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ABSTRACT Modern industrial and commercial devices that are fed by power electronics circuits and behave
non-linearly tend to produce power quality issues in power systems including harmonics and interharmonics,
swell, flicker, spikes, notches, and transient instabilities. Among them, harmonic emission is the most
significant challenge to be overcome by the distribution networks. Unwanted current, overheatingmotors and
transformers, equipment failure, and circuit breaker misoperation are some of the harmonic consequences.
While it is important to employ the best methods to mitigate or suppress the harmonic distortions in power
systems, it is even more essential to estimate these harmonics at the outset by developing smart, efficient,
and accurate techniques. Due to their capability for learning, predicting, and identifying, researchers have
turned to Artificial Intelligence technologies for harmonic estimation in distribution networks. Although the
power system parameters (impedance/admittance model) and many harmonic monitors are prerequisites
for traditional harmonic estimation methods, by utilizing Artificial Intelligence, these requirements are
minimized. In this paper, a comprehensive review of traditional and modern (smart) harmonic estimation
techniques are discussed.

INDEX TERMS Power quality, harmonic distortion, artificial intelligence, machine learning, neural net-
work, power systems, harmonic estimation, harmonic mitigation.

I. INTRODUCTION
Power electronic converter-fed devices and equipment such
as computers, Adjustable Speed Drives (ASDs), and Light-
Emitting Diodes (LEDs) for lighting are frequently used in
industrial applications and distribution networks. Therefore,
due to a massive employment of such devices and their non-
linear behavior in power systems, power quality has emerged
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as a major concern for energy companies and network opera-
tors [1], [2]. The efficiency of electrical equipment is affected
by a range of power quality issues, including voltage and
current harmonics, interharmonics, voltage instability (sag
and swell), flicker, voltage notch, transient instability, and
grid imbalance [3]. Among them, harmonic distortion is the
most significant factor which manifests as voltage and cur-
rent emissions. Harmonics will heat up motors, cables, and
transformers, reduce efficiency, nuisance in operating circuit
breakers, and create notch voltages, lightning strikes, grid
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instability and network equipment misoperation. It is worth
noting that nonlinear loads alter the sinusoidal nature of the
AC supply current, causing harmonic currents to flow through
the AC power system and potentially disrupting communica-
tion circuits and other types of devices. Additionally, these
harmonic currents increase heating and losses in a variety of
electromagnetic equipment (motors, transformers, etc.) [4].
Resonant circumstances that can lead to large levels of har-
monic voltage and current distortion can arise when reactive
power compensation, in the form of power factor improve-
ment capacitors, is utilized. This is especially true when the
resonance condition occurs at a harmonic due to nonlinear
loads [5]. The main contributors of harmonics in power
systems are power electronic switching devices and con-
verters acting as non-linear loads, ASDs, Electric Vehicle
(EV) chargers, LED fluorescent lights, and computer power
supplies.

In a variety of industrial applications, circuit configu-
rations such as motor drive systems with a diode-rectifier
front-end and a rear-end inverter are increasingly employed.
It is estimated that the consumption of Motor Drive sys-
tems accounts for 46% of all worldwide electricity, which
makes the manufacturers improve the network’s power qual-
ity, efficiency, and energy management [6]. An ASD at a
unit/product level with a distribution network connected to
the three-phase diode-rectifier and DC-choke filter is pre-
sented in Fig. 1. In this circuit, Zg is the grid impedance, and
the DC-choke impedance is formed by Ldc and Rdc, and the
DC-link capacitor’s impedance is represented by Cdc and Rc.
It is worth mentioning that single-phase and three-phase
power electronic equipment are the sources of current har-
monics, which in combination with grid impedance results in
voltage harmonics.

Fig. 2 shows the rectified voltage across the DC-link, and
input phase ‘‘a’’ voltage of a 7.5 kW ASD system. Addi-
tionally, it shows how the switching function of the diode-
rectifier influences the rectified current and generates the
input currents that the ASD system uses (e.g., ia). It is found
that the three-phase diode-rectifier is the primary contributor
to current harmonics for the frequency range of 0–9 kHz [7].
Additionally, the operational power of other drive systems in
the network has an impact on the amplitude of these current
harmonics. Switching function of phase ‘‘a’’ (Sa) can be
defined to determine the current harmonics produced by the
diode rectifier, as below:

Sa =
4
π
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k=0
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6

6k + 1
sin

(
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)
+
4
π
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cos (6k−1)π
6
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(
(6k − 1) ωt + θSa,6k−1

)
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where θsa,6k±1 stands for a harmonic phase angle with orders
of 6k ±1. The grid current ia is then derived by Sa × irec.
This equation demonstrates that the rectifier produces the

harmonics Ia,h at h = (6k±1). It is also revealed that the
2–9 kHz current harmonics created by rear-end inverter are
damped through a large capacitor at the DC-link that also has
a diode-rectifier and a DC-choke filter connected.

FIGURE 1. Typical ASD with three-phase diode-rectifier.

In a multi-parallel system, several parallel connected con-
verters with numerous sources of power (e.g., solar farms) are
utilized at PCC to increase the quantity of injecting current
in the network. The harmonics generated by power elec-
tronic converters at the system level can deteriorate the power
quality across the distribution network, due to harmonic
interaction, resonance, and grid impedance (transformer and
distribution cables) and finally lead to increase losses in the
network. The power quality at the PCC is very important
because it can affect the other connected equipment.

FIGURE 2. Input voltage, current, and the rectified voltage and current of
a typical ASD at a stiff grid [7].

In contrast to a single grid-connected inverter, each inverter
in a multi-drive system utilizes a varied harmonic rejection
capability and consumes output current from other invert-
ers depending on its own impedance. Therefore, analyzing
the interaction between the inverters in multi-parallel grid-
connected equipment is the main challenge. Fig. 3 shows a
multi-parallel drive system. In a parallel set of inverters, the
output current of each inverter is susceptible to harmonics
from three separate sources. First, the reference signal source
of the inverter has the possibility to distort the grid side ccur-
rent of the inverter. If high-level harmonics are introduced
into the inverter through the Phase Locked Loop (PLL), the
reference signal source may contain harmonics other than the
fundamental component. Secondly, other inverters’ reference
signal sources may also become distorted, however, they will
have different impacts on the grid side current of the inverter.
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As a result, the reference signal sources of other inverters
serve as the second type of harmonic source for an inverter
connected in parallel. The third source of harmonic is the
grid voltage which causes current harmonics on the grid-side
inverter.

In order to minimize the presence of harmonics in power
systems, mitigation techniques have been proposed in a
wide range of strategies. It has been demonstrated that
a harmonic mitigation capability depends on a variety of
factors, including grid inductance, characteristics of the
transformer, structure of the system, load profiles, and topolo-
gies [8], [9]. Devices such as Unified power quality condi-
tioners (UPQC) [10], passive damping filters [11], Active
Power Filters (APF) [12], Electronic Inductors (EI) [13],
D-STATCOMs [14], and techniques such as selective har-
monics compensation [15], Finite, and Infinite Impulse
Response (FIR) and (IIR) filters [16], are among the most
popular mitigation devices and techniques which have been
used to suppress harmonic emissions in distribution net-
works.While it is essential to use effective strategies to reduce
or eliminate harmonic distortions in power systems, it is more
crucial to estimate these harmonics at the outset by coming
up with smart, effective, and precise techniques. Harmonic
estimation entails determining the properties of harmonic
emissions in a distorted signal [17], [18], which is necessary
in power systems to mitigate harmonics and consequently
ensure the required power quality standards are met. These
properties include the phase and amplitude of each harmonic
component in a measured signal. There are many techniques
for estimating the harmonics in distribution networks, such as
Bayesian [19], Fast Fourier transform (FFT) [20], Harmonic
State Estimation (HSE) [21], Particle Swarm Optimization
(PSO) [22], etc. Recently, many converters are employed
in power systems in which their cumulative contribution to
harmonics goes beyond simple addition.

FIGURE 3. Multi-drive network with parallel connected ASDs.

As a result, the traditional analytical techniques employed
to determine and accurately measure the real quantity of
harmonics are ineffective. Statistical techniques such as the
Unscented Transform (UT), Monte Carlo Simulation (MCS),
and others may be used to solve this difficulty, but their com-
puting costs and time requirements are quite high [23], [24].

Artificial intelligence (AI) describes a computer’s capac-
ity to imitate human cognitive learning and comprehension.
In recent decades, it has drawn a lot of interest for its use
in several branches of science. In the operation, control, and
monitoring of electricity networks, a vast amount of data is
collected and used. Signal processing, prediction, and control
are just a few applications where artificial intelligence sys-
tems have performed well. Therefore, utilizing AI, Machine
Learning (ML), neural networks (NN), Fuzzy Logic (FL),
and Genetic Algorithm (GA) are other options for smart
harmonics estimation with manageable processing demands
and time.

In this paper, a comprehensive review of power quality
issues- in specific, harmonic distortion- in power systems
has been presented. Different mitigation techniques are inves-
tigated, and conventional harmonic estimation methods are
studied. To cope with the issues associated with the conven-
tional estimation methods, new smart AI approaches have
been reviewed as an alternative which are fast, accurate and
efficient. Due to their capabilities in learning, predicting, and
identifying, researchers tend to use these AI-based techniques
more frequently.

II. HARMONIC STANDARDS
To investigate harmonic emissions in power systems, inter-
national standardization groups e.g., the IEC and IEEE have
developed many power quality standards. The related stan-
dards are created to limit harmonic emission at the product
and the system level, according to test conditions, such as
establishing the grid voltage with or without any background
harmonic. Harmonic limits are used in power systems to
restrict the harmonic injection from individual customers to
the grid so that it does not result in excessive grid voltage
distortion. The existing IEC or IEEE standards are defined
to cover the harmonics limits for different frequency ranges
which are described as follows.

A. DIFFERENT FREQUENCY RANGES
A resonant frequency can be produced in a power electronic
converter with a DC-link capacitor with a line impedance
below and over 1kHz [25]. Numerous variables, including
load power levels, filter types, and the number of parallel
drives, influence the resonance effects. These problems can
have an impact on the power quality of the distribution net-
works and harmonic emissions of the grid current. As seen
in Fig. 4, there are no standard guidelines or compatibility
levels for harmonics in the 2-150 kHz range to protect all
electrical networks and grid-connected devices. Therefore,
future grids will face new difficulties related to these new
frequency ranges, which can be categorized as follows: 1) the
production of high-frequency harmonics, 2) the development
of new resonance frequencies, and 3) the strength of harmonic
interactions between various power electronic system types.

A significant portion of the inverter current harmonics
between 2-150 kHz can transfer to the grid-side inverter
current in a power converter with a diode rectifier and
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motor-side inverter. Because of the series connection
of inductive and resistive components having a larger
impedance in the 2-150 kHz frequency range, in a real-
istic non-ideal DC-link capacitor of the drive system, the
high-frequency inverter input current harmonics cannot be
properly absorbed. Consequently, it is crucial to have a
mathematical knowledge of the motor-side inverter input
current harmonics in order to examine the grid-side cur-
rent harmonics based on the DC-link capacitor and grid
impedance characteristics. According to Fig. 4, the current
technical standards, which are based on IEC 61000-3-2,
IEC 61000-3-12, IEEE 519, and the International Special
Committee on Radio Interference, respectively, cover all
grid-connected systems for frequency ranges between 0 and
2 kHz and above 150 kHz. However, the most crucial issues
in the international standardization committee, immunity, and
emission limits, and measurement methods such as at product
and system levels for harmonics within the frequency ranges
of 2-9 and 9-150 kHz, are currently lacking (IEC, TC77A).

To deal with this issue, international experts have been
asked by the IEC Technical Committee 77A (TC 77A),
to provide practical records for international standards, and
to define standardization for harmonics within the frequency
range of 2-150 kHz [26]. The definition of compatibility
levels for the frequency ranges of 2-9 and 9-150 kHz has been
developed for residential network and under development for
industrial networks in IEC-TC77A-WG8 [27], [28].

FIGURE 4. Different frequency ranges of harmonics emission categorized
by IEC for distribution networks [27].

Emission and immunity levels at the product level will
be defined in the future. The most important standards for
harmonic limits are IEEE 519, IEC 61000-3-2, and IEC
61000-3-12 which are described as follows.

B. IEEE 519 STANDARD
The limits outlined in IEEE 519 standard signify a common
obligation for harmonic emissions between system owners,
operators, and users. Users generate harmonic currents that
pass through the infrastructure of the system operator or
owner, which results in voltage harmonics delivered to other
users. The total impacts of the harmonic current producing
loads of all users and the impedance properties of the supply

system determine how much harmonic voltage distortion is
supplied to other users. To minimise the potential risk to
end users and system equipment, harmonic voltage distortion
restrictions are offered. The limits in IEEE 519 standard are
meant to be applied at a point of common coupling (PCC)
between the vendor or operator of the system and a customer.
The PCC is typically understood to be the location in the
power system closest to the customer at which the vendor
or operator of the system could provide service to another
customer. Voltage harmonics whose frequencies are integer
multiples of the power frequency are presented in Table 1.
The users’ current value is determined by the PCC and is
calculated by dividing the total currents that correspond to
the maximum demand during each of the 12 months divided
by 12. For harmonic currents with integer multiples of the
power frequency, Table 2 is applicable [29].

TABLE 1. Voltage distortion limits.

TABLE 2. Current distortion limits.

C. IEC 61000-3-2 STANDARD
IEC 61000-3-2 is an international standard called limits
for harmonic current emissions for equipment with voltage
greater than 220 volts and current up to 16A per phase, setting
the upper limit for harmonic currents from the 2nd harmonic
up to and including the 40th harmonic current to reduce mains
voltage distortion. An important issue with pollution by cur-
rent harmonics has emerged with the introduction of large-
scale distributed electronic equipment, first the radio with
electronic valves, then TV, and finally personal computers.

This current flows through such equipment show input
current shape in the peaks and valleys of the ACwave because
of having rectifiers linked with large value smoothing capac-
itors. It is worth noting that the current flows through the
massive smoothing capacitors for a short period (Fig. 5);
therefore, the half-cycle current waveform lasts for 10 ms
as an example. As a result, a large peak current flow occurs
within a short period. Such pure and smooth equipment can
have a power factor as low as 0.6 and generate a significant
number of harmonics (shown in Table 3).
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FIGURE 5. Short period spike current of a DC-link capacitor.

TABLE 3. The emissions limits in IEC 61000-3-2.

D. IEC 61000-3-12 STANDARD
IEC 61000-3-12 establishes limitations for harmonic cur-
rent values in systems rated from 16 A to 75A per phase
and the nominal voltage up to 230/400 V for single-phase/
three-phase. If we consider Rsce as a short circuit ratio, the
minimum requirement is Rsce =33 and above for most com-
mercial equipment. It is worth mentioning that higher emis-
sion values can be considered for equipment (with the input
current above 16 A per phase) not fulfilling the harmonic
current emission limits defined for the specific Rsce in the
standard. Table 4 is applied to equipment other than balanced
three-phase equipment and tables 5, 6 and 7 are applied to
balanced three-phase equipment. Table 5 might be used for
any balanced three-phase piece of equipment. Table 6 can
be used with balanced equipment if: a) the phase angle of
the 5th harmonic current related to the fundamental phase-to-
neutral voltage is in the range of 90o to 150o (uncontrolled
diode-rectifier with smoothing capacitor), b) the equipment

TABLE 4. Current emission limits for equipment other than balanced
three-phase equipmen.

TABLE 5. Current emission limits for balanced three-phase equipment.

TABLE 6. Current emission limits for balanced three-phase equipment
under specified conditions (a, b & c).

TABLE 7. Current emission limits for balanced three-phase equipment
under specified conditions (d, e & f).

is designed in a way that the phase angle of the 5th current
harmonic has no preferential value over time and can take
any value between 0 and 360◦ (controlled bridge converters),
and c) either 5th and 7th current harmonics are below the 5%
of the fundamental reference current.

Table 7 can be used with balanced equipment if any of
these conditions is met: d) the phase angle of the 5th har-
monic current related to the fundamental phase-to-neutral
voltage is in the range of 150o to 210o (6 pulse converter
with a small DC link capacitance, operating as a load),
e) the equipment is designed in a way that the phase angle
of the 5th current harmonic has no preferential value over
time and can take any value between 0 and 360◦ (con-
trolled bridge converters), and f) either 5th and 7th current
harmonics are below the 3% of the fundamental reference
current.

The existing IEC standards IEC61000-3-2 and
IEC61000-3-12 cannot be used for the frequency range of
2-9 kHz. For a grid with a fundamental frequency of 50 Hz,
these regulations only offer emission limitations for frequen-
cies up to 2 kHz. Similarly, the other well-known standard
IEEE 519-2014, which only covers up to 2.5 kHz, is ineffec-
tive for 2-9 kHz harmonics. Additionally, rather than focusing
on the current harmonics produced by a single device, IEEE
519-2014 aims to keep the overall harmonic distortions at the
PCC below a certain threshold.

III. HARMONIC MITIGATION TECHNIQUES
Harmonic mitigation, which involves taking actions to
reduce harmonics in power system networks, can result in
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increasing the efficiency, increasing the lifespan of equip-
ment, and improving the performance of the systems. The
harmonicmitigation techniques can be classified based on the
unit level and system level which are described as follows.

A. HARMONIC MITIGATION TECHNIQUES AT UNIT LEVEL
Active and passive filters are harmonic mitigation techniques
which are developed significantly, mainly focusing on the
line harmonic control at the distribution network. Passive
and active filters also utilize to fulfill the current harmonic
requirements defined in relevant standards. Fig. 6 shows a
motor drive at the unit level with different DC-side passive
filters (e.g., DC choke or AC choke, small DC-link capac-
itor, as well as tuned filters). Fig. 7 also shows time &
frequency domain waveforms to show a comparison of DC
choke and Slim DC for the frequency ranges of below 2 kHz
and 2-9 kHz.

FIGURE 6. A motor drive system at unit level with (a) AC-choke and
DC-choke (b) small capacitor filters (c) passive-tuned filters.

Fig. 8 depicts a single-phase grid-connected inverter with
a passive damping LCL filter. This structure consists of an
inverter, an AC side filter, a control loop, and a DC sup-
ply/load, connected with a DC-link capacitor [30]. In this
system, PWM methods are used for switching the power
inverter switches. Grid-tied inverter output current is sub-
ject to high-frequency ripples and harmonics because of this
PWM. A variety of filters may be applied to the inverter
output terminals to reduce these ripples and harmonics. How-
ever, compared to L-filters, LCL filters are more efficient in
reducing high-frequency ripples and harmonics. To reduce
the effect of grid voltage distortion on the injected current,
a novel full-feedforward approach is presented in [31].

FIGURE 7. Time and frequency domain current waveform DC choke and
slim capacitor comparison (a) Time domain current waveform
(b) frequency domain waveform for below 2kHz, and (c) frequency
domain waveform for 2-9kHz range [7].

In this method, the transfer function of feedforward con-
trol has been employed in only one of the inverters (target
inverter). There has also been proposed a complementary
selection approach that ensures the desired harmonic cancel-
lation capacity against dominating grid voltage harmonics.
In fact, the main aim of the proposed control is to inject a
high-quality current into the network. As a result, the grid
current includes the minimum harmonic levels regardless
of the grid voltage background harmonics. The feedforward

FIGURE 8. A grid-connected inverter with passive damping LCL filter.
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transfer function greatly reduces the low-order grid current
harmonics. However, because the phase margin requirements
were lowered in this instance, the operation mode was found
to be unstable. Due to system instability, high frequency grid
voltage harmonics significantly distort the grid current.

Active Front End (AFE) configuration also can miti-
gate the low-frequency harmonics (below 2kHz) at the unit.
Fig. 9 shows an AFE with an LCL filter proposed in [32].
Fig. 10 (a) corresponds to the experimental results of the time
domain grid current waveform of a damped AFE proposed
in [32]. Fig. 10 (b) and (c) also depict the frequency domain
waveform (FFT analysis) of the mentioned current for the
ranges of 0-2 kHz and 2-9kHz. It is worth noting that the grid
current THD for the range of 0-2 kHz is measured at 2.78 %
for 1 cycle or 2.95 % for 10 cycles.

FIGURE 9. Configuration of AFE proposed in [32].

By connecting a simple resistor to the filter, a passive
damping technique can successfully minimize the resonance
peak. The resonance peak decreases with increasing resistor
size. A unified process for designing an LCL filter for a
grid-connected inverter is proposed in [30]. In this research,
for calculating the inverter’s maximum current ripple, mathe-
matical calculations are used. Another LCLfilter with passive
damping resistors designed for grid-connected inverters has
been proposed in [33] to handle injected harmonics to the
grid. The main contribution of this research is to increase
the robustness and stability of the grid-connected inverter
by proposing a mathematical approach to calculate the max-
imum current ripple as well as the inductor size on the
inverter-side.

International standards permit three-phase diode rectifier
systems to generate a relatively high degree of current total
harmonic distortion (THDi). As an instance, according to
IEC61000-3-12, for a system with a current of 16–75 A per
phase, the THDi is allowed to be up to 48% (5th harmonic
allowed to be 40%) [34]. However, the dependence of THDi
on the load level is the primary disadvantage of the tradi-
tional diode rectifiers with a passive filter (DC or AC choke).
As a result, the THDi can significantly rise during partial-
power operation which ASDs normally follow most of the
time. To cope with these challenges, Electronic Inductor (EI)
(a DC-DC boost converter) cascaded to the diode-rectifier,
can be used as an alternative to the passive filters as illustrated
in Fig. 11. The EI positioned at the DC-link stage can emulate
an active-front end in addition to the diode rectifier. The
fundamental concept behind employing EI is to substitute

FIGURE 10. Time and frequency domain waveform of the AFE proposed
in [32] (a) Current waveform of damped AFE (b) 0-2kHz (c) 2-9kHz.

FIGURE 11. An ASD at unit level with front-end diode-rectifier and EI
filter.

the large DC choke with a smaller inductor that relates to a
DC-DC converter to operate like an ideal infinite inductor,
which can greatly enhance the quality of the drive’s current.

B. HARMONIC MITIGATION TECHNIQUES AT SYSTEM
LEVEL
Typically, it is believed that a power converter’s harmonic per-
formance is the same at the unit and system levels. As a result,
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by implementing harmonic mitigation strategies at the unit
level, it is anticipated that the existing harmonic issues will
be predicted and resolved at the system level. However, due
to variations in phase angle, current harmonics for parallel
converter units may be canceled at the system level [25].

The unified power quality conditioner (UPQC), also
referred to as the universal active filter, which consists of
both series and shunt active power filters (APFs), is the most
comprehensive configuration of hybrid filters as shown in
Fig. 12 [35]. UPQC is a multipurpose power conditioner
that can be used to correct voltage fluctuations, compensate
for different power source voltage disturbances, and block
harmonic load current from entering the power system. It is
a special power tool made to lessen disturbances that inter-
fere with the execution of sensitive and/or important loads.
A UPQC is typically made up of a shunt inverter, which by
injecting shunt current can control the reactive power and
reduce harmonic emissions, and a series inverter, which can
reduce the voltage sag/swell issues.

In the simplest form, the shunt APF, also known as
D-STATCOM structure includes a two-level VSC, a DC
energy storage system, a shunt coupling transformer, and
related control equipment. Fig. 13 shows a schematic repre-
sentation of a D-STATCOM as a custom power controller.
The VSC attached in shunt to the AC system can give a mul-
tipurpose topology which can be utilized for up to three very
different objectives, including voltage control and compen-
sation of reactive power, power factor correction, and current
harmonic mitigation [36]. It is worth noting that in PV appli-
cations, the seasonal and daily solar radiation variations have

FIGURE 12. General configuration of a UPQC.

FIGURE 13. Schematic diagram of D-STATCOM as a custom power
controller.

FIGURE 14. Control technique based on IIR peak filter proposed in [16].

an impact on the electricity generated by a solar PV array.
Additionally, the utility distribution networks are generally
weak, which worsens problems with power quality degrada-
tion. The development of an infinite impulse response (IIR)
peak filter is required for harmonics mitigation, power factor
correction, and alleviating other power quality concerns by
offering D-STATCOM capabilities. In order to ensure effec-
tive operation under weak grid situations, a novel control
strategy using an IIR peak filter for grid-fed PV generation
in the distribution network is proposed in [16], as shown in
Fig. 14. This control method is effective when solar PV power
cannot be obtained. The solar PV array and the grid power
that has been saved are used to meet the load requirements
during the day. On the other hand, DSTATCOM performance
ensures an improvement in power quality at night when the
solar PV array’s output is not available to meet the load
requirements.

A novel technique using Harmonic Mitigation Function
(HMF) based on EI circuit is proposed in [37] which canmiti-
gate harmonics generated by other commercial and industrial
motor drives. This technique can reduce the current harmon-
ics produced by other units with passive filters, which are
connected to the same PCC. The phase-angle of low-order
harmonics are also stabilized and meet the IEC 61000-3-12
requirements. As a result, a distribution network with sev-
eral drive units can also eliminate harmonics using the pro-
posed converter and control system. The diagram of proposed
EI-based technique including both a square wave and a ripple
component, is shown in Fig. 15 (a). Fig. 15 (b) depicts the
system with two units, where Unit 1 is an EI-based converter
as the intermediate circuit (DC choke) and Unit 2 is a tra-
ditional converter with a passive filter. As a result, the EI
controller is altered tomaintain the appropriate output voltage
and simulate an AC ripple with a 180-degree phase shift that
is the same magnitude as the AC ripple of the conventional
unit. Therefore, the AC ripples cancel out each other at the
PCC, resulting in a square-shape total input current (iga) with
a load-independent THDi of around 30%.

The ability of the current control system to closely follow
the reference current and quickly inject the necessary currents
into the grid to reduce harmonics is critical to the operation of
the Active Power Filter (APF). However, from the operating
environment point of view, there are external disturbances
brought on by the load and source sides, as well as inter-
nal perturbations caused by component aging and thermal
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FIGURE 15. The technique proposed in [37]. (a) the current component of
the units (b) an EI connected to unit 1 and unit 2 equipped with a passive
filter (c) the proposed control strategy.

drift. Utilizing a robust control method is crucial because it
offers adequate disturbance rejection against uncertainties.
Generally, sliding mode control (SMC) is a common strong
design for uncertainties. Additionally, considering real appli-
cations, the development of terminal sliding mode control
(TSMC) gives classical SMC finite-time convergence prop-
erties, which is desirable for APFs. However, the issue is
that the TSMC is dependent on the prior information. Fuzzy
and neural network techniques can be employed as universal
approximators to cope with these challenges. An adaptive
type-2 fuzzy neural network (T2FNN) inheriting TSMC to
improve the power quality of the system is proposed in [38].
Then, a finite-time reference signal tracking integral-type
TSMC is created which uses a saturation function to address
the chattering problem. This paper suggests a method for con-
trolling APF that not only completes the required harmonic
suppression duty but also offers robustness and releases
some constraints. It is worth mentioning that to suppress
harmonics, it is important to propose a controller which can

reduce the tracking error between the compensation and ref-
erence signals of the current. Fig. 16 illustrates the proposed
T2RFSFNN control diagram. If the dynamic model of APF
current control is extracted from the following equation:

i̇c = f (ic) + U + H (2)

And the control of T2RFSFNN law is designed as follows:

U = UT2RFSFNN + UCOM (3)

The proposed control algorithm [38] can be obtained as:

˙̂W T
H = −

˙̃W T
H = −λ1η̂sŶH (4)

˙̂W T
H = −

˙̃W T
L = −λ2(1 − η̂)sŶL (5)

˙̂µT
= − ˙̃µT

= −λ3[η̂sŴHYHµ −
(
1 − η̂

)
sŴLYLµ]

(6)
˙̂
σ̄ T = −

˙̃
σ̄ T = −λ4η̂sŴHYH σ̄ (7)

˙̂σ T = − ˙̃σ T = −λ5(1 − η̂)sŴLYLσ̄ (8)
˙̂ωT
r = ˙̃ωT

r = −λ6[η̂sŴHYHωr −
(
1 − η̂

)
sŴLYLωr ]

(9)
˙̂
β̄T = −

˙̃
β̄T = −λ7η̂sŴHYHβ (10)

˙̂
β̄T = −

˙̃
β̄T = −λ8(1 − η̂)sŴLYLβ (11)

˙̂η = − ˙̃η = −λ9s(ŴH ŶH − ŴL ŶL) (12)

UCOM = −k̂sat(
s
η
) (13)

FIGURE 16. Block diagram of T2RFSFNN control methodology for
APF [38].
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And the robust compensator can be designed as follows:

˙̂k = −
˙̃k = λ10 |s| (14)

IV. TRADITIONAL HARMONIC ESTIMATION TECHNIQUES
Harmonics are one of the main causes of the power sys-
tem’s deteriorating power quality. Therefore, it is essential
to estimate the amplitude and phase angle of the injected
harmonics in a power system network. In this section, a crit-
ical analysis of numerous power system harmonic estima-
tion techniques is presented. Regulators are now focused on
ensuring that distributors fulfill their responsibilities of main-
taining power quality. Even though most distribution network
service providers (DNSPs) now consider collecting power
quality data to be a routine aspect of conducting business
and that substantial amounts of data are routinely recorded
and stored, there are still considerable difficulties associated
with power quality monitoring. These difficulties include
developing efficient power quality monitoring plans, such as
the optimal number of instruments and deployment locations,
managing power quality parameters, and comprehending the
financial effects of power quality on customers and networks.

Generally, there are two types of harmonic estimation tech-
niques, which are parametric and non-parametric methods.
In parametric methods, a proper model can be used to rep-
resent the voltage and current signals and then estimate the
parameters from the data. On the other hand, non-parametric
methods can estimate the spectrum directly from the volt-
age and current signals in terms of amplitude and phase
angles, etc.

A. PARAMETRIC HARMONIC ESTIMATION METHODS
An analytical method for estimating the current harmonics of
an ASD on the DC-link at the inverter side is proposed in [39].
In this paper, the impacts of unbalanced loads and power fac-
tors on the current harmonics for the frequency range between
0-9 kHz have been analyzed. Moreover, new mathematical
modeling has been developed for current harmonic orders
which are impacted by negative-sequence current. Another
contribution of this paper is identifying 2–9 kHz current
harmonics produced by ASD due to PWMmodulation. These
current harmonics are among the important topics under
consideration for IEC standardization SC77A. The effects of
positive and negative sequence currents on the inverter-side
current harmonics in a frequency range of 2–9 kHz is also
estimated. This can make it simpler for drive manufacturing
businesses to determine the current harmonics over the ASD
DC bus while considering the unbalanced-load condition.

As mentioned before, the harmonics over 2 kHz have
been considered in recent years by several standardization
committees to prevent EMI issues in electronic equipment.
As a result, network operators need to estimate harmonics in
networks to maintain the required power quality at the PCC.
To achieve this goal, manufacturers seek accurate models to
assess ASD harmonics in accordance with current and future
standards. The study in [40] presents the development of a

novel mathematical model for the estimation of the inverter-
side current harmonics flowing across the DC-link in an ASD
considering the voltage harmonic impacts.When determining
the current harmonics at the load side of the ASD, this model
is implemented by considering an accurate model of voltage
ripples over the DC-link. Additionally, the grid-side current
harmonics may be estimated for filter design applications
using the estimated inverter-side current harmonics. It is
important to note that depending on the harmonic compo-
nents, the frequency of the inverter-side current harmonics
can be split into several categories. One of them includes
portions relating to the fundamental frequency of the load
side voltage, the switching frequency of the rear-end inverter,
and the harmonics of the DC-link voltage, whereas the other
category just includes the harmonics of the ripples in the
DC-link voltage.

Although the harmonics generated by a single household
device are insignificant, but recent research has shown that
the combined effect of large domestic loads can be con-
siderable. Telephone interference, pipeline corrosion, util-
ity asset overload, capacitor failure due to resonance, and
growing neutral current and voltage in the primary feeder
are all possible outcomes of these harmonic pollutions in
real-time distribution systems. Utility companies are inter-
ested in learning the current distortion levels at various res-
idential system sites so that appropriate steps can be made
to address this emerging concern. The issue can be solved
via harmonic state estimation (HSE). HSE calculates the
distortion level at additional unmonitored locations using
the network model and harmonic measurements taken at
monitored buses. Despite the efforts to solve the HSE issue
at the distribution level, most of the research work suffers
from a critical flaw that limits its capability. It is assumed
that the measurement matrix is known, which explains how
measurements relate to state variables. Since it is challenging
to monitor the distribution network operating structure in
real-time and to predict aggregated demands at load buses
in the primary distribution network, this matrix is unknown
in real-world circumstances. The study in [41] addresses this
problem by improving the accuracy of HSE in unbalanced
three-phase distribution networks through learning the mea-
surement matrix from smart metering data. This article inves-
tigates the challenges of determining the spread of harmonic
voltages in unbalanced three-phase power distribution sys-
tems. In this study, by utilizing data from smart meters, a data-
driven strategy to HSE that deals with the uncertain measure-
ment matrix is provided. Moreover, for networks that cannot
be completely observed, it suggests a sparse Bayesian learn-
ing (SBL)-based estimator to find the harmonic sources and
estimate the voltages with a great deal a smaller number of
distribution-level phasor measurement units (DPMUs) than
distribution nodes. In addition, through in-depth simulations,
it is demonstrated that a PV linked to the main distribution
network has no detrimental effects on the effectiveness of
the suggested state estimator. In research [42], the HSE is
formulated as a parametric interval linear system of equations
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based on the weighted least squares (WLS) criterion. The
issue of HSE of a power system whose network parame-
ters are known to be within specific tolerance boundaries is
addressed in this research. Interval numbers that indicate the
outer bound of state variables are used to illustrate the solu-
tions. Also, a technique is proposed for modifying the weight
in WLS to consider for uncertain network parameters. The
calculated bounds of the predicted state variables, both the
real and imaginary parts, are shown by numerical experiments
to encompass the estimated bounds produced by the Monte
Carlo simulations. This information on the state variable
boundaries shows the harmonic voltage level that exists in
the power system when there is parameter uncertainty. When
workingwith harmonic-related devices, e.g., harmonic filters,
it offers helpful information. It also gives network operators
the assurance that the true value does not exceed the system
restrictions.

It is possible to identify the harmonic sources in a power
system by calculating the harmonic components injected into
the network by each source, load, or generator for all the
harmonic orders of interest. The research in [43] has the
main objective of the identification of the harmonic sources
since it will enable system operators to take immediate action
against the origin of the issue. This strategy is known as
harmonic source estimation (HSoE). Due to the features of
the issue (underdetermined systems because of a small num-
ber of observations and sparse state vectors), compressive
sensing (CS) has been employed in the HSoE framework.
This mathematical method circumvents the absence of power
quality meters by enabling the recovery of sparse signals
when only a few measurements are available. The identifi-
cation of the primary harmonic sources in smart grids has
led to the creation and investigation of a novel formulation
of the P1-minimization method for CS issues, with quadratic
constraint. For this situation, a novel whitening transforma-
tion is also suggested in this article which allows the energy
of the measurement errors to be identified and estimated
properly.

It is undeniable that HSE needs many synchronized moni-
toring equipment to thoroughly observe the network. Despite
this, the lack of adequate monitoring infrastructure makes
the application of HSE in distribution systems particularly
difficult. A practical method for estimating harmonic distor-
tions in residential distribution systems is presented in [44].
An integrated harmonic model is created for the secondary
residential system after the measurement is initially made
at several representative service (SRS) transformers. It is
created by looking at the relationship between the harmonic
injections of SRSs and active power. The utility network
model is then used to develop a probabilistic harmonic load
flow method. It is worth mentioning that the harmonic mea-
surements that are now accessible are considered and thereby
reducing the estimation uncertainty. To determine the system
harmonic states while considering the data that are currently
available, a probabilistic harmonic load flow (HLF) is further
presented.

As mentioned before, the harmonic state estimation tech-
niques need many power quality meters and mostly rely
on the feeder’s observability. They require historical data
to increase observability and obtain pseudo measures. Prac-
tically speaking, many utilities’ financial investments still
prohibit them from allocating a significant number of power
quality meters to address these restrictions. Additionally,
sometimes not enough historical data or prior information
is available to produce the pseudo measurements. A method
based on the particle swarm optimization (PSO) algorithm
that aims to calculate the harmonic source of three-phase real
and reactive power as well as the magnitudes and locations
of its current harmonics is proposed in [45]. It is worth
mentioning that this strategy is different from harmonic state
estimation techniques. The PSO method operates the har-
monic source and location without estimating the harmonic
states of all busses. It can be claimed that conditions such
as harmonic source location and identification, the apparent
power of the harmonic source and its distance from themeters
have no impact on the proposed method. However, when the
harmonic source estimated location is on a lateral branch bus,
there was an impact on the identification.

An estimation technique for the localization of the source
of harmonic emission in electrical distribution systems using
a Bayesian technique has been proposed in [46]. The primary
objective of this method is to alert the network management
of any potential harmonic-producing loads and to give an
estimation of the accuracy of such data. The behavior of
the proposed harmonic source estimator and the analysis
of harmonic propagation in unbalanced networks have been
studied utilizing the single-phase equivalent network shown
in Fig. 17 which consists of a power source (2.4 kV) and
supplies five single-phase equivalent loads. The proposed
Bayesian algorithm must estimate the values of a linear load
(resistance and inductance in series) that is shunted by har-
monic current generators to create the nonlinear load. The
procedure’s input data are derived from measured values,
a priori knowledge, and an understanding of the system
model. The magnitude of the 3rd harmonic current injected

FIGURE 17. Equivalent single-phase network used in [46].
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TABLE 8. Harmonic current injected by the loads.

TABLE 9. Operative conditions.

into the network by the nonlinear loads when all nodes func-
tion in their nominal circumstances is shown in Table 8.

In the example test, the pseudo measurements have been
used and the injected currents have been modelled as Gaus-
sian distributions with a standard deviation of one-third of
the expected values. The injected currents are also centered
on the expected values, and proportional to the assigned
power demand for each load and each harmonic order. In this
scenario, all the loads are operating at their nominal power.
While only L2 and L5 are nonlinear loads, L1, L3, and L4
are linear loads. Fig. 18 provides a summary of the results
related to the estimating procedure, and Table 9 presents the
operative conditions for that case. The calculated harmonic
current values are shown in Fig. 18 as black circles with the
appropriate extended uncertainty. The blue squares represent
the expected values, whereas the red triangles reflect the
‘‘actual’’ values.

FIGURE 18. Estimation of 3rd current harmonic using the proposed
method in [46].

Other studies have investigated the localization of non-
linear loads in distribution networks using the estimation
technique. The technique proposed in [47] takes advantage
of the limited real-time measurements that are existed in
distribution systems as well as all other available information.
This method offers a preliminary estimation of the current
harmonics injected by the nonlinear loads along with an
indication of the reliability of such information. An improved
method using Metropolis-Hastings technique is proposed

in [48] to achieve the posterior distributions of each Bayesian
estimation method that was used in [47]. In this research,
the harmonic sources are subsequently examined with uncer-
tainty descriptions to estimate the current harmonics injected
by nonlinear loads.

The Kalman filter (KF) and its variations are another popu-
lar real-time dynamic estimate technique. Linear KF and non-
linear extended KF are proposed to estimate the harmonic
components of a noisy signal. A sliding-surface-enhanced
fuzzy adaptive controller with a robust extended complex
KF to estimate the frequency and amplitude of distorted
signals in a power system has been utilized in [49]. Although
the method performs well in steady-state tracking, it does
not converge quickly enough following a sudden shift in
frequency. The EKF also has the drawback of requiring the
computation of power flow Jacobian matrices, which slows
down implementation and affects real-time response. The
research in [50] has been successfully utilized Unscented KF
(UKF) estimation of linear and immediate frequency shifts
in a balanced power system without harmonic emissions.
The study in [23] describes a dynamic method for utilizing
UKF to estimate the frequency and amplitude of unbalanced
three-phase power systems with harmonics. By employing
this technique, a nonlinear dynamic model of the three-phase
voltage’s complex form with harmonic content is provided,
and a UKF is also used to estimate the magnitudes and
frequencies of the fundamental component and its harmonics.
When the voltage of a three-phase unbalanced power system
comprises the fundamental, the 2nd, and the 3rd harmonics,
whose amplitudes fluctuate continuously or suddenly, step
and linear frequency changes are applied to the model to
evaluate how well the suggested UKF frequency estimation
method operates.

The grid voltage harmonics can be reduced with the help
of the Renewable Energy Source (RES), but first, these har-
monics must be estimated. The harmonics must be calculated
in the dq rotating reference frame for efficient harmonic
injections. Therefore, it is desirable to create harmonic esti-
mators that provide their outcomes in the dq reference frame.
Most of the techniques for estimating the single-phase voltage
harmonics in the dq reference framework have two steps. The
first stage includes filtering the harmonic components, and
the filtered harmonics are then converted into the dq reference
frame in the second stage. However, the filtering stage slows
down the estimating process and increases processing com-
plexity. A technique for estimating the harmonics in the dq
reference frame and for performing processing with less than
half the mathematical operations needed by the traditional
methods is proposed in [51]. Additionally, the estimator’s
transient response is faster than that of the standard methods.
Before transferring the sampled grid voltage to the PLL block
used to estimate the grid phase, the harmonics are eliminated
to speed up and improve the accuracy of the harmonic esti-
mation process.

The windowed FFT algorithm, which is employed to esti-
mate harmonic parameters in a power system is extremely
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susceptible to spectral leakage and the picket fence effect.
Particularly, the polynomial fitting always includes the even
components, which might add to the computational com-
plexity. In [52], a symmetrical interpolation FFT technique
based on the Triangular Self-Convolution Window (TSCW)
to eliminate the even terms in polynomial fitting is proposed
to reduce these undesired effects. The proposed technique
outperforms previous Windowed Interpolation FFT (WIFFT)
algorithms because the fitting polynomials only contain odd
terms and are simple to implement in embedded systems,
while the TSCW exhibit favorable sidelobe behaviors and
significantly reduces leakage error. A differential equation is
used to provide a symmetrical approximation estimation of
the harmonic amplitude that minimizes the contribution of
leakage of negative frequencies to the fundamental compo-
nent. Significant leakage errors and harmonic disruptions can
be removed by weighted samples with the TSCW for the win-
dow’s high sidelobe decay rate and low peak sidelobe level.

Previously, the single-phase converter-based loads are
modelled as harmonic current sources with fixed magnitudes.
However, this technique causes a significant harmonic current
overestimation due to the attenuation and diversity effects of
the loads when the combined effect of these loads is evalu-
ated. Harmonic analysis can be used for other devices and
any voltage levels; however, it becomes difficult to determine
the circuit parameters (R, L, and C in a diode rectifier) for
each load because they are created by different manufacturers
and have their own designs that can be developed from the
fundamental circuit. To estimate R, L, and C in the equiv-
alent circuit, [53] suggests a measurement-based method.
According to this research, the R, L and C parameters can
be estimated after measuring the current waveform at any
given voltage, and the acquired equivalent circuit can be
further developed to complete harmonic analysis under any
voltage distortions. It is also widely known that a frequency-
domain harmonicmodel must be used for harmonic load-flow
research. As a result, this research suggests a model based
on a generic harmonic frequency-domain using the estimated
circuit parameters.

Rapid frequency fluctuations cause grid instability and
make it possible for grid components to be damaged or even
destroyed by significant harmonic distortions of voltages and
currents. Therefore, it is essential to identify and estimate
fundamental and higher harmonic components in real time
as quickly and accurately as possible. This is necessary to be
able to take appropriate action to improve system stability and
power quality and compensate for the deteriorated operating
conditions. Traditionally, Fast Fourier Transformation (FFT)
has been used to analyze and estimate a signal with significant
harmonic distortion; however, this method needs a relatively
long computational time and a substantial amount of data
to be processed. For signals with considerable harmonic
distortion, well-known and very fast techniques are proposed,
e.g., parallelized second order generalized integrator (SOGI).
As a result, [54] suggests a modified second-order

generalized integrator (mSOGI) technique that accomplishes
a required estimate process settling time for a fast estimation
of all harmonic components of arbitrarily distorted voltage
and current signals in power systems. All harmonic com-
ponents of interest can have their amplitudes, angles, and
angular frequencies estimated in real-time by the proposed
method. The parallelizedmodified SOGIs tuned by pole loca-
tion make up the suggested algorithm. The modified SOGIs
include extra feedback gains that give them the required
degrees of freedom to guarantee the preferred settling time.
Amodified frequency-locked loop (mFLL)with gain normal-
ization, sign-correct anti-windup, and rate limitation is used
in combination with harmonic estimation for time-varying
fundamental frequencies.

Based on the use of phasor measuring units (PMUs), the
fundamental component synchro-phasors are now widely
used in many electrical power system applications. While
the development of harmonic synchro-phasor estimation
technologies is difficult, it is still achievable if the
harmonic phasor, e.g., the magnitude and phase of each
harmonic component are accurately estimated, especially
in situations where there is noise and frequency variation.
A pre-processing algorithm for the DFT called B-spline-
based interpolation is proposed in [55]. The performance
is assessed in terms of total vector error (TVE) and IEEE
C37.118.1 and IEC 60255-118-1 standards tests. More-
over, the proposed method is compared with four differ-
ent harmonic phasor estimation (HPE) methods, including
the Taylor-Fourier transform (TFT), flat-top finite impulse
response (FT FIR), and sinc interpolation function-based esti-
mator (SIFE). Under large frequency deviation, the proposed
technique can deliver a TVE of less than 1% for all harmonic
phasors, from the 1st to the 50th order. The main contribution
is to demonstrate that a good resampling algorithm used in
association with the classical DFT is a method that ensures
high-quality phasor estimations that meet PMU criteria.

By expanding the single-phase frequency estimator, the
harmonic A&M (HAM) estimator is created to estimate the
voltage frequency in a balanced three-phase grid utility. How-
ever, the initial poor estimation of the harmonic waveforms is
the main flaw in the HAM technique. To further enhance the
parameter estimation from the HAM step, the weighted least
squares (WLS) refinement step makes use of the harmonic
and interharmonics correlations in [56]. The HAM-WLS
framework is a novel two-step framework which will improve
the HAM estimator and include a newWLS phase stage. The
resultant HAM-WLS approach can also be used to evaluate
many power signal models, including single-phase, unbal-
anced three-phase, harmonic, and interharmonics instances.
After employing a harmonic variation of the HAM estimator,
a WLS estimator further enhances the estimations of the fun-
damental frequency and phase. Therefore, the recommended
HAM-WLS technique offers accuracy even in electrically
noisy environments that are further polluted by harmonics
and interharmonics.
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The contribution of iron and steel (I&S) plants supplied
from a PCC to current harmonics is estimated using a state
estimation-based method in [57]. The suggested technique
separates the harmonic current contributions of loads from the
upstream effects using sample-by-sample time-synchronized
field measurements of load currents and voltage signals.
Additionally, it depicts the nonlinear properties of the util-
ities and plants as harmonic current sources. Because this
approach is dependent on the field measurement, it is neces-
sary to decrease the measurement errors of traditional voltage
transformers at harmonic frequencies. The harmonic contri-
butions of all plants are calculated using the estimated har-
monic voltages and currents, the Norton equivalent circuits of
the plants, and the Superposition theorem. The outcomes have
demonstrated that the suggested approach can be applied as
an estimation tool to identify the harmonic current contribu-
tions of all I&S plants receiving power from the PCC. While
simultaneously reducing the Gaussian measurement error of
conventional voltage and current transformers, the proposed
method eliminates the need for resistive-capacitive voltage
transformers, which are expensive and inconvenient to use
for accurate harmonic voltage measurements. As a result,
it provides accurate estimates of the harmonic contributions
of the electric arc furnace plants.

B. NON-PARAMETRIC HARMONIC ESTIMATION
METHODS
The main goal of the strategy proposed in [58] is to identify
key locations for the installation of the meters. As a result, the
calculated values for the other state variables should solely
consider the network parameters (impedances and admit-
tances). Aside from the anticipated changes in shunt admit-
tances and series impedances that the frequency would bring
about in the network parameters, no more specific harmonic
effects should be considered in accordancewith the suggested
technique. Since there is no approximation procedure, this
approach does not bring errors into the estimating process.
Only the measurements and network parameter calculations
are subject to inaccuracy, which could have an impact on
the outcomes of other conventional methods for estimating
harmonic states. The technique worked remarkably well for
estimating harmonic state variables. Furthermore, the pro-
posed harmonic methodology can still be utilized to precisely
identify the harmonic sources because it incorporates voltage
and current state variables.

The technique used in harmonic distortion state estima-
tion (HDSE) is the opposite of a simulation process. When
the power system responses are provided by a set of data,
estimators analyze the harmonic injections while simulators
estimate the power system response to harmonic injection
in one or more locations. The HDSE approach creates an
effective and affordable tool for PQ monitoring systems to
employ harmonic distortions estimate over the entire net-
work. The network topology related harmonic frequency
admittance matrices, passive (linear) loads, and the positions
and measurements of PQ meters serve as the foundation

for the HDSE algorithm. The HDSE of the network is a
challenging problem because it requires the use of minimal
and reliable data from a few numbers of PQ meters. There
might be differences between the real and simulated systems
due to a variety of factors. In addition to meter calibration,
concerns including data transfer and network data reliability
are also crucial. The synchronization data from several PQ
meters is another significant issue that should be considered.
Evolutionary strategies (ES) are fascinating solutions due
to their simple implementation, especially when simulation
algorithms for the special problem are established. Based on
measurements taken at a few specific sites, [59] introduces
a novel approach for estimating harmonic distortions in a
power system. This method makes use of evolutionary strate-
gies (ES), a development subset of evolutionary algorithms.
The major benefit of employing the proposed method is its
modeling capabilities in resolving complex problems. The
above-suggested problem-solving algorithm uses data from
multiple PQ meters, which can be synchronized by advanced
technologies such as global positioning system devices or by
employing data from a fundamental frequency load flow. It is
worth noting that the suggested technique can be utilized for
all pertinent harmonic orders and the THD of any network
bus can be estimated.

A traditional technique for estimating grid voltage param-
eters also referred to as the phase-locked synchronous ref-
erence frame (SRF-PLL), has been utilized extensively in
industry. However, the growing use of Renewable Energy
Sources (RESs) and the existence of numerous nonlinear
loads in modern networks frequently result in harmonic
disturbances and grid instabilities. An adaptive observer-
based closed-loop feedback system technique for estimating
the fundamental and harmonic frequencies, amplitudes, and
phase angles of the three-phase grid voltage is suggested
in [60]. This estimating method is based on the time domain
but does not rely on PLL, quadrature signal generation
(QSG), or sophisticated filtering. By employing observer the-
ory and adaptive estimation techniques, the steady-state inac-
curacy can be kept at zero. The proposed adaptive estimating
technique is robust to harmonic voltage disturbances and
grid unbalanced failures because of the nature of its closed-
loop feedback system. Additionally, it guarantees that there is
no steady-state inaccuracy even when the three-phase grid’s
fundamental frequency deteriorates and drastically deviates
from its nominal value.

Synchronous sampling is challenging to implement
because of the typical power frequency variability. Therefore,
when employing the Fourier transform, the inevitable prod-
ucts, such as spectrum leakage and the picket fence effect
will have a substantial impact on the accuracy of harmonic
analysis. To cope with this issue, a unique approach for power
system harmonic estimation called frequency shifting and fil-
tering (FSF) algorithm is proposed in [61]. According to this
method, the frequency of the sampled signal is first shifted
by the generation of a reference signal. Then, the spectrum
interferences are removed using an iterative averaging filter.
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Finally, a precise harmonic estimation can be accomplished
because only components that are important are kept. The
primary goal of the proposed algorithm is to shift each of the
desired components to 0 Hz before removing spectral inter-
ferences using an average filter. The process of the proposed
algorithm for harmonic estimation is shown in Fig. 19.
Applications for harmonic phasor estimation in the pro-

tection and monitoring of power systems include HSE,
high-impedance fault identification, and islanding detection.
The fact that distinct harmonics have different harmonic
frequency bandwidths presents a significant difficulty for
harmonic phasor estimation. Therefore, a harmonic phasor
estimator (HPE) that can adjust these differences is necessary
for the estimation process. Despite the sinc interpolation
function-based estimator (SIFE) has this capability, it has
two drawbacks: 1) it requires multiple simulations to choose
the model parameter, and 2) it is unable to produce results
with 0% error under nominal frequency conditions. As a
consequence, an unique HPE is put out in [62] that is based on
the frequency-domain sampling theorem and uses numerous
fictitious exponential functions to represent the harmonic
phasor. The proposedHPE and SIFE are compared in terms of
frequency response, model parameter selection methodology,
and simulation testing. The outcomes demonstrate that the
suggested HPE has the benefits of being an easier method
for selecting model parameters based on the fundamental
frequency bandwidth, which can be determined based on
previous observing data. In addition, this method has zero-
error outcomes for nominal frequency circumstances and
gets greater accuracy for harmonic frequency deviation and
harmonic modulation situations [62].

FIGURE 19. Flowchart of the proposed harmonic estimation algorithm
in [61].

A fast-converging optimal technique to estimate the har-
monic components of a time-varying signal online is pro-
posed in [63]. The application of the estimator to provide
reference signals for an ideal control system to suppress the
harmonics components is also examined in this paper. The
proposed approach considers real-world assumptions includ-
ing the presence of time-varying harmonics and noise in
the signal to be investigated without assuming steady-state
conditions. The harmonic estimator application involves two
practical tests: the ideal estimation of the harmonic compo-
nents of the current waveform in a nonlinear load, and the
use of harmonics data to suppress the harmonics through an
APF. The proposed optimal harmonic estimator is a signal-
processing-based approach, which involves designing and
adapting a harmonic model online using measurements of
the variable that must be decomposed in terms of harmonics.
Because the harmonic components have been estimated in the
time domain, no additional computation is needed to convert
the signal to the frequency domain.

In a power system network where harmonics exist, to esti-
mate the frequency, a novel DFT-based approach is pro-
posed in [64]. It is worth noting that the Discrete Fourier
Transform (DFT)-based technique is the most popular among
these methods since it is easy to apply and has a high level
of precision. The DFT-based technique employs DFT to
determine the phasors of two consecutive data frames while
assuming the fundamental frequency. The frequency devia-
tion between the real frequency and the assumed frequency
is then calculated using the difference in the phase angles
between the two phasors, and lastly, the actual frequency can
be estimated. The suggested approach also takes the funda-
mental frequency and after creating a new sequence using
the summation of the samples from the original sampling
sequence, the frequency deviation value is calculated using
the amplitude ratio between the new and original sequences.
The impacts of interharmonics, harmonics, and negative fun-
damental component effects are also investigated. A pre-
processing method is also suggested to get rid of the impacts
of the interharmonics with a frequency close to the fundamen-
tal frequency. The suggestedmethod can be utilized for online
frequency estimation in harmonic-polluted environments due
to its high harmonic resistance and the required low process-
ing effort.

Traditional-based harmonic estimation techniques lack
high efficiency, quick response, and precision and their appli-
cation is limited. In this case, Artificial Intelligence (AI) tech-
niques are recently introduced because of their big impact on
power electronic devices and motor drives. AI techniques are
superior to the traditional methods because of their accuracy,
precision, and the ability to respond quickly, which will be
described in the next section.

V. ARTIFICIAL INTELLIGENCE BASED HARMONIC
ESTIMATION TECHNIQUES
Artificial Intelligence (AI) aims to simulate human intel-
ligence processes through computer systems. AI develops
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systems that are capable of reasoning based on observations
and can act accordingly.

A. FUNDAMENTAL CONCEPT OF ARTIFICIAL
INTELLIGENCE
There are numerous branches within AI, including robotics,
machine learning and expert systems. Machine learning is a
sub-filed within AI that enables machines to automatically
learn from past data without being explicitly programmed.
Deep Learning, which is a sub-field within machine learning
develops artificial neural networks for representation learning
from the data. Fig. 20 visually illustrates the organization of
these concepts.

FIGURE 20. Organization of Artificial Intelligence, Machine Learning and
Deep Learning Concepts.

1) MACHINE LEARNING
Within the last two decades, we have seen an explosion of
data and numerous machine learning algorithms have been
introduced to find the patterns that are hidden within the
mass amount of data generated [65], [66]. There exists a
clear distinction between traditional computer programs and
machine learning. The former applies human-defined rules
to the data and generates outputs for a certain task while the
latter leverages data and the target outputs and discovers the
rules behind that task. To uncover the underlying governing
phenomenon, the algorithm passes through an iterative learn-
ing process, where different rules are tested to evaluate their
performance. Once the learning process discovers the best
rule, it is used as the solution to the target task. Numerous
approaches have been introduced to perform learning and
these approaches can be broadly categorized into supervised
learning, unsupervised learning, semi-supervised learning,
and reinforcement learning-based algorithms. Prior to illus-
trating the differences between these classes of algorithms,
we would like to first clarify the following terminology:

• Dataset: A collection of examples that are obtained from
the task that we are interested in solving.

• Features: Characteristics or attributes within the data
that the machine learning algorithm utilizes in training.

• Label: A designation given to a certain example within
the dataset to tag its certain properties or characteristics.

A label is used as a classification to recognize the target
class of the input data in supervised machine learning.

• Model: The internal mechanism that the machine learn-
ing algorithm has learned. It describes how inputs are
mapped to the outputs and the rules that govern this
mapping.

The distinction between supervised and unsupervised
learning arises due to the differences in the way that inputs
and outputs are used inside the algorithms. Specifically,
in supervised learning, the data is fed to the algorithm as
input and output pairs and during the learning process, the
model learns a mapping from inputs to the outputs. As such
‘‘supervision’’ is provided by the outputs, hence, the term
supervised learning. In contrast, in unsupervised learning,
only the input data is provided to the algorithm, and no
outputs (or labels) are given. The unsupervised learning algo-
rithms try to find similarities and dissimilarities within the
given data and uncover hidden patterns within the input data.

Semi-supervised learning can be seen as a combination of
supervised and unsupervised learning approaches. Specifi-
cally, the datasets that semi-supervised learning algorithms
leveraged contain a large amount of unlabeled data and a
small amount of labeled data. As such, a combination of
supervised and unsupervised learning theories is utilized
to solve the problems within the semi-supervised learn-
ing domain. Reinforcement learning follows the conceptual
framework that we as humans learn in our everyday life.
The human learning process is governed by positive and
negative feedback that reinforces our behavior. Similarly,
in reinforcement learning algorithms, the behavior of the
model is optimized such that the expected reward for behavior
is maximized. In the following sections, we describe popular
types of machine learning models that have been introduced.

2) ARTIFICIAL NEURAL NETWORK
One of the pivotal developments within machine learning is
the Artificial Neural Network (ANN). This is an architecture
that has existed from the beginning of the machine learning
domain, however, with the success of deep learning, ANNs
are becoming increasingly popular. ANNs are inspired by the
human cognition process and utilize a collection of neurons
to map the input to the outputs. Specifically, the neurons
are interconnected and within each neuron, there is an input
receiver, input processor, and output transmitter. Fig. 21 visu-
ally illustrates these functionalities.

Specifically, the transmitted output, y, can be written as:

y = f (
∑

i
wixi), (15)

where, xis are the inputs to the neurons andwis are theweights
that map the input to the output. Here, the function f is
an activation function [67], [68] which is used to add no-
linearity to this mapping. Sigmoid, tanh, linear, and rectified
linear units are some popular activation functions. In addition
to these parameters, a neuron is usually equipped with a
bias term, a constant which allows a shift of the activation.
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FIGURE 21. The main components of an artificial neuron that consists of
input receiver, input processor, and output transmitter.

However, for simplicity of the illustration, we do not utilize
this in our formulation. The popularity of ANNs comes from
their ability to solve challenging problems and this owes
to the ability of ANN architecture to model complex non-
linear relationships using its hidden layers. Specifically, with
deep neural networks, which is a sub-field within machine
learning which specifically focuses on ANNs that have deep
layer structures, multiple hidden layers are stacked together
to form a deep ANN architecture. Fig. 22 shows a deep neural
network architecture that has two hidden layers. The learning
process of ANN happens in two stages, namely feedforward
and backpropagation. In the feedforward stage, the outputs
are generated from the network based on the current set of
network parameters (i.e., weights and biases). This is the
same as the illustration that was provided in the case of a
neuron, however, in the case of a neural network, the process
is repeated through all the neurons in all the layers, namely,
the input layer, hidden layer, and output layer.

FIGURE 22. A Deep neural network with two hidden layers.

After receiving the network output, the next process is
error backpropagation. For the calculation of the error for
backpropagation, depending on the task, different loss func-
tions are used. For instance, for classification tasks loss
functions such as cross-entropy loss [69] are used while
mean squared error loss [70] and the sum of squared error
loss [71] are used for regression tasks. The backpropaga-
tion focuses on updating the network parameters that were

used in the forward propagation such that the error between
the target output and the network output is minimized. For
this parameter update procedure optimization algorithms are
utilized together with loss functions. The optimization algo-
rithm dictates how the individual network parameters are
updated by the calculated gradients of the error. Some popular
optimization algorithms are Adaptive Moment Estimation
(Adam) [72], RMSProp [73], and Stochastic Gradient Decent
(SGD) [74]. Once this update is complete, the network has
completed its first iteration through the training process and
enters the next iteration. This process is repeated until a
stop criterion is reached. A maximum number of iterations,
a minimum loss threshold, or model convergence is usually
used to define a stop criterion.

3) 2D CONVOLUTION NEURAL NETWORKS
The Convolution Neural Network (CNN) is inspired by the
organization of the human visual cortex. The CNNs are spe-
cially designed for image data and learn a set of task-specific
filters (or kernels) that can extract relevant information for the
task at hand. They reduce the number of trainable parameters
in the network by sharing the filters (Fig. 23).

First, the kernel is placed on top of the image, and values
of the pixels that encompass the kernel are multiplied by
the weights in the kernel and depending on the aggregation
function, a summary statistic is propagated to the next layer
as the feature of that pixel patch.

FIGURE 23. Illustration of the convolution operation applied over an
input image.

Then the kernel shifted over the image and the length of this
shift is determined by the parameter stride. For example, the
kernel is shifted only a pixel when the stride is 1, however,
if the stride is set to 2 it is shifted two pixels to the right.
The process is repeated until the entire image is visited using
the kernel and multiple kernels are utilized to learn multiple
feature representations. Subsequently, the pooling operation
is applied to combine and compress the extracted features
from the convolution operation. Furthermore, the pooling
operation lets the recognized features to be independent of
their location in the image. For example, a 2 × 2 max-
pooling operation would propagate only a maximum of the
4 values in the region that it encompasses. Finally, in a
convolution neural network, a flattening operation is used to
convert the resultant 2-dimensional feature vector from the
convolution and pooling operations into a linear vector, which
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is subsequently passed through a classification sub-network
to generate the necessary classifications.

4) RECURRENT NEURAL NETWORKS
The Recurrent Neural Networks (RNNs) method can be
used when modeling time series data recurrence is a critical
characteristic. In the feed-forward neural network that was
discussed in the previous section, there exists only a single
directional flow of data. In contrast, in RNNs the output of
the current time-step is also passed as the input to the next
time-step. As such, there exists a recurrence within the neural
network architecture. The structure of the RNN allows it to
maintain a notion of time within the network and for the
clarity of the illustration, Fig. 24 temporally unrolls the RNN
architecture.

FIGURE 24. Illustration of Temporal Unrolling procedure of Recurrent
Neural Networks.

Specifically, in RNNs, the gradient of the error at a par-
ticular timestep depends upon the predictions at the previ-
ous timestep, hence, the error backpropagation procedure
is termed as Backpropagation Through Time (BPTT). The
process of BPTT suffers from vanishing gradients [75] when
the length of the input time-series is larger, therefore, RNNs
are in efficient to model lengthy sequences.

5) LONG SHORT-TERM MEMORY NETWORKS
As a solution for the vanishing gradient problem, Long
Short-Term Memory (LSTM) networks are proposed by
Hochreiter et. al. in [76]. LSTMs leverage a concept called
‘‘memory cell’’ to store information that are relevant to the
prediction. Specifically, a series of gated operations were
proposed to manipulate the stored information within the
memory and to effectively utilize the information without
losing them when the modeled time-series becomes too long.
Three gate functions, namely, forget gate, input gate, and
output gate are utilized in the process. An LSTMcell structure
is schematically illustrated in Fig. 25.

First, the forget gate determines the portion of the content
from the previous timestep that should be retained and the
portion that should be forgotten. As such, this gate controls
the information flow from the previous time step to the cur-
rent input. The gate value range between 0 and 1where 0 indi-
cates everything is forgotten and 1 indicates that everything

FIGURE 25. Schematic illustration of Long Short-Term Memory cell.
Recreated from [77].

is passed through. This can be written as:

ft = σ
(
wf

[
ht−1,xt

]
+ bf

)
, (16)

wherewf and bf are the weights and bias, ht−1 is the previous
time step’s output and xt is the current input and σ is a sigmoid
function. In the next step, the portion of the information that
should be written to the cell memory is decided using the
input gate. This can be computed as:

gt = σ
(
wi

[
ht−1,xt

]
+ bi

)
, (17)

and the function tanh is used to determine the information
that should be written as:

ċt = tanh (wc [ht−1, xt ] + bc). (18)

The cell state is updated using,

ct = ft × ct−1 + it × ċt , (19)

and the output gate controls what information is passed as the
output of the current times step. This can be written as:

ot = σ
(
wo

[
ht−1,xt

]
+ bo

)
, (20)

and the current time step’s output is given by:

ht = ot × tanh(ct ). (21)

6) TEMPORAL CONVOLUTION NEURAL NETWORKS
Temporal Convolution Neural Networks (TCNNs) have
recently outperformed recurrent neural networks in numerous
sequence modeling tasks [78] due to their improved memory
retention. TCNNs can attend to the entire input sequence
when making a prediction, rather than the information from
the current time step which RNNs attend to. In Fig. 26, visu-
alize the 1D convolution operation where the output is gener-
ated using the dot product between the input elements within
the window and the kernel weights. Fig. 27 illustrates the
concept of dilation which is the distance between elements
in the input window that are considered when generating an
entry in the output sequence. Dilation allows the modeling of
relationships between distant elements in the input sequence
without the need to stack multiple layers.
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FIGURE 26. 1D convolution operation and the flow of information from
input to the output. Recreated from [78].

FIGURE 27. Visual illustration of dilation. Recreated from [78].

7) SUPPORT VECTOR MACHINE
Support Vector Machines (SVMs) are another type of
machine learning model that is highly preferred due to their
greater robustness despite lower computation burden. Like
ANNs the SVMs can also be used for both classification
and regression tasks. The SVM model learns to find a hyper-
plane in the N-dimensional space (where N is the number of
dimensions in the input features) that maximizes the distance
between the data points of different classes. As such, the
hyperplane is the decision boundary that helps the classifi-
cation of the data points and SVM utilizes support vectors,
which are the data points that are closer to the decision
boundary to influence the position and orientation of the
hyperplane. The objective of the SVM algorithm is to maxi-
mize the margin between the data points and the hyperplane
and it uses hinge loss [79] to maximize this objective. When
the data is linearly separable, as shown in Fig. 28, it is easy to
define a hyperplane, however, is far more challenging when
the data is non-linearly separable. SVM utilizes kernels such
as polynomial, radial basis function, or sigmoid to map these

FIGURE 28. Definition of Hyperplanes. Recreated from [80].

non-linearly separable data points to higher dimensional
space in which the data is linearly separable.

B. ARTIFICIAL INTELLIGENCE-BASED HARMONIC
ESTIMATION TECHNIQUES
Nowadays, modern power electronics are being used more
often to create harmonics in power system networks, which
eventually undermines their standard performance in terms of
losses, breaker failure, and equipment malfunction. Recently,
many converters are employed in power systems in which
their cumulative contribution to harmonics goes beyond
a simple addition. As a result, the analytical techniques
employed to determine and accurately measure the real num-
ber of harmonics are ineffective. Statistical techniques such
as the Unscented Transform (UT), Monte Carlo Simulation
(MCS), and others can be used to solve this difficulty, but
their computing costs and time requirements are quite high.

Utilizing Machine Learning (ML) approaches, such as
fuzzy logic, neural networks, and Principal Component
Analysis (PCA), for effective harmonics estimate with
manageable processing demands, is another option. While
unsupervised machine learning (such as classification and
clustering) gives the trend of occurrence rather than a partic-
ular output, supervised machine learning correlates the input
with the output. TheML approaches can be used to generalize
various power system configurations as well as to enhance
the hyper-parameters of data models and provide an abstract
representation of source data, both of which are required for
the signal processing of harmonic contents in a condensed
subspace.

According to the signal processing of power quality in
the harmonic domain, the origin of harmonics is due to
deviation in waveshape from its fundamental frequency com-
ponent. A novel framework for harmonic estimation and
classification utilizing ML techniques is presented in [81].
The harmonic contents of the voltage and current signals
are initially estimated using a shallow neural network and
fuzzy logic systems. The estimation of harmonic content is
accomplished using the sequence components and Individual
Harmonic Distortion (IHD) level of the source signals. The
explainable convolutional neural network (xCNN) is then
trained for harmonics classification using the outputs from
the neural and fuzzy systems. The standard binary support
vector machine (SVM) is trained for harmonic classification
using the pertained ALEXNET network, which is a com-
ponent of the xCNN. Artificial Neural Network (ANN) is
essential for parameter estimation since it receives input data
and propagates from layer to layer to produce the output. The
weight and bias of every signal originating from the former
layer are combined in each linked neuron. The activation
function and convolution of two signals are used to create the
output, as shown in Fig. 29. The provided ANN is referred to
as a shallow neural network because there is just one hidden
layer in it. Fuzzy logic is created through four fundamental
processes which are declaring the input and output variables,
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selecting the membership function, creating the correspond-
ing rules, and the defuzzification of the result. Fig. 30 depicts
the conceptual diagram of developed fuzzy logic.

FIGURE 29. Shallow neural network [81].

FIGURE 30. Conceptual diagram of fuzzy logic technique [81].

For generation and transmission to operate smoothly and
without interruption, power system operators implement
high Power Quality (PQ) criteria to ensure that harmonics
produced by industrial and commercial customers must be
filtered into an acceptable range. Passive filters have tradi-
tionally been employed to reduce these PQ-related problems.
Therefore, Active power filters (APFs) introduced as an effec-
tive solution for reducing harmonic-related issues and have
become increasingly popular because of their adaptability
and capacity to correct for harmonics, imbalance, and reactive
current. The advantage of active filter over passive is due to
better performance over a wide frequency range.

There are two types of methods for calculating customer
and network harmonic contributions at a point of common
coupling (PCC) which are techniques based on measure-
ments and techniques that use harmonic modelling. Only
the harmonic voltages and currents that have been recorded
are used in the measurement-based approaches. To evalu-
ate harmonic sharing at a PCC, the operators do not need
to measure the load and network impedance. It is worth
noting that the harmonic contributions are computed using
the observed values at a PCC and the network and load
modelling techniques based on harmonic modelling. Norton
and Thevenin equivalent circuits can be used to model the
network and the consumer at each harmonic order. The grid
utility harmonic impedance can be estimated using a variety
of techniques which are based on Intrusive and Non-intrusive
methods. Invasive techniques rely on introducing deliberate

system disturbances and using transient currents and volt-
ages. These techniques provide outcomes with acceptable
precision. However, their employment is restricted due to
the detrimental effects of deliberate disturbances on net-
work performance, short measurement times, the challenges
of implementation, the impossibility of tracing impedance
changes, and the requirement for high-speed acquisition sys-
tems. On the other hand, the grid harmonic impedance at
a PCC can be determined using non-invasive techniques,
without the use of any disturbances, and simply by measuring
harmonic voltage and current changes. The benefits of non-
invasive approaches over invasive methods include simplic-
ity, the possibility to deploy using inexpensive PQ analyzers,
and frequent tracking of the impedance changes. However,
the fundamental drawback of non-invasive approaches is
their susceptibility to background harmonic changes, which
lowers their accuracy, validity, and dependability, especially
for higher-order harmonics. A brand-new, non-intrusive tech-
nique for calculating utility harmonic impedance is proposed
in [82]. Since background harmonic fluctuations are the main
source of uncertainty for non-invasive procedures, appropri-
ately measured samples are chosen using a three-point data
selection methodology to improve the method’s accuracy.
The utility harmonic impedance at PCC is then evaluated
using a novel non-invasive approach based on fuzzy logic.
The constrained recursive least squares algorithm (CRLS) is
modified in the proposed technique by incorporating fuzzy
logic into a collection of fuzzy if-then rules. To estimate the
utility harmonic impedance because of changes in quantities
at PCC, these approaches are utilized to compute the amount
of the CRLS forgetting factor.

When it comes to harmonic/interharmonics estimation,
model-based parametric approaches have numerous benefits
over traditional discrete Fourier transform (DFT)-based pro-
cedures. However, high computational demands limit its use
in offline analysis. The accuracy and computation time for
harmonic/interharmonics optimization of stationary and non-
stationary power supply signals are proposed in [83] using an
estimation of signal parameters adaptable approach based on
the rotational invariance technique (ESPRIT). This technique
determines the model order (the number of sinusoids in the
distorted power supply signal), and then it modifies the auto-
correlation matrix dimension in accordance with the recon-
struction error.Moreover, to significantly reduce computation
time while maintaining accuracy in harmonic estimation of
stationary and nonstationary power signals, Sliding Window
ESPRIT (SWE) method is proposed to estimate the model
order in each data block and then optimizes the dimension of
the autocorrelation matrix (ACM). The proposed technique
also can calculate the actual harmonic and interharmonics
frequencies, amplitudes, and phase angles of stationary and
nonstationary signals.

To give a more precise and robust estimation of har-
monics and interharmonics, [84] provides an approach for
accurate model order estimation (the number of frequency
components), which is employed in the estimation of
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signal parameters via rotational invariance technique
(ESPRIT). The frequency, amplitude, and initial phase angles
of the distorted supply can all be calculated using the sug-
gested approach which first uses the Relative Difference
(RD) plot to determine the number of frequency components
contained in the signal. Additionally, it avoids the need for
very high-order basic component filters and their negative
effects. To identify the frequency components that are present
in the signal, ESPRIT uses an eigenvalue decomposition-
based batch processing approach.

The real-time estimate of moderately time-varying har-
monics of voltage/current signals is presented in [85] as a
quick and precise method. The suggested methodology relies
on the rotational invariance technique (ESPRIT)-assisted
adaptive wavelet neural network signal parameter estimation
(AWNN). The ESPRIT complements the AWNN to handle
time-varying signals more accurately while still providing
rapid estimates of the prominent harmonics. The proposed
method can estimate the main harmonics of the signals pre-
cisely when the time is varying. The suggested technique also
makes use of the idea of learning on the fly to take advantage
of AWNN’s learning capabilities and enhance its perfor-
mance for time-varying inputs. Fig. 31 depicts the proposed
method’s concept. The data acquisition (DAQ) system is used
to acquire the signal, and two parallel processing channels
are used to process it. Process 1 uses the AWNN to esti-
mate harmonics in real-time, whereas Process 2 monitors and
trains the AWNN’s parameters. The set of input-output pairs
necessary for training the parameters cannot be produced
withmerely half-cycle data points; consequently, enough data
points are gathered in the data buffers and examined using the
ESPRIT tool.

FIGURE 31. Conceptual block diagram of the proposed EA-AWNN
method [85].

Using the measurements at other buses and lines, the
HSE techniques can provide the estimation of current and
voltage harmonics from the harmonic sources which are not
monitored. Therefore, the HSE needs to be analyzed and
investigated as a frequency domain concept. It is worth men-
tioning that the traditional signal processing methods e.g.,
ST, FT, and WT can be utilized to transform signals from
the time domain to the frequency domain; however, their
application in HSE issues is limited. In fact, conventional
methods can only be used to identify harmonic content at
buseswhen time domainmeasurements have been performed,
whereas HSE can identify harmonic content at other buses

where no observations have beenmade. Asmentioned before,
due to their capability for learning, researchers have turned
to artificial intelligence technologies for HSE. While the
power system parameters (impedance/admittance model) and
many harmonic monitors are prerequisites for traditional
HSE procedures, by utilizing AI, these needs are minimized.
In [86], the harmonic current RMS values of unmonitored
harmonic sources are estimated using a novel methodology,
based on harmonic voltage RMS magnitudes obtained from
fewer observed buses. The design of the Artificial Neural
Networks (ANNs) is then refined, and harmonic current esti-
mators based on ANNs are then created for each harmonic
order and harmonic source. To further increase estimation
accuracy, a novel Neural Oversampling ConsensusAlgorithm
for Regression (NOCAR) is developed. To create NOCAR,
K-Nearest Neighbor (KNN) and ANN are merged. The
requirement of the network model and harmonic voltage
phase angle is also removed in the proposed technique.

A harmonic impedance estimating technique is proposed
in [87] based on the similarity measure algorithm and order-
ing points to identify the clustering structure (OPTICS). This
method considers the background harmonic voltage fluctu-
ation and utility impedance change. In the beginning, the
PCC measures how comparable harmonic voltage and har-
monic current are, and how the data segment with a stable
background harmonic voltage will be monitored. Then, the
sampled data is sorted into several clusters according to the
utility impedance value using the cluster ordering diagram
obtained using the OPTICS algorithm which is useful for
choosing input parameters. It is worth noting that the har-
monic parameters for the data from various clusters are calcu-
lated using the complex domain robust regression approach.
The overall harmonic contribution is then determined using
the harmonic ratio and a subjective analytic hierarchy proce-
dure after calculating the harmonic voltage and current con-
tributions of each harmonic. Additionally, the harmonic total
contribution can be found. It should be noted that many of the
approaches currently in use for determining utility harmonic
impedance call for the customer side to have a substantially
higher impedance than the utility side. This indicates that
the proposed method is more appropriate in situations when
the impedance values of the utility and customer sides are
identical due to filter and reactive power compensation.

For quick and precise measurement of the fundamental,
harmonics, subharmonics, interharmonics, and decaying DC
components of a distorted current signal with noises, [88]
introduces a novel two-fold ADALINE neural network
technique. For weight vector adjustment, the secondary-
ADALINE uses the least mean square (LMS) method with
a fixed and big step-size. This filter plays a significant
role during the training interval or transients. The primary-
ADALINE, on the other hand, employs a variable step-size
LMS algorithm to provide a modest steady-state error. The
weights of the primary-ADALINE are adjusted in accordance
with the local averages of the squared errors of both ADA-
LINEs calculated at the end of each iteration. It is possible to
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determine the desired frequency component amplitudes and
phases using the weights of primary-ADALINE. By provid-
ing a separate control strategy between the steady-state error
and the pace of convergence, the suggested method increases
convergence speed. In the proposed design, two ADALINE
modules, primary-ADALINE and secondary-ADALINE are
connected in parallel when using the primary-secondary
ADALINE technology. The reference signals are applied to
ADALINE, which is a common parallel input, as well as to
the parallel output, which is the independent collection of
error signals. The fixed step-size LMS algorithm updates the
coefficients of the secondary-ADALINE. A popular option is
to use a big step-size value to simply accelerate convergence.
This filter’s coefficients are quite close to the ideal solution
during training intervals or abrupt parameter changes. The
primary-ADALINE, on the other hand, opts for a time vari-
able step-size LMS algorithm to change the coefficient. The
value of error magnitude drops as the algorithm approaches
the steady state, resulting in a smaller step size.

A novel hybrid Quantum particle swarm optimization and
Least-square (QPSO-LS) method for the real-time estimation
of harmonics in noisy time-varying power data in proposed
in [89]. This method features strong, reliable, and robust
search capabilities as well as effective convergence proper-
ties. This technique is further verified by estimating harmon-
ics of real-time current or voltage waveforms taken from
light-emitting diode (LED) lamps and axial flux permanent
magnet synchronous generators. The contributions of this
study are the creation and initial use of the suggested QPSO-
LS algorithm for the estimation of harmonics, such as the
fundamental, integer- harmonics, interharmonics, and sub-
harmonics of noisy power signals with various dimension-
alities. The estimation of harmonic parameters is also used to
assess the algorithm performance using real-time data from
an axial flux permanent magnet generator (AFPMG) set-up
and a LED lamp.

A different approach using the neural network technique
has shown acceptable results for fast and accurate harmonic
detection in noisy situations by feeding the neural network
only 1/2 cycle sampled values of distorted waveforms is pre-
sented in [90], precise analyses are carried out to identify the
critical elements influencing the performance effectiveness of
the suggested model to achieve the lowest errors of testing
patterns. Additionally, a functional neural network model has
been created for identifying harmonics in waveforms that
have been distorted by power lines. The network was trained
using several hundred altered current waveforms, including
noise examples. 1400 patterns with up to the eleventh har-
monic were tested on the trained ANN model.

According to their source, harmonics in a power system
can either be load harmonics or supply harmonics. The har-
monic current circulating in the network is also influenced
by the source impedance. As a result, the harmonic spectrum
of the current reflects any change in the source impedance.
Using real-world field data, [91] suggests a novel approach

based onANN to isolate and assess the influence of the source
impedance change without interfering with the functioning of
any load. The current for this study has a substantial number
of triple harmonics. The suggested algorithm is also used to
analyze the acquired data and estimate the contribution of
real load harmonics at the costumer side. Based on field data
acquired at a substation in Georgia, USA, this study discusses
the problems associated with a utility changing its source
impedance and how this affects the power system network
harmonics. The test location selected is mostly a feeder for
homes. Additionally, this study shows how to use neural
networks to estimate a customer’s actual harmonic current
distortion under a certain resonance state in the distribution
system.

Because they are typically the most significant ones, mon-
itoring certain low-order harmonics in the power supply is
more crucial than monitoring the entire spectrum. A method
for dominating low-order harmonic estimation that is based
on an adaptive wavelet neural network (AWNN) is pro-
posed in [92]. In contrast to existing estimating techniques,
which require data from at least one entire cycle, the sug-
gested method only needs half a cycle of data points as
inputs. The training method for the network parameters is a
straightforward, quickly convergent, and dependable learning
technique based on back propagation. The proposed AWNN
method offers improved adaptability with a total of five free
parameters, including input-to-output layer weights, hidden-
to-output layer weights, bias, translation, and dilation. The
AWNN also provides superior harmonic estimations since
it uses wavelet coefficients rather than the radial distances
utilized in the radial basis function neural network (RBFNN).
Because wavelets are localized functions, the proposed work
initializes the wavelet parameters using a rapid heuristic ini-
tialization approach, which not only shortens training time
but also increases accuracy.

Aswe know, the power quality of modern electric networks
is deteriorated due to the use of non-linear loads. When the
current is not sinusoidal, it is no longer possible to calculate
AC loss with the usual accuracy. On the other hand, precise
calculation and prediction of the heat load generated by AC
loss during the design stage are essential for the effectiveness
of the cooling devices for high-power equipment. Designers
of large-scale superconducting devices would therefore be
very interested in the estimation of non-sinusoidal AC loss
in high temperature superconducting (HTS) material. The
research in [93] uses AI to predict non-sinusoidal AC loss in
HTS tapes. To provide sufficient data for AI models, a 2D FE
model is proposed in COMSOLMultiphysics to compute the
AC loss of a typical HTS tape under current harmonics, with
varying amplitude, phase angles, and harmonic contents. Sec-
ond, an ANNmodel is utilized to estimate the non-sinusoidal
AC loss for various harmonics to reduce the complexity of
having a harmonic order dependent FE model for AC loss
under non-sinusoidal current as well as the lengthy calcula-
tion time of the FE model.
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A recurrent neural network (RNNs) with backpropagation
training makes it possible to distinguish between load har-
monics and supply harmonics [94]. The benefit of thismethod
is that only voltage and current waveforms need to be mea-
sured. This study is also helpful in evaluating which side of
a network (utility or customer) contributes more to harmonic
pollution. This research offers a novel method based on RNN
to determine the true harmonic current of a nonlinear load.
The approach outlined in this paper calculates the real har-
monic current distortion that a load is responsible for. Fig. 32
shows a single-line diagram of a three-phase supply network
with numerous loads, one of which is nonlinear, coupled to
a PCC, a sinusoidal voltage source (Vs), network impedance
(Ls), and Rs. The network receives a distorted three-phase
line current (iabc) from the nonlinear load. To recognize the
load’s nonlinear features, the identification neural network
(RNN1) is trained. If the load could be isolated and sup-
plied from a pure sine supply, the estimating neural network
(RNN2) predicts the distorted true harmonic current (iabc)
that would be injected by the load into the network. RNN2 is
a structurally identical copy of the trained RNN1. It is entirely
possible for RNN1 to perform the duties of RNN2 but doing
so would interfere with RNN1 ongoing online training while
it is estimated.

FIGURE 32. The technique proposed in [94] for estimating the true
harmonic distortion.

In the underdetermined measurement system, a unique
technique for estimating multi-harmonic sources has been
studied in [95]. According to the suggested technique, the
concept of measuring harmonics can be theoretically charac-
terized as underdetermined matrix equations, which have an
infinite number of solutions relating to all potential locations
and current pollutions of the main harmonic sources. As a
result of the nearly zero harmonic current emissions from
non-harmonic source buses, the real number, locations, and
current pollutions of harmonic sources are determined by
fitting the harmonic current emissions of all potential non-
harmonic source buses and selecting the case with the lowest
fitting residual. To solve the minimal fitting residual of the
estimated harmonic current pollutions from non-harmonic
source buses, the suggested technique first finds the

coefficient of a homogeneous solution for each feasible com-
bination of suspicious harmonic sources by using a genetic
algorithm. Therefore, all harmonic sources may be identified
and estimated by comparing each minimal fitting residual.

VI. CONCLUSION
This paper presented a comprehensive review of harmonic
estimation techniques based on traditional and Artificial
Intelligence in power system networks. Harmonic mitigation
techniques at the unit level and system level are investi-
gated and different IEC and IEEE standards are studied.
Although it is important to mitigate or suppress harmonic
emissions in power systems, it is more crucial to esti-
mate and predict the harmonic levels. In this case, different
conventional harmonic estimation techniques are thoroughly
studied. According to the review section, the conventional
harmonic estimation techniques have been vastly utilized due
to their association with harmonic analysis; however, they
lack fast response, and accuracy, and have limited appli-
cation and dependency. Therefore, Artificial Intelligence-
based estimation techniques are developed as smart, efficient,
and accurate alternatives due to their capability for learning,
predicting, and identifying. Different Artificial Intelligence-
based techniques for harmonic estimation in power networks
are reviewed, which are mainly focused on machine learning,
neural network, fuzzy logic, genetic algorithm, etc.
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