
T
+ s_mm × hT

//Save current optimal solution
if m, n = 0 or Energy ≥ Energiesm then

Energy← Energiesm
s← s_mm

end if
end for

Monte Carlo steps:
for t = 0 ToMC_step− 1 do

for m = 0 To M − 1 do
//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of 1E
//for flipping the spin
1E_pot = −1E_localn,m · (2 · s_mm,n)
1E_kin = J+ · (s_mn_dx,n + s_mn_sx,n)·

(−2 · s_mm,n)
1E = 1E_pot

M +1E_kin
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r = rand(0, 1)
//Metropolis-Hasting condition

if 1E_pot < 0 or r < e
−1E·M

T then
//Spin-flip
s_mm,n = −s_mm,n
Energiesm = Energiesm +1E_pot
//Update optimal solution
if Energy ≥ Energiesm then

Energy← Energiesm
s← s_mm

end if
//Update 1E_local
for k = 0 To N − 1 do

//Symmetric J matrix
1E_localK ,m += 4 · Jn,k · s_mm,n

end for
end if

end for
end for
//Update the evolution parameters
0 = 00 · (1− t

MC_step+1 )

T = MC_step
(1− 1

8 )·(t+1)

J+ = T
2 log (cot ( 0

M ·T ))
end for

Return: Energy, s

Disadvantages of the SQA approach with respect to the SA
one are:

• high memory requirement due to the employment of
replicas;

• time requirement for each Monte Carlo step, even
though, according to data dependencies, it is possible
to parallelize each iteration partially.

The parallelization of this algorithm is crucial for avoid-
ing significant growth with the number of Trotters and the
involved variables of the time required for executing each
iteration. For this reason, FPGA-based [69], [70], [71], [72],
[73], [76] and GPU-based [67], [68], [77] algorithm imple-
mentations, to accelerate the SQA computation, have been
proposed in the state-of-art. However, the data dependen-
cies do not simplify parallelization. Indeed, considering a
generic fully-connected problem, the update of spins belong-
ing to the same replica has to be performed serially to
respect the data dependencies. Moreover, the update of the
ith spin in the various replicas has to be performed serially.
The only way to parallelize updates is to update repli-
cas in parallel, but each one is delayed by one rela-
tive position with respect to its neighbour, as shown in
Figure 9. In this way, the time required for the algorithm
execution is:

texe_parallel= tinit+((M−1)·tspin+N ·tspin+tparam)·MC_step,

(49)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop), and tparam is the
one required for updating the evolution parameters. On the
other hand, the fully-sequential execution time would be:

texe_serial= tinit + ((M · N ) · tspin + tparam) ·MC_step. (50)

The savings is equal to (N · (M−1)+1−M ) · tspin ·MC_step,
which is less than (N · (M − 1)) · tspin ·MC_step that could be
obtained completely parallelizing the Trotters evolution, but
it remains a very good result.

A possibility to increase the parallelization degree is to
consider a minor embedding [80] technique to decrease the
connectivity of each spin and to identify groups of spins that
are entirely independent of the other groups. In this way,
these spin updates can be executed in parallel to the others
if there are sufficient hardware resources. However, it has
to be taken into account that these techniques increase the
total number of spins involved and that their application
involves an initial time overhead. Therefore it is good to use
this technique only if the available hardware is sufficient.

C. PARALLEL TEMPERING
Parallel Tempering (PT) [81], [82], [83] or replicas
exchange technique is based on the simulation of multiple
copies of the original system of interest. Each of them
works at a different temperature. The spins update is done
according to the Metropolis-Hastings algorithm, depending
on the acceptance rate of classical SA. Substantially each
copy executes the Monte Carlo step in a different instant of
time of the SA algorithm, as shown in Figure 11.
The systems with a higher temperature have a more

extensive search radius in the solution space, while the
lower ones perform local exploration. PT performs better
than SA because temperature swapping between the copies
can be performed in each iteration of the algorithm. The prob-
ability of swapping the temperatures is computed to allow
copies having poor results (higher energy) until that moment
to have a high probability of accepting a higher temperature
parameter, thus growing the search radius. In particular, the
swap probability between ith and jth copies is equal to:

Pswap(i, j) = min
[
1, e

( 1
Ti
−

1
Tj
)(Ei−Ej)

]
, (51)

where is Ti and Tj are the temperatures of the ith and jth copy,
respectively, and Ei and Ej are the copies energy.

This mechanism can allow copies stuck in local optima to
be bumped out of them, thus encouraging a broader explo-
ration of the problem space for poor-performance copies
and forcing a restricted search for those providing good
performance (low energy).
For summarizing, the main steps of the algorithm are:
1) For each copy, an arbitrary solution is considered and a

temperature parameter is assigned.
2) Spin update for each copy is considered and accepted

according to theMetropolis-Hastings algorithm.
3) Evaluate the current energy of each copy.
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FIGURE 9. Scheduling of monte carlo step t , computing trotter updates in parallel according to data dependencies.

4) Temperature swapping according to the energy of the
copies.

5) Repeat from 2).

Steps from 2) to 5) constitute a PT iteration.
The main difference with standard SA evolutions com-

puted in parallel is that, instead of linearly decreasing the
temperature parameter, this is set in each iteration for each
copy according to the quality of solutions reached until that
moment.

From a certain point of view, it can be seen as a population-
based version of SA, which increases the exploration of the
worst population elements and increases the exploitation of
the best ones.

An advantage of PT is that the Monte Carlo step of each
copy can be done perfectly in parallel, so the overhead
related to the employment of many system copies can be
compensated in a hardware implementation.

D. POPULATION ANNEALING
Population Annealing (PA) [84], [85], [86] is a sequen-
tial Monte Carlo method whose target is attenuating
the Metropolis-Hastings algorithm’s vulnerability to rough
energy landscapes (i.e. a multimodal objective function with
multiple minima) by simulating a population ofMetropolis
walkers. It is closely related to SA, but also, in this case,
it involves a population of copies, which is resampled at each
temperature step. Similarly to SA, PAmonotonically lowers
the system temperature through a sequence of tempera-
tures from high to low. However, differently from SA, a re-
sampling step is performed at each temperature. Therefore,
the solution quality of each copy is evaluated and, according
to its quality with respect to the others and exploiting a Pois-
son’s probability density function, its spins configuration
is eliminated, kept or duplicated a certain number of times,
in place of the spin configurations of the eliminated copies,
as shown in Figure 12. The average number of copies to be

kept for the ith original one can be estimated as follows:

N (Ei) =
1
Q

exp
((

1
T (t ′)

−
1

T (t ′ + 1)

)
Ei

)
, (52)

where Ei is the energy of the ith copy, T (t ′) and T (t ′+ 1) are,
respectively, the temperature in the current t ′ and in the next
steps of the algorithm and Q is a normalization factor equal
to:

Q =
1
M

M−1∑
i=0

exp
((

1
T (t ′)

−
1

T (t ′ + 1)

)
Ei

)
, (53)

whereM is the number of copies in the population.
The re-samplingmechanism consolidates the search efforts

around the most promising regions. Indeed, each copy is
free to explore its search region, but whenever a copy finds a
favourable one, the rest of the population is moved toward it.

As it is possible to understand from the reported formula,
the re-sampling mechanism is enforced during the algorithm
evolution. Initially, it is weak for favouring a broad explo-
ration of the solution space. At the same time, with low-
temperature values, the combination of Metropolis criteria
and a strong re-sampling, a local search focused on the region
of the competitive state is performed, and the search in the
poor regions is aborted.

In this sense, the PA algorithm shares the basic principles
of evolutionary population-based approaches [17], [87]
[88]. Indeed, the algorithm evolution starts with a generation
of copies (individuals) and a sort of selection of the best
elements (configurations) associated with the lowest values
for creating a new generation (exploitation). The balance with
exploration is guaranteed by the employment of Poisson’s
probability density function, which permits, with a low prob-
ability, the selection of the temporary worst solutions.

For summarizing, the main steps of the algorithm are:

1) For each copy, an arbitrary solution is considered.
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2) Spin update for each copy is considered and accepted
according to theMetropolis-Hastings algorithm.

3) Evaluate the current energy of each copy.
4) re-sampling copies according to their energy.
5) Repeat from 2) decreasing the temperature parameter T.

Steps from 2) to 5) constitute a PA iteration.
Similar to PT, a further advantage of this approach is that

the Monte Carlo step of each copy can be done entirely in
parallel, so the overhead related to the employment of many
system copies can be compensated in a hardware implemen-
tation. The resource requirement for parallelizing the com-
putation makes this approach more suitable for challenging
moderately-sized problems. However, it could have some
difficulties in exploring regions with high peaks [89].

III. HYBRID QUANTUM-CLASSICAL ALGORITHMS
It is possible to prove that the effectiveness of an optimization
algorithm on a specific problem is strongly related to the
characteristic of its energy profile [43].

For example, SA and other local-search-based approaches
can easily overcome wide and smooth barriers, but they
cannot effectively overcome high and narrow barriers.

On the contrary, QA performs well with problems whose
energy profiles are characterized by high and narrow peaks,
thanks to the exploitation of quantum tunnelling. However,
it is expected to be ineffective in vast and flat regions [90],
[91]. For these reasons, the exploration performed by QA can
be defined as global.

Unfortunately, the energy profiles associated with real-
world problems are usually heterogeneous, as reported in
Figure 10. Therefore, the probability of success of each solver
depends on the size of the energy profile region compatible
with its exploration mechanism. In the case of a heteroge-
neous energy profile, a significant advantage can be obtained
by employing a solver which can explore thewide and smooth
region with a local approach and the rough one with QA.

From these observations, the interest in hybrid solvers,
which can effectively alternate local and global searches,
arose and some proposals were developed [92], [93], [94].

N. Chancellor proposed in [43] techniques to perform a
local search rather than a global one in a QA to obtain a
hybrid solver, which maintains both the advantages of the QA
and SA. In particular, he proposed the application to QA of
some techniques born to improve classical SA to achieve bet-
ter QA performance for heterogeneous energy profiles. For
example, Parallel Tempering (PT) and Population Annealing
(PA), presented in Paragraphs II-C and II-D, respectively,
were considered.

He demonstrates how sequential calls to QA can be
exploited to obtain analogues of PT and PA, employing
quantum search as a subroutine. Unfortunately, the QA is
essentially different from SA because, due to the no-cloning
theorem of quantum mechanics, it is impossible to determine
the system’s intermediate state; consequently, they cannot be
arbitrarily manipulated to build a better algorithm. Therefore,

obtaining the quantum version requires a subroutine similar
to QA, performing a local search in a controllable-size
region around the initial state. Furthermore, since the input
and output of the subroutine are entirely classical, the no-
cloning theorem can be considered non-critical, and this local
quantum subroutine can be combined with a quantum or
classical search. Moreover, N. Chancellor identifies an effec-
tive temperature parameter to describe parallel-tempering-
like and population-annealing-like mechanisms, which can
be derived from the following Hamiltonian, describing the
adiabatic evolution of a single qubit of a quantum annealer:

H1(t) = −A(t)σ x + B(t)σ z. (54)

A(t) is the transverse field, B(t) is a longitudinal field, which
permits to gradual apply the problem weight (thus imple-
menting the adiabaticity of the QA evolution), t is the time-
instant in the annealing schedule, and σ x and σz are the Pauli
matrices. The two fields have a complementary behaviour
with time to ensure the superposition of the initial states
(A(t)) and the final convergence to the optimal solution of
the analyzed problem (B(t)).

Eigenstates and eigenvalues of the Hamiltonian can be
analytically evaluated by exploiting diagonalization and the
ratio among the eigenvalues of the two basis states can be
produced:

ψ(1)
ψ(2)

=

√
A(t)2 + B(t)2

A(t)
+
B(t)
A(t)

. (55)

Finally, the effective temperature can be derived by com-
paring the quantum probability distribution to a Boltzmann
distribution on only the longitudinal part of the reported
Hamiltonian

Teff(t) ≜ 2
[
ln

(∣∣∣∣
√
A(t)2 + B(t)2

A(t)
+
B(t)
A(t)

∣∣∣∣2)]−1
. (56)

This work proposes new hybrid algorithms obtained by
combining the SQA, PT and PA starting from Chancel-
lor’s intuition and observations. In particular, Equation 56
was adapted to the system considered in SQA, described in
Paragraph II-B, recognizing that A(t) plays essentially the
role of −0(t) and B(t) is fixed at one:

Teff(t) = 2
[
ln

(∣∣∣∣
√
0(t)2 + 1
0(t)

+
1
0(t)

∣∣∣∣2)]−1
, (57)

in which the minus signs in the formula are omitted due to the
presence of the square module. Moreover, the system copies
of PT and PA are interpreted as copies of the correlated
Trotters system described in Figure 8b.

Finally, this article proposes four new algorithms obtained
by exploiting the presented principles: Simulated Quantum
Parallel Tempering (SQPT), Simulated Quantum Popu-
lation Annealing (SQPA), Simulated Quantum Parallel
Tempering - Population Annealing version 1 (SQPTPA1)
and Simulated Quantum Parallel Tempering - Population
Annealing version 2 (SQPTPA2). They are analyzed and
described deeply in the following Paragraphs.
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FIGURE 10. Exploration capabilities and limits of SA and QA with an heterogeneous energy profile. The wide
energy barrier can be overcome by SA, exploiting thermal fluctuations but cannot be tunnelled by QA. On the
other hand, QA can efficiently explore the rough part of the energy landscape, while SA cannot overcome this
region’s high and narrow peaks.

FIGURE 11. Parallel tempering and simulated quantum parallel tempering evolution.

A. SIMULATED QUANTUM PARALLEL TEMPERING
Simulated Quantum Parallel Tempering (SQPT) was pro-
posed to join the advantages of SQA and PT algorithms.
As mentioned, it was substantially implemented by consid-
ering each system copy of the standard PT composed of
SQA Trotters and its spin-update was performed accord-
ing to SQA conditions. Moreover, the time instants, i.e.
of the transverse field 0(t) and correlation factor J+(t),
assigned to each system copy are different and they are
swapped among the system copy after each iteration accord-
ing to the system energy and the effective temperature of
Equation 57. In particular, the swap probability is equal
to:

Pswap(i, j) = min
[
1, e

( 1
Teffi
−

1
Teffj

)(Ei−Ej)
]
, (58)

where Ei and Ej are the energies of the best configuration of
the ith and jth systems, respectively.
A graphical idea of the algorithm behavior is provided in

Figure 11, which shows the evolution of the system. This is

composed of a set of copies, composed in turn of Trotters
slices reported in Figure 8b.

The main evolution steps are the following:
1) For each Trotter of each system, an arbitrary solution is

considered.
2) At a given time instant t , a transverse field 0(t), a cor-

relation factor J+(t) and a temperature parameter T (t)
are assigned to each system copy from a uniformly
distributed list in range 0 to MCstep − 1.

3) For each spin of each replica of each system copy,
an update is considered and accepted according to the
Metropolis-Hastings algorithm.

4) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

5) Save the best current solution of each system copy.
6) Evaluate, for each couple of copies of the system, the

time instants swap according to the MH algorithm with
an acceptance rate equal to Equation 58.

7) Repeat from 2) for MCstep number of times.
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In this case, steps 2) to 7) constitute a single Monte Carlo step
of the algorithm.

Analogously to SQA, the flip of the ith spin of the mth

Trotter of the sth system copy is accepted if 1E is non-
positive or if1Epot is lower than 0 or with a probability equal

to e
−1E ·M
T (s) . The only difference is that the correlation factor J+

considered in the 1Ekin computation and the temperature T
are not functions of the current iteration but of the considered
system copy. Indeed, the algorithm parameters 0, T and J+

do not have a monotonic evolution with time, but their values
change with time depending on the system copies energies
according to the swap mechanism.

A detailed and complete pseudo-code is reported in
Algorithm 3.

Algorithm 3 Simulated Quantum Parallel Tempering

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SYS with -1 or 1
//where SYS is the number of system
//copies
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
1E_local← 0
//Vector of systems optimal energy
Esys_opt← 0
//Precomputation of the involved 0, T
//and J+ parameters

0list← linspace
(
00, 00

(
1− MCstep

MCstep

))
, SYS

)
Tlist← linspace

(
MC_step
1− 1

8
,

MC_step
(1− 1

8 )·(MC_step)
, SYS

)
J+list←

Tlist
2 log (cot ( 0list

M ·Tlist
))

//Systems time instant initialization
s← linspace(0, SYS − 1, SYS)
//1E_local precomputation
//Current energy evaluation
for sys = 0 To SYS − 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
1E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
1E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m, n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys

sol← s_mm
end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys ≥ Energiesm,sys then

Esys_optsys ← Energiesm,sys
end if

end for
end for

Monte Carlo steps:
for t = 0 ToMC_step− 1 do

for sys = 0 To SYS − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of 1E
//for flipping the spin
1E_pot = −1E_localn,m,sys

·(2 · s_mm,n,sys)
1E_kin = J+list(ssys) · (s_mn_dx,n,sys+

+s_mn_sx,n,sys) ·(−2 ·s_mm,n,sys)
1E = 1E_pot

M +1E_kin
r = rand(0, 1)

//Metropolis-Hasting
condition

if 1E_pot < 0 or r < e
−1E·M
Tlist(ssys) then

//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys+1E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm,sys

end if
//Update 1E_local
if m = 0 or Esys_optsys ≥ Energiesm,sys

then
Esys_optsys ← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
1E_localk,m,sys += 4 · Jn,k ·

s_mm,n,sys
end for

end if
end for

end for
end for
//Update the evolution parameters
for sys1 = 0 To SYS − 1 do

for sys2 = 0 To SYS − 1 do
Compute Teffsys1
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Compute Teffsys2
//Metropolis-Hasting condition

if r < e
( 1
Teffsys1

−
1

Teffsys2
)(Esys_optsys1

−Esys_optsys2
)

then
//Time instants swap
ssys1 ↔ ssys1

end if
end for

end for
end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the others without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit + ((M − 1) · tspin + N · tspin + tswap)

·MC_step, (59)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop) and tswap is the one
required for swapping the system copies time instant, instead
of:

texe_serial = tinit + ((M · N · SYS) · tspin + tswap) ·MC_step.

(60)

The savings is equal to (M ·N ·SYS−M+1−N )·tspin·MC_step.
The comparison of texe_parallel with one of SQA in the same
condition, i.e. with the same total number of Ising copies
(MSQA = MSQPT · SYSSQPT), for spins update, the saving is
equal to (MSQPT·(SYSSQPT−1)·tspin)·MC_step. In a hardware
implementation, this time could compensate for the overhead
related to the swapping time, which will be higher than the
parameter update time of SQA, especially if fast solutions
like look-up tables are considered for computing the swap
probabilities and the effective temperature. Therefore, in this
work, the iterations of the two algorithms are considered
comparable.

B. SIMULATED QUANTUM POPULATION ANNEALING
Simulated Quantum Population Annealing (SQPA) was
proposed to join the advantages of SQA and PA algorithms.
As mentioned, it was implemented substantially by consid-
ering each system copy of the standard PA composed of
SQA Trotters and its spin-update was performed according
to SQA conditions. Moreover, the evolution of the parameters
is the same as SQA. However, after each Monte Carlo step,
the involved system copies are resampled, i.e. the best solu-
tion of each system is evaluated and, according to its quality
with respect to the others and Poisson’s probability density
function, is eliminated, kept or duplicated a certain number of
times in place of the eliminated ones, as shown in Figure 12.
The average number of system copies to be kept for the ith

original one can be estimated as follows:

N (Ei) =
1
Q

exp
((

1
Teff(t)

−
1

Teff(t + 1)

)
Ei

)
, (61)

where Ei is the best energy of the ith system copy, Teff(t)
and Teff(t + 1) are, respectively, the effective temperatures,
evaluated by exploiting Equation 57, in the current and the
next steps of the algorithm and Q is a normalization factor
equal to:

Q =
1
SYS

SYS−1∑
i=0

exp
((

1
Teff(t ′)

−
1

Teff(t ′ + 1)

)
Ei

)
, (62)

where SYS is the number of system copies in the population.
In order to be precise, the probability of obtaining a number

of system copies to be kept is equal to Ncopies is equal to:

Ppoisson(Ncopies = k) =
λke−λ

k!
, (63)

where λ = N (Ei) is the expected value of the Poisson
distribution.

The main algorithm evolution steps are the following:
1) For each Trotter of each system, an arbitrary solution is

considered.
2) For each spin of each replica of each system copy,

an update is considered and accepted according to the
Metropolis-Hastings algorithm.

3) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

4) Save the best current solution of each system copy.
5) re-sampling system copies according to their energies.
6) Repeat from 2), updating 0(t), J+(t) and T (t)

parameters
In this case, steps 2) to 6) constitute a single Monte Carlo step
of the algorithm.

The ith spin of the mth Trotter of the sth system copy
flip, analogously to SQA, is accepted if 1E is non-positive
or if 1Epot is lower than 0 or with a probability equal to

e
−1E ·M
T (s) . The parameters evolution is monotonic with time as

in SQA. The copies re-sampling is done by computing Q as
a function of the energy of the best configuration of each
copy, computing N (Ei) for the ith system copy and sampling
the number of copy to be kept from a Poisson distribution
centered in N (Ei). A detailed and complete pseudo-code is
reported in Algorithm 4.

Algorithm 4 Simulated Quantum Population Annealing

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SYS with -1 or 1
//where SYS is the number of system
//copies
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FIGURE 12. Population annealing and simulated quantum population annealing evolution.

Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
1E_local← 0
//Vector of systems optimal energy
Esys_opt← 0
//Precomputation of the involved 0, T
//and J+ parameters
0← 00
T ← MC_step

1− 1
8

J+ = T
2 log (cot ( 0

M ·T ))
//Systems time instant initialization
//1E_local precomputation
//Current energy evaluation
for sys = 0 To SYS − 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
1E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
1E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m, n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm

end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys ≥ Energiesm,sys then

Esys_optsys ← Energiesm,sys
end if

end for
end for

Monte Carlo steps:
for t = 0 ToMC_step− 1 do

for sys = 0 To SYS − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of 1E
//for flipping the spin
1E_pot = −1E_localn,m,sys

·(2 · s_mm,n,sys)
1E_kin = J+list(ssys) · (s_mn_dx,n,sys+

+s_mn_sx,n,sys) ·(−2 ·s_mm,n,sys)
1E = 1E_pot

M +1E_kin
r = rand(0, 1)

//Metropolis-Hasting
condition

if 1E_pot < 0 or r < e
−1E·M
Tlist(ssys) then

//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys+1E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm,sys

end if
//Update 1E_local
if m = 0 or Esys_optsys ≥ Energiesm,sys

then
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Esys_optsys ← Energiesm,sys
end if
for k = 0 To N − 1 do

//Symmetric J matrix
1E_localk,m,sys += 4 · Jn,k ·

s_mm,n,sys
end for

end if
end for

end for
end for
//re-sampling
Q← 0
0next = 00 · (1− t+1

MC_step+1 )
for sys0 To SYS − 1 do

Teff1 = 2
[
ln

(∣∣∣∣√02+1
0
+

1
0

∣∣∣∣2)]−1
Teff1 = 2

[
ln

(∣∣∣∣√02
next+1
0next

+
1

0next

∣∣∣∣2)]−1
Q+ = exp

((
1

Teff1
−

1
Teff2

)
Esys_optsys

)
end for
Q = Q

SYS
//declare temporary tensor N ×M × SYS
s_mtemp
Esys_opttemp

1E_localtemp
//Variable for counting copies
c← 0
for sys0 To SYS − 1 do

Teff1 = 2
[
ln

(∣∣√02+1
0
+

1
0

∣∣2)]−1
Teff1 = 2

[
ln

(∣∣√02
next+1
0next

+
1

0next

∣∣2)]−1
Nmean =

1
Q exp

((
1

Teff1
−

1
Teff1

)
Esys_optsys

)
R = Poisson(N )
for r = 0 To R− 1 do

//For maintaining constant the
//number of system
if c < SYS then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

1E_localtempc = 1E_localsys
c+ = 1

end if
end for

end for
//For maintaining constant the
//number of system
while c < SYS do

s_mtempc = s_mSYS−1

Esys_opttempc
= Esys_optSYS−1

1E_localtempc = 1E_localtemp

c+ = 1

end while
s_m = s_mtemp
Esys_opt = Esys_opttemp

1E_local = 1E_localtemp
//Update the evolution parameters
0 = 00 · (1− t

MC_step+1 )

T = MC_step
(1− 1

8 )·(t+1)

J+ = T
2 log (cot ( 0

M ·T ))
end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the other without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit + ((M − 1) · tspin + N · tspin + tre-sampling)

·MC_step, (64)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop) and tre-sampling is
the one required for re-sampling system copies, instead of:

texe_serial = tinit + ((M · N · SYS) · tspin + tre-sampling)

·MC_step. (65)

The savings is equal to (M · N · SYS − M + 1 − N ) · tspin ·
MC_step. By comparing texe_parallel with one of SQA in the
same condition, i.e. with the same total number of Ising copy
(MSQA = MSQPA · SYSSQPT), for spins update, the saving
is equal to (MSQPA · (SYSSQPT − 1) · tspin) ·MC_step. From
the spins update time point of view, the SQPT and the SQPA
are perfectly equivalent. Indeed, in both cases, it is possible
to perfectly parallelize the system copies evaluations. In a
hardware implementation, this time could compensate for
the overhead related to the re-sampling time, which will be
higher than the parameter update time of SQA, especially if
fast solutions will be found for obtaining the random num-
ber of copies to be kept for each according to the Poisson
distribution. Therefore, in this work, the iterations of the two
algorithms are considered comparable and comparable with
the ones of the SQPT.

C. SIMULATED QUANTUM PARALLEL TEMPERING -
POPULATION ANNEALING VERSION 1
Simulated Quantum Parallel Tempering - Population
Annealing version 1 (SQPTPA1) was proposed to exploit
both the advantages of SQPT and SQPA algorithms to obtain
a solver as complete as possible. It was obtained substantially
by running at the same time both the SQPT and the SQPA.
In particular, a system of SYStemp plus SYSpop copies com-
posed of SQA Trotter systems was considered. The SYStemp
copies evolve according to the SQPT algorithm, while the
SYSpop copies follow the SQPA one. The system copies
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related to SQPT and ones related to SQPA are, so it is equiv-
alent to running the two algorithms in parallel and choosing
the optimal solution with a majority voting mechanism. This
should allow an increase in the capability of solving problems
of different types.

The main algorithm evolution steps are the following:

1) For each Trotter of each system, an arbitrary solution is
considered.

2) At a given time instant t , a transverse field0(t), a corre-
lation factor J+(t) and a temperature parameter T (t) are
assigned to each SQPT system copy from a uniformly
distributed list in range 0 to MCstep − 1.

3) For each spin of each replica of each system copy,
an update is considered and accepted according to the
MH algorithm.

4) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.

5) Save the best current solution of each system copy.
6) Evaluate for each couple of SQPT system copies the

time instants swap according to the MH algorithm with
an acceptance rate equal to Equation 58.

7) re-sampling the SQPA system copies according to
their energies.

8) Repeat from 2) for MCstep number of times, updating
0(t), J+(t) and T (t) parameters for the SQPA copies

In this case, steps 2) to 8) constitute a single Monte Carlo step
of the algorithm.

The ith spin of the mth Trotter of the sth system copy
flip, analogously to SQA, is accepted if 1E is non-positive
or if 1Epot is lower than 0 or with a probability equal to

e
−1E ·M
T (s) . The parameters evolution is monotonic with time as

in SQA for the SQPA copies. The SQPA copies re-sampling
is done by computing Q as a function of the energy of the
best configuration of each copy, computing N (Ei) for the ith

system copy and sampling the number of copies to be kept
from a Poisson distribution centered in N (Ei). For SQPT
copies, the correlation factor J+ considered in the 1Ekin
computation and the temperature T are not functions of the
current iteration but of the considered system copy. Indeed,
the algorithm SQPT parameters 0, T and J+ do not have a
monotonic evolution with time, but their values change with
time depending on the system copies energies according to
the swap mechanism. A detailed and complete pseudo-code
is reported in Algorithm 5.

Algorithm 5 Simulated Quantum Parallel Tempering -
Population Annealing version 1

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SYS with -1 or 1

//where SYS = SYStemp + SYSpop is
//the total number of system copies
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
1E_local← 0
//Vector of systems optimal energy
Esys_opt← 0
//Precomputation of the involved 0, T
//and J+ parameters
0← 00
T ← MC_step

1− 1
8

J+ = T
2 log (cot ( 0

M ·T ))
//Precomputation of the involved 0, T
//and J+ parameters for SQPT

0list← linspace
(
00, 00

(
1− MCstep

MCstep

))
, SYStemp

)
Tlist← linspace

(
MC_step
1− 1

8
,

MC_step
(1− 1

8 )·(MC_step)
, SYStemp

)
J+list←

Tlist
2 log (cot ( 0list

M ·Tlist
))

//Systems time instant initialization
s← linspace(0, SYStemp − 1, SYStemp)
//Systems time instant initialization
//1E_local precomputation
//Current energy evaluation
for sys = 0 To (SYStemp + SYSpop)− 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
1E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
1E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m, n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm

end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys ≥ Energiesm,sys then

Esys_optsys ← Energiesm,sys
end if

end for
end for

Monte Carlo steps:
for t = 0 ToMC_step− 1 do

for sys = 0 To SYSpop − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
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Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of 1E
//for flipping the spin
1E_pot = −1E_localn,m,sys

·(2 · s_mm,n,sys)
1E_kin = J+list(ssys) · (s_mn_dx,n,sys+

+s_mn_sx,n,sys) ·(−2 ·s_mm,n,sys)
1E = 1E_pot

M +1E_kin
r = rand(0, 1)

//Metropolis-Hasting
condition

if 1E_pot < 0 or r < e
−1E·M
Tlist(ssys) then

//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys+1E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm,sys

end if
//Update 1E_local
if m = 0 or Esys_optsys ≥ Energiesm,sys

then
Esys_optsys ← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
1E_localk,m,sys += 4 · Jn,k ·

s_mm,n,sys
end for

end if
end for

end for
end for
//Update the evolution parameters
for sys1 = 0 To SYSpop − 1 do

for sys2 = 0 To SYSpop − 1 do
Compute Teffsys1
Compute Teffsys2
//Metropolis-Hasting condition

if r < e
( 1
Teffsys1

−
1

Teffsys2
)(Esys_optsys1

−Esys_optsys2
)

then
//Time instants swap
ssys1 ↔ ssys1

end if
end for

end for
for sys = SYStemp To (SYSpop + SYStemp)− 1 do

for m = 0 ToM − 1 do
//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of 1E

//for flipping the spin
1E_pot = −1E_localn,m,sys

·(2 · s_mm,n,sys)
1E_kin = J+list(ssys) · (s_mn_dx,n,sys+

+s_mn_sx,n,sys) ·(−2 ·s_mm,n,sys)
1E = 1E_pot

M +1E_kin
r = rand(0, 1)

//Metropolis-Hasting
condition

if 1E_pot < 0 or r < e
−1E·M
Tlist(ssys) then

//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys+1E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm,sys

end if
//Update 1E_local
if m = 0 or Esys_optsys ≥ Energiesm,sys

then
Esys_optsys ← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
1E_localk,m,sys += 4 · Jn,k ·

s_mm,n,sys
end for

end if
end for

end for
end for
//re-sampling
Q← 0
0next = 00 · (1− t+1

MC_step+1 )
for sys = SYStemp To (SYSpop + SYStemp)− 1 do

Teff1 = 2
[
ln

(∣∣∣∣√02+1
0
+

1
0

∣∣∣∣2)]−1
Teff1 = 2

[
ln

(∣∣∣∣√02
next+1
0next

+
1

0next

∣∣∣∣2)]−1
Q+ = exp

((
1

Teff1
−

1
Teff2

)
Esys_optsys

)
end for
Q = Q

SYSpop
//declare temporary tensor N ×M × SYS
s_mtemp
Esys_opttemp

1E_localtemp
for sys = 0 To SYStemp − 1 do

s_mtempsys = s_msys

Esys_opttempsys
= Esys_optsys

1E_localtempsys = 1E_localsys
end for
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//Variable for counting copies
c← SYStemp
for sys = SYStemp To (SYSpop + SYStemp)− 1 do

Teff1 = 2
[
ln

(∣∣√02+1
0
+

1
0

∣∣2)]−1
Teff1 = 2

[
ln

(∣∣√02
next+1
0next

+
1

0next

∣∣2)]−1
Nmean =

1
Q exp

((
1

Teff1
−

1
Teff1

)
Esys_optsys

)
R = Poisson(N )
for r = 0 To R− 1 do

//For maintaining constant the
//number of system
if c < (SYSpop + SYStemp) then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

1E_localtempc = 1E_localsys
c+ = 1

end if
end for

end for
//For maintaining constant the
//number of system
while c < (SYSpop + SYStemp) do

s_mtempc = s_mSYS−1

Esys_opttempc
= Esys_optSYS−1

1E_localtempc = 1E_localtemp

c+ = 1
end while
s_m = s_mtemp
Esys_opt = Esys_opttemp

1E_local = 1E_localtemp
//Update the evolution parameters
0 = 00 · (1− t

MC_step+1 )

T = MC_step
(1− 1

8 )·(t+1)

J+ = T
2 log (cot ( 0

M ·T ))
end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the other without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit + ((M − 1) · tspin + N · tspin
+ max (tre-sampling, tswap)) ·MC_step, (66)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop), tre-sampling is the
one required for re-sampling system copies and tswap is the
one required for swapping the system copies time instant,
instead of:

texe_serial = tinit + ((M · N · (SYSpop + SYStemp)) · tspin
+ tre-sampling + tswap) ·MC_step. (67)

The savings is equal to (M · N · (SYSpop + SYStemp) −
M + 1− N ) · tspin ·MC_step. By comparing texe_parallel with
one of SQA in the same condition, i.e. with the same total
number of Ising copies (MSQA = MSQPTPA1 ·(SYSpopSQPTPA1+
SYStempSQPTPA1)), for spins update, the saving is equal to
(MSQPT·((SYSpopSQPTPA1+SYStempSQPTPA1)−1)·tspin)·MC_step.
From the spins update time point of view, considering the
same operating condition, i.e. with the same total number of
Ising copies (MSQPTPA1 · (SYSpopSQPTPA1 + SYStempSQPTPA1) =
MSQPT · SYSSQPT = MSQPA · SYSSQPA), the SQPTPA1,
the SQPT and the SQPA are perfectly equivalent, indeed,
in all cases, it is possible to perfectly parallelize the system
copies evaluations. In a hardware implementation, this time
could compensate for the overhead related to the re-sampling
and swapping time, which will be higher than the parameter
update time of SQA, especially if fast solutions will be found.
Therefore, in this work, the iterations of the algorithms are
considered comparable.

D. SIMULATED QUANTUM PARALLEL TEMPERING -
POPULATION ANNEALING VERSION 2
Simulated Quantum Parallel Tempering - Population
Annealing version 2 (SQPTPA2) was proposed to join the
advantages of SQPT and SQPA algorithms to obtain a solver
as flexible as possible. It was obtained substantially by run-
ning at the same time both the SQPT and the SQPA, but with
a one system copy shared between the two approaches. This
means that the spins configurations of the last SQPT system
copy are considered in the evaluation of the number of copies
to be kept of each system copy-spins configuration of SQPA.

In particular, a system of SYStemp plus SYSpop copies com-
posed of SQA Trotter systems was considered. The SYStemp
copies evolve according to the SQPT algorithm, while the
SYSpop copies plus the last SQPT follow the SQPA one.
This is different from running the two algorithms in parallel
and choosing the optimal solution with a majority voting
mechanism in that the two algorithms can influence each
other through the shared system copy. In this way, if SQPT
is exploring a more promising region of the energy profile,
it can guide the search of SQPA towards that area. Vice
versa, if SQPA obtains lower energy spins configurations
than SQPT, it can orient SQPT exploration. The main algo-
rithm evolution steps are the following:

1) For each Trotter of each system, an arbitrary solution is
considered.

2) At a given time instant t , a transverse field0(t), a corre-
lation factor J+(t) and a temperature parameter T (t) are
assigned to each SQPT system copy from a uniformly
distributed list in range 0 to MCstep − 1.

3) For each spin of each replica of each system copy,
an update is considered and accepted according to the
MH algorithm.

4) Evaluate which replica gives the current best solution
and if this solution is better than the ones obtained in
the previous step.
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5) Save the best current solution of each system copy.
6) Evaluate for each couple of SQPT system copies the

time instants swap according to the MH algorithm with
an acceptance rate equal to Equation 58.

7) re-sampling the SQPA system copies plus the last
SQPT according to their energies.

8) Repeat from 2) for MCstep number of times, updating
0(t), J+(t) and T (t) parameters for the SQPA copies

In this case, steps 2) to 8) constitute a single Monte Carlo step
of the algorithm.

The flip of the ith spin of the mth Trotter of the sth system
copy is accepted, analogously to SQA, if 1E is non-positive
or if 1Epot is lower than 0 or with a probability equal to

e
−1E ·M
T (s) . The parameters evolution is monotonic with time as

in SQA for the SQPA copies. The SQPA copies re-sampling
is done by computing Q as a function of the energy of the
best configuration of each copy, computing N (Ei) for the ith

system copy and sampling the number of copies to be kept
from a Poisson distribution centered in N (Ei). For SQPT
copies, the correlation factor J+ considered in the 1Ekin
computation and the temperature T are not functions of the
current iteration but of the considered system copy, in that
these parameters do not have a monotonic evolution with
time, but ones depending on the parameters swapmechanism.

A detailed and complete pseudo-code is reported in
Algorithm 6.

Algorithm 6 Simulated Quantum Parallel Tempering -
Population Annealing version 2

Input: J matrix and h vector
Output: Solution vector sol and Energy value

Initialize:
//Fill randomly spin configurations
//tensor N ×M × SYS with -1 or 1
//where SYS = SYStemp + SYSpop is
//the total number of system copies
Randomly initialize s_m ∈ {−1, 1}
//Variables initialization
Energies← 0
1E_local← 0
//Vector of systems optimal energy
Esys_opt← 0
//Precomputation of the involved 0, T
//and J+ parameters
0← 00
T ← MC_step

1− 1
8

J+ = T
2 log (cot ( 0

M ·T ))
//Precomputation of the involved 0, T
//and J+ parameters for SQPT

0list← linspace
(
00, 00

(
1− MCstep

MCstep

))
, SYStemp

)
Tlist← linspace

(
MC_step
1− 1

8
,

MC_step
(1− 1

8 )·(MC_step)
, SYStemp

)

J+list←
Tlist
2 log (cot ( 0list

M ·Tlist
))

//Systems time instant initialization
s← linspace(0, SYStemp − 1, SYStemp)
//Systems time instant initialization
//1E_local precomputation
//Current energy evaluation
for sys = 0 To (SYStemp + SYSpop)− 1 do

for m = 0 To M − 1 do
for n = 0 To N − 1 do

for k = 0 To N − 1 do
//Symmetric J matrix
1E_localn,m,sys += 2 · Jn,k · s_mm,n,sys

end for
1E_localn,m,sys += hn

end for
Energiesm,sys = s_mm,sys × (J× s_mT

m,sys)
T

+s_mm,sys × hT

//Save current optimal solution
if m, n = 0 or Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm

end if
//Save current optimal solution
//system energy
if m = 0 or Esys_optsys ≥ Energiesm,sys then

Esys_optsys ← Energiesm,sys
end if

end for
end for

Monte Carlo steps:
for t = 0 ToMC_step− 1 do

for sys = 0 To SYSpop − 1 do
for m = 0 To M − 1 do

//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of 1E
//for flipping the spin
1E_pot = −1E_localn,m,sys

·(2 · s_mm,n,sys)
1E_kin = J+list(ssys) · (s_mn_dx,n,sys+

+s_mn_sx,n,sys) ·(−2 ·s_mm,n,sys)
1E = 1E_pot

M +1E_kin
r = rand(0, 1)

//Metropolis-Hasting
condition

if 1E_pot < 0 or r < e
−1E·M
Tlist(ssys) then

//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys+1E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
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sol← s_mm,sys
end if
//Update 1E_local
if m = 0 or Esys_optsys ≥ Energiesm,sys

then
Esys_optsys ← Energiesm,sys

end if
for k = 0 To N − 1 do

//Symmetric J matrix
1E_localk,m,sys += 4 · Jn,k ·

s_mm,n,sys
end for

end if
end for

end for
end for
//Update the evolution parameters
for sys1 = 0 To SYSpop − 1 do

for sys2 = 0 To SYSpop − 1 do
Compute Teffsys1
Compute Teffsys2
//Metropolis-Hasting condition

if r < e
( 1
Teffsys1

−
1

Teffsys2
)(Esys_optsys1

−Esys_optsys2
)

then
//Time instants swap
ssys1 ↔ ssys1

end if
end for

end for
for sys = SYStemp To (SYSpop + SYStemp)− 1 do

for m = 0 ToM − 1 do
//Identify Trotter neighbors
Identify n_dx and n_sx //m− 1 and m+ 1
for n = 0 To N − 1 do

//Evaluation of 1E
//for flipping the spin
1E_pot = −1E_localn,m,sys

·(2 · s_mm,n,sys)
1E_kin = J+list(ssys) · (s_mn_dx,n,sys+

+s_mn_sx,n,sys) ·(−2 ·s_mm,n,sys)
1E = 1E_pot

M +1E_kin
r = rand(0, 1)

//Metropolis-Hasting
condition

if 1E_pot < 0 or r < e
−1E·M
Tlist(ssys) then

//Spin-flip
s_mm,n,sys = −s_mm,n,sys

Energiesm,sys = Energiesm,sys+1E_pot
//Update optimal solution
if Energy ≥ Energiesm,sys then

Energy← Energiesm,sys
sol← s_mm,sys

end if
//Update 1E_local

if m = 0 or Esys_optsys ≥ Energiesm,sys
then

Esys_optsys ← Energiesm,sys
end if
for k = 0 To N − 1 do

//Symmetric J matrix
1E_localk,m,sys += 4 · Jn,k ·

s_mm,n,sys
end for

end if
end for

end for
end for
//re-sampling
Q← 0 re-sampling sys = SYStemp − 1
0next = 0list(ssys)− 00 · ( 1

MC_step+1 )

Teff1 = 2
[
ln

(∣∣∣∣√0list(ssys)2+10list(ssys)
+

1
0list(ssys)

∣∣∣∣2)]−1
Teff1 = 2

[
ln

(∣∣∣∣√02
next+1
0next

+
1

0next

∣∣∣∣2)]−1
Q+ = exp

((
1

Teff1
−

1
Teff2

)
Esys_optsys

)
0next = 00 · (1− t+1

MC_step+1 )
for sys = SYStemp To (SYSpop + SYStemp)− 1 do

Teff1 = 2
[
ln

(∣∣∣∣√02+1
0
+

1
0

∣∣∣∣2)]−1
Teff1 = 2

[
ln

(∣∣∣∣√02
next+1
0next

+
1

0next

∣∣∣∣2)]−1
Q+ = exp

((
1

Teff1
−

1
Teff2

)
Esys_optsys

)
end for
Q = Q

SYSpop+1

//declare temporary tensor N ×M × SYS
s_mtemp
Esys_opttemp

1E_localtemp
for sys = 0 To SYStemp − 2 do

s_mtempsys = s_msys

Esys_opttempsys
= Esys_optsys

1E_localtempsys = 1E_localsys
end for
//Variable for counting copies
c← SYStemp − 1 re-sampling sys = SYStemp − 1
0next = 0list(ssys)− 00 · ( 1

MC_step+1 )

Teff1 = 2
[
ln

(∣∣∣∣√0list(ssys)2+10list(ssys)
+

1
0list(ssys)

∣∣∣∣2)]−1
Teff1 = 2

[
ln

(∣∣∣∣√02
next+1
0next

+
1

0next

∣∣∣∣2)]−1
Nmean =

1
Q exp

((
1

Teff1
−

1
Teff1

)
Esys_optsys

)
R = Poisson(N )
for r = 0 To R− 1 do

//For maintaining constant the
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//number of system
if c < (SYSpop + SYStemp) then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

1E_localtempc = 1E_localsys
c+ = 1

end if
end for
0next = 00 · (1− t+1

MC_step+1 )
for sys = SYStemp To (SYSpop + SYStemp)− 1 do

Teff1 = 2
[
ln

(∣∣√02+1
0
+

1
0

∣∣2)]−1
Teff1 = 2

[
ln

(∣∣√02
next+1
0next

+
1

0next

∣∣2)]−1
Nmean =

1
Q exp

((
1

Teff1
−

1
Teff1

)
Esys_optsys

)
R = Poisson(N )
for r = 0 To R− 1 do

//For maintaining constant the
//number of system
if c < (SYSpop + SYStemp) then

s_mtempc = s_msys

Esys_opttempc
= Esys_optsys

1E_localtempc = 1E_localsys
c+ = 1

end if
end for

end for
//For maintaining constant the
//number of system
while c < (SYSpop + SYStemp) do

s_mtempc = s_mSYS−1

Esys_opttempc
= Esys_optSYS−1

1E_localtempc = 1E_localtemp

c+ = 1
end while
s_m = s_mtemp
Esys_opt = Esys_opttemp

1E_local = 1E_localtemp
//Update the evolution parameters
0 = 00 · (1− t

MC_step+1 )

T = MC_step
(1− 1

8 )·(t+1)

J+ = T
2 log (cot ( 0

M ·T ))
end for

Return: Energy, sol

A further advantage of the presented approach is that the
spins update of each system copy can be done completely
in parallel to the other without delays. In this way, the time
required for the algorithm execution is:

texe_parallel = tinit + ((M − 1) · tspin + N · tspin
+ max (tre-sampling, tswap)) ·MC_step, (68)

where tinit is the initialization time, tspin is the time required
for the update of a single spin (inner loop), tre-sampling is the
one required for re-sampling system copies and tswap is the
one required for swapping the system copies time instant.
On the other hand, the execution time for sequential execution
is:

texe_serial = tinit + ((M · N · (SYSpop + SYStemp)) · tspin
+ tre-sampling + tswap) ·MC_step. (69)

The savings is equal to (M · N · (SYSpop + SYStemp) −
M + 1− N ) · tspin ·MC_step. By comparing texe_parallel with
one of SQA in the same condition, i.e. with the same total
number of Ising copies (MSQA = MSQPTPA2 ·(SYSpopSQPTPA2+
SYStempSQPTPA2)), for spins update, the saving is equal to
(MSQPT·((SYSpopSQPTPA2+SYStempSQPTPA2)−1)·tspin)·MC_step.
From the spins update time point of view, considering the
same operating condition, i.e. with the same total number of
Ising copies (MSQPTPA2 · (SYSpopSQPTPA2 + SYStempSQPTPA2) =
MSQPT · SYSSQPT = MSQPA · SYSSQPA), the SQPTPA2,
the SQPT and the SQPA are perfectly equivalent, indeed,
in all cases, it is possible to perfectly parallelize the system
copies evaluations. In a hardware implementation, this time
could compensate for the overhead related to the re-sampling
and swapping time, which will be higher than the parameter
update time of SQA, especially if fast solutions will be found.
Therefore, in this work, the iterations of the algorithms are
considered comparable.

The only time difference between the SQPTPA1 and
SQPTPA2 algorithms from the execution time point of view
is that the tre-sampling of the second one is longer than the ones
of the first for the same number of SQPA and SQPT systems.
This is because SQPTPA2 has to compute the number of
copies to be kept also for the last SQPT copy. However, for
a sufficiently high number of systems, the time difference is
negligible. For the sake of simplicity, the total execution time
of the two algorithms was considered comparable.

IV. RESULTS
This section reports the results associated with the most com-
plex benchmark problems (Section II-A4) solved with the
SQA, the SQPT, the SQPA, the SQPTPA1 and the SQPTPA2
algorithms. All the other results not reported in the following
are available in the supplementary information file, with
the same format, in terms of plots and tables. The codes
employed for obtaining the reported results are available in
the GitHub repository.

A. SETUP OVERVIEW
All the tests were performed by exploiting Python imple-
mentations of SQA, an SQPT, an SQPA, an SQPTPA1 and
SQPTPA2. The same programming language was chosen in
all cases to test the algorithms in equivalent conditions.More-
over, Python provides many libraries for describing optimiza-
tion problems in QUBO formalism, such as qubovert, which
was exploited for generating benchmark problems in this
work.
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FIGURE 13. Explanation through examples of the graphical representation of figures of merit.
In Figure 13a shows the effect of moving average on

prange
MC_step evolution varying the number of the

involved binary variables. It is possible to notice that it smooths the profile and removes isolated peaks,
thus allowing easier recognition of the trend. It has the same effect on the time-to-solution (TTS)
evolution varying the number of the involved binary variables, as reported in Figure 13b. Figure 13c
shows a cumulative distribution, obtained by running one hundred times a solver on the same problem.
In order to understand the meaning of this, one rule has to be considered: the probability of obtaining
the optimal value (or a value close to it) with a specific strategy is higher when its corresponding
cumulative distribution is more concentrated on the left of the plot, where the lowest values of the
objective function are located. Finally, Figure 13d reports the energy evolution of a single run and the
average energy evolution of one hundred runs of a solver. In this case, the higher the derivative of the
evolution on the left, the faster the convergence to the final energy, which can be the optimal one.

Each solver was implemented as a Python class with proper
methods for setting the degrees of freedom of the algorithm,
such as the number of iterations and the number of runs,
for executing the algorithm and for writing report files. The
developed solver classes must be seen as proof of concept
or software models for hardware accelerators, which could
be developed in the future. Indeed, the potential of the pro-
posed algorithms is expected to be entirely appreciated only
with a hardware implementation, capable of parallelizing the
computation as much as possible.

Tests were executed on a single-process Intel(R) Xeon(R)
Gold 6134 CPU @ 3.20 GHz opta-core, Model 85, with
a memory of about 103 GB [95]. Each analyzed solver
was executed on the same optimization problem one hun-
dred times to extract statistics on its effectiveness in solv-
ing it. To better compare the results, the same number of
iterations, the same initial transverse-field-temperature pair

(00 = 1, T0 = 1), and the same total number of copies
(MSQA = MSQPT · SYSSQPT = MSQPA · SYSSQPA =

MSQPTPA1 · (SYSpopSQPTPA1 + SYStempSQPTPA1) = MSQPTPA2 ·

(SYSpopSQPTPA2 + SYStempSQPTPA2)) were considered for each
solver in each test.

The benchmark problems were automatically generated by
starting from a generic QUBO description, defining the size
and randomly generating some elements of the problems,
such as the weights of edges in the max-cut problem, the
values of the features in the clustering one or the numbers
in the starting set of number partitioning. The problems size
was increased gradually to define a sufficient number of
iterations to reach the optimal value (estimated by solving
each problem with the qubovert simulated annealer on an
extremely long annealing duration) by at least one solver and
that the majority of the algorithms achieved a value close
to the optimal one. Moreover, the gradual increase of the
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FIGURE 14. Evolution of
prange

MC_step varying the number of involved binary variables in the optimization problems.

problem dimension permits to clearly identify the considered
figures of merit trends and, consequently, to predict them for
larger optimizations.

B. FIGURES OF MERIT
The effectiveness of a solver in optimizing a objective func-
tion was evaluated in terms of optimal value (opt), average
value (avg), probability (prange) of obtaining a value which
is the optimal one or lower than it by a certain percentage
(pcons) and the time-to-solution (TTS).

In particular, the optimal value is the lowest final value
obtained by each solver in the one hundred runs, while
the average one is obtained by averaging the one hundred
obtained final values. These metrics are the most intuitive to
take into account. In fact, lower best-obtained and average
energy values imply that the results provided by the solver
have higher quality.

In addition, the prange was evaluated. This is the probabil-
ity of obtaining final energy lower than:

val = opt+

∣∣∣∣opt · pcons∣∣∣∣, (70)

where opt is the expected optimal value. It is possible to say
that one solver is better than another if its prange is higher. This
metric is defined as:

prange ≜
nin_range
ntot

100, (71)

where nin_range is the number of times in which the solver
achieved final energy lower than val, and ntot is the number
of runs. In order to appreciate the meaning of this metric,
it is important to remind that prange is expected to depend
on the number of Monte Carlo steps; in particular, a higher
number of steps will increase prange. For this reason, the
normalized prange

MC_step , varying the problem size for each type
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FIGURE 15. Evolution of time-to-solution (TTS) varying the number of involved binary variables in the optimization problems.

of considered optimization problem and for each solver,
is reported (Figure 14).

As shown in Figure 13a, themoving average (MA) of the
obtained sampleswith awindow sizewwas applied to smooth
the variation and to identify easier the trend:

MA =
1
w

w−1∑
i=0

x[k − i], (72)

where x is the array of data to be moving-averaged and k ≥
1 the index of the last sample of the window. For k < w, the
first element of x is replicated w− k times.
The most complex and complete metric considered is the

time-to-solution (TTS). This figure of merit is commonly
employed in the literature for comparing heuristic algorithms
and in particular, for detecting quantum speed-up [96], [97],
[98], [99], [100] given by quantum, quantum-inspired and

quantum-compliant optimization approaches. It is defined as
the time required to find a target solution, which is the
optimal one or a sub-optimal one with final energy lower than
a certain value with a percentage of confidence pconf, usually
set to 99%. In particular, it can be computed as:

TTS = tf
log (1− pconf)

log (1− prange(tf ))
, (73)

where tf is the algorithm execution time, prange(tf )) is the
probability of finding energy lower than a certain value,
executing the algorithm for a time tf . In this work, considering
that the implementations were realized in Python language
without any particular code optimization, the time tf and, con-
sequently, the TTS are expressed in terms of the number of
iterations. Indeed, as explained in Section III, the iterations of
the analyzed algorithm and execution time can be reasonably
considered equivalent.
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FIGURE 16. Cumulative distributions obtained by running one hundred times each solver for each optimization.

In the evaluation of this metric, some particular cases were
managed:
• if prange is equal to 0, TTS was computed by considering
a prange equal to 0.1%;

• if prange is equal to 100%, TTS was computed by con-
sidering a prange equal to 99%.

This parameter is expected to grow exponentially with the
problem dimension [97] for QA and for SQA:

TTS ≈ 10a+b
√
n+c log (

√
n), (74)

where n is the number of involved binary variables, a, b
and c are interpolation coefficients. In order to verify this,

the evolution of TTS varying the number of binary vari-
ables involved is reported in logarithmic scale for each type
of considered optimization problem and for each solver
(Figure 15). As shown in Figure 13b, the moving average
(MA) of the obtained samples with a window size w was
applied to smooth the variation and to identify more easily the
trend.

In addition to these explicit figures of merit, the energy
evolution (Figure 17) and the cumulative distribution
(Figure 16) — obtained through the multiple repetitions of
the algorithm — of one of the solved problems for each
optimization category are reported.
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FIGURE 17. Energy evolutions obtained by averaging values obtained in each iteration in the on-hundred running each solver for
each optimization.

C. PERFORMED TESTS
This paragraph reports and comments on the obtained results
for each kind of benchmark problem. In particular, three
tables for each are shown: one with the setup of each problem,
one for the number of Monte Carlo steps, opt and avg and one
with prange and TTS.

1) MAX-CUT
Table 1 reports the setup configuration of the performed max-
cut tests, in particular the number of Trotters, system copies
and binary variables. Each problem is identified with a name

in the format: MaxCut_nn, where nn is the number of nodes.
In this case, the Ntot_copies is equal to 18 for all the considered
problems.

Table 2 shows the optimal value (opt), which is the
lowest final value obtained by each solver in the one
hundred runs considered, the average one (avg), which
is obtained by averaging the one hundred obtained final
values, and the number of iterations for obtaining these
(MC_step).

Table 3 provides the prange, the TTS and the considered
pcons. The latter was fixed at 0.1 % for all the considered
problems because all solvers reached the optimal value at
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TABLE 1. Setup configuration considered for solving one hundred times max-cut problems of different sizes with the proposed algorithms and the SQA
as a reference. The initial values for transverse fields and temperature are both equal to one for all the tests, while the number of involved copies differs
according to the problem and is reported in the following.

TABLE 2. Results obtained by solving one hundred times max-cut problems of different sizes with the proposed algorithms and the SQA as a reference.
Test setup configurations are reported in Table 1. In this table, the energy of the best solution between ones obtained by each solver in the one hundred
repetitions is reported (opt) together with the average of the final energies found.

least once, and the value obtained is sufficiently close to it
to appreciate prange lower than 100%.1

The prange
MC_step and the TTS evolutions, varying the prob-

lem size with a window w equal to 50, are reported in
Figures 14a and 15a. The obtained TTS shape is coherent

1A higher prange could imply a prange = 100%, thus making difficult the
comparison of the quality of the solutions provided by different solvers.

with expectations. In fact, it is possible to recognize a
square-root evolution with the problem size in the logarith-
mic axis (10a+b

√
n+c log(

√
n)
≈ 10b

√
n, for n → ∞ and

a ≃ b ≃ c).
It is possible to notice that SQPTPA1 and SQPA provide

the best results, while SQPT has the worst ones. Indeed, the
highest prange and the lowest TTS were found with the first
solvers. At the same time, SQPT provides a TTS significantly
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TABLE 3. Results obtained by solving one hundred times max-cut problems of different sizes with the proposed algorithms and the SQA as a reference.
Test setup configurations are reported in Table 1. In this table, the probability of finding the final energy in a given range (prange) and the TTS.

higher than the other solvers. Instead, the SQAperformance is
better than SQPT but significantly worse than SQPTPA1 and
SQPA, while SQPTPA2 results quality is close to SQPTPA1
and SQPA.

Examples of cumulative distribution and energy evolutions
are reported in Figures 16a and 17a, respectively. It is pos-
sible to observe that the cumulative distributions of SQPT,
SQPTPA1 and SQPTPA2 are more concentrated on the left,
i.e. the probability of reaching the optimal solution is higher,
as explained in Figure 13c. At the same time, it is possible to
observe that SQPTA1 has a faster convergence to the optimal
than the other algorithms.

Considering all the analyzed figures of merit, it is possible
to conclude that the SQPTPA1 algorithm is the most suit-
able for exploring the max-cut problems energy profile.

2) CLUSTERING
Table 4 reports the setup configuration of the performed
clustering tests, in particular the number of Trotters, system
copies and binary variables. Each problem is identified with a
name in the format: Clustering_x, where x is the number
of considered data (the number of clusters was fixed to four
and, consequently, the number of involved binary variables is
equal to 4x). In this case, the Ntot_copies is equal to 18 for the
smaller problem considered and equal to 32 for all the others.
Due to the rapid growth of the problem size increasing the
number of data, the number of performed tests is lower than
in the max-cut case.

Table 5 shows the difference between the actual optimal
value and the lowest final value obtained by each solver in
the one hundred runs (1opt), one between the actual opti-
mal value and the average one (1avg), which is obtained

by averaging the one hundred obtained final values, and
the number of iterations for obtaining these (MC_step).
In this case, the choice of showing the divergence from
the actual optimal solution, instead of the actual obtained
value, was done because, in this type of optimization, the
energy difference among some solutions is so small that
is not possible to appreciate it by reading the absolute
value without considering an excessive number of decimal
digits.

Table 6 provides the prange, the TTS and the considered
pcons. The latter is computed for each optimization problem
according to the following formula:

pcons[%] =

∣∣∣∣1− minh
minl

∣∣∣∣100, (75)

where minh is the highest opt among ones of all the ana-
lyzed solvers, while minl is the lowest one. In this way,
the value obtained (val) is sufficiently close to the actual
optimal value to appreciate prange lower than 100% and
sufficiently high to obtain a prange higher than 0% in all
cases.

The prange
MC_step and the TTS evolutions, varying the prob-

lem size with a window w equal to 20, are reported in
Figures 14b and 15b. The obtained TTS shape is coherent
with expectations. In fact, it is possible to recognize a square-
root evolution — even if less evident than in the max-cut
case due to the lower number of performed tests — with the
problem size in the logarithmic axis.

It is possible to notice that SQPT, SQPTPA1 and SQPTPA2
provide the best results, while SQA has the worst ones.
Indeed, the highest prange and the lowest TTS were found
with the first solvers. At the same time, SQPA provides TTS
significantly higher than the other solvers.
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TABLE 4. Setup configuration considered for solving one hundred times clustering problems (Clustering_x) of different sizes (four-cluster, x-data) with
the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to one for all the tests, while
the number of involved copies differs according to the problem and is reported in the following.

TABLE 5. Results obtained by solving one hundred times clustering problems (Clustering_x) of different sizes (four-cluster, x-data) with the proposed
algorithms and the SQA as a reference. Test setup configurations are reported in Table 4. In this table, the difference between the actual optimal energy
and ones of the best solution found by each solver in the one hundred repetitions is reported (1opt) together with the difference between the actual
optimal energy and the average of the final energies found (1avg).

Examples of cumulative distribution and energy evolutions
are reported in Figures 16b and 17b respectively. It is possible

to observe that the cumulative distributions of SQPT, SQPA,
SQPTPA1 and SQPTPA2 are more concentrated on the left,
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TABLE 6. Results obtained by solving one hundred times clustering problems (Clustering_x) of different sizes (four-cluster, x-data) with the proposed
algorithms and the SQA as a reference. Test setup configurations are reported in Table 4. In this table, the probability of finding the final energy in a
given range (prange) and the TTS.

i.e. the probability of reaching the optimal solution is higher,
as explained in Figure 13c. At the same time, it is possible to
observe that SQPTA1 and SQPTA2 have a faster and better
convergence to the optimal than the other algorithms. On the
other hand, the SQPA reaches the optimal solution but has a
slow convergence, This implies that it does not represent the
best exploration approach in this case.

Considering all the analyzed figures of merit, it is possible
to conclude that the SQPTPA1 and SQPTA2 algorithms are
the most suitable for exploring the clustering problems
energy profile.

3) KNAPSACK
Table 7 reports the algorithms configurations exploited for
solving knapsack problems, in particular the number of
Trotters, system copies and binary variables. Each problem
is identified with a name in the format: Knapsack_x,
where x is the number of involved binary variables. In this
case, the Ntot_copies increases from 10 to 32 with the prob-
lem size. For knapsack problems, a granular and linear
increase in the problem size is impossible because auxil-
iary variables are introduced to represent the inequality con-
straint. Therefore, the number of performed tests is lower
than in the max-cut case since the problem grows very
fast.

Table 8 shows the optimal value (opt), the average one
(avg), and the number of iterations for obtaining these
(MC_step).

Table 9 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one
solver does not reach the expected energy, it is computed for
each optimization problem according to the formula reported
in the equation 75. In this way, the value obtained (val) is
sufficiently close to the actual optimal value to appreciate
prange lower than 100% and sufficiently high to obtain a prange
higher than 0% in all cases.

The prange
MC_step and the TTS evolutions, varying the prob-

lem size with a window w equal to 20, are reported in
Figures 14c and 15c. Also in this case, the obtained TTS
shape is coherent with expectation. In fact, it is possible to
recognize, despite the limited number of samples, a square-
root evolution with the problem size in the logarithmic axis.

Observing the obtained results, it is possible to say that
the best solver for small size problems (until 41-variable
one) is the SQPA — since it has the highest prange and the
lowest TTS —, while for larger ones the best performance
are provided by SQPTPA1 and SQPTPA2. The SQA solver
gives the worst results — i.e. TTS significantly higher than
the other solvers — for all the considered problem sizes.
Examples of cumulative distribution and energy evolutions
for a large-size problem are reported in Figures 16c and 17c,
respectively. It is possible to observe that the cumulative
distributions of SQPT, SQPTPA1 and SQPTPA2 are more
concentrated on the left, i.e. the probability of reaching the
optimal solution is higher. From the energy evolution point
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TABLE 7. Setup configuration considered for solving one hundred times knapsack problems (Knapsack_x) of different sizes (x-variable) with the
proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to one for all the tests, while the
number of involved copies differs according to the problem and is reported in the following.

TABLE 8. Results obtained by solving one hundred times knapsack problems (Knapsack_x) of different sizes (x-variable) with the proposed algorithms
and the SQA as a reference. Test setup configurations are reported in Table 7. In this table, the energy of the best solution between ones obtained by
each solver in the one hundred repetitions is reported (opt) together with the average of the final energies found.

of view, it is possible to observe that the SQA reaches the
convergence but at an energy value that is higher than the
optimal one. Instead, the SQPA reaches a very low value in
the middle, but after that starts again to increase the energy
without reaching an effective convergence.

Considering all the analyzed figures of merit, it is possible
to conclude that the SQPTPA1 and SQPTPA2 algorithms
are themost suitable for exploring the knapsack problems
energy profile.

4) GARDEN OPTIMIZATION
Table 10 reports the setup configuration of the performed
garden optimization tests, in particular the number of Trot-
ters, system copies and binary variables. Each problem is
identified with a name in the format: Garden_c_r , where c
is the number of columns and r is the number of rows, i.e. the
number of pots and plants is equal to c · r and, consequently

the total number of involved variables is equal to (c·r)2. In this
case, the Ntot_copies increases from 10 to 32 with the problem
size. Even this type of problem grows very fast, so it is not
possible to do a granular increase of the problem dimension
and the number of performed tests is limited.

Table 11 shows the optimal value (opt), the average one
(avg), and the number of iterations for obtaining these
(MC_step).

Table 12 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one
solver does not reach the expected energy, it is computed,
exploiting also a saturation mechanism, for each optimization
problem according to the following formula:

pcons[%] = min
[∣∣∣∣1− minh

minl

∣∣∣∣100, 20], (76)
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TABLE 9. Results obtained by solving one hundred times knapsack problems (Knapsack_x) of different sizes (x-variable) with the proposed algorithms
and the SQA as a reference. Test setup configurations are reported in Table 7. In this table, the probability of finding the final energy in a given range
(prange) and the TTS.

TABLE 10. Setup configuration considered for solving one hundred times garden optimization problems (Garden_c_r ) of different sizes (c-column and
r -row, i.e. (c · r )2-variable) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both
equal to one for all the tests, while the number of involved copies differs according to the problem and is reported in the following.

TABLE 11. Results obtained by solving one hundred times garden optimization problems (Garden_c_r ) of different sizes (c-column and r -row, i.e.
(c · r )2-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 10. In this table, the energy of
the best solution between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final energies
found.

where minh is the highest opt among ones of all the analyzed
solvers, while minl is the lowest one. In this way, the value
obtained (val) is sufficiently close to the actual optimal value
to appreciate prange lower than 100%. When the saturation
mechanism is employed, some prange are equal to 0%. This

choice was done for guaranteeing a val which cannot cause
too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the prob-
lem size (values obtained with problems of the same size
were averaged) with a window w equal to 3, are reported in
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TABLE 12. Results obtained by solving one hundred times garden optimization problems (Garden_c_r ) of different sizes (c-column and r -row, i.e.
(c · r )2-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 10. In this table, the
probability of finding the final energy in a given range (prange) and the TTS.

TABLE 13. Setup configuration considered for solving one hundred times nurse scheduling problems (Nurse_n_d ) of different sizes (n-nurse and d -day,
i.e. (n · d )-variable) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to
one for all the tests, while the number of involved copies differs according to the problem and is reported in the following.

Figures 14d and 15d. The obtained TTS shape is consistent
with expectations. In fact, even if the number of samples is
not particularly high, it is possible to recognize a square-root
evolution with the problem size in the logarithmic axis.

Observing the obtained results, it is possible to say that the
best solvers are the SQPT, the SQPTPA1 and the SQPTPA2,
i.e. they provide the highest prange and the lowest TTS. The
SQPA assures good results for small-size problems (until 64),
while the largest one has not reached the convergence to
the optimal value. At the same time, the SQA solver gives
the worst results — i.e. TTS significantly higher than the
other solvers — for all the considered problem sizes. Exam-
ples of cumulative distribution and energy evolutions for
the 81-variable problem are reported in Figures 16d and 17d,
respectively. It is possible to observe that the cumulative
distributions of SQPT, SQPTPA1 and SQPTPA2 are more
concentrated on the left, i.e. the probability of reaching the
optimal solution is higher. From the energy evolution point
of view, it is possible to observe that the SQA reaches the
convergence but at an energy value that is higher than the
optimal one. Instead, the SQPA reach a very low value in

the middle, but after that starts again to increase the energy
without reaching an effective convergence.

Considering all the analyzed figures of merit, it is possi-
ble to conclude that the SQPT, SQPTPA1 and SQPTPA2
algorithms are the most suitable for exploring the garden
optimization problems objective function.

5) NURSE SCHEDULING
Table 13 reports the algorithms configurations considered
for solving nurse scheduling problems. In particular, the
number of Trotters, system copies and binary variables are
shown. Each problem is identified with a name in the format:
Nurse_n_d , where n is the number of nurses and d is
the number of days, and, consequently, the total number of
involved variables is equal to (n·d). In this case, theNtot_copies
varies from 10 to 32. Therefore problem grows rapidly and
it is impossible to do a granular increase of the problem
dimension.

Table 14 shows the optimal value (opt), the average one
(avg), and the number of iterations for obtaining these
(MC_step).
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TABLE 14. Results obtained by solving one hundred times nurse scheduling problems (Nurse_n_d ) of different sizes (n-nurse and d -day, i.e.
(n · d )-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 13. In this table, the energy of
the best solution between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final energies
found.

TABLE 15. Results obtained by solving one hundred times nurse scheduling problems (Nurse_n_d ) of different sizes (n-nurse and d -day, i.e.
(n · d )-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 13. In this table, the probability
of finding the final energy in a given range (prange) and the TTS.

Table 15 provides the prange, the TTS and the consid-
ered pcons. Also in this case, the choice of pcons is done
by considering the following policy: if the optimal solution
is achieved by all solvers, it is fixed to 0.01%, while if
even just one solver does not reach the expected energy,
it is computed, exploiting also a saturation mechanism, for
each optimization problem according to the formula of equa-
tion 76. In this way, the value obtained (val) is sufficiently
close to the actual optimal value to appreciate prange lower
than 100%. When the saturation mechanism is employed,
some prange are equal to 0%. This choice was done for

guaranteeing a val which cannot cause too many prange equal
to 100%.

The prange
MC_step and the TTS evolutions, varying the problem

size (values obtained with problems of the same size were
averaged) with a window w equal to 20, are reported in
Figures 14e and 15e. The obtained TTS shape is as expected.
In fact, it is possible to recognize, even if not in a particularly
clean way due to the limited amount of samples, a square-root
evolution with the problem size in the logarithmic axis.

Analyzing the obtained results, it is possible to say that
the best solvers are the SQPT and the SQPTPA2, since
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TABLE 16. Setup configuration considered for solving one hundred times graph colouring problems (GraphColouring_y ) of different sizes (three-colour,
y-node) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to one for all
the tests, while the number of involved copies differs according to the problem and is reported in the following.

TABLE 17. Results obtained by solving one hundred times graph colouring problems (GraphColouring_y ) of different sizes (three-colour, y-node) with
the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 16. In this table, the energy of the best solution
between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final energies found.

TABLE 18. Results obtained by solving one hundred times nurse scheduling problems graph colouring problems (GraphColouring_y ) of different sizes
(three-colour, y-node) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 16. In this table, the
probability of finding the final energy in a given range (prange) and the TTS.

they provide the highest prange and the lowest TTS. At the
same time, the SQA, and the SQPA solvers give the worst
results, i.e. TTS is significantly higher than the others. Exam-
ples of cumulative distribution and energy evolutions for
the 80-variable problem are reported in Figures 16e and 17e,
respectively. It is possible to observe that the cumula-
tive distributions of the SQPT, the SQPTPA1 and the
SQPTPA2 are more concentrated on the left, i.e. the prob-
ability of reaching the optimal solution is higher. From
the energy evolution point of view, it is possible to notice
that all the algorithms have reached convergence. However,

the SQA and the SQPA are significantly slower than the
others.

Considering all the analyzed figures of merit, it is possi-
ble to conclude that the SQPT and SQPTPA2 algorithms
are the most suitable for exploring the nurse scheduling
problems’ objective function.

6) GRAPH COLOURING
Table 16 reports the setup configuration of the performed
graph colouring tests. In particular, the number of Trotters,
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TABLE 19. Setup configuration considered for solving one hundred times minimum vertex cover problems (MinimumVertexCover_x) of different sizes
(x-node) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to one for all
the tests, while the number of involved copies differs according to the problem and is reported in the following.

TABLE 20. Results obtained by solving one hundred times minimum vertex cover problems (MinimumVertexCover_x) of different sizes (x-node) with
the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 19. In this table, the energy of the best solution
between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final energies found.

system copies and binary variables are shown for each prob-
lem solved. Each problem is identified with a name in the for-
mat: GraphColouring_y, where y is the number of nodes
and the number of colours is fixed at three, and, consequently,
the total number of involved variables is equal to 3 · y. In this
case, theNtot_copies grows from 10 to 32with the problem size.
Table 17 shows the optimal value (opt), which is the lowest

final value obtained by each solver in the one hundred runs
considered, the average one (avg), which is obtained by aver-
aging the one hundred obtained final values, and the number
of iterations for obtaining these (MC_step).

Table 18 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one

solver does not reach the expected energy, it is computed,
exploiting also a saturation mechanism, for each optimization
problem according to the formula reported in Equation 76.
In this way, the value obtained (val) is sufficiently close to
the actual optimal value to appreciate prange lower than 100%.
When the saturation mechanism is employed, some prange are
equal to 0%. This choice was done for guaranteeing a val
which cannot cause too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the prob-
lem size (values obtained with problems of the same size
were averaged) with a window w equal to 5, are reported
in Figures 14f and 15f. The obtained TTS shape is coherent
with expectations. In fact, it is possible to identify a square-
root evolution with the problem size in the logarithmic axis.
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TABLE 21. Results obtained by solving one hundred times minimum vertex cover problems (MinimumVertexCover_x) of different sizes (x-node) with
the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 19. In this table, the probability of finding the final
energy in a given range (prange) and the TTS.

TABLE 22. Setup configuration considered for solving one hundred times number partitioning problems (NumberPartitioning_x) of different sizes
(x-number) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to one for all
the tests, while the number of involved copies differs according to the problem and is reported in the following.

Reading the obtained results, it is possible to say that the
best solver is the SQPT, and the SQPTPA1, i.e. they provide
the highest prange and the lowest TTS. At the same time, the
SQA, and the SQPA solvers give the worst results, i.e. TTS
is significantly higher than the others. Examples of cumu-
lative distribution and energy evolutions for the 30-variable
problem are reported in Figures 16f and 17f respectively.

It is possible to observe that the cumulative distributions
of the SQPT, the SQPTPA1 and the SQPTPA2 are more
concentrated on the left, i.e. the probability of reaching the
optimal solution is higher. From the energy evolution point
of view, it is possible to observe that all the algorithms except
SQPT have reached convergence. However, the SQA and the
SQPA are significantly slower than the others.
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TABLE 23. Results obtained by solving one hundred times number partitioning problems (NumberPartitioning_x) of different sizes (x-number) with
the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 22. In this table, the energy of the best solution
between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final energies found.

TABLE 24. Results obtained by solving one hundred times number partitioning problems (NumberPartitioning_x) of different sizes (x-number) with
the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 22. In this table, the probability of finding the final
energy in a given range (prange) and the TTS.

Considering all the analyzed figures of merit, it is pos-
sible to conclude that the SQPTPA1 algorithm is the

most suitable for exploring the graph colouring problems
energy profile.
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TABLE 25. Setup configuration considered for solving one hundred times linear regression problems (LinearRegression_p) of different sizes (p-power,
i.e. 4p-variable) with the proposed algorithms and the SQA as a reference. The initial values for transverse fields and temperature are both equal to one
for all the tests, while the number of involved copies differs according to the problem and is reported in the following.

7) MINIMUM VERTEX COVER
Table 19 reports the setup configuration of the per-
formed minimum vertex cover tests, in particular the
number of Trotters, system copies and binary variables.
Each problem is identified with a name in the format:
MinimumVertexCover_x, where x is the number of
nodes, i.e. the total number of involved variables. In this case,
the Ntot_copies grows from 10 to 18 with the problem size.

Table 20 shows the optimal value (opt), the average one
(avg), and the number of iterations for obtaining these
(MC_step).

Table 21 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one
solver does not reach the expected energy, it is computed,
exploiting a saturationmechanism in both directions (prange ∈
[0.01%, 20%]), for each optimization problem according to
the following formula:

pcons[%] =

∣∣∣∣1− minh
minl

∣∣∣∣100, (77)

where minh is the highest opt among ones of all the analyzed
solvers, while minl is the lowest one. In this way, the value
obtained (val) is sufficiently close to the actual optimal value
to appreciate prange lower than 100%. When the saturation
mechanism is employed, some prange are equal to 0%. This

choice was done for guaranteeing a val which cannot cause
too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the problem
size with a window w equal to 50, are reported in Figures 14g
and 15g. The obtained TTS shape is coherent with expecta-
tions. In fact, it is possible to identify a square-root evolution
with the problem size in the logarithmic axis.

Reading the obtained results, it is possible to say that
the best solver for middle-size problems is the SQPA, while
for small and large ones the best are the SQPTPA1 and
the SQPTPA2, i.e. they provide the highest prange and the
lowest TTS. At the same time, the SQA, and the SQPT
solvers provide the worst results for all problem sizes,
i.e. TTS is significantly higher than the others. Examples
of cumulative distribution and energy evolutions for the
31-variable problem are reported in Figures 16g and 17g,
respectively. It is possible to observe that the cumula-
tive distribution of the SQPA is more concentrated on the
left, i.e. the probability of reaching the optimal solution
is higher. From the energy evolution point of view, it is
possible to observe that all the algorithms have reached
convergence.

Considering all the analyzed figures of merit, it is possible
to conclude that the SQPTPA2 algorithm is the most suit-
able for exploring the minimum vertex cover problems
energy profile.
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TABLE 26. Results obtained by solving one hundred times linear regression problems (LinearRegression_p) of different sizes (p-power, i.e.
4p-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 25. In this table, the energy of the
best solution between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final energies found.

8) NUMBER PARTITIONING
Table 22 reports the algorithms configurations chosen for
solving number partitioning tests. In particular, the number
of Trotters, system copies and binary variables are shown.
Each problem is identified with a name in the format:
NumberPartitioning_x, where x is the number of num-
bers, i.e. the total number of involved variables. In this case,
the Ntot_copies grows from 10 to 18 with the problem size.

Table 23 shows the optimal value (opt), the average one
(avg), and the number of iterations for obtaining these
(MC_step).

Table 24 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all
solvers, the latter is fixed to 0.01%, while if even just one
solver does not reach the expected energy, it is computed,
exploiting a saturation mechanism, for each optimization
problem according to the formula reported in Equation 76.
In this way, the value obtained (val) is sufficiently close to
the actual optimal value to appreciate prange lower than 100%.
When the saturation mechanism is employed, some prange are
equal to 0%. This choice was done for guaranteeing a val
which cannot cause too many prange equal to 100%.
The prange

MC_step and the TTS evolutions, varying the prob-
lem size with a window w equal to 50, are reported in
Figures 14h and 15h. The obtained TTS shape is coherent

with expectations. In fact, it is possible to identify a square-
root evolution with the problem size in the logarithmic axis.

Reading the obtained results, it is possible to notice that
the SQA and the SQPT are the best solvers, while the SQPA
and the SQPTPA2 solvers give the worst results, i.e. TTS is
significantly higher than the others. Examples of cumulative
distribution and energy evolutions for the 170-variable prob-
lem are reported in Figures 16h and 17h respectively. It is pos-
sible to notice that the cumulative distribution of the SQPT is
more concentrated on the left, i.e. the probability of reaching
the optimal solution is higher. From the energy evolution
point of view, it is possible to observe that the SQPTPA2
has not reached convergence and the SQPA reaches a lower
energy point at the beginning, starting, however, to grow for
converging in a higher energy configuration.

Considering all the analyzed figures of merit, it is possible
to conclude that the SQA and the SQPT algorithms are
the most suitable for exploring the number partitioning
problems energy profile.

9) LINEAR REGRESSION
Table 25 reports the setup configuration of the per-
formed linear regression tests. In particular, it shows the
number of Trotters, system copies and binary variables.
Each problem is identified with a name in the format:
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TABLE 27. Results obtained by solving one hundred times linear regression problems (LinearRegression_p) of different sizes (p-power, i.e.
4p-variable) with the proposed algorithms and the SQA as a reference. Test setup configurations are reported in Table 25. In this table, the energy of the
best solution between ones obtained by each solver in the one hundred repetitions is reported (opt) together with the average of the final energies found.

LinearRegression_p, where p is the number of powers,
i.e. the total number of involved variables is equal to 4p.
In this case, the Ntot_copies grows from 10 to 18 with the
problem size.

Table 26 shows the optimal value (opt), the average one
(avg), and the number of iterations for obtaining these
(MC_step).

Table 27 provides the prange, the TTS and the considered
pcons. In case of achievement of the optimal solution by all,
it is fixed to 0.1% for each optimization problem, while in the
others it is computed according to the formula of Equation 76.
In this way, the value obtained (val) is sufficiently close to the
actual optimal value to appreciate prange lower than 100%.
The prange

MC_step and the TTS evolutions, varying the prob-
lem size with a window w equal to 10, are reported in
Figures 14i and 15i. The obtained TTS shape is consistent
with expectations. In fact, it is possible to identify a square-
root evolution with the problem size in the logarithmic axis.

Reading the obtained results, it is possible to notice that,
for large-size problems, the SQPA is the best solver, while
the SQA and the SQPT solvers give good results for small-
size problems, but with larger ones provide the worst, i.e. TTS
is significantly higher than the others. The SQPTPA1 and the
SQPTAPA2 have good performance for all problem sizes.

Examples of cumulative distribution and energy evo-
lutions for the 400-variable problem are reported in
Figures 16i and 17i, respectively. It is possible to notice that

the cumulative distribution of the SQPA and the SQPTPA1
are more concentrated on the left, i.e. the probability of reach-
ing the optimal solution is higher. From the energy evolution
point of view, it is possible to observe that all the solvers
have reached convergence. However, the SQA and the SQPT
reached a higher convergence value than the other. Moreover,
the SQPTPA1 and the SQPTPA2 have a faster evolution than
SQPA.

Considering all the analyzed figures of merit, it is possible
to conclude that the SQA, SQPTPA1 and the SQPTPA2
algorithms are the most suitable for exploring the linear
regression problems energy profile.

V. CONCLUSION
This work proposed four new hybrid quantum-classical algo-
rithms obtained from the combination of SQA, PT and PA
and compared them with SQA solving many types of QUBO
problems. The results show that the proposed approaches can
significantly improve the quality of the results with equal
iterations with respect to SQA. However, the best solver is
strongly correlated with the energy profile characteristics of
the target optimization problem, coherently with expectation.
For example, the SQPTPA1 is the best solver for max-cut
problems, while the SQPT provides the best results with
graph colouring optimization. Nevertheless, on average, the
SQPTPA1 and the SQPTPA2 give a significantly good perfor-
mance thanks to their capability to exploit the advantages of
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FIGURE 18. Automatic toolchain for QUBO solving. Staring from a real-world problem in an abstract description, the QUBO generation
block provides the QUBO formulation. Then, the QUBO pre-processing block tries to reduce the problem dimension by fixing some
variables. The Best solver and setting block identifies the best solver for the problem energy profile based on previous experience,
establishes the value of algorithm degrees of freedom and, eventually, performs an additional solver-aware pre-processing. Furthermore,
the solver looks for the optimal solution (Optimization step). Finally, the solution found is interpreted and applied to the starting
real-world application (Solution interpretation).

both SQA, PT and PA solution space exploration. Therefore,
these approaches can be defined as promising.

The software implementations of the approaches consid-
ered in this work have to be seen as a proof-of-concept of
the exploration mechanisms’ validity. In order to exploit the
potential of the new proposed algorithm, it will be necessary
to obtain optimized and parallelized hardware implementa-
tions as possible. This should also allow the extension of the
benchmark analysis to larger optimizations. Moreover, they
can become more effective if a pre-conditioning procedure is
applied to the QUBO problem for obtaining an energy profile
more compatible with the target solver exploration.

Even though the current status of the work is preliminary,
the performed analysis to evaluate the solver’s effectiveness
in optimizing many types of problems is a fundamental
milestone for obtaining an automatic toolchain which can
help the QUBO-solving procedure. Indeed, from a long-term
perspective, the main idea is to develop a structure like the
one reported in Figure 18, i.e. capable of managing any step
of quantum-compliant optimization. In particular, the first
step will manage the conversion from a real-world problem
to a QUBO formulation, as in [101]. The second will be a
solver-unaware pre-processing step for reducing the number
of involved binary variables. The third will be the solver
selection — among quantum, quantum-inspired and hybrid
quantum-classical ones — based on problem energy pro-
file characteristics, previous experience and further solver-
aware pre-processing. The solver selection could also include
a preliminary step associated with the degrees of freedom
management, like that reported for the quantum circuit model
in [35], to further improve the exploration quality. Finally, the
solution spacewill be explored, detecting the optimal solution
and interpreting it.

Even though the project seems particularly ambitious,
we will strive to complete the toolchain to help researchers
and industries in solving optimization problems which can
improve people’s lives. We hope that developing the backend
prototypes discussed in this article can be a good starting
point for achieving the goal.
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