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ABSTRACT Carbon storage capacity can be estimated to establish evaluation standards and statistics for
carbon neutrality. Existing estimation methods including machine learning system have weakness modeling
ability, and they are unable to deal with the complex topographies and temporal changes in vegetation
in urban zones. However, a deep neural network has the potential ability to face such complex scenes
because of its nonlinear fitting properties which has been widely used in industry. In this study, a novel
and powerful neural network learning system named CiSL-NPP is proposed, to integrate multi-source data
as an accurate, efficient, simple, long-term, city-scale carbon storage capacity measurement method. We use
an unsupervised generation model spatio-temporal Masked AutoEncoder (st-MAE) and lightweight RNN
model to efficiently obtain high-quality data that contain time-series information such as seasons; this
minimizes any undue impact of meteorological, temporal, and spatial factors on the measurement owing
to the multi-source, multi-modal nature of the data. In the MAE, we add seasonal coding to make it time-
series sensitive; we also embed road network information to accurately perceive the complex topography
of the city. Results for 16 cities in China and Europe revealed that the proposed method shows: 1) Higher-
quality generated data (MSE is 0.13-0.29); 2) Accurate coverage of time series and complex geographical
features; 3) Satisfaction of estimation demands with only 316 RMB cost; 4) Capability to evolve a long-term
trend of urban vegetation carbon storage capacity in 4.2 days; and 5) Easily interpretable results which could,
in practice, provide sound guidance for urban planning and decision-making processes.

INDEX TERMS Neural network learning system, unsupervised generation model, spatio-temporal masked
autoencoder, carbon storage capacity measurement.

I. INTRODUCTION
More than 90% of human economic activity takes place in
cities [1], which directly contribute at least 85% of global
carbon emissions [2] and are regarded as the world’s main
battlefields of carbon neutrality [3]. Currently, carbon miti-
gation and carbon sink increment are the primary approaches
to achieving urban carbon neutrality. The carbon mitigation
approach, a complex systematic undertaking, is difficult to
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implement [4]. Further, strict policies towards emissions may
have consequences such as carbon leakage [5], [6]. The car-
bon sink increment approach shows more potential to achieve
urban carbon neutrality. For example, studies indicate that the
carbon sink of urban vegetation can offset more than 22.45%
of carbon emissions [7], already achieving carbon neutrality
in some areas [8]. In city, limited to a fixed-size space, the
effective way to increase carbon sink is to use green resources
(e.g., municipal parks) rationally according to their vegeta-
tion carbon storage capacity. Net Primary Productivity (NPP),
a crucial metric reflecting the storage effect of vegetation,
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is the key role for increasing carbon storage capacity in the
city [9], [10], [11].

However, estimating NPP accurately is a challenging
problem [12], [13]. Compared to the large-scale and
coarse particle forest estimation environment, urban veg-
etation is influenced by urban planning and meteorology;
it shows irregular distribution and obvious periodic growth
changes [14], [15]. City managers have to continuously mon-
itor changes in city carbon sinks over extended periods of
time [16], [17]. It is very difficult to accurately estimate NPP
in a low-cost, efficient, and long-termmanner at the city scale,
which is also the big challenge facing in this work.

Existing approaches to estimating NPP can be roughly
divided into traditional methods and simple artificial intelli-
gence (AI) methods, neither of which can be directly applied
to the urban environment. Traditional approaches including
the plot inventory method, model inversion method (e.g.,
remote-sensing-based light utility efficiency (LUE) model),
and flux observation method focus on forest ecology and
do provide accurate results under large-scale estimation con-
ditions. However, it is hard to use traditional methods for
city-scale NPP estimation due to: 1) the requirement of
long-term field observation which is costly as well as time-
and labor-intensive [18], [19]; 2) both social and natural
activities in cities significantly affect meteorology [20] which
increasing the difficulty of obtaining high-quality remote
sensing data in urban environments; 3) the complex topog-
raphy of a given city also restricts the deployment of data
acquisition sensors over sufficiently large scales [21]; 4) com-
pared to forests, urban vegetation undergoes rapid changes
in distribution and growth as cities develop, it cannot satisfy
the requirements for long-term, continuous regulation [22],
[23]. On the other hand, as neural networks have been widely
used in industry fields [24], [25], simple neural networks (i.e.,
simple AI model) were initially applied to large-scale NPP
estimation in efforts to improve computational efficiency and
reduce the necessary cost, manpower, and time. Despite AI’s
powerful space-time computing capability, this approach is
quite controversial in carbon neutrality [26].

Nowadays, the fusion methods have been used to estimate
NPP at the city scale, and it is promising to be the most
efficient method since solving the accuracy problem. One
of them is the NPP function which proposed by Mngadi
et al. [27] according to the modified MOD17 model. NPP
function combines the advantages of the traditional methods
and neural networks, and it is a fine-grained and accurate
estimationmethod for region-level carbon sinks in cities. This
approach simplifies the calculation by combining the deploy-
ment of sensors and remote sensing, which minimizes com-
putational cost while accurately estimating small-range urban
areas over certain time periods. However, the NPP function
remains costly and inefficient when obtaining high-quality
data. And it cannot perceive the city’s complex spatial and
temporal changes, so that it is not applicable for long-term,
city-scale NPP estimation. Hence, we answer the research

questions in this work: 1) Is there a simple, low-cost, efficient
and effective way to estimate carbon storage capacity in
the city scale for long periods of time? 2) Can the method
processes spatial and temporal information which hinder the
carbon storage capacity estimation in city? 3) Is the carbon
storage capacity estimating method ‘‘green’’?

To achieve the low-cost, efficient, accurate, and long-term
estimation of vegetation carbon storage capacity at the city
scale, we propose a fused multi-source and multi-modal city-
scale NPP estimation method, City-Scale Long-term NPP
(CiSL-NPP), which has spatio-temporal perception ability by
reconstructing high-quality data with spatio-temporal infor-
mation. Based on the NPP function, from the perspective
of data acquisition, we combine a LUE model and power-
ful deep neural networks model to fuse multi-source data
(e.g., Photosynthetically Active Radiation, PAR, represents
the portion of solar radiation that can be used by green plants
for photosynthesis and is used to calculate the actual energy
absorbed by vegetation) and urban road network data. CiSL-
NPP adopts the efficient and simple calculation framework
of the NPP function. An unsupervised MAE model is used
in CiSL-NPP to generate remote sensing data with spatio-
temporal information, which avoids the undue influence of
meteorology or urban geographical environment complexi-
ties in obtaining high-quality remote sensing data. The pro-
posed approach can perceive seasonal time series over urban
complex topography by embedding temporal and urban road
network information. Additionally, an RNN is trained to
generate sensor data (e.g., PAR), further reducing data acqui-
sition costs. According to experiments on data sets from
16 cities in China and Europe, we find that our approach not
only estimates urban vegetation carbon storage efficiently,
accurately, and easily at the city scale, but also has relatively
low computational consumption, economic cost, and carbon
expenditure cost.

The contributions of this work are highlighted as follows.
(1) A novel neural network learning system named

CiSL-NPP is established to estimate carbon storage capacity
at the city scale and it has the powerful modeling ability.
By fusing remote sensing, road network, climate, and other
multi-source data, this approach not only allows for simple,
low-cost, accurate, and efficient calculation, but also can
monitor urban carbon storage capacity for long periods of
time. It can also dynamically evolve urban carbon storage
capacity for further analysis.

(2) The st-MAE is introduced in the CiSL-NPP provides
the ability of processing spatial and temporal data. In the
application of city-scale carbon storage capacity estimating,
the spatio-temporal ability makes it able to: a) combine
macro climate regulation factors by embedding seasonal data
and incorporating agricultural growth rules as time code,
reflecting the evolution of NPP over the given time scale;
b) incorporate data from the urban road network, allowing
it to better define and differentiate urban vegetation areas.
In this way, the accuracy of vegetation area reconstruction
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is improved while enabling the analysis of complex urban
topographies.

(3) With the benefits of transfer learning, the CiSL-NPP
can be completed quickly and with less consumed resources.
The model can be trained in 4.2 days for 316 RMB1 and
20.724 CO2 equivalent emissions (i.e., the metric for measur-
ing carbon pollution introduced in [28], the lower, the more
environmentally friendly). Thus, the CiSL-NPP can be used
for actual decision-making regarding urban carbon neutrality.

The remainder of this manuscript is organized as the
following: Section II introduces the background regarding
carbon storage capacity estimating at city scale and the
challenges in this field. Section III introduces the details
of the proposed CiSL-NPP method. Section IV introduces
the exhaustive experiments in this work to show the advan-
tages of our method, such as quantitative analysis, qualitative
analysis and case study. Section V introduces the results of
experiments and discusses them comprehensively. Finally,
Section VI concludes this paper and gives directions for
future trends.

II. BACKGROUND
Through our exhaustive investigation, we noticed that
although cities play a very important role in carbon neutrality,
the existing carbon sequestration calculation methods are not
well applied to the urban scale, which aroused our interest
and led to the this work.

A. CARBON NEUTRALIZATION IN CITY
As mentioned above, cities contribute 85% of global indus-
trial direct carbon emissions [2]. Due to continuous urbaniza-
tion [2], cities have become key places for carbon neutrality
in many countries [29], [30], [31]. Carbon mitigation and
carbon sink increment are the two paths most often taken
toward achieving urban carbon neutrality. Carbon mitigation
is difficult and costly to implement as there is no unified stan-
dard for carbon emissions calculation [32], [33], and because
many links and stakeholders are involved in this process [34],
[35], [36]. For example, emissions reduction requires cities to
transform their roles via cooperation among city-level gov-
ernments, enterprises, and institutions at substantial costs of
both time and financial resources [4]. Meanwhile, strict poli-
cies on carbon emissions have serious consequences includ-
ing carbon leakage in developing countries [29], [37]. Carbon
sink increment is a more promising approach. As carbon
storage capacity in the urban area directly originates from
vegetation [38], carbon sink increment with vegetation may
be an efficient technique for achieving carbon neutrality in
cities. Previous studies indicate that the increased carbon
storage of vegetation during urbanization process can offset
more than 22.45% of a city’s carbon emissions [7].

In cities, the rational allocation of green resources is one of
the most effective and direct ways to increase carbon sinks.
Azaria et al. [39] found that urban green space distribution

1RMB is the legal tender of the People’s Republic of China.

and CO2 storage have a 0.79 correlation coefficient. Gong
and Luo [40] suggest that the carbon storage effect of urban
vegetation can be increased four-fold by transforming simple
green space into compound space. As urban greening rates
increase year-by-year [41], an effective green resource allo-
cation strategy is needed.

To develop a green resource allocation strategy, an effi-
cient, accurate and convenient estimation of carbon storage
capacity serves as a crucial foundation [30], [42]. NPP is
one of the most significant metrics to quantify vegetation
carbon storage capacity [9], [10], [11], and its accurate esti-
mation has been a contentious and challenging issue [13],
[43]. The approaches to estimating NPP include, as men-
tioned above, traditional methods and simple AI methods.
Traditional methods mainly focus on the forest environment
and provide accurate estimation results under large-scale
estimation conditions. Sample plot inventory [44], model
inversion [45], and flux observation [46] are included in this
category. Simple AI methods have been extensively applied
for NPP estimation over large scales as well [47], [48], [49],
[50]. However, simple AI models yield quite different results
from traditional methods, so their validity is questionable;
simple AImodels aremore controversial in terms of NPP esti-
mation [26]. Researchers have found that NPP varies greatly
on different time scales [15] and thatmost estimationmethods
are greatly affected by climate change [51]. In addition, due to
the various types of urban vegetation and complicated urban
topographies [52], [53], accurately estimating NPP at the city
scale using any of these tools is highly challenging.

Below, we introduce common NPP estimation meth-
ods and the efforts of previous researchers in urban NPP
estimation.

B. EXISTING METHOD
Traditional methods and simple AI methods comprise the two
main categories of exiting carbon storage estimation. Most
NPP estimation processes are a combination or improvement
upon methods in these two categories.

1) TRADITIONAL METHODS
There are three main types of traditional carbon storage esti-
mation methods, namely, sample inventory, model inversion,
and flux observation.

Sample inventory method. Sample (plot) inventory is a
classical forest carbon storage estimation method that is
operated primarily by measuring biomass [54]. Data for the
target area is first acquired including forest type, average tree
height, and diameter at breast height. These data are then used
to calculate or model the carbon sink reserves [44], [55], [56].
This approach is simple and relatively accurate, but is limited
by area conditions and may damage the forest under analysis.
More importantly, it does not reflect the spatial and temporal
characteristics of vegetation. The sample inventory method
cannot be directly applied to city-scale NPP estimation.

Model inversion method. Model inversion calculates car-
bon storage by establishing a data model, for example, based
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on remote sensing data. Forest carbon storage can be calcu-
lated through optical remote sensing data, synthetic aperture
radar satellite data (SAR), and laser radar data (LiDAR). The
LUE model is the most commonly used, which simulates
the final NPP based on the absorption of photosynthetically
active radiation (FAR) by vegetation and the actual photo-
synthetic utilization rate of vegetation [57]. Model inversion
requires costly data acquisition, has strict data quality require-
ments, and cannot perceive spatio-temporal information, so it
cannot be directly applied to urban scenes. Compared to
large-scale forest scenes, urban climate variability [58] has
a greater impact on remote sensing data [59].

Flux observationmethod. The flux observation system uses
observation stations established over a large scale to observe
the exchange flux of greenhouse gases in the atmosphere
and ecosystem. The Eddy Covariance (EC) technique [60] is
mainly used to measure carbon dioxide. The Pan-European
Research Infrastructure (ICOS) established an observation
system for the entire European continent and quantified the
photosynthesis, respiration, and evaporation of vegetation via
EC to calculate the carbon storage of vegetation [46]. This
method requires numerous instruments and equipment for
long-term detection, which is time-consuming, expensive,
and may not properly reveal timely temporal and spatial
changes. It does not provide efficient or low-cost carbon
storage estimation [61] and thus is not suitable for NPP
estimation at the city scale.

2) SIMPLE AI METHODS
AI can simulate human behavior in computers by learn-
ing, performing analysis, and making decisions; today,
it is an indispensable technology ubiquitous throughout
human society [62]. Many scholars have applied AI meth-
ods for NPP estimation. Most have used simple models
such as Random Forest (RF) [63], Support Vector Machine
(SVR) [64], and multi-layer perceptron (MLP) [65]. For
example, Moosavi et al. [66] estimated regional NPP with an
ANN model. Based on multispectral images, Peng et al. [67]
applied RF and SVR models to estimate regional NPP at the
canopy scale. Although simple AI shows potential for NPP
estimation, the latest research by Wang et al. [26] shows that
it does not accurately reflect climate and temperature changes
when calculating carbon storage capacity. In addition, the
results of NPP as estimated by simple AImodels differ signif-
icantly from those of traditional methods and have not been
widely recognized. It may be necessary to use more powerful
deep neural networks [68], [69].

C. CITY-SCALE NPP ESTIMATION
A great deal of previous work has been done on NPP calcu-
lations, but studies on the urban scale are still lacking.

1) NPP FUNCTION
In contrast to natural environments like forests, cities have
infrastructures such as parks, buildings, highways, and

vegetation areas like green belts and artificial ecological
forests. This variety, as well as the anthropological effects
(e.g., urban planning) upon these spaces, create significant
changes in city-scale vegetation distribution [70], [71]. Cur-
rently, research on the estimation of the carbon storage
capacity of urban vegetation is still in the preliminary stage.
Most studies have applied common carbon storage estimation
methods (Section.B) and their combinations, such as tradi-
tional methods and simple AI methods, which lack specific
approaches for city-scale NPP estimation. In addition, urban
management requires making scientific decisions by moni-
toring changes in urban carbon stocks over long time peri-
ods [16]. Consequently, city-scale NPP estimation is rendered
ineffective by variable meteorological conditions, complex
topographies, rapid seasonal changes in vegetation, difficulty
in accurate estimation, and continuous regulation.

Existing NPP estimation methods cannot be applied in
cities due to several limitations. Plot inventory, for example,
is too expensive and incapable of predicting future spatial
and temporal vegetation characteristics to apply. The LUE
model (model inversion) is widely used, however, it cannot
perceive temporal and spatial distribution characteristics due
to its strict requirements for data quality and the extent to
which it is influenced by climate and geomorphological con-
ditions. The flux observation method requires a flux obser-
vation system, which is overly expensive to construct, and
does not provide sufficiently fine-scale estimation for cities.
Simple AI models have insufficient modeling ability and do
not yield sufficiently accurate prediction results. A scientific,
cost-effective, and readily applicable estimation method is
urgently required [72], [73].

Mngadi et al. [27] proposed the NPP function, a fine-
grained accurate carbon sink estimation method for urban
areas, based on a modified LUE model (MOD17) in an effort
to resolve the above problems. The NPP function first selects
random sample points in the research area, then vegetation
parameters (PAR data) and satellite remote sensing image
data are collected through sensors.

The NPP function is simple, low in cost, and provides
accurate NPP estimations in small urban areas. However, this
method has limitations when applied to larger city-scale NPP
estimation. First, it does not efficiently provide high-quality
data as it requires the deployment of numerous sensors. The
remote sensing data of most cities are affected by cloud
cover and other meteorological factors. Monitoring cannot
be conducted over certain time scales, and the accuracy of
the results decreases significantly due to the inability to per-
ceive urban space-time information. For example, in remote
sensing images of Beijing, China, only 24% of days in the
past five years have seen less than 5% average cloud cover
(Fig.1(a)). As shown in Fig.1(b), due to the large adminis-
trative area and complex landforms in cities, regional mete-
orological conditions significantly vary despite the relatively
little cloud cover, markedly reducing the available data and
directly affecting the accuracy of evaluations. Although the
NPP function still cannot be directly used to estimate NPP
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at the city scale, it still shows remarkable potential for urban
application due to its other advantages.

2) NEURAL NETWORK SYSTEM
Some scholars have argued the feasibility and broad appli-
cation prospects of deep learning models to estimate NPP in
large-scale forest scenarios [74], but no empirical research
on urban application has been conducted. The application of
deep learning for urban NPP estimation is limited by remote
sensing data availability, time series perception ability, and
climate perception ability.

Unsupervised learning [75] is a potential solution to the
difficult and expensive training necessary for data acqui-
sition. MAE, a recently developed unsupervised learning
model, has been widely recognized for its powerful data
reconstruction ability and application prospect [76], [77].
Few have attempted to apply MAE for urban NPP estimation
and existing MAEmodels cannot solve time series problems.

RNN is generally considered to have time-series process-
ing capability and is widely used in time-series prediction
tasks. It is derived from a series of classical models [78].
However, RNN cannot be applied to city-scale NPP estima-
tion directly as it does not reflect the influence of climatic or
other factors.

III. METHOD
A. CiSL-NPP FRAMEWORK
We developed the novel CiSL-NPP estimation method
for city-scale NPP estimation by using neural networks.
As shown in Fig.2(a), traditional methods can only esti-
mate NPP momentarily by collecting data at certain time
points. Conversely, CiSL-NPP can accurately generate data
with time series by introducing a powerful deep learning
model to realize long-term NPP estimation by data gen-
eration (as shown in Fig.2(b)). CiSL-NPP generates urban
vegetation characteristic data accurately and evolves the
dynamic changes in urban carbon storage capacity through
a spatio-temporal Masked Auto Encoder (st-MAE) model.
In st-MAE, a seasonal temporal coding mechanism and spa-
tial mask based on OpenStreetMap (OSM)2 road network
information are introduced to manage the vegetation growth
cycle and urban topography. AnRNNapplicable to regression
tasks is trained to generate the required sensor data (i.e.,
PAR). Fig.3 shows the calculation framework of CiSL-NPP
including data alignment, data generation, and NPP calcula-
tion steps, which are discussed in further detail below.

Our loss function computes the Gaussian mean squared
error (GMSE) between the reconstructed and original images
in the pixel space. The optimization target of the proposed
neural network system is descripted in

minL =
1
2

∑n
i=1 (norm (xi) − norm (yi)) . (1)

where xi,yi is the pix of an image.

2https://wiki.openstreetmap.org

The pseudo-code for the training part of the core model is
shown in Algorithm 1.

Algorithm 1 Train
Input: epochs, batchsize, train_dataset, model_arguments
Output: weights
1: for i in epochs do
2: for train_data in dataloader(train_dataset, batchsize)

doweights= train_model(train_data, model_arguments)
3: end for
4: return weights
5: end for
6: function dataloader(dataset , batchsize)
7: iterator = ‘‘extract batchsize data from the dataset’’
8: return iterator
9: end function
10: function train_model(data, arguments)
11: weights = ‘‘train the model and return the weights’’
12: return weights
13: end function

B. DATA ALIGNMENT
‘‘Data alignment’’ refers here to aligning original data by
cutting, splicing, matching, and other operations for input
in the generation phase and subsequent processing by deep
generation models (e.g., st-MAE). We conducted alignment
for remote sensing data, OSM road network data, PAR data,
and multi-source data matching.

Remote sensing data alignment. The interpretability of
carbon neutral planning processes and results is vital to city
managers [79]. NPP estimations are a fundamental basis for
urban carbon neutralization. Therefore, the interpretability of
NPP estimation results is crucial. Accordingly, we cut the
original band data into an H×W data matrix based on the
urban administrative region. We then concatted it in the third
dimension in the order of 4-3-2 bands and 5-4-3 bands. The
newly obtained RGB and false color H×W×3 images were
used as the original input of the generated data. The merged
images were cut into several 224×224 images as remote sens-
ing input data, yielding two types of remote sensing samples
with 224×224×3 in size. The remote sensing data was named
by the data acquisition date to facilitate the introduction of
time information during the data generation phase.

OSM road network data alignment. Similar to the remote
sensing data alignment operation, the OSM road network
information was first processed according to the H×W city
size to obtain original data, then cut into a 224×224 input
size. The order of cut OSM road network data we kept
consistent with the remote sensing input data.

PAR data alignment. Due to the different resolution ratio
of PAR and remote sensing data, the gathered data was first
cut and aligned based on the latitude and longitude of the
target H×W city size. The data were then merged according
to their mean value on the time dimension and formed into an
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FIGURE 1. Main limiting factors of NPP function: (a) Remote sensing image cloud cover statistics; (b) City is clear and cloudless while forest
(suburb) is foggy;(c) Average annual availability of remote sensing data for each city (5 year period).

H×W×t PAR data matrix, where the t value represents the
time granularity (e.g., year, quarter, month).

Multi-source data matching. Due to the different resolution
ratio of multi-source data, we matched data on the space
dimension. The WGS84 coordinate system was selected to
align the H and W values of the target city in various datasets
to obtain spatially consistent data. The time-series informa-
tion contained in CiSL-NPP allowed us to select quarterly
granular PAR data and OSM road network data of the cor-
responding year to match the time dimension consistently.
The effect of time granularity on NPP estimation was also
evaluated in subsequent ablation experiments.

C. DATA GENERATION
‘‘Data generation’’ refers here to generating the calculation
of NPP input data at time t. The st-MAE model generates
fPAR with spatio-temporal and climate information. The
RNN model generates PAR data.

1) ST-MAE
st-MAE structure. As shown in Fig.3(b), the Encoder-
Decoder framework of MAE was applied in this research.
According to the NPP function calculation, data of 2,3,4 and
5 bands was input to the CiSL-NPPwhen calculating the NPP
at t. Both false color and RGB images were generated with
two respective st-MAEmodels to improve the interpretability
of the CiSL-NPP method, as our goal was securing results
for direct guidance in urban planning and decision-making.
Additionally, we added timing embedding and an OSM road
network mask to introduce the spatio-temporal information
of urban vegetation into st-MAE.

Timing embedding. Four seasons were chosen as the basis
for time coding so that CiSL-NPP would imply global cli-
mate change information. For each image, we assign a num-
ber according to the season in which it was taken, that is
the spring, summer, autumn and winter correspond to 0, 1,
2 and 3 respectively. The numbers Patch (i.e., session) were
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FIGURE 2. Comparison of CiSL-NPP and traditional methods: (a) Traditional NPP methods; (b) CiSL-NPP
method.

projected to the same size as the position Embedding in MAE
according to (2):

Session embedding = LinearProjection
(
Patch(session)

)
(2)

where LinearProjection (·) is a learnable linear projection.
Finally, this was added to each patch in st-MAE. OSM
road network mask. We developed a new random masking
mechanism by embedding road network information into the
patch. First, the OSM road network data and image data
were matched by geographic coordinates. Then, using urban
geographic information from the OSM, each Patch(t) was
categorized into either a vegetation area or an urban facility
area according to (3); thus, we determined whether Patch(t)
is an OSM token.

Ipatch =

{
1, 8i ≥ α

0, 8i < α
(3)

where 8i is the vegetation coverage of patches calculated by
the OSM road network data. The decision threshold α was set
to 0.4.

We also developed a new OSM road network mask mech-
anism. Considering the contribution of vegetation to NPP,
we attempted to obtain more vegetation information through
st-MAE by selecting as much urban vegetation as possible
when establishing the OSM road network mask mechanism,
as shown in (4).

Mask Patch

=

{
OSM tokens (ε), if rate (OSM tokens) ≥ ε

OSM tokens(1) + ROP, if rate (OSM tokens) < ε

(4)

where OSM token (·) represents whether the masking OSM
token is in the vegetation area or not, ROP represents ‘‘ran-
dom other patches’’.

Fig. 6(a) shows the distribution of urban vegetation
screened from OSM. The city mask obtained from the OSM
road network mask mechanism is shown in Fig. 6(b). The
black pixel area in the figure represents the vegetation area
and the white represents the urban facility area.

2) RNN
Due to the limited PAR data, we implemented a lightweight
RNN autoregressive model to predict PAR at time t to prevent
overfitting [80]. RNN outputs the data at each moment to
produce a PAR prediction result of H × W × t.

3) NPP CALCULATION
CiSL-NPP was designed with the calculation paradigm of
the NPP function which is calculated by (5)-(8). The PRI
(Photochemical Reflectance Index) in Equation (5) is one
of the indicators of the spectral reflectance of plant leaves,
while APAR (Absorbed Photosynthetically Active Radiation)
is the photosynthetically active radiation actually absorbed by
plants. Previous studies have found that these two parameters
can be used to directly calculate the NPP [27]. APAR can be
calculated by equations (6) and (7), while the calculation of
PRI is given in equation (8). Cloud-free images are screened
and atmospheric correction is processed with satellite remote
sensing data.

NPP = 0.5139(PRI × APAR) − 1.9818 (5)

APAR = f fAR × 6PAR (6)

fPAR = (1.24 × NDVI) − 0.168 (7)
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FIGURE 3. CiSL-NPP framework: (a) Overview of CiSL-NPP in bottom-up order, including data alignment, data generation, and NPP estimation; (b) RNN
and st-MAE process. Note: Original remote sensing, OSM road network, and PAR data are cut, spliced, and matched as a suitable structure for deep
learning models RNN and st-MAE. The RNN predicts time-series PAR data by sampling at each moment, fitting samples at the next moment, and
propagating back through L1 loss. The st-MAE model generates time series data by embedding vegetation temporal features and urban topography
with remote sensing and OSM road network data. Reconstructed data is input to the NPP function to calculate the city-scale NPP.

At time t, their relationship can be expressed by the follow-
ing function:

NPPt = f
(
PARt ,NDVIt ,PRIt

)
(8)

where

NDVIt =

(
NIR-Red
NIR+Red

)
PRIt =

[
0.53 ×

(
rband3-rband 2
rband 3+rband2

)
+ 1

]
/2.

First, all data required for NPP calculation at time t is made
available through data generation. Urban NPP estimation
results can then be obtained on the time dimension via the
process shown in Fig.2.

IV. EXPERIMENTS
A. DATA COLLECTION
Remote sensing data, an OSM road network, PAR, and NPP
products (ground truth) were collected to calculate NPP in
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this study. Since PAR data is only available until 2019,
we only collect all data up to 2019. It is worth noting that
non-up-to-date data will not affect the evaluation of the CiSL-
NPP. Because of the existence of the generation mechanism,
once the model is proven its effective, we can generate the
latest data.

1) REMOTE SENSING DATA
Remote sensing data including 16-bit data of bands 2, 3, 4,
and 5 of the Landsat 8 satellite OLI land imager (30 m/pixel
accuracy) was obtained through the US Geological Survey
(USGS) official website.3 In this website, we select the
dataset of Landsat 8-9 OLI/TIRS C2 L1 and then obtain the
2, 3, 4, and 5 bands of remote sensing images covering
the study area. If the city is segmented in multiple remote
sensing images, we match the images and crop it to the
specified area. Finally, the unlabeled remote sensing data
from 2013 to 2021 for eight large and medium-sized cities in
China and eight in Europe were collected, totaling 300 GB.
As shown in Table 1, the vegetation growth (i.e., false color
image) and city conditions (i.e., RGB visible image) were
visually observed by the 4-3-2 and 5-4-3 band combination,
respectively. High-quality remote sensing data is the key to
successful NPP estimation through deep learning [81], [82].
Unfortunately, our raw data contained significant amounts of
cloud noise; there are few high-quality data with less than 5%
clouds, as shown in Fig.1(c). This restricts the application of
the NPP function with remote sensing data at the city scale.

2) OSM ROAD NETWORK DATA
OSM road network data provides the latest and historical
urban information of road and railway networks, buildings,
water bodies, land use profiles, and more reflecting the com-
plex topography and historical changes in a city [83]. OSM
has historical integrity of more than 83% and has been widely
applied in earth science, environmental science, and other
study domains.

The OSM file records the point, line, and surface distribu-
tion information of each land type. We collected over 20 GB
of OSM data from 16 cities between 2013 and 2021 for the
purposes of this study. On the OSM website, we can directly
download the overall ground data for the desired area and
then use the code we wrote to extract the specified types for
subsequent studies (for example, we extracted all the green
space types to determine if each area is a vegetated area).
The precise land type distribution information of the target
areas was filtered for the proposed CiSL-NPP method. As an
example, Fig. 4 shows the leisure land type in Beijing.

3) PAR DATA
PAR refers to the spectral component of solar radiation
that is utilized for plant photosynthesis. PAR is gener-
ally acknowledged as a crucial model variable in NPP
estimation [84], as it reflects the growth of plants.

3https://earthexplorer.usgs.gov/

FIGURE 4. Leisure-type land of Beijing.

FIGURE 5. Sample of global PAR data.

The PAR global daily dataset used in this study was
retrieved from Beijing Normal University4 based on
MODIS and AVHRR (remote sensing products with full
names Moderate-resolution Imaging Spectroradiometer and
Advanced Very High Resolution Radiometer, respectively).
We obtain PAR data of the whole year regarding different
years from these products. MODIS data was estimated by
a hybrid algorithm and AVHRR data was estimated by an
improved look-up table algorithm. The resolution of the PAR
dataset is 5 km. A total of 40 GB of PAR data between
2013 and 2019 were gathered. An example can be seen in
Fig. 5.

4) NPP GROUND TRUTH
To evaluate the accuracy of the CiSL-NPP estimationmethod,
the NPP product data5 which was generated based on the
improved vegetation productivity estimation model is gath-
ered as the ground truth. The NPP product is reliable and

4http://www.geodata.cn/
5http://www.geodata.cn/
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TABLE 1. Description of remote sensing data.

FIGURE 6. Examples of OSM road network mask mechanism.

accurate so it has been widely used [85], [86], [87]. The NPP
product is projected in geographic latitude/longitude, with a
spatial accuracy of 5km and a temporal resolution of 8 days.
We collected about 3GB of PAR data between 2013 and 2018.
Notably, the temporal and spatial accuracy of remote sensing
data, road network data and PAR data are different from that
of NPP production. Therefore, data alignment is required in
estimation and evaluation.

B. EXPERIMENT SETTING
We conducted three experiments to validate CiSL-NPP:
Quantitative analysis, qualitative analysis, and case study.

In the quantitative analysis process, we ran an st-MAE abla-
tion experiment and RNN regression accuracy experiment to
verify the accuracy of CiSL-NPP data and NPP estimation.
In the qualitative analysis process, the cost of the CiSL-NPP
method was analyzed in terms of the economy of such a
large-scale model as well as its carbon emissions. In the case
study, we tested the effectiveness of CiSL-NPP on examples
of Beijing and Budapest from both qualitative and quan-
titative perspectives. We visualized an optimal model and
part of the reconstructed data, then calculated long-term NPP
changes in cities using CiSL-NPP and compared the results
against those of traditional machine learning.

C. QUANTITATIVE ANALYSIS
1) ST-MAE ABLATION EXPERIMENT
Training settings. The batch size of st-MAE was set to 32,
the learning rate was initialized to 1e-3, and the AdamW
optimizer [88] was applied. TheMAE pre-trainingmodel was
used to perform transfer learning on the data sets of 16 cities
and 1,000 epochs were trained after freezing some encoders.

Ablation experiments. Different ablation experiments were
designed to compare the effects of the st-MAE model. First,
to account for the use of transfer learning, the reconstruc-
tion effects of MAE-base and MAE-large of different scales
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of MAE pre-training models were compared. We did not
consider MAE-huge for its excessive cost and high carbon
emissions. Next, frozen encoders with different layers were
compared to observe the function of transfer learning.We also
compared different linear projection timing-coding layers
of 2, 4, 8 and 12 are compared. The reconstruction error
MSE of st-MAE before and after adding timing coding was
compared as well. We then compared reconstruction errors
of the different mask rates 0.55, 0.65, 0.75, 0.85, and 0.95.
Finally, we compared the OSM road network mask versus
random mask mechanisms.

In the quantitative analysis section, our experiments are
done on the validation set. Our validation set is set to the last
year of data from the training set, which has no intersection
with the training set.

2) RNN REGRESSION EXPERIMENT
Model structure. We adopted an RNN structure model with
one layer of hidden nodes. The MLP layer uses the ReLu
activation function and the loss function is L1 [89].

Training. The batch size during RNN training was set to 6,
the step size to 1, the learning rate initially to 0.1, and the
learning rate as halved per 100 epochs. The random initializa-
tion weight and tanh activation function were selected. A total
of 1,000 epochs of RNN were trained.

PAR time granularity. To mitigate the shortcoming of
RNN’s information loss over long time series, PAR data were
sampled at different granularities of 15 days, 30 days (one
month), 60 days (2 months), and 90 days (one quarter) for
comparison.

D. QUALITATIVE ANALYSIS
1) ECONOMY
The data required by CiSL-NPP is not charged, so we ana-
lyzed its economy mainly by the cost of model training.
The deep learning models used in CiSL-NPP are large scale
and consume a large amount of computing power during
training. The economywas calculated with rented cloud GPU
computing power.

2) CARBON EMISSIONS
The high carbon emissions of large-scale deep learning mod-
els have received a great deal of research attention [90], [91].
The carbon emissions of CiSL-NPP were analyzed accord-
ing to its large-scale depth models. We estimated CiSL-
NPP’s carbon emissions by calculating the GFLOPs required
to operate it. We calculated the conversion coefficients of
GFLOPs and CO2 equivalent emissions (CO2EE) of com-
putational models as per the mean value as follows [28]:

1GFLOPS = 5.22 × 10−9CO2EE (9)

E. CASE STUDY
Visualizing st-MAE reconstruction of remote sensing images.
According our quantitative experiments, the optimal visual
reconstruction results of the st-MAE model were selected to

FIGURE 7. Framework of proposed long-term NPP forecasting method.

FIGURE 8. Comparison of CiSL-NPP with machine learning method.

directly verify the effect of CiSL-NPP. Two capital cities,
Beijing and Budapest, were exemplified to visualize the
RGB and false color images reconstructed by remote sensing
images in spring, summer, autumn, and winter of 2018.

1) VISUALIZATION RESULTS
A space adjacent to vegetation areas and buildings in each city
was randomly selected to directly visualize the reconstruction
effect before and after adding the OSM road network mask.
The NPP estimation results were observed in the form of a
heat map.

2) CITY NPP EVOLUTION
To illustrate the effect of long-term NPP estimation,
we divided the collected data into a training set and test set
incrementally to, respectively, train and test CiSL-NPP. For
example, the data from 2013 to 2015 were used to train the
model, then the trained model was operated to estimate NPP
from 2016 to 2018. The framework we used is shown in
Fig. 7, where BJ4 and BD4 denote the models trained with
data from 2013 to 2015 in Beijing and Budapest, respectively,
and so on.

City NPP generation evolution. By searching for areas
characterized by vegetation change during urban construc-
tion, we observed the evolution of synchronously generated
NPP to determine the effectiveness of CiSL-NPP. Four spe-
cific areas that changed from green spaces to buildings were
selected in Beijing and Budapest at random.

3) COMPARISON WITH MACHINE LEARNING AND DEEP
LEARNING ALGORITHMS
The advantages of CiSL-NPP were verified through com-
paring it to linear regression [92], [93], deep belief net-
work (DBN) [94] and MultiLayer Perceptron (MLP) [95].
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As shown in Fig. 8, the NPP of the following year was
predicted by training different scale data sets of 3, 4, 5, and
6 years.

V. RESULTS AND DISCUSSION
A. QUANTITATIVE ANALYSIS
1) ST-MAE ABLATION RESULTS
Model size. As shown in Fig.9(a), st-MAE shows the best
effect (0.222) when operated with MAE-large model param-
eters. Nevertheless, the reconstruction error MSE with the
MAE-base model parameters only increased by 0.01 com-
pared with the former one. We recommend st-MAE with the
MAE-based model as per a workable trade-off between accu-
racy and economy; we used these techniques for subsequent
experiments.

Encoder frozen layers. In the pre-trained model, the
encoder layer has learned a large number of image features,
and we consider directly adopting the features it has learned
by freezing all encoder layers and gradually reducing the
number of frozen layers to explore their impact. The base-
line of the MAE-base encoder in this research is 12 layers.
Fig.9(b) shows the MSE results of different cities, where
excessive encoder layers decreased the effect. However, the
effect was significantly improved by 8% when reducing
12 freezing layers to 8 layers. The minimum MSE was
0.219 with four freezing layers. Though CiSL-NPP requires
retraining on some datasets, we find that it is unnecessary to
create such a computational burden.

Timing coding projection layers. Since temporal encoding
is very important for timing tasks, we paid much attention
to the information transfer of temporal encoding and exper-
imented with different effects of projection layers from few
to many. As shown in Fig.9(c) and Table 2, the minimum
reconstruction error MSE is 0.212 when there are four layers
of temporal coding. The effect was improvedwhen there were
fewer layers, which highlights the low cost of st-MAE. The
optimal settings for timing coding projection decreased the
MSE (0.212 < 0.222, as shown in Fig.9(c)) suggesting that
timing coding is effective for NPP estimation. Temporal vs.
non-temporal embedding. As shown in Fig.9(d), the st-MAE
results show a 0.98% increase after adding temporal infor-
mation. We also compared the results before and after adding
temporal information in different cities. Fig.9(d) showswhere
the effect with temporal coding was improved in most cities,
at a maximum increase of 1.89%. The effect of temporal
embedding differs in different cities as well, possibly due to
seasonal information. Different cities have different dominant
vegetation, so growth patterns may vary by season. Addi-
tionally, climate information was embedded in the CiSL-NPP
model by temporal coding.

Mask rate. Since we added some coding, we need to con-
sider whether a mask rate of 0.75 is still the best choice for
the model, and we tested the effect of increasing or decreas-
ing the mask rate on the results, using 0.75 as a starting
point. Fig.9(e) shows that reconstruction works best with a

TABLE 2. Comparison of CiSL-NPP and traditional methods.

TABLE 3. Results of RNN regression.

0.75 mask rate; the effect is worse when increasing the rate
beyond this point and is not improved by further reducing the
rate. We recommend a 0.75 mask rate.

OSM road network vs random mask. Compared with the
random mask, the st-MAE reconstruction error was reduced
by 3.2% using the OSM road network mask (Fig.9(f)).
We also find that the road network mask performs best in
rapidly developing cities. For example, the OSM road net-
work mask showed improvements of 11.75% and 6.88% to
new first-tier cities Changsha and Nanjing, respectively.

2) RNN REGRESSION RESULTS
Our comparative results are shown in Table 3. When the time
granularity was increased from 15 days to 30 days, 60 days,
or 90 days, the loss decreased by 9.9%, 70.2%, and 78.81%,
respectively. We find that the effect is best when the time
granularity is one season.

B. QUALITATIVE ANALYSIS
Economic cost analysis. RMB is the most commonly used
currency in China and we use it to compare economic
expenses. We collected the majority of the popular cloud
computing power rental platforms in China. The most
cost-effective among them is 1.58 RMB per hour, which we
selected for our purposes here. Based on the calculation time
required for different models, we evaluated the economy of
the platform in a step-wise process. First, as each epoch in
the ts-MAE model costs about 6 min, the 1,000 epochs cost
1000×6/60×1.58 = 158 RMB and reconstruction of RGB
and false color model cost 2×158 = 316 RMB. Second,
the RNN model takes about 2 min and the cost is negligi-
ble. Compared to the cost of transportation, equipment, and
personnel as-calculated in a field study, CiSL-NPP shows
significant economic advantages.

Model carbon emission analysis. CiSL-NPP contains a
light RNN, which requires less calculation compared to
st-MAE. Therefore, the RNN’s carbon emissions are negli-
gible. Table 4 shows a comparison of st-MAE with the clas-
sic VGG16 and vit-base models for carbon emissions. The
CO2 emission of st-MAE-base is 39.2% lower than VGG16,
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FIGURE 9. Ablation results: (a) Different scales of st-MAE; (b) Different numbers of frozen layers in encoder; (c) Different temporal
encoding layers; (d) Temporal vs. non-temporal ablation results; (e) Effect of different mask rates; (f) OSM road network mask and
random mask.

TABLE 4. Carbon emissions estimation.

suggesting that CiSL-NPP is environmentally friendly. How-
ever, the st-MAE-large increases by 115.7% compared to
the st-MAE-base and is 31.1% higher than that of VGG16.
With similar structures and the same scale parameter set-
tings, st-MAE-base decreases 44.5% of CO2 emissions while
st-MAE-large increases them by 20.5%. Hence, we did not

continue to use the st-MAE-large model in this study. The
results suggest that CiSL-NPP based on st-MAE-base does
not introduce excessive carbon emissions at a certain level
of precision and in fact emits less carbon than other deep
learning models.

Time overhead. In subsection III-A, we give the
pseudo-code of the algorithm, where the core matrix oper-
ation process is in the Self-Attention part of the train_model
method. The operation formula of the Self-Attention part is
shown in Equation (10).

Attention(Q,K,V) = Softmax

(
QKT
√
d

)
V (10)
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FIGURE 10. Comparison of remote sensing reconstruction effects in
spring, summer, autumn, and winter in Beijing and Budapest.

FIGURE 11. Visualization of the road network mask effect: (a) Without
OSM road network mask; (b) With OSM road network mask; (c) Ground
truth.

Among them, the similarity calculation QKt means n × d
with d × n operation to get n × n matrix with complexity
O(n2d), and softmax is calculated for each row with com-
plexity O(n2) for n rows, so they get O(n2d) after weighted
sum. In the economic overhead above we mentioned that the
main time overhead lies in the training of the st-MAE, i.e.,
100 hours, plus the time for data processing (in 2 hours), for
a total of 102/24 = 4.2 days. However, the general traditional
approach requires travel to the field to collect data, with sig-
nificant time spent on commuting and equipment deployment
(in Budapest, for example, we need up to two days of time
overhead just for the round trip from Beijing, which grows
exponentially as the study targets become more numerous,
in addition to the cost of transportation involved).

C. CASE ANALYSIS
1) ANALYSIS OF VISUALIZATION RESULTS
Reconstruction results of st-MAE remote sensing image.
Fig.10 directly illustrates that the reconstruction results of
false color are very close to the ground truth. And it indi-
cates that the st-MAE model can reconstruct reliable remote
sensing images.

FIGURE 12. Comparison of reconstruction results with NPP production
visualization.

FIGURE 13. Visualization of vegetation distribution from OSM in Beijing.

OSM road networkmask effect. As shown in Fig. 11(a), the
model reconstruction results lost the edge shape (Fig.11(c))
at the junction of vegetation and non-vegetation areas without
the OSM road network information. As shown in Fig. 11(b),
The real edge shape was retained after adding the road net-
work information, which implicitly improved the reconstruc-
tion effect of the st-MAE model.

NPP reconstruction results. As shown in Fig.12, the results
of CiSL-NPP and NPP production have similar overall dis-
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FIGURE 14. CiSL-NPP results of long-term simulation.

FIGURE 15. CiSL-NPP long-term simulation results on four different areas in Beijing and Budapest selected at random.
Note that Upper parts show visible light representative of building construction. Lower parts show how CiSL-NPP
simulates urban NPP evolution through time series and OSM road network masks.

tributions with increasing NPP values from the center to
the surrounding areas – there are more plants in the center
of cities than their outskirts. Fig.13 shows the visualization
results of the OSM vegetation distribution. With a scattered

vegetation distribution, the CiSL-NPP reconstruction results
are spatially more well-refined compared to the NPP produc-
tion. Moreover, the results of CiSL-NPP vary by season. This
suggests that time embedding works very well.
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FIGURE 16. Comparison of CiSL-NPP with machine learning methods.

Taken together, our results demonstrate the strong inter-
pretability of CiSL-NPP and its practical applicability in
actual urban planning and decision-making processes.

2) ANALYSIS OF NPP EVOLUTION RESULTS
Long-term NPP prediction results. Fig.14 shows the absolute
NPP error in 2018. We find that the BJ4 model and the BJ5
model decreased by 38.03% and 71.67% over the BJ3 model,
respectively. The BD5 model was 2% lower than the BD3
model, whereas the BD4 model was instead 1.85% higher
than the BD3model. This suggests that only a certain amount
of data is required to allow themodel to learn seasonal change
information through temporal coding.

NPP generation evolution results. As shown in Fig.15,
in areas with significant changes in urban construction (e.g.,
transformation from green spaces to buildings), the estima-
tions of CiSL-NPP directly reflect vegetation changes. The
results also reflect the carbon sink reduction caused by the
reduction of green space during urban construction.

3) COMPARISON WITH MACHINE LEARNING AND DEEP
LEARNING ALGORITHMS
As shown in Fig.16, in the case of Beijing and Budapest
in 2018, the absolute error of CiSL-NPP was reduced by
77.96%, 63.82%, 41.12% and 289.72% compared with sim-
ple machine learning models, DBN and MLP respectively.
Overall, CiSL-NPP shows higher accuracy. As mentioned in
Section IV-A, the proposed CiSL-NPP method has a small
error over the three-year period which suggesting that it could
work over a relatively long period of time as its generation
mechanism.

VI. CONCLUSION
Effective city-scale NPP estimation, as a pathway towards
carbon neutrality, is a highly challenging process. In this

study, to solve this problem, a spatio-temporal neural network
learning system named CiSL-NPP was proposed. By fusing
multi-source data including remote sensing, PAR, and road
networks, the st-MAE with time embedding and OSM road
network mask was used in the framework of CiSL-NPP. The
detailed experiments such as ablation experiments, qualita-
tive experiments and case study were carry out explaining
the effectiveness of CiSL-NPP. Our method has a higher
estimation efficiency, more effectiveness, lower carbon con-
sumption and cost than other NPP estimation methods. The
CiSL-NPP efficiently achieves long-term, city-scale NPP
estimation with high spatial resolution. Compared with tra-
ditional estimation methods, by introducing the neural net-
works learning system, the proposed method shows higher
accuracy in the city-scale NPP estimation field, and we can
foresee that it will perform better when applied in the real
scenes. CiSL-NPP also shows strong interpretability, giving it
remarkable potential for practical city-planning applications.
However, the NPP calculation does not use different parame-
ters according to different cities, and in the future we plan to
adjust the parameters to be adaptive in nature and extend this
neural network system to more cities.

REFERENCES

[1] H. Youn, L. M. A. Bettencourt, J. Lobo, D. Strumsky, H. Samaniego, and
G. B. West, ‘‘Scaling and universality in urban economic diversification,’’
J. Roy. Soc. Interface, vol. 13, no. 114, Jan. 2016, Art. no. 20150937.

[2] K. Liu, Z. Ni, M. Ren, and X. Zhang, ‘‘Spatial differences and influential
factors of urban carbon emissions in China under the target of carbon
neutrality,’’ Int. J. Environ. Res. Public Health, vol. 19, no. 11, p. 6427,
May 2022.

[3] W. Sha, Y. Chen, J. Wu, and Z. Wang, ‘‘Will polycentric cities cause more
CO2 emissions? A case study of 232 Chinese cities,’’ J. Environ. Sci.,
vol. 96, pp. 33–43, Oct. 2020.

[4] A. Huovila, H. Siikavirta, C. A. Rozado, J. Rökman, P. Tuominen,
S. Paiho, Å. Hedman, and P. Ylén, ‘‘Carbon-neutral cities: Critical
review of theory and practice,’’ J. Cleaner Prod., vol. 341, Mar. 2022,
Art. no. 130912.

VOLUME 11, 2023 31319



M. Chao et al.: Spatio-Temporal Neural Network Learning System for City-Scale Carbon Storage Capacity Estimating

[5] R. Kondo, Y. Kinoshita, and T. Yamada, ‘‘Green procurement deci-
sions with carbon leakage by global suppliers and order quantities
under different carbon tax,’’ Sustainability, vol. 11, no. 13, p. 3710,
Jul. 2019.

[6] S. Yu, X. Yuan, X. Yao, and M. Lei, ‘‘Carbon leakage and low-carbon per-
formance: Heterogeneity of responsibility perspectives,’’ Energy Policy,
vol. 165, Jun. 2022, Art. no. 112958.

[7] W. Y. Chen, ‘‘The role of urban green infrastructure in offsetting carbon
emissions in 35 major Chinese cities: A nationwide estimate,’’ Cities,
vol. 44, pp. 112–120, Apr. 2015.

[8] D. J. Nowak and D. E. Crane, ‘‘Carbon storage and sequestration by
urban trees in the USA,’’ Environ. Pollut., vol. 116, no. 3, pp. 381–389,
Mar. 2002.

[9] P. F. Chen, ‘‘Monthly NPP dataset covering China’s terrestrial ecosystems
at north of 18◦N (1985–2015),’’ J. Global Change Data Discovery, vol. 3,
no. 1, pp. 34–41, 2019.

[10] X. Guan, H. Shen, W. Gan, G. Yang, L. Wang, X. Li, and L. Zhang, ‘‘A 33-
year NPP monitoring study in Southwest China by the fusion of multi-
source remote sensing and station data,’’ Remote Sens., vol. 9, no. 10,
p. 1082, Oct. 2017.

[11] T. N. Kaye, K. L. Pendergrass, K. Finley, and J. B. Kauffman,
‘‘The effect of fire on the population viability of an endangered
Prairie plant,’’ Ecol. Appl., vol. 11, no. 5, pp. 1366–1380,
Oct. 2001.

[12] H. Lin, H. Ma, C. Nyandwi, Q. Feng, and T. Liang, ‘‘A new net primary
productivity model and new management strategy of grassland classifica-
tion based on CSCS in China,’’ Rangeland J., vol. 43, no. 6, pp. 285–295,
Apr. 2021.

[13] W. Ge, L. Deng, F. Wang, and J. Han, ‘‘Quantifying the contributions of
human activities and climate change to vegetation net primary productivity
dynamics in China from 2001 to 2016,’’ Sci. Total Environ., vol. 773,
Jun. 2021, Art. no. 145648.

[14] B. Guo, M. Lu, Y. Fan, H. Wu, Y. Yang, and C. Wang, ‘‘A novel remote
sensing monitoring index of salinization based on three-dimensional fea-
ture space model and its application in the yellow river delta of China,’’
Geomatics, Natural Hazards Risk, vol. 14, no. 1, pp. 95–116, Dec. 2023.

[15] Y. Kai, T. Yichen, Y. Chao, Z. Feifei, Y. Quanzhi, and H. Lizhong, ‘‘NPP
spatial and temporal pattern of vegetation in Beijing and its factor explana-
tion based on CASAmodel,’’ Remote Sens. Natural Resour., vol. 27, no. 1,
pp. 133–139, 2014.

[16] E. A. Mohareb, H. L. MacLean, and C. A. Kennedy, ‘‘Greenhouse gas
emissions from waste management—Assessment of quantification meth-
ods,’’ J. Air Waste Manag. Assoc., vol. 61, no. 5, pp. 480–493, 2011.

[17] B. Crawford, A. Christen, and I. McKendry, ‘‘Diurnal course of carbon
dioxide mixing ratios in the urban boundary layer in response to surface
emissions,’’ J. Appl. Meteorol. Climatol., vol. 55, no. 3, pp. 507–529,
Mar. 2016.

[18] N. F. Sonti, P. M. Groffman, D. J. Nowak, J. G. Henning, M. L. Avolio,
and E. J. Rosi, ‘‘Urban net primary production: Concepts, field methods,
and Baltimore, Maryland, USA case study,’’ Ecol. Appl., vol. 32, no. 4,
p. e2562, Jun. 2022.

[19] X. Wei, J. Yang, P. Luo, L. Lin, K. Lin, and J. Guan, ‘‘Assessment of
the variation and influencing factors of vegetation NPP and carbon sink
capacity under different natural conditions,’’ Ecol. Indicators, vol. 138,
May 2022, Art. no. 108834.

[20] S. Grimmond, ‘‘Urbanization and global environmental change: Local
effects of urban warming,’’ Geograph. J., vol. 173, no. 1, pp. 83–88,
Mar. 2007.

[21] S. Ghimire, R. C. Deo, N. J. Downs, and N. Raj, ‘‘Global solar radi-
ation prediction by ANN integrated with European centre for medium
range weather forecast fields in solar rich cities of Queensland Australia,’’
J. Cleaner Prod., vol. 216, pp. 288–310, Apr. 2019.

[22] X. Zhu, J. Chen, F. Gao, X. Chen, and J. G. Masek, ‘‘An enhanced spatial
and temporal adaptive reflectance fusionmodel for complex heterogeneous
regions,’’ Remote Sens. Environ., vol. 114, no. 11, pp. 2610–2623, 2010.

[23] Y. Yan, C. Wu, and Y. Wen, ‘‘Determining the impacts of climate change
and urban expansion on net primary productivity using the spatio-temporal
fusion of remote sensing data,’’ Ecol. Indicators, vol. 127, Aug. 2021,
Art. no. 107737.

[24] L. Jin, S. Liang, X. Luo, and M. Zhou, ‘‘Distributed and time-delayed-
winner-take-all network for competitive coordination of multiple robots,’’
IEEE Trans. Cybern., vol. 53, no. 1, pp. 641–652, Jan. 2023.

[25] L. Jin, Y. Liufu, H. Lu, and Z. Zhang, ‘‘Saturation-allowed neural dynam-
ics applied to perturbed time-dependent system of linear equations and
robots,’’ IEEE Trans. Ind. Electron., vol. 68, no. 10, pp. 9844–9854,
Oct. 2021.

[26] K. Wang, A. Bastos, P. Ciais, X. Wang, C. Rödenbeck, P. Gentine,
F. Chevallier, V. W. Humphrey, C. Huntingford, M. O’Sullivan,
S. I. Seneviratne, S. Sitch, and S. Piao, ‘‘Regional and seasonal
partitioning of water and temperature controls on global land carbon
uptake variability,’’ Nature Commun., vol. 13, no. 1, p. 3469, Jun. 2022.

[27] M. Mngadi, J. Odindi, O. Mutanga, and M. Sibanda, ‘‘Estimating above-
ground net primary productivity of reforested trees in an urban landscape
using biophysical variables and remotely sensed data,’’ Sci. Total Environ.,
vol. 802, Jan. 2022, Art. no. 149958.

[28] D. Patterson, J. Gonzalez, Q. Le, C. Liang, L.-M. Munguia, D. Rothchild,
D. So,M. Texier, and J. Dean, ‘‘Carbon emissions and large neural network
training,’’ 2021, arXiv:2104.10350.

[29] Y. Yu and N. Zhang, ‘‘Low-carbon city pilot and carbon emission effi-
ciency: Quasi-experimental evidence from China,’’ Energy Econ., vol. 96,
Apr. 2021, Art. no. 105125.

[30] X. Du, L. Shen, Y. Ren, and C. Meng, ‘‘A dimensional perspective-based
analysis on the practice of low carbon city in China,’’ Environ. Impact
Assessment Rev., vol. 95, Jul. 2022, Art. no. 106768.

[31] Z. Liu, Z. Deng, G. He, H. Wang, X. Zhang, J. Lin, Y. Qi, and X. Liang,
‘‘Challenges and opportunities for carbon neutrality in China,’’Nature Rev.
Earth Environ., vol. 3, no. 2, pp. 141–155, Dec. 2021.

[32] S. Azarkamand, G. Ferré, and R. M. Darbra, ‘‘Calculating the carbon foot-
print in ports by using a standardized tool,’’ Sci. Total Environ., vol. 734,
Sep. 2020, Art. no. 139407.

[33] T. Liu, Q. Wang, and B. Su, ‘‘A review of carbon labeling: Standards,
implementation, and impact,’’ Renew. Sustain. Energy Rev., vol. 53,
pp. 68–79, Jan. 2016.

[34] F. Nevens and C. Roorda, ‘‘A climate of change: A transition approach for
climate neutrality in the city of Ghent (Belgium),’’ Sustain. Cities Soc.,
vol. 10, pp. 112–121, Feb. 2014.

[35] H. Vandevyvere and F. Nevens, ‘‘Lost in transition or geared for the S-
curve? An analysis of flemish transition trajectories with a focus on energy
use and buildings,’’ Sustainability, vol. 7, no. 3, pp. 2415–2436, Feb. 2015.

[36] S. Jetoo, ‘‘Stakeholder engagement for inclusive climate governance:
The case of the city of Turku,’’ Sustainability, vol. 11, no. 21, p. 6080,
Nov. 2019.

[37] L. Qin, M. Y. Malik, K. Latif, Z. Khan, A. W. Siddiqui, and S. Ali,
‘‘The salience of carbon leakage for climate action planning: Evidence
from the next eleven countries,’’ Sustain. Prod. Consumption, vol. 27,
pp. 1064–1076, Jul. 2021.

[38] F. Ferrini, A. Fini, J. Mori, and A. Gori, ‘‘Role of vegetation as a mitigat-
ing factor in the urban context,’’ Sustainability, vol. 12, no. 10, p. 4247,
May 2020.

[39] L. Azaria, ‘‘Carbon sequestration capability analysis of urban green
space using geospatial data,’’ in Proc. ES Web Conf., vol. 73, 2018,
Art. no. 03009.

[40] Y. Gong and X. Luo, ‘‘Experimental study on the carbon sequestration
benefit in urban residential green space based on urban ecological carrying
capacity,’’ Sustainability, vol. 14, no. 13, p. 7780, Jun. 2022.

[41] X. Liu, S. Wang, P. Wu, K. Feng, K. Hubacek, X. Li, and L. Sun, ‘‘Impacts
of urban expansion on terrestrial carbon storage in China,’’ Environ. Sci.
Technol., vol. 53, no. 12, pp. 6834–6844, Jun. 2019.

[42] A. Zhang and R. Deng, ‘‘Spatial-temporal evolution and influencing
factors of net carbon sink efficiency in Chinese cities under the back-
ground of carbon neutrality,’’ J. Cleaner Prod., vol. 365, Sep. 2022,
Art. no. 132547.

[43] H. Wang, G. Liu, Z. Li, P. Wang, and Z. Wang, ‘‘Assessing the driving
forces in vegetation dynamics using net primary productivity as the indi-
cator: A case study in Jinghe River basin in the Loess Plateau,’’ Forests,
vol. 9, no. 7, p. 374, Jun. 2018.

[44] X. Tang, X. Zhao, Y. Bai, Z. Tang, W. Wang, Y. Zhao, H. Wan, Z. Xie,
X. Shi, B. Wu, and G. Wang, ‘‘Carbon pools in China’s terrestrial ecosys-
tems: New estimates based on an intensive field survey,’’ Proc. Nat. Acad.
Sci. USA, vol. 115, no. 16, pp. 4021–4026, 2018.

[45] X. Liu, F. Pei, Y. Wen, X. Li, S. Wang, C. Wu, Y. Cai, J. Wu, J. Chen,
K. Feng, and J. Liu, ‘‘Global urban expansion offsets climate-driven
increases in terrestrial net primary productivity,’’Nature Commun., vol. 10,
p. 5558, Dec. 2019.

31320 VOLUME 11, 2023



M. Chao et al.: Spatio-Temporal Neural Network Learning System for City-Scale Carbon Storage Capacity Estimating

[46] C. Rebmann, M. Aubinet, H. Schmid, N. Arriga, M. Aurela, G. Burba,
R. Clement, A. De Ligne, G. Fratini, B. Gielen, and J. Grace, ‘‘ICOS eddy
covariance flux-station site setup: A review,’’ Int. Agrophys., vol. 32, no. 4,
pp. 471–494, Dec. 2018.

[47] B. Lee, N. Kim, E.-S. Kim,K. Jang,M.Kang, J.-H. Lim, J. Cho, andY. Lee,
‘‘An artificial intelligence approach to predict gross primary productivity
in the forests of South Korea using satellite remote sensing data,’’ Forests,
vol. 11, no. 9, p. 1000, Sep. 2020.

[48] K. Valaskova, J. Olah, J. Popp, and G. Lazaroiu, ‘‘Virtual modeling and
remote sensing technologies, spatial cognition and neural network algo-
rithms, and visual analytics tools in urban geopolitics and digital twin
cities,’’ Geopolitics, Hist. Int. Relations, vol. 14, no. 2, pp. 9–24, 2022.

[49] M. Bugaj, V. Machova, and S. Bratu, ‘‘The geopolitics of smart sustainable
city governance and simulated 3D environments,’’ Geopolitics, Hist., Int.
Relations, vol. 14, no. 2, pp. 152–167, 2022.

[50] M. Nagy and G. Lazaroiu, ‘‘Computer vision algorithms, remote sensing
data fusion techniques, and mapping and navigation tools in the Indus-
try 4.0-based Slovak automotive sector,’’ Mathematics, vol. 10, no. 19,
p. 3543, Sep. 2022.

[51] D. P.M. Zaks, N. Ramankutty, C. C. Barford, and J. A. Foley, ‘‘FromMiami
to Madison: Investigating the relationship between climate and terrestrial
net primary production,’’ Global Biogeochemical Cycles, vol. 21, no. 3,
pp. n/a–n/a, Sep. 2007.

[52] F. Li, W. Zheng, Y. Wang, J. Liang, S. Xie, S. Guo, X. Li, and C. Yu,
‘‘Urban green space fragmentation and urbanization: A spatiotemporal
perspective,’’ Forests, vol. 10, no. 4, p. 333, Apr. 2019.

[53] P. Kowe, O. Mutanga, and T. Dube, ‘‘Advancements in the remote sensing
of landscape pattern of urban green spaces and vegetation fragmentation,’’
Int. J. Remote Sens., vol. 42, no. 10, pp. 3797–3832, May 2021.

[54] S. Jia, ‘‘Study on carbon storage of forest vegetation and its economic value
in Henan province based on continuous forest resources inventory,’’Hubei.
Agric. Sci., vol. 55, pp. 1612–1616, 2016.

[55] J. M. O. Scurlock, K. Johnson, and R. J. Olson, ‘‘Estimating net primary
productivity from grassland biomass dynamics measurements,’’ Global
Change Biol., vol. 8, no. 8, pp. 736–753, Aug. 2002.

[56] Y. Luo, X. Wang, Z. Ouyang, F. Lu, L. Feng, and J. Tao, ‘‘A review of
biomass equations for China’s tree species,’’ Earth Syst. Sci. Data, vol. 12,
no. 1, pp. 21–40, Jan. 2020.

[57] H. Zhang, R. Sun, Z. Xiao, J. Wang, and M. Wang, ‘‘Global 500M
spatial resolution gross and net primary productivity products based on an
improved light use efficiency model from 2000–2019,’’ in Proc. IEEE Int.
Geosci. Remote Sens. Symp., Jul. 2022, pp. 5762–5765.

[58] S. Kedia, S. P. Bhakare, A. K. Dwivedi, S. Islam, and A. Kaginalkar, ‘‘Esti-
mates of change in surface meteorology and urban heat island over North-
west India: Impact of urbanization,’’ Urban Climate, vol. 36, Mar. 2021,
Art. no. 100782.

[59] L. Bruzzone and B. Demir, ‘‘A review of modern approaches to clas-
sification of remote sensing data,’’ in Land Use and Land Cover Map-
ping in Europe (Remote Sensing and Digital Image Processing), vol. 18,
I. Manakos and M. Braun, Eds. Dordrecht, The Netherlands: Springer,
Jan. 2014, pp. 127–143.

[60] B. Zhou, Z. Liao, S. Chen, H. Jia, J. Zhu, and X. Fei, ‘‘Net primary
productivity of forest ecosystems in the Southwest Karst region from the
perspective of carbon neutralization,’’ Forests, vol. 13, no. 9, p. 1367,
Aug. 2022.

[61] M. Kang and S. Cho, ‘‘Progress in water and energy flux studies in
Asia: A review focused on eddy covariance measurements,’’ J. Agricult.
Meteorol., vol. 77, no. 1, pp. 2–23, 2021.

[62] C. Zhang and Y. Lu, ‘‘Study on artificial intelligence: The state of
the art and future prospects,’’ J. Ind. Inf. Integr., vol. 23, Sep. 2021,
Art. no. 100224.

[63] B. Yu, F. Chen, and H. Chen, ‘‘NPP estimation using random forest and
impact feature variable importance analysis,’’ J. Spatial Sci., vol. 64, no. 1,
pp. 173–192, Jan. 2019.

[64] F. Yang, K. Ichii, M. A. White, H. Hashimoto, A. R. Michaelis, P. Votava,
A.-X. Zhu, A. Huete, S. W. Running, and R. R. Nemani, ‘‘Developing
a continental-scale measure of gross primary production by combining
MODIS and AmeriFlux data through support vector machine approach,’’
Remote Sens. Environ., vol. 110, no. 1, pp. 109–122, Sep. 2007.

[65] M. Xu, C. Hu, R. G. Najjar, M. Herrmann, H. Briceno, B. B. Barnes,
J. O. R. Johansson, and D. English, ‘‘Estimating estuarine primary produc-
tion using satellite data and machine learning,’’ Int. J. Appl. Earth Observ.
Geoinf., vol. 110, Jun. 2022, Art. no. 102821.

[66] V. Moosavi, H. Malekinezhad, and B. Shirmohammadi, ‘‘Fractional snow
cover mapping from MODIS data using wavelet-artificial intelligence
hybrid models,’’ J. Hydrol., vol. 511, pp. 160–170, Apr. 2014.

[67] M. Peng, W. Han, C. Li, X. Yao, and G. Shao, ‘‘Modeling the daytime
net primary productivity of maize at the canopy scale based on UAV
multispectral imagery and machine learning,’’ J. Cleaner Prod., vol. 367,
Sep. 2022, Art. no. 133041.

[68] Y. Zhang and Y. Zhang, ‘‘New discrete-time models of zeroing neural
network solving systems of time-variant linear and nonlinear inequali-
ties,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 50, no. 2, pp. 565–576,
Feb. 2020.

[69] Y. Shi, B. Qiu, D. Chen, J. Li, and Y. Zhang, ‘‘Proposing and validation of
a new four-point finite-difference formula with manipulator application,’’
IEEE Trans. Ind. Informat., vol. 14, no. 4, pp. 1323–1333, Apr. 2018.

[70] J. Hurley, A. Saunders, A. Both, C. Sun, B. Boruff, J. Duncan,
M. Amati, and P. Caccetta, ‘‘Urban vegetation cover change in Melbourne:
2014–2018,’’ Centre Urban Res., Melbourne, VIC, Australia,
Tech. Rep. V2.0, 2019.

[71] J. Zhong, J. Liu, L. Jiao, X. Lian, Z. Xu, and Z. Zhou, ‘‘Assessing the
comprehensive impacts of different urbanization process on vegetation net
primary productivity inWuhan, China, from 1990 to 2020,’’ Sustain. Cities
Soc., vol. 75, Dec. 2021, Art. no. 103295.

[72] C. Milesi, C. D. Elvidge, R. R. Nemani, and S. W. Running, ‘‘Assessing
the impact of urban land development on net primary productivity in
the southeastern United States,’’ Remote Sens. Environ., vol. 86, no. 3,
pp. 401–410, Aug. 2003.

[73] F. Pei, X. Li, X. Liu, S. Wang, and Z. He, ‘‘Assessing the differences
in net primary productivity between pre- and post-urban land develop-
ment in China,’’ Agricult. Forest Meteorol., vols. 171–172, pp. 174–186,
Apr. 2013.

[74] T. Yu, Y. Pang, R. Sun, and X. Niu, ‘‘Spatial downscaling of vegetation
productivity in the forest from deep learning,’’ IEEE Access, vol. 10,
pp. 104449–104460, 2022.

[75] X. Liu, C. Yoo, F. Xing, H. Oh, G. El Fakhri, J.-W. Kang, and J. Woo,
‘‘Deep unsupervised domain adaptation: A review of recent advances and
perspectives,’’ APSIPA Trans. Signal Inf. Process., vol. 11, no. 1, pp. 1–48,
2022.

[76] S. Cao, P. Xu, and D. A. Clifton, ‘‘How to understand masked autoen-
coders,’’ 2022, arXiv:2202.03670.

[77] K. He, X. Chen, S. Xie, Y. Li, P. Dollar, and R. Girshick, ‘‘Masked autoen-
coders are scalable vision learners,’’ in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2022, pp. 16000–16009.

[78] A. Sherstinsky, ‘‘Fundamentals of recurrent neural network (RNN) and
long short-term memory (LSTM) network,’’ Phys. D, Nonlinear Phenom-
ena, vol. 404, Mar. 2020, Art. no. 132306.

[79] J. Kandt and M. Batty, ‘‘Smart cities, big data and urban policy:
Towards urban analytics for the long run,’’ Cities, vol. 109, Feb. 2021,
Art. no. 102992.

[80] Y. Kim, H.-G. Kim, Z. Li, and H.-J. Choi, ‘‘Avoiding overfitting in
deep neural networks for clinical opinions generation from general blood
test results,’’ in MEDINFO: Precision Healthcare Through Informatics,
vol. 245. Amsterdam, The Netherlands: IOS Press, 2017, p. 1274.

[81] R. Houborg, J. B. Fisher, andA.K. Skidmore, ‘‘Advances in remote sensing
of vegetation function and traits,’’ Int. J. Appl. Earth Observ. Geoinf.,
vol. 43, pp. 1–6, Dec. 2015.

[82] P. Liu, K. K. R. Choo, L. Wang, and F. Huang, ‘‘SVM or deep learning?
A comparative study on remote sensing image classification,’’ Soft Com-
put., vol. 21, no. 23, pp. 7053–7065, Dec. 2017.

[83] M. Minghini and F. Frassinelli, ‘‘OpenStreetMap history for intrinsic
quality assessment: Is OSM up-to-date?’’ Open Geospatial Data, Softw.
Standards, vol. 4, no. 1, pp. 1–17, Dec. 2019.

[84] L. Wang, W. Gong, Y. Ma, and M. Zhang, ‘‘Modeling regional vegetation
NPP variations and their relationships with climatic parameters in Wuhan,
China,’’ Earth Interact., vol. 17, no. 4, pp. 1–20, May 2013.

[85] T. Cui, Y. Wang, R. Sun, C. Qiao, W. Fan, G. Jiang, L. Hao, and L. Zhang,
‘‘Estimating vegetation primary production in the Heihe river basin of
China with multi-source and multi-scale data,’’ PLoS ONE, vol. 11, no. 4,
Apr. 2016, Art. no. e0153971.

[86] T. Yu, R. Sun, Z. Xiao, Q. Zhang, G. Liu, T. Cui, and J. Wang, ‘‘Estimation
of global vegetation productivity from global land surface satellite data,’’
Remote Sens., vol. 10, no. 2, p. 327, Feb. 2018.

VOLUME 11, 2023 31321



M. Chao et al.: Spatio-Temporal Neural Network Learning System for City-Scale Carbon Storage Capacity Estimating

[87] M. Wang, R. Sun, A. Zhu, and Z. Xiao, ‘‘Evaluation and comparison of
light use efficiency and gross primary productivity using three different
approaches,’’ Remote Sens., vol. 12, no. 6, p. 1003, Mar. 2020.

[88] S. Bodapati, H. Bandarupally, R. N. Shaw, and A. Ghosh, ‘‘Comparison
and analysis of RNN-LSTMs and CNNs for social reviews classification,’’
in Advances in Applications of Data-Driven Computing. New York, NY,
USA: Springer, 2021, pp. 49–59.

[89] M. Carvalho, B. L. Saux, P. Trouve-Peloux, A. Almansa, and
F. Champagnat, ‘‘On regression losses for deep depth estimation,’’
in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018,
pp. 2915–2919.

[90] M. Prezioso, F.Merrikh-Bayat, B. D. Hoskins, G. C. Adam,K.K. Likharev,
and D. B. Strukov, ‘‘Training and operation of an integrated neuromorphic
network based on metal-oxide memristors,’’ Nature, vol. 521, pp. 61–64,
Dec. 2015.

[91] W. Wan, ‘‘A compute-in-memory chip based on resistive random-access
memory,’’ Nature, vol. 608, no. 7923, pp. 504–512, 2022.

[92] M. Wang, G. Liu, R. Sun, and Z. Xiao, ‘‘Assessment of NPP dynamics and
the responses to climate changes in China from 1982 to 2012,’’ in Proc.
IEEE Int. Geosci. Remote Sens. Symp., Jul. 2019, pp. 6602–6605.

[93] L. Song, M. Li, H. Xu, Y. Guo, Z. Wang, Y. Li, X. Wu, L. Feng, J. Chen,
X. Lu, Y. Xu, and T. Li, ‘‘Spatiotemporal variation and driving factors of
vegetation net primary productivity in a typical Karst area in China from
2000 to 2010,’’ Ecol. Indicators, vol. 132, Dec. 2021, Art. no. 108280.

[94] A. Krizhevsky and G. Hinton, ‘‘Convolutional deep belief networks on
CIFAR-10,’’ Unpublished Manuscript, vol. 40, no. 7, pp. 1–9, 2010.

[95] A. H. Fath, F. Madanifar, and M. Abbasi, ‘‘Implementation of multilayer
perceptron (MLP) and radial basis function (RBF) neural networks to
predict solution gas-oil ratio of crude oil systems,’’ Petroleum, vol. 6, no. 1,
pp. 80–91, Mar. 2020.

MOU CHAO received the Ph.D. degree from the
School of Computer Science, Chongqing Univer-
sity, in 2018.

His current research interests include double
carbon research, educational data mining, data
mining, and model interpretability.

WEI MAIMAI received the bachelor’s degree in
forestry engineering from Beijing Forestry Uni-
versity, in 2021, and the bachelor’s degree in data
science and big data technology, in 2023.

His current research interests include double
carbon research and big data.

LIU HANZHANG is currently pursuing the bach-
elor’s degree in engineering with Beijing Forestry
University, Beijing, China.

His current research interests include double
carbon research and big data.

CHEN ZHIBO received the Ph.D. degree.
He has been the Dean of the School of Infor-

mation and the Head of the Computer Science and
Technology Discipline, Beijing Forestry Univer-
sity, since 2013. He is currently a Professor and
a Ph.D. Supervisor. His current research interests
include double carbon research, smart forestry,
and AI.

CUI XIAOHUI received the Ph.D. degree in com-
puter application technology from Harbin Engi-
neering University, in 2013.

His current research interests include double
carbon research, smart forestry AI, and big data.

31322 VOLUME 11, 2023


