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ABSTRACT Semi-flexible transit (SFT) is commonly discussed as a cost-effective alternative to serving
public transportation users in low-demand conditions. We hypothesize that joint optimization of service
headway and slack time per trip for route deviation is essential for designing a schedule for the oper-
ation of an integrated SFT that can meet both fixed-route and paratransit demand. An integrated SFT
has the potential to lower the cost of transportation for regular transit users (both operators and riders)
while redirecting potential paratransit riders to less expensive transit modes; thus, reducing demand for
overwhelmed paratransit services operating with limited resources. The optimization problem has three
competing objectives: minimizing operator costs, minimizing user costs, and maximizing service benefits.
Two state-of-the-art multi-objective evolutionary algorithms NSGA-II and SMPSO are compared to obtain
the most representative deterministic Pareto optimal solution set. This study has three major contributions.
First, quantile regression is used to suggest multiple slack time values for a given headway that transit
planners can consider when generating a static schedule for SFT operation. Second, relationships derived
to analyze cost trade-offs suggest that headway governs operator cost and is negatively correlated, user
cost is positively and equally influenced by both variables, and slack time governs service benefit and is
positively correlated. Third, sensitivity analysis for an integrated SFT operation reveals that low-capacity
minivans and standard vans offer higher vehicle occupancy and cost efficiency, mostly economical for low
to medium demand (5-20 pass/hr), low permissible deviation from the fixed route is desirable during peak
hours to avoid delays for passengers on-board, and extreme weather conditions dramatically and negatively
influence costs. Policy recommendations for integrated SFT implementation include a recommendation for
fare structure design addressing service equity through surcharges/discounts, vehicle technology and service
booking technology advancements for cost reduction, and fleet mix design through estimation of passenger
loading profile. The application of the study methodology is demonstrated for a low-demand bus route in
Regina, Canada.

INDEX TERMS Paratransit, semi-flexible transit, service headway, slack time.

I. INTRODUCTION
Current trends in the economy and societal changes have
contributed to low and dispersed travel demand, which is crit-
ical to the operation of rigid forms of transit like fixed-route
bus transit (FBT). Demand responsive transit (DRT) pro-
viding on-demand curb-to-curb services to all passengers
is a common alternative but is only limited to providing
specialized services, like paratransit because of its relatively
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high cost of operation. Semi-flexible transit (SFT) which
combines the rigidity of FBT and the flexibility of DRT is
the most discussed alternative in the past two decades to
serve low-demand travel needs [1], [2], [3]. Several transit
agencies in North America suggest SFT as an interesting
solution to respond to the growing demand for expensive
paratransit services and the high operating cost of FBT in
low-demand conditions [4]. Regina transit in Canada facing
a similar situation has recently piloted a flexible transit ser-
vice along a least frequently used route hoping to increase
ridership and the vehicle used is accessible with spots
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reserved for wheelchairs/mobility devices [5]. While para-
transit demand continues to grow in many North American
communities, some transit operators, including Regina Tran-
sit, are providing training and incentives to help shift trips
from paratransit/DRT to less costly modes like FBT and
SFT [6]. Regina paratransit, like most others, is currently
operating at its capacity [7]. Consequently, SFT with route
deviations, when provided along an under-performing low-
demand bus route, is capable of substituting both FBT and
DRT in the service zone and is beneficial to both shifted
regular transit and paratransit users as well as the opera-
tor [4], [6]. Paratransit users will benefit from improved
response times and flexible mobility, thereby improving their
social inclusion. There will be more resources at the disposal
of transit agencies for paratransit service in the same or
other zones, in addition to cost savings. General transit users
could expect a discounted fare as the total operating cost
reduces. The modeling and optimization of SFT to provide
an efficient service is a challenging and complex task since
it requires retaining both FBT and DRT properties [1]. Due
to its composite nature, SFT operates with a fixed/flexible
route, stop, and schedule to accommodate a few curb-to-curb
stop requests. While several design parameters govern SFT,
the determination of the amount of slack time allocated in
the schedule to accommodate route deviations for serving
paratransit users is the most critical [8]. Other key design
parameters for SFT include zone size/service area, headway,
slack time distribution, and demand [1], [4].

This study hypothesizes that joint optimization of service
headway (h) and slack time per trip (1t) is necessary to
design SFT that will accommodate existing FBT and para-
transit demand along an under-performing low-demand bus
route. There are three conflicting objectives in this optimiza-
tion problem: minimization of operator cost, minimization of
user cost, and maximization of service benefit. We conducted
descriptive and statistical analyses of Pareto optimal solutions
obtained using multi-objective evolutionary algorithms to
derive meaningful relationships between the decision vari-
ables and the cost components. Policy recommendations for
fares, technology, and operations are derived based on pro-
posed models and sensitivity analyses conducted for vehicle
capacity, hourly demand, permitted deviation, and weather
conditions. The application of the study methodology is
demonstrated for a low-demand bus route in Regina, Canada.

II. LITERATURE REVIEW
A large body of literature concurs that it is cost-efficient
to operate SFT in low-demand conditions and FBT when
the demand for transit is high [2], [3]. Several studies have
emphasized this concept, including this study which expands
on previous research by addressing how to best operate the
SFT. Table 1 summarizes the studies mostly related to this
study and is discussed in detail in this section.

A. KEY ELEMENTS OF FLEXIBLE TRANSIT SERVICE DESIGN
This section focuses on defining the key elements of
flexible transit optimization models studied in literature

including decision variables, objective(s), constraints, and
solution method. The decision variables or optimized vari-
ables for SFT commonly include routing and schedul-
ing [9], service zone size [10], [11], [12], passenger
request [13], headway [11], [14], [15], velocity [16], and
slack time [8], [10], [17], [18]. Most objectives can be clas-
sified into two categories: operator-related and user-related
cost and service benefit. Operator costs include the mini-
mization of fleet acquisition and operation costs [14]. User-
related objectives include the minimization of travel time
components such as access time, waiting time, and in-vehicle
time [8], [17]. To attain system-wide savings, few studies
optimize total cost considering both operator and user-related
objectives [15]. The benefit associated is specific to the opera-
tors’ intent like increasing revenue/fare income [9], reducing
parking infrastructure investment [17], increasing mobility,
reducing vehicle miles and emissions, or replacing a costly
transit alternative DRT/FBT for paratransit passengers and
passengers in suburban or rural areas [8]. The design of
SFT includes constraints characteristic of regular bus transit
design including capacity [11], vehicle arrival and departure
schedule [9], travel time [8], and fleet size [19] in addition to
including constraints characteristic of DRT like zoning [10]
and passenger pick-up and drop-off schedule [9]. Finally, for
a given set of objective functions and constraints, the optimal
value of decision variables can be derived using analytical
models [11], numerical approximation [20], simulation [8],
and heuristics [21]. In this study, using heuristic methods,
we derive optimal values of slack time and headway that
minimize operator and user costs while maximizing the ben-
efit defined as the cost of serving paratransit demand in an
expensive DRT mode if not serviced by SFT, when vehicle
capacity is constrained.

B. STUDIES FOCUSING ON SLACK TIME OPTIMIZATION
FOR FLEXIBLE TRANSIT
Fu [8] proposed the first analytical model to determine
the optimal slack time for a flex service to accommodate
door-to-door paratransit requests while serving mandatory
stops along the route. This model minimizes the total net
cost to all stakeholders, including the operator, and regular
and paratransit passengers. The fundamental relationships
between system performance and design parameters revealed
using an analytical model are further validated using sim-
ulation. Despite capturing some general trends, the models
developed failed to capture the details of system behavior.
Smith et al. [10] implemented a heuristic method to opti-
mize two key design variables in flex-route service planning:
service area and slack time distribution. The optimization
problem included two objectives: maximization of feasible
deviations (i.e., from the operator’s perspective) and min-
imization of dwell time/unused slack time (i.e., from the
user’s perspective). Two existing fixed routes with a maxi-
mum of five major fixed stops were chosen to serve as flex
routes. Assuming a deterministic scenario, this study uses
the gradient method to derive Pareto-optimal solutions for
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transit planners to assess design trade-offs. Alshalalfah [17]
implemented analytical modeling and constraint program-
ming for static and dynamic flex-route service optimization.
The system is designed to cover mandatory stops with a
predetermined schedule while accommodating on-demand
route deviation requests constrained by slack time in the
schedule. The study derived optimal values for service area
and slack time that minimizes the operator and user costs
and maximizes the savings in parking costs when encour-
aging people to switch from using their cars to using tran-
sit when accessing a regional rail network. Zheng et al.
[22] proposed a slack arrival strategy to improve the accep-
tance rate of the flex-route service at both expected and
unexpected demand levels. Analytical and simulation models
are developed to investigate the optimal slack time window
based on system cost, including the operator and user costs.
Studies cited above have focused on designing SFT and
most studies, except these, analyze slack time differently.
Alshalalfah and Shalaby [18] conducted sensitivity analyses
with various slack time values (0 to 12 minutes) to study
its effect on the number of accepted demand-responsive
requests. Quadrifoglio et al. [16] suggested that the maxi-
mum slack time between checkpoints for mobility allowance
shuttle transit (MAST) vehicles could be set by the minimum
threshold longitudinal velocity value while minimizing the
total distance traveled. Lai et al. [21] considered slack ratio
in designing flexible transit system elements such as path,
pick-up and drop-off location, and schedule that maximizes
vehicle sharing and the number of accepted requests while
minimizing the walking time. These studies do not, however,
focus on identifying the optimal slack time value.

C. STUDIES FOCUSING ON HEADWAY OPTIMIZATION FOR
FLEXIBLE TRANSIT
Kim and Schonfeld [15] implemented a probabilistic opti-
mization model to determine optimal vehicle capacity, head-
way, and fleet size that minimizes the passenger transfer cost
in integrated conventional and flexible feeder systems with
coordinated transfers. The feeder system offers door-to-door
service and follows a predetermined schedule to make timed
transfers. Wang et al. [12] derived an analytical model to
identify zone size and headway that minimizes both operator
and user costs when designing a many-to-one DRT between a
residential area and a terminal. Nourbakhsh and Ouyang [20]
proposed a DRT bus service along a service area designed
as a hybrid of hub-and-spoke and grid networks. The study
optimizes the network layout, service area, and headway
based on operator and user cost using numerical approxima-
tion. Likewise, for amany-to-one flexible door-to-door feeder
system, Kim et al. [11] suggested that joint optimization of
service headway and zone size is essential for minimizing the
total system cost. This paper implemented Newton’s method
to solve for the optimal values while constraining the vehicle
capacity. Estrada et al. [14] determined the optimal vehicle
technology (i.e., diesel, electric, and autonomous), service
pattern (i.e., SFT, FBT, and DRT), and vehicle size (i.e.,

mini-bus, van, bus, and car) for varying demand density.
Enumeration procedure implemented to identify headway,
stop spacing, and waiting time for the above scenarios that
minimizes the total cost to the operator and user constrained
by capacity.

As a final consideration, we note that studies optimizing
the decision variables that are elements of strategic planning
or tactical planning for SFT like headway and slack time
are very limited and are essential to define a timetable for
SFT operation [23]. Although Alshalalfah [17] and Fu [8]
suggested some interaction between slack time and headway,
they focused on the optimization of slack time, assuming a
fixed value of headway for system design.

Joint optimization of slack time and headway for an inte-
grated service has not yet been addressed in the literature,
which mostly concentrates on optimizing them separately.
To create a static schedule for integrated SFT operations that
accommodates both existing fixed route transit demand and
shifted paratransit demand, joint optimization is essential,
and to monitor the impact of changes in headway on optimal
values of slack time as well as the impact of these variations
on operator and user costs and benefits. The motivation for
joint optimization is derived from Kim et al. [11] who com-
pared two optimization scenarios for flexible-bus service:
1) One decision variable, zone size considering the maximum
allowable headway policy, and 2) Joint optimization of head-
way and zone size. According to the study, scenario 1 has
a 26% greater average cost per passenger trip and an 83%
larger optimal zone size than scenario 2. When compared to
scenario 2, scenario 1 proposes solutions that reduce operator
costs but increase in-vehicle and waiting costs.

III. PROBLEM DESCRIPTION
A. SERVICE AREA AND DEMAND
An existing underperforming fixed bus route is used as the
study area, which is defined by two terminal stations and
modeled as a rectangle with dimensions W (km) and L (km)
(see Fig. 1). SFT in this study is designed to serve two types of
passenger demand: (a) QG- existing FBT demand (Type G),
and (b) QS- existing DRT demand referring to users that are
eligible for paratransit service in the study area (Type S).
It is assumed that the demand per trip is uniformly and
independently distributed within the service area.

B. OPERATING POLICY
For SFT, we adopt the route-deviation policy defined by
Koffman [4] where vehicles follow a fixed route and deviate
to serve curb-to-curb requests, with a maximum allowable
deviation of W /2 on both sides (see Fig. 1). This operating
policy accepts two types of stop requests: flag requests and
curb-to-curb requests. Flag requests involve vehicles stop-
ping at any location along the route, which may or may not
correspond to a marked stop. Curb-to-curb requests involve
vehicles deviating from their fixed route to serve pick-up
and drop-off locations requested by passengers in advance
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TABLE 1. Summary of studies discussed.

FIGURE 1. A schematic representation of route-deviation operating policy.

(usually 1 hour). Flag-stop in an integrated service can be
requested by both Type G and Type S passengers; how-
ever, curb-to-curb stop requests in this study are restricted
to Type S passengers. An online dispatch system is assumed
to handle curb-to-curb service requests and routing, and a
predetermined timetable, including slack time, is published
for all or a few stops along the fixed route to assist Type G
and Type S passengers in planning their arrival at the route.

Within the service area, Type S passengers can request four
possible types of requests with proportions of ηR1, ηR2, ηR3,
and ηR4 (ηR1 + ηR2+ ηR3 + ηR4 =1) as follows:
R1: Both pick-up and drop-off locations are along the fixed

route (Both flag stops)
R2: Drop-off location deviates from the fixed route and the

pick-up location is along the fixed route (flag stop and curb-
to-curb stop)
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R3: Pick-up location deviates from the fixed route and the
drop-off location is along the fixed route (flag stop and curb-
to-curb stop)

R4: Both pick-up and drop-off locations deviate from the
fixed route (Both curb-to-curb stops)

C. PROBLEM DEFINITION
In SFT, adding slack time increases the benefit derived from
the service but also increases the one-way running time of
vehicles, which can be compensated for by increasing the ser-
vice headway to reduce fleet size requirements, this, however,
will increase the waiting time and reduce the available vehicle
capacity for serving Type S passengers with more Type G
passengers queued up for the service. Thus, joint optimization
of slack time and headway will ensure maximum vehicle
utilization for a desired level of service. This is a multi-
objective optimization problem where we are interested in
finding a set of solutions that define the best tradeoff between
competing objectives: minimizing operator costs, minimizing
user costs, and maximizing service benefits.

IV. PROBLEM FORMULATION
A. DECISION VARIABLE
The study presents a multi-objective optimization model for
service headway, h (hr), and slack time required to serve
Type S passengers, 1t (hr) within the service area. Here,
h represents the time difference between the arrival of two
vehicles at any stop, and 1t represents the one-way trip time
difference when the potential Type S passengers are accom-
modated in the trip against serving only Type G passengers.

B. OBJECTIVE FUNCTION
The three conflicting objective functions considered are f1:
minimization of operator cost (COC ), f2: minimization of user
cost (CUC ), and f3: maximization of service benefit (CSB),
as shown in Equation (1) – (3)

Min f1 → COP (h, 1t) (1)

Min f2 → CUC (h, 1t) (2)

Max f3 → CSB (h, 1t) (3)

C. CONSTRAINTS
Constraint 1: Equation (4) depicts that h is constrained
by a minimum and maximum service headway. Literature
consensus that for a low-demand route characterized by
low-frequency service, the minimum headway can be set to
10 minutes [24]. The minimum desired level of service is
set through policy headway, hp, and the vehicle capacity, C
governs the maximum value.

0.167 ≤ h ≤ min
{

C
QG + QS

, hp

}
(4)

where C is capacity in pass/veh,QG, andQS represent hourly
Type G and Type S demand in pass/hr, and hp is the policy
headway in hr.

Constraint 2:As shown in (5), slack time,1t , should vary
between 0 and a maximum value based on the SFT vehicle
capacity (C) and the average time to serve one passenger/
paratransit user (δ). A minimum value corresponds to no
Type S passengers served (i.e., Type G passengers only), and
a maximum value corresponds to all passengers on board are
Type S (i.e., No Type G passengers).

0 ≤ 1t ≤ Cδ (5)

Constraint 3: Constraint 3 in (6) limits the number of
Type S passengers served per one-way trip between termi-
nals to the available vehicle capacity after serving Type G
passengers. This imposes Type G flow and holds priority in
the assignment of the vehicle capacity since an alternatemode
DRT is available to Type S passengers if not accommodated
in SFT. Also, it is assumed that the rejected boarding requests
by Type S passengers may be accommodated in the next trip.

QRh+
1t
δ

≤ C (6)

C4: Constraint 4 in (7) ensures that the number of Type S
passengers served cannot exceed the demand received during
the service interval (i.e., h).

1t
δ

≤ QSh (7)

Estimation of δ

Based on Table 2, the time required to serve a given request
type, R1 to R4 is composed of (a) riding time, (b) acceleration
and deceleration time, and (c) dwell time. For instance, the
riding time required to serve request type R4 includes the time
required to deviate an average of W /4 from the fixed route
to serve a curb-to-curb stop and the same W/4 distance back
to the fixed route for both pickup and drop-off. Equation (8)
based on conditional probability theory, is used to estimate
the expected time to serve one Type S passenger (δ).

δ = ηR1δR1 + ηR2δR2 + ηR3δR3 + ηR4δR4

=
W
2VR

(
ηR2 + ηR3

2
+ ηR4

)
+ 2tad + 2td (8)

where VR is average riding speed (km/hr), tad is acceleration
and deceleration per stopping (hr), and td is dwell time per
stopping for boarding or alighting (hr).

D. ANALYTICAL COST MODELS FOR DETERMINISTIC
ANALYSIS
1) OPERATOR COST
SFT operating cost (COC ) estimated in $/hr is defined as a
function of Fleet Size,M as given in (9).

COC = c1 [M ] (9)

where c1 ($/veh-hr) is the unit cost of operating a transit unit
including fleet acquisition cost, and distance and time-based
cost [25].

Equation (10) expresses M as a ratio of the total round-
trip time, TR (hr), and headway, h (hr). TR consists of three
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components: (a) time required for serving Type G passengers,
Tv (hr), (b) layover time at the terminal station, Tl (hr), and
(c) slack time to serve Type S passengers,1t (hr). Tv includes
total riding time, time for vehicle acceleration and decelera-
tion, and dwell time as given in (11). For the estimation of
dwell time, the number of stops is assumed to be twice the
number of passengers boarded in a vehicle, which holds in
low-demand situations [26].

M =

[
TR
h

]+

=

[
2(Tv + Tl + 1t)

h

]+

=

[
2 (Tv (1 + µ) + 1t)

h

]+

(10)

Tv =
L
VR

+ (2tad + 2td ) (QRh) (11)

where µ = Tl / Tv.

2) USER COST
The user cost (CUC ) is the sum of the costs of the three equiv-
alent time components, access/egress time, CA, waiting time,
CW , and in-vehicle time, CI , estimated in $/hr given in (12).
The product of passenger value of time, c2 ($/pass-hr), and
equivalent time components Ta (hr), Tw (hr), and Tv (hr) as
given in Equation (12) are used to estimate CUC. Estimation
of Ta and Tv are based on the microeconomic models for
vehicle resource consumption derived by Mohring [27] and
themodel for Tw estimation is based on vehicle and passenger
arrival patterns derived by Ansari Esfeh et al. [24].

CUC = CA + CW + CI = c4(Ta + Tw + Tv) (12)

When requesting a flag stop, TypeG and Type S passengers
must walk/wheel an average vertical distance of W/4 from
their origin/destination to the fixed route, and curb-to-curb
pick-ups/drop-offs for Type S passengers involve no walking
(see Table 2). Hence, the expected walking time cost can be
estimated using (13).

CA = c2

[
W
4Va

(
2ηR1 + ηR2 + ηR3

)
×

1t
δh

+
W
2Va

× QR

]
(13)

where, Va (km/hr) is the passenger walking speed and 1t/δh
is the accepted Type S demand passenger (pass/hr) which is
always less than or equal to the received demand, QS.
Most studies assume that passengers arrive at bus stops at

random; therefore, the mean waiting time equals half of the
service headway. Low-demand routes usually have a higher
headway (i.e., h > 10 minutes) and published timetable;
thus, passengers may or may not exhibit random arrival, and
instead may adjust their arrival time at the departure stop to
minimize the waiting time; thus, the mean waiting time is
less than half the headway [24]. The mean waiting time for
passengers requesting a flag stop pick-up (i.e., R1 and R2)
can be calculated using (14), proposed by Ansari Esfeh et al.
[24] for low-demand routes. Passengers requesting curb-to-
curb pickup (i.e., R3 and R4) does not incur any waiting time

since the pick-up time is scheduled and passengers spend
their time at origins home/work location instead of waiting
at the transit stop. The expected value of waiting time can
therefore be estimated using (15) derived from conditional
probability theory.

E (W ) =

[
1
2

−
α (1 − β)

2

]
h (14)

CW = c2

[[
1
2

−
α (1 − β)

2

]
h (ηR1 + ηR2)

×
1t
δh

+

[
1
2

−
α (1 − β)

2

]
h× QR

]
(15)

where α and β are the proportion of planning passengers
and the proportion of planning passengers with fixed arrival
times, respectively.

Similarly, passengers can be dropped off/picked up uni-
formly anytime in the trip between two terminals. Thus, the
average in-vehicle time for Type G and Type S passengers is
half of the total travel time between the two terminals with
the expected value given in (16).

CI = c2

[
Tv + 1t

2
(ηR1 + ηR2 + ηR3 + ηR4)

×
1t
δh

+
Tv + 1t

2
× QR

]
= c2

[
Tv + 1t

2

(
1t
δh

+ QR

)]
(16)

3) SERVICE BENEFIT
SFT service benefits are specific to the operators’ intent [8].
This analysis defines the service benefit in (17) as the cost
incurred to serve paratransit passengers (Type S) using a
dedicated DRT service if not served by SFT.

CSB = c3 ×
1t
δh

(17)

where c3 ($/pass) is the average operating cost of providing
paratransit service (assumed).

V. SOLUTION METHOD
Based on the general formulation of the optimization problem
presented in Equations (1)-(3), we define the objective func-
tions as functions of the decision variables by expanding them
using the cost component equations in (8) - (17) before reduc-
ing them to a simpler form as given in equations (18) – (20)
after initialization. Essentially, the constants θ0 to θ8 are esti-
mated based on initialized values of cost coefficients (i.e., c1,
c2, and c3); and other parameters for the case study (i.e., L,W,
tad , td , etc.). Equation (18) suggests that f1 is inversely related
to h and includes an interaction term (1t/h) which indicates
that the effect of one decision variable (h or1t) on f1 is based
on the level or magnitude of another decision variable. f2 in
equation (19) is linearly related to h and 1t and includes
interaction terms with linear and quadratic relationships and
f3 in equation (20) is only a function of interaction term1t/h.
Essentially, the optimization problem is non-linear since the
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TABLE 2. Values of δ and user time components are classified by demand and request type.

effect of both decision variables on f1,f2, and f3 takes both
linear and non-linear effects.

f1 = θ0 + θ1

(
1
h

)
+ θ2

(
1t
h

)
(18)

f2 = θ3 + θ4 (h) + θ5 (1t) + θ6

(
1t
h

)
+ θ7

(
1t2

h

)
(19)

f3 = θ8

(
1t
h

)
(20)

Multi-objective evolutionary algorithms (MOEAs) are
generally considered mainstream methods for solving these
problems. The optimization problem is handled using the
MOEAs based on the classical method of Pareto optimal-
ity which uses the concept of domination to obtain a set
of solutions that are not dominated by any member of the
feasible solution set with respect to all objective values
and are strictly better in at least one objective. Our study
compares the quality of Pareto solutions obtained using
two state-of-the-artMOEAs:Non-dominated SortingGenetic
Algorithm-II (NSGA-II) proposed by Deb et al. [28] and
Speed-constrainedMulti-objective PSOAlgorithm (SMPSO)
proposed by Nebro et al. [29]. Pseudocodes to implement
both algorithms are provided in Fig. 10 of the Appendix.

To obtain the most representative deterministic Pareto opti-
mal solution set, the procedure described below is followed.

Step 1: Obtaining Pareto optimal solution sets for each
MOEA based on different parameter settings.

• NSGA-II and SMPSO implementation require the ini-
tialization of the following parameters: chromosome
population size (NP) or swarm size (NS ), number of
generations (G), crossover probability (pc), mutation
probability (pm), crossover distribution index (τc), and
mutation distribution index (τm).

• For ‘X ’ combinations of NS or NP and G we perform
‘Y ’ runs of each combination obtaining XY Pareto sets
for each algorithm.

Step 2: Performance evaluation of Pareto optimal sets.

• For performance evaluation, we use five indicators:
hypervolume (HV), generation distance (GD), inverted
generational distance (IGD), epsilon (ε), and computa-
tion time per run (CT).

• HV, GD, and IGD measure the diversity and/or con-
vergence of solutions compared to a reference Pareto
front RF or reference point RP which can be obtained
by selecting non-dominated solutions from all Pareto
solutions obtained in Step 1 (discussion in detail in
Ishibuchi et al. [30]).

• Finally, the average indicator values across ‘Y ’ runs are
reported for ‘X ’ combinations in each algorithm.

Step 3: Ranking of Pareto optimal sets.

• TOPSIS ranking method proposed by Tzeng and
Huang [31] is implemented.

• In TOPSIS, we rank Pareto optimal sets by minimizing
GD, IGD, ε, and CT, andmaximizing HVwhile assign-
ing equal weightage to indicators.We then select a solu-
tion set at random from all ‘Y ’ runs corresponding to
the top-ranked parameter setting of the best-performing
algorithm (i.e., the lowest sum of the ranks).

VI. RESULTS AND DISCUSSIONS
A. STUDY AREA DESCRIPTION
As a case study, the optimization problem is applied to a
low-demand bus route served by Regina Transit, Canada.
Analysis conducted by CUTA [32] indicates that a total
annual ridership of 6,434,022 is served by Regina Transit
with revenue to cost ratio of 26.27%; thus, the non-passengers
(i.e., the city and taxpayers) subsidize the remaining 73.73%.
The analysis of ridership and operating data obtained from
Regina Transit for 2015 shows that routes 6, 14, 15, and
16 exhibit underperformances based on average R/C [2].
Route 6 selected for the case study highlighted in Fig. 2 is
attributed to low ridership (QR) of 9 passengers/hour, R/C of
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15.3%, the high operating cost of $10.84/pass, and declining
ridership of 1.04% from 2014.

B. MULTI-OBJECTIVE OPTIMIZATION RESULTS
1) IDENTIFICATION OF THE BEST SET OF PARETO
OPTIMAL SOLUTIONS
Initialization of parameters in analytical cost models and
parameter settings for NSGA-II and SMPSO are outlined
in Table 6 in Appendix B. Constraint 1 in the optimization
problem limits h from 10 minutes to 1 hour, Constraint
2 limits 1t from 0 to 24 minutes, and the average time
required to serve one Type S passenger/paratransit user (δ) is
estimated as 1.6 minutes. NSGA-II and SMPSO algorithms
are implemented in Python to obtain Pareto solution sets for
100 runs of 18 different parameter settings in each algorithm,
subsequently used to estimate the reference front and refer-
ence point. According to TOPSIS analysis, NSGA-II yields
a lower sum of ranks than SMPSO; therefore, it outperforms
SMPSO. Table 3 shows the top-ranked parameter settings for
both algorithms. SMPSO requires twice the number of func-
tion evaluations and hence, much higher computation time
than NSGA-II to obtain Pareto fronts that do not differ greatly
in terms of convergence and diversity. From 100 runs of the
NSGA-II algorithm with the parameter settings described in
Table 3, a Pareto set is selected at random for further analysis.

2) DESCRIPTIVE ANALYSIS OF PARETO SOLUTIONS
The hypervolume indicator value for NSGA-II-based Pareto
solutions shown in Fig. 3(a) is 0.79, which indicates a good
convergence of solutions since 79% of the volume represents
the dominated space. For NSGA-II, the knee-point solu-
tion with the highest hypervolume contribution marked in
Fig. 3(a) is usually a preferred trade-off solution. The knee-
point solution has the following properties: h = 41 min-
utes; 1t = 6.4 minutes; operator cost, f1 = $122/hr; user
cost, f2 = $393/hr; and service benefit, f3 = $253/hr. With
10 passengers per trip, 6 Type G and 4 Type S, and 60%
capacity utilization, the knee-point solution is feasible from
an operator cost and service benefit perspective, but it isn’t
from a user cost perspective. According to Fig. 3(b), operator
cost (f1) and user cost (f2) are inversely related; for a given
value of f1, an increase in f2 increases f3; for a given value of
f2, an increase in f1 increases f3; and the lowest values of f1
and f2 provide almost no service benefit (f3). Thus, the transit
operator must carefully compromise between f1 and f2 to
maximize f3. Fig. 3(c) indicates that adopting solutions with
h and 1t above 16.3 minutes and 2.5 minutes, respectively,
would result in lower costs for serving the same number of
Type S passengers via integrated SFT service compared to
the existing DRT service. Thus, operators will gain monetary
benefits from an integrated SFT service when high values of
h and1t are used. Additionally, h has a U-shaped distribution
with a mean of 31 minutes and 1t has a right-skewed distri-
bution with a mean of 2.6 minutes. Mean values of f1, f2, and
f3 are $187.1/hr, $281.1/hr, and $129.1/hr respectively.

FIGURE 2. Route 6: Westhill to Ross industrial.

3) STATISTICAL ANALYSIS OF PARETO SOLUTIONS
a: RELATIONSHIP BETWEEN H AND 1T
The relationship between h and 1t cannot be modeled using
linear regression approaches, as indicated by the violation of
homogeneity in Fig. 4(a); thus, quantile regression is applied
in this case. For quantile levels ranging from 0.1 to 0.9,
Fig. 4(a) shows the fitted quantile regression line, including
the median regression line (i.e., the 50th quantile regression).
For a significance level of 95%, the coefficients for all quan-
tile levels are significant. The quantile regression models
the conditional quantiles of 1t given the input variable, h.
For example, when the quantile level of regression is 0.9,
we obtain an intercept value of -0.23 and a coefficient of 0.15;
therefore, for h = 30 minutes, the 90th percentile of 1t is
expected to be 4.37 minutes. Table 4 illustrates that as the
quantile level increases, the slope coefficient increases, but
the rate of increase in slope decreases. The lower and upper
quartiles differ significantly from the least squares estimate.
Thus, with an increase in h, we are more likely to obtain
higher 1t values, but we are less likely to obtain Pareto
solutions in general. The intercepts for most quantile levels
are smaller than those for least squares; thus, quantile regres-
sion is more predictive than linear regression. Based on the
quantile regression model parameters shown in Table 4, the
value of1t is estimated for values of h from 10 to 60 minutes
and illustrated in Fig. 4(b). Considering that it takes approx-
imately 1.6 minutes to serve one Type S passenger (δ),
Fig. 4(b) suggests that the probability P (Number of Type S
passengers served per trip ≥ 1) increases with h, while P
(Number of Type S passengers served per trip = 0) decreases
with h. Also, 1t increases by 0.2 minutes for each 0.1 incre-
ment in quantile level for h between 10 and 20 minutes, and
by 0.4, 0.6, 0.7, and 0.9 minutes for h between 20 to 30, 30 to
40, 40 to 50, and 50 to 60 minutes. If an agency wishes to
operate its fleet at h = 25 minutes, the optimal slack time,
1t , is between 0.4 and 3.6 minutes which means the optimal
solutions are 10% likely to be≤ 0.4minutes and 90% likely to
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TABLE 3. TOPSIS results.

be ≤ 3.6 minutes. The average value of 1t as a percentage of
one-way operating time without route deviation (Tv) is 8.9%.
Furthermore, 50%of the ratio1t /Tv falls between 2.86% and
13.48%, with a median of 6.49% and a maximum and mini-
mum of 28.5% and 0%, respectively. In contrast to our study,
most studies recommend a fixed slack time for a given set of
conditions. Fu [8] suggested that 1t of 6 minutes is optimal
to accommodate two deviated stops requested per analysis
period of Tv + 1t with a maximum allowable deviation ratio
of 1t / Tv + 1t of 40% and vehicle capacity of C = 9 seats.
To accommodate route deviation requests, Potomac and Rap-
pahannock Transportation Commission (PRTC) has included
approximately 20% slack time in their basic schedules for
medium-duty, 28-passenger buses [4]. Careful consideration
should be given to the amount of slack time to be built into
each route (in each direction, i.e., inbound/outbound). 1t
should be sufficient to process the desired number of Type
S requests without causing excessive idle time downstream if
no Type S requests are received.

b: RELATIONSHIP BETWEEN H AND 1T AND F1, F2, AND F3
Fig. 5(a) and 5(b) confirms the relationship in equation (18)
and suggest that f1 and M , the operator cost and fleet size,
are negatively correlated with h and positively correlated
with 1t . By increasing h, the fleet size requirements will be
reduced, thereby reducing f1. An increase in 1t will result in
more Type S users being served per trip, increasing round-trip
time; hence, larger fleet size is needed to maintain the same
service frequency, which ultimately increases f1. As shown
in Fig. 5(a), the range of 1t values observed is highest for
h between 50-60 minutes with the standard deviation in f1
values observed within this range being 6.3. When 1t is
between 0-2 minutes, h values range from 10-60 minutes
with the standard deviation in f1 values observed within this
1t range being 81.8. This standard deviation in f1 values
decreases with an increase in h and 1t ranges. Thus, f1
is primarily influenced by h with the influence of decision
variables reducing for high h and 1t values. Alshalalfah [17]
suggested that fleet size would increase by a fraction equal

to the ratio of slack time to original headway, similar to (10).
Fig. 5(c) suggests that user cost, f2 is positively correlated to
h and 1t . The standard deviation in f2 values for h between
50-60 minutes is 59.4 while the standard deviation is 40.9 for
1t between 0-2 minutes. The standard deviation increases
with h and reduces with 1t with low values occurring for h
and1t between 40-50 and 2-4 minutes, respectively. Thus, f2
is influenced by both variables with1t having slightly greater
influence than h and the variation in f2 values is lowest for
the medium range of values of decision variables followed
by high range values and low range values. CA in Fig. 5(d)
is primarily a function of 1t since the number of Type S
passengers increases with 1t but decreases with h since
the number of Type G passengers increases with h (as per
Constraint 3). As shown in Fig. 5(e), CW is a function of both
h and1t as the wait time per passenger varies directly with h,
and the accepted Type S passenger demand, which increases
with 1t but decreases with h, with h having a greater impact
on the former than the latter. CI in Fig. 5(f) increases with
1t as it increases the one-way travel time (i.e., CI exhibits
positive quadratic growth as it is proportional to the square
of 1t). h increases Type G passengers in the system, thus
increasing TV, but also limits Type S passengers, with a
greater impact on the latter. From Fig. 5(g) it is evident that
f3 is directly proportional to 1t and inversely proportional
to h. Additionally, the standard deviation in f3 values does
not vary significantly with h ranges and is averaged at 68.4,
while the standard deviation values decrease from 67.1 to
11.3 with the increase in 1t value ranges. Thus, 1t primarily
impacts f3 irrespective of h, and as 1t increases variation
in f3 reduces. Fig. 5(h) graphically confirms that total cost,
TC defined as the sum of f1 and f2 minus f3, is a convex
function with the minimum value of TC = $242.2/hr. The
Pareto solution corresponding lowest TC is h = 21 minutes
and 1t = 3 minutes as shown in Fig. 5(i). In comparison to
the ‘‘knee-point solution’’, this solution with f1 = $197.8/hr,
f2 = $285.3/hr, and f3 = $240.9/hr would drive f2 down by
27.4% and f3 down by 4.8%, and f1 up by 62%. Additionally,
Fig. 5(i) suggests that extreme values of h and 1t yield
higher TC values and that opting for mid-range values would
minimize TC. For pruning the Pareto optimal set, the analysis
described here can be useful.

C. SENSITIVITY ANALYSIS
1) VEHICLE CAPACITY
Vehicle capacity (C) is an important design parameter for
flexible transit [11], [14]. In this study, constraints limit
the range of decision variables and ensure that no pro-
posed solution exceeds C . Accordingly, vehicle occupancy,
passenger composition, and system costs also vary with
C . We consider three common vehicle types in SFT with
varying capacities: Mini-van (7-passenger vehicle exclud-
ing the driver), standard van (15-passenger vehicle exclud-
ing the driver), and mini-bus (25-passenger vehicle excluding
the driver). As C increases, vehicle occupancy decreases
due to low passenger demand along the route, as shown
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FIGURE 3. (a) 3D-Pareto front and knee-point solution; (b) variation of f2 with f1 and f3; and (c) Operator cost –Benefit.

in Fig. 6(a), 6(b), and 6(c). Average occupancy drops from
52.5% to 42.4% when C increases from 7 to 15 seats/vehicle,
and even further to 25.1% when C increases from 15 to
25 seats/vehicle. From Fig. 6(d) and 6(e), as C increases
from 7 to 15 seats/vehicle, the average h across the Pareto set
(h̄) increases from 18 to 31 minutes, while 1t increases from
1.6 to 2.6 minutes. When C increases from 15 to 25 seats,
little or no difference is observed in h̄ and 1t . As expected,
the average number of Type G and Type S passengers served
per trip increases from 3 to 5 and 1 to 2, respectively, when
C increases from 7 to 15 seats/vehicle. A similar finding was
reported by Kim et al. [11] where optimal zone size and opti-
mal headway for operating flexible buses increased rapidly
when C increased from 5 to 15 seats; however, when vehi-
cles had sufficient capacity (i.e., greater than 15 seats/bus),
the increase was less rapid. Owing to an increase in h̄
and 1t when C increases from 7 to 15 seats/vehicle, f1
decrease significantly, while user costs f2 increase. When
C > 15 seats/vehicle, the difference becomes less evident
as little, or no difference is observed in h̄ and 1t while f3
does not improve much across vehicle sizes. Precisely, with
an increase of C from 5 to 15 and 15 to 25 seats/vehicle, f̄1

decreases by 21.5% and 2%, respectively, while f̄2 increases
by 22.7% and 1%. Accordingly, a larger fleet with smaller
capacity vehicles results in shorter passenger travel times, but
from the operator’s perspective, a few larger capacity vehicles
are more cost-effective. We can conclude that minivans are
more appropriate for SFT services in terms of vehicle occu-
pancy and user costs, and that standard vans are the most
cost-effective from the standpoint of operator costs, while
minibuses offer no benefit from an operator, user, or service
standpoint. If more paratransit users are accommodated, the
standard van and minibus occupancy may increase, but the
service may become less competitive as the overall travel
time increases. Estrada et al. [14] also reported that flexible
services with cars (C = 4 pass/veh) are most economical in
terms of operator cost than minibuses (C = 22 pass/veh), and
standard buses (C = 70 pass/veh).

2) HOURLY DEMAND (QG AND QS)
Fig. 7 illustrates the sensitivity of Pareto solutions to average
hourly Type G (QG) and Type S (QS) passenger demand,
with each varying from 5 to 30 passengers/hour. According
to Fig. 7(a), when the demand for the service increases,
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FIGURE 4. (a) Quantile regression of h and 1t for quantile levels and (b) Variation of 1t with h and quantile
level.

TABLE 4. Quantile regression coefficient estimates.

a high-frequency service is required to achieve system opti-
mality. With QS at 5 pass/hr, the average decrease in h̄ with
QG is 10.89%, reaching 12.29% at QS = 10 pass/hr, and
continuously declining to 6.61% at QS = 30 pass/hr. Fig. 7(b)
demonstrates an expected phenomenon,1t increases with QS
since more Type S passengers are available, and decreases
with QG as the capacity available to serve Type S passengers
reduces with QG. The decrease in 1t with QG reducing as
QS increases, varying from 12.39% to 7.34%. Fig. 7(c) shows
that optimization problem constraints always ensure that the
number of Type S passengers served per SFT trip is always
less or equal to the total observed Type S demand. An increase
in QG suggests high service frequency (i.e., h̄ reduces) and
reduced available capacity for Type S passengers (i.e., 1t
reduces) while the increase in QS suggests higher slack time
to accommodate Type S passengers (i.e., 1t increases) and
increased service frequency as demand increases (i.e., h̄
reduces). Thus, as demand increases, average operating cost
(f̄1) and average user cost (f̄2) increases but the rate of increase
with QG reduces as QS increases, ranging from 6.3% to 3.5%
for f̄1 and 30.5% to15.5% for f̄2. f̄3 increases with QS while
decreasing with QG, with the rate being significantly higher
in the former case. Simply put, operator cost and user cost are
directly proportional to QG and QS whereas service benefit
is directly proportional to QS but inversely proportional to

QG. Hence, we can say that a reasonable trade-off in cost
and benefit is possible when demand is low to medium
(5-20 passes/hr), whereas high demand dramatically
increases costs. In their initial feasibility analysis along
this route, Mishra et al. [3] recommended regular bus
transit (FBT) over SFT when Type G demand exceeds
27 passengers/hour. A transit planner can utilize this anal-
ysis to develop an integrated service schedule based on the
observed temporal distribution of passenger demand along
the route, which is typically bimodal with two distinct peak
periods for Type G, and peaks during noon off-peak periods
for Type S. For example, it may be recommended to adopt
relatively lower 1t and h values during peak hours than in
off-peak hours.

3) PERMITTED DEVIATION (DP)
When transit operators agree to serve curb-to-curb requests
outside of the designated service area shown in Fig. 1, sen-
sitivity analysis with permitted deviations (DP) will help us
understand its impact on Pareto solutions. DP is 0.5 km in the
base case, which is equivalent to half the width of the service
area, 1 km (see Appendix Table 6). Typically, in real-world
situations, DP range between 0.5km and 2.5km from the fixed
route [4]. Fig. 8 depicts the results of the sensitivity analysis

VOLUME 11, 2023 30601



S. Mishra, B. Mehran: Optimal Design of Integrated SFT Services in Low-Demand Conditions

FIGURE 5. For Pareto optimal solutions F∗, heatmap illustrating the variation of (a) f1, (b) fleet size, (c) f2, (d) access time cost, (e) wait time
cost, (f) in-vehicle time cost, (g) f3, and total cost (h) 3D-plot and (i) 2D-plot.

using (21) in this situation to estimate δ.

δ =
DP
VR

(
ηR2 + ηR3

2
+ ηR4

)
+ 2tad + 2td (21)

where, DP represents the permitted deviation from a fixed
route, in km.

Based on Fig. 8, DP has a minimal effect on h, but increases
δ, thereby affecting 1t in the Pareto set significantly. When
DP increases by 0.25km, h̄ and 1t increase by 0.15% and
10%, respectively; therefore, f̄1, f̄2, and f̄3 increase by 0.95%,
0.83%, and 0.5%, respectively; and the rate of increase
decreases with increasing DP. Percentage change in f̄3 with
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FIGURE 6. Sensitivity analysis results for vehicle capacity.

FIGURE 7. Sensitivity analysis results for hourly Type S and Type G demand.

DP is the least, since the increase in 1t does not necessar-
ily help serve more type S passengers as the time required
to serve a paratransit request δ also increases with DP.

Alshalalfah [17] also demonstrated that as the width of the
service area increases, the percentage of feasible deviations
decreases systematically. The benefits derived from adopting
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FIGURE 8. Sensitivity analysis results for permitted deviation.

TABLE 5. System characteristics based on weather conditions.

FIGURE 9. Sensitivity analysis results for weather conditions.

high 1t values suggested for systems with higher DP are
less than the increased travel time and the delay imposed on
regular passengers by deviation services. By providing higher
DP at off-peak hours, when fewer passengers are on board, the
user cost can be reduced while operator costs can be reduced
by using larger headways.

4) WEATHER CONDITIONS
In extreme weather conditions, such as snow, ice, or sleet,
commonly observed in parts of Canada duringWinter, using a
wheelchair or walking to the bus stop often causes significant

discomfort or poses a safety risk to transit users. We repli-
cated this scenario by reducing walking/wheeling speed,
vehicle riding speed, and increasing the proportion of Type S
passengers requesting curb-to-curb service for both pickup
and drop-off, as shown in Table 5. For a route-deviated pickup
and drop-off in extreme weather conditions (Case 1), it takes
3.16 minutes (δ), almost twice as long as for normal weather
conditions (Case 2). According to Fig. 9(a), the probabil-
ity of observing lower values of h is relatively higher in
Case 1 than in Case 2, suggesting more frequent service is
required to achieve system optimality during extremeweather
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conditions; the h̄ for Case 1 is 26.9 minutes, which is 5%
less than Case 2. As δ increases in Case 2, the upper limit of
1t in Constraint 2 also increases; therefore, 1t for Case 1 is
1.5 times higher than Case 2, as shown in Fig. 9(b). Case 1 and
Case 2 serve the same number of Type S passengers per trip,
but Case 1 serves two passengers on average, while Case 2
serves one passenger. f̄1 and f̄2 are higher for Case 1 compared
to Case 2 by 2.2 and 2.7 times, respectively, whereas the
increase in f̄3 for Case 1 compared to Case 2 is negligible by
6.1%. This is expected since in Case 1 walking time increases
dramatically, and1t values in Case 1 are higher, meaning that
one-way travel times are longer, resulting in a need to increase
fleet size requirements. Thus, normal weather conditions are
more conducive to the operation of an integrated SFT than
extreme weather conditions, and in extreme weather condi-
tions, slack time should be approximately twice as long as
normal weather conditions, and headway should be approx-
imately the same as normal weather conditions or slightly
higher. Under adverse weather conditions, Nourbakhsh and
Ouyang [20] compared two systems, FBT and SFT, by low-
ering walking speed to 0.1 km/hr and found that FBT bears a
significant increase in total costs (i.e., operator and user costs)
as compared to SFT, which can handle a broader range of
demand densities.

VII. POLICY RECOMMENDATIONS
A. FARE POLICY
Several fare policies can be adopted during the pilot phase.
First, existing bus transit users (Type G) and paratransit
users (Type S) may pay the same fare, and deviations out-
side the service area (DP > W) are not subject to a sur-
charge. Secondly, transit operators may impose a deviation
surcharge on Type S users requesting deviations outside the
designated service area or permitted deviation set by them.
Transit agencies may offer Type G passengers a discounted
fare for their degraded service quality since their travel time
increases with deviations [33]. To encourage Type S pas-
sengers to switch from an overburdened paratransit service
to the SFT, a reduced fare may be offered. When optimiz-
ing the transit system under different fare policies, the fare
surcharge/discount can be incorporated into the service ben-
efit objective.

B. TECHNOLOGY
Developments in automotive technology and technology for
deviated service booking are fundamental decisions regard-
ing technology in integrated SFT. When requesting curb-
to-curb service, Type S passengers may reserve a ride via
phone or mobile app about an hour in advance, providing
trip details only for the deviated portion of the trip. Type S
passengers may then be provided with real-time information,
such as available pick-up or drop-off times based on the
request type R2, R3, or R4, and slack time available Unit
operator costs accounting for fleet purchases, fuel purchases,
and driver wages (nearly 40-80%) can be reduced technology

advancement. Through electrification, a reduction in energy
costs, and automation, which eliminates the need for drivers,
operating costs can be reduced.

C. OPERATIONS
Paratransit demand combined with existing regular transit
demand in an integrated SFT service will result in a passenger
loading profile along the route different from the loading pro-
file observed for the existing bus transit service. Using head-
way, slack-time, and available demand data, transit planners
can simulate passenger loading profiles for each trip along
a route, and then use the observed occupancy information to
optimize the vehicle size mix. To ensure maximum resource
utilization for an integrated SFT operation, decision-makers
can determine whether purchasing new vehicles, utilizing
in-house paratransit vehicles or taxis, or contracting with
private operators that already operate in the zone is the most
economical option.

VIII. CONCLUSION
We performed joint optimization of service headway (h) and
slack time per trip (1t) utilizing operator cost (f1), user cost
(f2), and service benefit (f3) to design a semi-flexible transit
(SFT) system along an existing low demand bus route that
serves both general and special-need passengers. A detailed
case study is conducted to demonstrate the methodology
application for a low-demand bus route, Route 6 in Regina,
Canada. These are the main contributions.

1) A relationship between optimal h and 1t is modeled
using quantile regression, where conditional quantiles of 1t
can be suggested for a given value or a range of h. This
analysis helps transit planners evaluate different levels of
flexibility that can be introduced into the timetable through
slack time for a given service frequency to generate a static
schedule for SFT operation that maximize cost efficiency.

2) We established a relationship between decision vari-
ables and objective functions to analyze the trade-offs
in costs between alternative Pareto solutions essential for
decision-makers in pruning the Pareto optimal sets. f1 is neg-
atively correlated and primarily impacted by h, f2 is positively
correlated to both variables, but 1t has a greater impact than
h, and 1t is positively correlated and primarily influences f3.
f1 and f3 and f2 exhibit relatively low sensitivity to decision
variables for high and medium value ranges, respectively.

3) Sensitivity analysis reveals that low-capacity vehicles
are more cost competitive with 7-seater minivans offering
higher vehicle occupancy and lower user costs and 15-seater
standard vans offering lower operator costs. A reasonable
trade-off can be achieved between cost and benefit under
low to medium demand (5-20 passes/hr), but high demand
significantly increases costs. To minimize the possibility of
causing passenger delays on board and to reduce user costs,
a low permissible deviation from the fixed route is desirable
during peak hours. When extreme weather conditions prevail,
vehicle and passenger walking speeds are reduced and door-
to-door services are demanded more frequently, resulting in
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FIGURE 10. Pseudocode for NSGA-II and SMPSO.

higher operator and user costs. The purpose of sensitivity
analysis for transit operators is to gain a greater understanding
of the cost-effectiveness of the system under varying environ-
mental conditions as well as determine if changes should be
made to the schedule design based on variation in optimal
slack time and headway.

Policy recommendations for integrated SFT implemen-
tation include a recommendation for fare structure design
addressing service equity through surcharges/discounts, vehi-
cle technology and service booking technology advancements
for cost reduction, and fleet mix design through estimation of
passenger loading profile.

Certain aspects limiting the implementation of this study
will be investigated in future extensions. The simplified envi-
ronment in terms of the service area and demand for defining
analytical cost models could be enhanced to reflect a more
realistic environment, including accounting for stochasticity
in vehicle arrival and demand.

APPENDIX A
See Figure 10.

APPENDIX B
See Table 6.
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TABLE 6. Case study parameter setting.
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