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ABSTRACT Surveillance system is acquiring an ample interest in the field of computer vision. Existing
surveillance system usually relies on optical or wearable sensors for indoor and outdoor activities. These
sensors give reasonable performance in a simulation environment. However, when used under realistic
settings, they could cause a large number of false alarms. Moreover, in a real-world scenario, positioning a
depth camera at too great a distance from the subject could compromise image quality and result in the loss
of depth information. Furthermore, depth information in RGB images may be lost when converting a 3D
image to a 2D image. Therefore, extensive surveillance system research is moving on fused sensors, which
has greatly improved action recognition performance. By taking into account the concept of fused sensors,
this paper proposed a novel idea of a modified K-Ary entropy classifier algorithm to map the arbitrary size
of vectors to a fixed-size subtree pattern for graph classification and to solve complex feature selection and
classification problems using RGB-D data. The main aim of this paper is to increase the space between the
intra-substructure nodes of a tree through entropy accumulation. Hence, the likelihood of classifying the
minority class as belonging to the majority class has been reduced. The working of the proposed model has
been described as follows: First, the depth and RGB images from three benchmark datasets have been taken
as the input for the model. Then, using 2.5D cloud point modeling and ridge extraction, full-body features,
and point-based features have been retrieved. Finally, for the efficacy of the surveillance system, a modified
K-Ary entropy accumulation classifier is optimized by the probability-based incremental learning (PBIL)
algorithm has been used. In both qualitative and quantitative experimental results, the testing results have
shown 95.05%, 95.56%, and 95.08% performance over SYSU-ACTION, PRECIS HAR, and Northwestern-
UCLA (N-UCLA) datasets. The proposed system could apply to various real-world emerging applications
like human target tracking, security-critical human event detection, perimeter security, internet security,
public safety etc.

INDEX TERMS 2.5D cloud point, full body features, point-based features, probability-based incremental
learning, RGB-D, K-Ary entropy accumulation.

I. INTRODUCTION
Human action recognition is a promising research field in
The associate editor coordinating the review of this manuscript and the areas of mobile computing, context-aware computing,
approving it for publication was Xianzhi Wang . ambient assistive living, pervasive computing, and security
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surveillance system [1]. Due to the intense requirements
from the current technological progress and demands, it has
recently attracted increasing attention in the latest technol-
ogy development [2]. Sensor technologies have progressed
significantly during the past decade and is actively explored
in accurately recognizing activities, health status, and human
behavior. Hence, these sensors may be just as capable of
enhancing our quality of life as other common electronic
gadgets like personal computers, smart phones, etc [3].

The aim of HAR is to collect and analyse data from
various monitoring tools, such as sensors. The significant
amount of time is needed to manually examine the visual
data of different monitoring devices. Hence, in the modern
era of computer vision, it is essential to use techniques to
automate the visual semantics process of human activities
[4]. The certain challenging factors such as, occlusion and
unstable variation in shape and size of subject decrease the
efficiency of action recognition task [5]. Moreover, human
actions recorded with a various sensors, including depth sen-
sors, smartphone sensors, RGB sensors, and others, to per-
form HAR are usually sensitive to changes in lighting and
background clutter. Furthermore, it is impractical to use many
cameras to achieve HAR [6]. Thus, with the recent advance-
ment in vision-based technology, depth-based sensors, such
as low-cost Kinect, have improved a lot in efficiency and
quality. Also, the depth-based sensors have an advantage
over RGB in that they can record data even in low-light
conditions, and the data is also resistant to changes in color
and texture [7]. Therefore in this paper depth-based sensors
have been considered to achieve human activity recognition.
There are numerous methods for determining view-invariant
human behavior. One method is to use a multi-camera system
to record human activity and then extract 3D features. Yet
numerous 3D HAR modelling examples [8], [9], and [10]
heightened the complexity of the recognition method. The
second method involves applying the view transformation
model (VTM) to the same views to transform features from
different views [11]. VIM requires multi-view images in
order to be generated, despite the fact that it has the advantage
of multi-view recognition over multi-camera systems [12].
The third strategy is to combine the multi-view data obtained
from several cameras using a multi-view fusion classification
algorithm [13]. Unfortunately, the approach performs badly
when views are drastically altered or self-occlusion occurs
because it cannot be adequately represented [14]. Moreover,
they have high computing costs or produce low-resolution
bounding boxes, limiting their utility in situations where
detail is required [15], [16], [17], [18], [19], [20], [21], [22].
Additionally, small spaces and 2D mapping approaches usu-
ally scale poorly to the human silhouette features extraction
method [23].

To address the aforementioned issues, a 2.5D cloud point
system is suggested in this paper, to create a 2D map using
a static point cloud. Then 3D dynamic objects are supple-
mented on the map, resulting in a 2.5D map. Moreover,
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full body features and point-based body features enhance
the efficiency of HAR. Furthermore, a novel K-Ary entropy
accumulation optimized by probability-based incremental
learning (PBIL) algorithm has been proposed to improve the
recognition results of HAR.

In three datasets, we found that our method outperformed
existing state-of-the-art methods in terms of recognition rates.
This work’s main contribution can be summarized as follows.

o The ground plane and the concept of voxel density are
incorporated into an action recognition model for 2.5D
to 2D mapping from 3D data input.

« We have looked into full body features and point-based
body features for estimating numerous human silhouette
areas, which is a critical challenge in a variety of real-
world applications. The total accuracy of action iden-
tification was enhanced because of our precise feature
extraction algorithms.

« By using the K-Ary entropy accumulation classifier,
a novel technique has enhanced recognition accuracy.
Additionally, a probability-based incremental learning
classifier has produced optimal outcomes as an action
recognition estimator.

THE LIST OF ACRONYMS AND SYMBOLS

Acronyms and Symbols Abbreviation

RGB Red Green Blue.

RGB-D Red Green Blue Depth.

PBIL Probability Based Incremental
Learning.

VTM View Transformation Model.

CNN Convolutional Neural Network.

RNN Recurrent Neural Network.

LSTM Long Short-Term Memory.

2D 2 Dimensional.

2.5D 2.5 Dimensional.

3D 3 Dimensional.

BiLSTM Bidirectional LSTM.

BGS Background subtraction.

MRF Markov Random Field.

KATH K-Ary Tree Hashing Classifier.

KEC K-Ary Entropy Classifier.

LOSO Leave One Subject Out.

N-UCLA Northwestern-UCLA.

HSV Hue Saturation Value.

GHz Giga Hertz.

GB Giga Bytes.

RAM Random Access Memory.

1 Original value of Image.

Lnin Minimum value of pixel.

Lnax Maximum value of pixels.

OMEZ g rger Difference of upper and
lower bound.

X x-axis coordinate.

y y-axis coordinate.

z z-axis coordinate.
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Acronyms and Symbols Abbreviation

d Depth value of image.

& Threshold.

co, C1 Parameters of model.

ugp, Vo Shifted parameters.

dis Distortion function.

P Point Cloud Data.

H Hausdorff distance.

Riuta Ridge Data.

dt Determine.

S Human Skeleton.

dp Depth pixel.

K Number of nearest neighbors.

f Frame.

dp Depth Pixel.

R Relation between nodes.

S Set of nodes.

N Number of nodes.

D Degree of relation between
nodes.

A Image Region.

u, v,z Vectors.

P Point features.

s Search rate.

l Learning rate.

p Population size.

C Chromosomes.

v Data Vector.

d Euclidean Distance.

X1, X2, , Xn vectors.

HW Hamming weight.

a Entropy Constant.

pdf Probability density function.

k Dimension vector space.

Xi Subtree patterns of K-Ary.

pth P! number of Subtree
Patterns.

Wip, Wip Weight of Subtree Patterns.

The remainder of the paper is organized in the following
manner. The related work on action recognition using fused
sensors for surveillance systems is reviewed in Section II. The
process for developing the system is presented in Section III.
Experimental data are given and examined in Section IV to
provide additional insight into the current action recognition
dilemma. Finally, in Section V, a conclusion is given, as well
as recommendations for further work.

Il. RELATED WORKS

The scientific literature now offers several effective but still
constrained gait recognition techniques for optical sensors
like RGB and RGB-D images. Even though the field of
human activity recognition has been researched for more than
40 years [51], there is still a need for improvement. The
following ongoing gait recognition research challenges have
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been listed in [52]: Inadequate training datasets, unequal pre-
dictability of frames, cluttered background, the performance
of similar action in several different manners known as intra-
class variation, and different activities are much alike known
as inter-class variation.

A. ACTION RECOGNITION WITH RGB SENSORS

Archana and Hareesh [24] propose a real-time surveillance
system based on the RGB dataset. The model has been imple-
mented on 3D CNN and ResNetl8 without using LSTM
based attention model. Their model comprises three con-
volutional layers connected to a pre-initialized layer with a
hard-coded kernel, two subsampling layers, and a fully con-
nected layer that assigns network outputs to their respective
activity classes. The main drawback of this system is that
it requires a large dataset to avoid the overfitting issue in
the training model. Lee and Ahn [25] suggested a real-time
model for the classification of human actions using a single
RGB camera. The CNN has been used as a classifier which
is further integrated into the NVIDIA JETSON XAVIER
mobile robot embedded board respectively. The model has
been implemented on two open-source libraries, including
3D-baseline and OpenPose. The model has achieved 70%
accuracy on the NTU-RGBD dataset. The complete pro-
cess has taken 15 frames per second olver the embedded
platform in a real-time system. Crasto et al. [26] train the
action recognition-based RGB stream, the output of the
3D CNN model using a linear combination of standard
cross-entropy loss and feature-based loss that influence the
motion and appearance, as well as minimize the feature-based
loss. The author named the output-trained stream as Motion-
Augmented RGB Stream. The model has given an average
accuracy of 72.0% on UCF101-1, Kinetics400, Something-
Somethingvl, and HMDB51-1 datasets respectively. The
model had notable performance of distinct actions, while
its performance degraded when the actions were similar to
sitting and standing actions. Nasir et al. [27] proposed a
machine-learning technique to classify video data. The videos
have been first pre-processed by extracting the segment of
interests. Later on, feature descriptor mining was done using
four different features including 3D Cartesian-plane Fea-
tures, Geodesic Distance, n-way Point Trajectory Genera-
tion, and Joints MOCAP. Finally, a neuro-fuzzy classifier
has been used to classify the data into different actions.
The proposed model has been evaluated on Hollywood2
and HMDB-51 and has achieved an accuracy of 91.99%
and 82.55% respectively. Jalal et al. [28] proposed an event
detection model. The author has designed a pseudo-2D stick
model based on extracting of full-body human silhouette
features, followed by optimization and hierarchical classi-
fication. The sine, energy, and 3D Cartesian gradient fea-
tures have been used for the feature extraction mechanism.
The ray optimization and K-Ary tree hashing classifier have
given an optimal performance of 90.48% over the UCF50
dataset.
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B. ACTION RECOGNITION WITH DEPTH SENSORS

Popescu et al. [29] proposed human activity recognition
model based on depth data as input to the system. The chan-
nel, temporal, and context information of the RGB-D data has
been captured using a temporal fusion mechanism to mutu-
ally combined the input data. Finally, CNN has been applied
to the resultant data to get the data’s maximum likelihood
score and classify the human activities accordingly. The sys-
tem has achieved an accuracy of 94.38% on the PRECIS HAR
benchmark dataset. Ke et al. [30] proposed temporal and
spatial structural information for the feature extraction mech-
anism on depth data. The extracted features have been then
fed into a multitasking convolutional neural network to learn
the action recognition. The proposed model has been exten-
sively tested on the Northwestern-UCLA dataset and has
achieved an accuracy of 86.82%. Wang et al. [31] propose a
student-teacher learning model based on a one-layer bidirec-
tional LSTM (BiLSTM) to predict activity at the early stage
of action. The BiLSTM model has a forward and backward
layer and receives information from history to obtain latent
features. The author has trained the model on RGB-D datasets
of NTU RGB-D, SYSU-ACTION, and UCF-101 datasets and
has achieved an accuracy of 60.97, 75.35, and 89.64 percent.
The model has achieved progress by minimizing the global
distribution of knowledge between student-teacher models.
The main limitation of this model include that this model has
gotten slower due to spatial-temporal features and therefore
it has taken a large computation time for the training data
also degraded the performance of the overall model. Zhang
et al. [32] proposed an adaptive neural network built on a con-
volutional neural recurrent neural network (RNN), network
(CNN), and long short-term memory (LSTM). This model
worked by learning an adaptive technique in each network,
followed by the prediction of important observation view-
points, and performing the transformation for the classifica-
tion of human activity. Moreover, the networks were fused
to eliminate the overfitting problem in the training data.The
proposed model has trained over the Northwester UCLA
dataset and SYSU-ACTION datasets and has achieved an
accuracy of 85.1% and 86.6% respectively. Although the deep
fused neural network approach achieved better performance,
the main drawback of this method is that it has just used the
last layer’s calculation is lost, along with a great deal of rele-
vant data that the middle layer collected. Hence, it degraded
the performance of the overall modal. Khalid et al. [15]
proposed a semantic recognition system based on RGB-D
images. The system has been composed of filtration, feature
extraction, feature selection, and classification. The bilateral
filtering has been used as a pre-processing mechanism on
RGB-D datasets. Secondly, five feature extraction technique
has been applied to the filtered data including Euclidean
Distance Transform, Gaussian Mixture Model, Conditional
Random Field, Fidual point, and 3D cloud point. Finally,
Fisher’s Linear Discriminant Analysis along with the K-ary
tree hashing classifier has been applied for human action
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recognition. The proposed model has been validated over
SYSU-Action dataset with an accuracy of 93.5%.

1ll. PROPOSED MODEL

The system’s operation is detailed in this section. Background
subtraction, feature extraction, feature selection (optimiza-
tion), and classification are all parts of the system’s operation.
Each of the subsections listed above has been detailed in
detail below. Fig. 1 depicts the overall system’s workflow.
The output of each area is depicted in the other figures.
The data pre-processing is to obtain realistic silhouettes of
human posture. The feature selection and feature extraction
approaches minimize the dimensionality of feature space
by removing irrelevant features from the extracted silhou-
ette. Finally, classification has been done to sort data into
groups based on similarities in their features, as shown in
Fig. 1. The Fig. 1 depicts the overall system’s workflow.
The depth (RGB-D) images have been used as input to
the pre-processing stage. In pre-processing step, silhouette
extraction has been obtained using substitution and scaling
operation. The resultant silhouette has been then used to
extract full body features (ridge features, Markov random
field (MRF)), and 2.5D cloud point features. The 2.5D cloud
point features have been then used to extract point based fea-
tures (spatial-temporal features, angular geometric features,
and orientation based features). Later on, full body features
and point-based body features have been taken as input to
probability-based incremental learning. The optimized fea-
tures have been finally fed as input to the novel K-Ary
Entropy Accumulation classifier.

A. SILHOUETTE EXTRACTION

Background subtraction (BGS) is a critical step in a surveil-
lance system. Many BGS methods have previously been
provided, such as temporal medians of previous n frames
[33], statistical approaches [34], self-organizing maps [35],
[36], [37], and numerous features-based methods [38], [39],
[40]. These BGS systems, however, have certain fundamental
limitations because they used color spaces based on human
perception (i.e., visible light), such as RGB, HSV, and YUYV,
where Y and UV denote brightness and chrominance, respec-
tively [41], [42], [43], [44]. In general, those strategies are
ineffective in color camouflage settings and are very sensitive
to changes in lighting [45].

Here, preprocessing step has been accumulated through
substitution operation [46] and scaling operation. The depth
Kinect camera, is usually unable to acquire complete infor-
mation on the depth pixels either due to occlusion or
light-defusing obstacles [47]. Therefore, it has been interpo-
lated using substitution operation. For each pixel in the depth
image, the left and right neighboring pixels of the missing
depth pixel has been searched. The missing pixel has been
replaced with the larger of the two valid neighboring depth
pixels [48].
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FIGURE 1. Block diagram of the proposed system based on RGB-D data for action recognition.

In the scaling operation as described in equation (1),
the depth image has been linearly scaled within the range
of 0 to 255;

I -1,
I'= Lo _W:u‘n OMmegaygrger + Ir/m'n 6]
where I refers to the original value and I’ are the rescaled
values of the depth image. The I, and [,,,, depicts mini-
mum and maximum values of pixels before scaling. The I,
depicts the lower bound of the depth image which has been
set to 0. omega,,,,, is the difference between the upper and
lower bound which is set to 25. Lastly, depth silhouette has
been mapped to RGB images using an affine transformation
to obtain silhouettes from RGB frames. The final results of

pre-processing have been depicted in Fig. 2.

FIGURE 2. Silhouette extraction results of drink tea and sit-down
activities of the PRECIS HAR dataset.

B. 2.5D CLOUD POINT MODELING

The streamlined depiction of a 3D surface exists in 2.5D data.
The RGB image pixels (x,y) of a point on the body surface are
separated by a depth value, called d(x,y), in 2.5D data [49].
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As aresult, Kinect 2.5D is a good compromise between depth
and RGB images. These elements can be combined to define
the geometry of a single object or the entire scene. The x, y,
and z coordinates of each point in the point cloud indicate
where the point is physically located in 3D [50].

In this paper, a 2.5D point cloud model for a specific set
of data was created using 2D data from the depth image and
3D data from the RGB image by computing all the 3D points
from the measurements (x, y, d) in the depth image.

The depth image has been used to derive the first gait
silhouettes. Then, 3D point cloud data were calculated using
the gait silhouette and RGB image using equation (2).

X 1 X+ ug
Y =Tdis_l K ' y+w | k] @
Z cid T+ co 1

All of the gait point cloud data was normalized to 3D space
before being used to build the 3D point cloud gait model for
a specific viewpoint. Only one side surface area of the human
body, known as a 2.5D point cloud model, is included in the
gait point cloud data as shown in Fig. 3.

Given the size of the resulting point cloud data, Haus-
dorff distance [51] was used to further simplify it. The
association between point cloud data P and its K near-
est neighbors has been determined using the bounding box

(Kl Kfyand [K2. K2].
3)

H = maxi=1 omini=1 »
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For P, the Hausdorff distance is given by H” = max(H2),
0 =1,2,...k.Inorder to exclude the point cloud data that is
less significant, a threshold ¢ has been chosen by computing
the Hausdorff distance of each point inside the bounding box.
The effectiveness of the simplification and the computing
cost of the method are directly impacted by the threshold
selection. A larger ¢ lowered the computing cost but had a
lower degree of simplification, whereas a smaller € had the
reverse effect [52].

Before simplification, there are 25,862 point clouds in the
output of the raw gait point cloud data. However, following
simplification, the results can be seen in point cloud data with
13,286, 8,392, 6,381, 4,592, and 2,392 points, respectively
[53]. The computations took 518, 432, 327, 273, and 228 ms
to complete, respectively. We determined ¢ = 10™* with a
mean computation time and sufficient simplification based on
the experiment results [54]. The final 2.5D cloud pint findings
are shown in Fig. 3.

FIGURE 3. The results of 2.5D modeling over the PRECIS HAR dataset.

C. SKELETON MODELING

Identifying key points of the human body have been initial-
ized with the torso point. The torso point is the center point
of the human body, and lead the main role in the outer shape
estimation of human body pixels Sy [55]. The torso point
has been calculated by taking the frame difference of video
frames that have been formulated in equation (4).

-1 —1
Sh =87+ As) (4)

where, S{p depicts the location of torso points #p on the human
silhouette in video per frame f. Second, the human knee point
has been calculated by taking the leg’s middle point which is
the center point between the hip and foot points [56]. The
human knee point has been depicted in equation (5).

sk = (sl +asl,) 2 (5)

where, ka, Sﬁ;, ASJ:h depicts human knee, foot, and hip points
respectively. Third, the elbow point in a human silhouette has
been calculated by taking the center of shoulder and hand
points [57]. The elbow point on a human’s arm has been
depicted in equation (6).
Ste= (s

shn

+a8),) /2 ©6)

where, S{e, S{hn, AS{M depicts human elbow, hand, and

shoulder points respectively. The fifteen key point’s detection
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of the human body has been depicted in Fig. 4 and has been
completely elaborated in Algorithm 1.

FIGURE 4. Examples of silhouette extraction process output over the
SYSUACTION dataset.

Algorithm 1 Key Body Points of Human Silhouette

Input: H_sil: human silhouette, H_sh; human shape,,
H = height,, W = width, L = left, R = right
Output: 15 key points detection: I_hd = head,
I nk = neck, [_shrl,I_shr2 =  shoulders,
I _elbl,] _elb2 = elbows, [_hndl,I_hnd2 = hands,
I_md = mid, I_hipl, I_hip2 = hips,
I_knel, I_kne2 = knees, and I _fet1, [_fet2 = feet.
do
1. I_hd = Get_head_point(search(H _sil))
2. I_nk = Head_end_point(/_hd)
3. I_md = mid (H, W)/2
4. [I_hip1, I_hip2] = search([/_md] && [L, R])
5. [I_fetl, I_fet2] = Get_bottom_point(H_sh)
6. [I_knel, I_kne2] = mid([I_md], [I_fet1,I_fet2])
7. U_shrl,I_shr2] = search([/_hd,I_nk] && [L, R])
8. [I_hnd1,I_hnd2] = search([I_nk]&& [L, R])
9. [[_elbl,I_elb2] = search([I_hndl,1_hnd2] &&
[I_shrl,I_shr2])
end
While(largest region of H _sil found)
returnl5 key body points: /_hd, I_nk, [_md,
I_hipl,I_hip2, I_fetl,I_fet2,I_knel, I_kne2,
I_shrl,I_shr2,I_hndl,I_hnd2,I_elbl,I_elb2

D. FEATURES EXTRACTION

In this section, key attributes from full-body features and
point-based features have been figured out from the extracted
silhouette. The full body features such as ridge and Markov
random field (MRF) have been used to robustly and effi-
ciently analyze the key features of full body silhouette
due to their selective representation of the body skele-
ton [58]. While, point-based features, spatial-temporal fea-
tures, angular geometric features, and oriented-based features
have been formulated [59]. The full body features and
point-based features then later fed into population-based
incremental learning (PBIL) and self-annotated K-Ary
entropy classifier. The proposed model has given sig-
nificant performance over the existing state-of-the-art
models.
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1) RIDGE

The features of ridge body components are ridge data for fea-
ture extraction and binary edge extraction. We have employed
depth silhouettes to extract features from binary edges during
binary edge extraction. These edges have undergone the dis-
tance transform processing to produce distance maps. In spite
of the fact that these maps have been calculated to discover
local maximal that offer one or more ridge data inside of
binary edges for ridge data production. [61].

In order to quantify the local statistical values of the
intensities of depth silhouettes’ nearest neighbors, window
searching has been employed to extract the binary edge data
around those objects. Hence, an enclosed body structure and
a sufficient edge connection are produced. The binary edge
extraction has been depicted as;

Bedge (dt) = {dp, € di|3dp;, |dp; — dp,| > &},
dpi € {dpcfl > dpc+l > dpcfwv dpc+w} @)

where the center depth pixel dp. has been evaluated for
intensity by comparing it to its corresponding adjacent pixels
dp;. The distance transform, which produces distance maps,
also processes binary edges further.

Second, distance maps have been employed in the produc-
tion of ridge data Ry, (dt) to calculate the local maximum
of the related edges and provide ridge data, a chain of pixels
[62]. Such ridge data have been surrounded by binary edges
that mimic the human body’s skeleton.

< 5R] ®)

> Du(dp))
(n)(Dum(dp,))

where Dy is the distance map values, which compare the
values of the center pixels to those of the surrounding pixels.
The diagrammatic form of the distance map-based binary
edge silhouettes and ridge data is shown in Fig. 5. Such
ridge data might reflect the skeleton’s position and remove
the acoustically noisy edge data.

Riura (dt) = idpc e dt

FIGURE 5. Examples of ridge extraction results over the
Northwestern-UCLA dataset.

2) MARKOV RANDOM FIELD

The pixels with the same color are usually classified as a
single region A;, belongs to the same class, even if they
are not connected. Therefore to maintain consistency the
over-segmented regions have been merged into the meaning-
ful region using Markov random field (MRF) [63] as shown in
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Fig. 6. MRF labels the connected components for establishing
the probabilistic distribution of interacting features that has
been depicted as;

R=(S,N,D) 9

where R depicts the relational structure of a set of nodes
represented as S, neighborhood nodes are represented as N,
and D depicts the degree of relationship. In this paper, D =3
has been depicted in Algorithm 2.

Algorithm 2 MRF Extraction of Human Silhouette
Input: A = 2.5D cloud points, Z = {natural numbers}
Output: MRF features detection
do

. Unary features = single region
. Region label = [(4)) € Z
. Region size « (Aj) = |Aj], pixels in 4;
. Color = H, S, V components of particular region
. Centroid = M, median point of region
. Border pixel set: ¢(A;) {8 adjacently connected pixels
correspond to contour of particular region}
7. Binary features: two adjacent regions
o List of regions L(A))
o Ajis adjacent to Ay
« Border ratio of A; adjacent to Ak
8. Tertiary features: adjacently Eon(ne%ed three regions
N 1 A;eL(L(4))).,j#i
cT() = [0 otherwise

AN B W =

end
While (MRF features extraction)
return MRF features

FIGURE 6. MRF results over the benchmark dataset of SYSU-ACTION
dataset.

3) ORIENTED-BASED FEATURES

The movement of hands always formed a certain angle
against the body [64]. The symmetry principle has been
kept in mind while measuring the angle of hands against
the upper, lower, and middle body points. The upper body
key points include head I_hd, neck I_nk, and shoul-
ders [I_shrl,I_shr2]. The center body points include
mid-body points I_md, and hips points [/_hipl,I_hip2].
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The angle formation of hands against the lower body points
includes hips [/_hip1, I_hip2], knee [I_knel, I_kne2], and
feet [I_fet1,I_fet2]. These angles have shown as fulfilling
the decision criteria for the particular action at the specified
time within every fifteen adjacent consecutive frames, the
time interval is 0.5 seconds. The six activities have been
selected that form an angle against the upper half of the
body includes drinking, eating, making a phone call, taking
off the jacket, putting on the jacket, and wearing contact
lenses. The angle formation of hands against the center body
point has been measured by using a remote, entering the
room, exiting the room, getting up, sitting down, standing up,
writing on the whiteboard, stirring, relaxing on the couch, and
talking on the couch. The angle formation of hands against the
lower body points that include hips [/_hipl, I_hip2], knee
[I_knel, I_kne2], and feet [I_fet1,I_fet2] has formed the
most important element of determining the two crucial activi-
ties i.e., mop the floor and go to bed; within the selected three
benchmark datasets. In Fig. 7, the angle detection procedure
[65] is shown. Moreover, the formation of the angle A in
coordinates of hands (wy, w;) against the upper, lower, and
middle body points (z;, z2) at time ¢ has been expressed as;

w1 — 21

A1(t) = tan (10)

w2 —22

where, A; depicts the angle formation of hands against the
upper body point.

(::r :1)

Loz

)
P ;
*% (w,.wz) t

FIGURE 7. The results of angle orientation of the body over
Northwestern-UCLA dataset.

» (zi.25) (wy,w)

“ (wyow2)

4) ANGULAR-GEOMETRIC FEATURES

The angular-geometric features measure changes in angular
values of key points within the consecutive frames [66].
To extract angular-geometric features in this paper, seven
extreme body points have been selected that include: the
head, shoulders, arms, and feet. Then, three inter-silhouette
geometric shapes (pentagon, quadrilateral, and triangle) have
been created by connecting these extreme points. Fig. 8 shows
the formation of different geometric shapes by connecting the
key points of human silhouette. The inverse cosine of each
body has been measured after the development of geometric
shapes, and it has been depicted as;

-1 Xy
x| Iyl

1)

6; = cos
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where, x and y vectors have been used to measure the
shape area of inter-silhouette triangles. The area of the
inter-silhouette triangle has been calculated as;

G = /P(P — u)(P —v)(P — 2) (12)

where, u, v, and z vectors have been used to measure the area
of the inter-silhouette triangles. The area of inter-silhouette
triangle has been calculated as;

FIGURE 8. The results of triangle shapes results on the silhouette over
SYSUACTION dataset.

FIGURE 9. The results of quadrangular shapes of the silhouette over
PRECIS HAR dataset.

FIGURE 10. The pentagon detection results of the silhouette body over
Northwestern-UCLA dataset.

5) CURVE POINTS DETECTION FEATURES

The 8 Freeman chain code algorithm has been used to mea-
sure the curve points along the silhouette and determine the
change in intensity along the body’s curve points [67]. The
curve points along the boundary of the silhouette has been
depicted as;

Pn:{PO’Plv"'3Pn} (13)

58585



IEEE Access

M. Batool et al.: Depth Sensors-Based Action Recognition Using a Modified K-Ary Entropy Classifier

The P has been taken as the initial point of the features and
move in a clockwise direction along the boundary until there
is a change in direction denoted by P;. The curve points along
the boundary has been calculated as a feature f (see Fig. 11).
In this way, all the features of the human silhouette has been
calculated.

FIGURE 11. The curve point’s detection over PRECIS HAR dataset. The
blue arrow depicts boundary and orange dots depicts features f.

E. POPULATION-BASED INCREMENTAL LEARNING (PBIIL)
OPTIMIZATION

The PBIL algorithm is a stochastic guided search method
that gets its direction of the next solution from the prior
best solutions. Three parameters of the PBIL that have been
used include search rate (s), learning rate (/), and population
size (p) [68]. The PBIL gave best performance and ends
automatically as the process converges on a single solution
unlike other stochastic optimization algorithms. The parame-
ters are represented as a binary chromosome with b bits of
total length. Each variable is encoded in binary form, and
any earlier arguments are concatenated to create a single
chromosome. A population of chromosomes’ bit generation
is biased using a prototype vector (P). For each bit location,
there are b elements in the prototype vector. The prototype
vector stores the likelihood that the associated bitis a 1 at each
position [69]. In order to generate unbiased bits, each location
is initially set to 0.5. The prototype vector is used to bias the
production of bits and create a population of potential solu-
tions. The bits are chosen for each chromosome in the popula-
tion by producing a uniformly distributed random number for
each bit in the range [0, 1]. If the random number is lower than
the matching prototype vector element, the chromosomal bit
is set to one; if not, it is set to zero. The best chromosomes
are then determined after all of them have been evaluated by
the objective function. Then, to incorporate the directionality
of the best chromosome, the following equations have been
applied to the prototype vector. The PBIL has been elaborated
as;

Piri=((1=DP,+1.Cp)(1—f) +§(1) (14)
. 2sl I
f_1—2s(1—l) s

where [ is the learning rate and s is the searching rate. Cp
is the best chromosome and comprises a pattern of ones and
ZEeros.
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The PBIL optimization use static approach and tweak its
parameters iteratively to minimize a given function to its local
minimum. The probability vector is initialized to 0.5 and is
updated gradually until the solution converge towards O as
shown in Fig 12 a, b, and c.

SYSU-ACTION Optimized Data

<10

Z-axis

20

10 0
y-axis
(a)
PRECIS HAR Optimized Data
x104

z-axis

y-axis

(b)
Northwestern-UCLA Optimized Data

z-axis

y-axis

(©)

FIGURE 12. The PBIL optimized data results over (a) SYSU-ACTION
(b) PRECIS HAR and (c) Northwestern-UCLA datasets.

F. K-ARY ENTROPY CLASSIFIER
The existing tree-based classification algorithms usually rely
on a thorough listing of substructure patterns, where the
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number of substructures grows rapidly with respect to the
size of the vector set. Recently, the Wu et al. [70] hashing
tree classifier (KATH) has achieved an optimal performance
in terms of efficiency, accuracy, and handling classification
of large-scale graphs. This algorithm is further used for clas-
sification of human activity recognition in [15] and [28]. The
KATH has achieved an optimal performance in both graph
classification and classification of human activity recogni-
tion. However, the computational efficiency of KATH is not
able to obtain competitive accuracy to ensure the fairness
of nodes in a real-time environment. We propose a unique
K-Ary entropy classifier (KEC) that classify the similar fea-
tures into same subtree patterns clusters in terms of child
nodes of the KEC tree. The optimized data has been given
as input to the KEC. The overall functionality of dividing
nodes into tree and subtree patterns is similar to be created
in K-Ary tree [70]. Recall that in K-Ary tree algorithm [70],
traversal table has been constructed to assign indexes to
the nodes and MinHash function has been used to finger-
print subtree patterns. For practical applications, where the
data is highly dimensional, this traversal table construction
along with MinHash function is often a bottleneck. Hence,
we have used one level entropy based hashing that enables
partitioning a very large set of features into many much-
smaller, uniformly distributed subtree patterns, based on the
high correlation among the features to a similar hash patterns.
This minimizes the classifier searches to the relevant subtree
patterns to which the particular belongs to, and therefore
significantly shortens the classification process. Moreover,
existing K-Ary classifier [70] has used a naive approach to
select the nearest nodes. The naive approach is not capable
of producing the exact results and may predict the wrong
classes even if the probability of belongingness of an object
to a certain class is zero. However, in our approach Euclidean
distance has been calculated on the integer vector array and
then hamming distance has given more robust results than
the naive approach in the existing K-Ary classifier. To this
end, a modified KEC has been proposed that boosts the
performance of the classifier faster than existing K-Ary graph
classifier.

TABLE 1. Example of data scaling using normalization.

Input 00463 0.1783 02927 04035 05023  1.0460
Scaled 0.0 0.1 0.3 0.4 0.7 0.8
Data

1) DATA SCALING

The optimized data has been given as an input to KEC that
further need to be scaled to an appropriate level to boost the
performance of modified KEC algorithm. For this purpose,
the input data vector v has been partitioned into 2" evenly
sized vector array. The higher values have been assigned
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to higher range of vector data and vice versa as shown
in Table 1.

The equation (16) efficiently scale the data in the range of
[0,2" —1].

VI () = [ ).2”} -1 (16)

where, min and max are the minimum and maximum vector
and x; depicts the current vector of the input data.

Now, the input can be efficiently divided into tree and
subtree patterns scaling the data into a range of [0, 2" — 1].
Next, the middle vector of the input data has been selected as
parent node p and the rest of the input data has been further
divided into child nodes by converting the data into inte-
ger and binary vectors. The normalized has been converted
to integers using BitBooster technique represented in [70].
By using the BitBooster technique, the selected vector has
been firstly converted into dimension of Os and 1s and then
converting the resultant binary bits to a single integer. The
conversion of normalized data to integer representation using
the BitBooster is shown in Table 2.

x; — min(V;)

max(V;) — max(V;

TABLE 2. Single integer representation using bitbooster technique.

Input 042 394 344 082 263 092 0.14 443
Scaled

Data 0 1 1 0 1 0 0 1
Xp (01101001),=53

The technique has been represented as;
4! .

Xp = Zi:l 2V i) (17)
where, the first-dimension value x; has been represented by
the most significant bit of xy, and the least significant bit has
been depicted in last dimension xy.

2) SELECTION OF NEAREST NEIGHBORS

The next step is calculating Euclidean distance and hamming
weight on the integer representative vector array that selects
the nearest neighbors in the integer vector array by measuring
the distance between the two points. The hamming weight has
been used to count the total number of high bits in an integer
[71], [72]. The existing K-Ary classifier has used a naive
approach to select the nearest nodes. The naive approach is
not capable of producing the exact results and may predict
the wrong classes even if the probability of belongingness of
an object to a certain class is zero. However, in our approach
Euclidean distance has been calculated on the integer vector
array as shown in Fig. 13, and then hamming distance has
given more robust results than the naive approach in the
existing K-Ary classifier.

Sp = VHW {d(x1, x2, . .., xp)} (18)

where, d is the Euclidean distance of the vector x1, x> up to x;.
The HW is the hamming weight which counts the number of
high bits in the integer.
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N
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FIGURE 13. The nearest neighbor’s selection of nodes using Euclidean
distance.

3) SUBTREE PATTERN CLASSIFICATION

The existing K-Ary has used the MinHash algorithm to
classify subtrees patterns. The numerous systems, such
as relational data systems, key-value stores, compilers,
and networks, depend on hashing. The computational and
data-intensive nature of hashing makes it a core system
bottleneck. Hash tables in the TPC-H benchmark may cost
50% of the total cost for a single database query. Similarly,
Google spends at least 2% of its overall processing on C+-+
hash tables. Only one hashing operation alone results in a
significant annual cost footprint. Moreover, MinHash is its
O (¢.]A]) running time. For practical applications, where the
data is highly dimensional, this sketch creation time is often
a bottleneck [73]. Therefore, the one level entropy based
hashing has been used in a novel KEC to classify the subtree
patterns.

In a proposed KEC subtree pattern classification, within-
cluster pattern entropy and between-cluster entropy have
been used to evaluate the consistency of information within
a single subtree and with other subtree patterns as shown in
Fig. 14. The within-cluster entropy correlates the values of
the subtree pattern with its own nodes. If the information is
highly consistent with the subtree pattern nodes, it results in
smaller entropy. The difference between two subtree patterns
has also been assessed using the between-cluster entropy. The
resultant will be high if the subtree patterns are more distinct
from others.

The within-cluster entropy and between-clusters calcula-
tion has been done in parallel using parallel processing. For
n subtree patterns N threads have been used to calculate the
entropy of KEC classifier in no-time. The parallel processing
on within-cluster and between-cluster enhance the compu-
tation efficiency of the novel KEC classifier. The following
equation (19) and equation (20) have been used to calculate
the entropy of within-cluster and between cluster subtree
patterns as;

log / pdf“(xi)dx 19)

e(xi)z—l_a

EX) = —log————
Xi) = —log 5 g
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FIGURE 14. The subtree pattern classification, within-cluster pattern
entropy and in between-cluster entropy.

ko ok >t Wip = wpp)?
X Zi:l ijl M(didj)exp( P - )
(20)

where, a is the entropy constant that has been set as 2 where
pdf represents probability density function in equation (19).
Where, h has been set to 0.5. X; is the subtree patterns in the
K-Ary and k is depicts dimensional vector space. w;, and wj,
depicts the weight of pth subtree patterns in equation (20).

4) WORKING OF K-ARY ENTROPY HASHING

In this section, the novel KEC algorithm has been proposed
to classify the optimized data features in terms of tree and
subtree patterns. The input data vector has been denoted by
N, in the K-Ary entropy classifier tree pattern. This algo-
rithm has been motivated by BitBooster which calculate the
Euclidean distance on the integer and calculate the hamming
distance to find the nearest nodes in the input data [74].
Moreover, hashing computation cost too high in a real-time
processing. Therefore within-subtree pattern and between-
subtree patterns have been calculated to efficiently classify
the data.

The working of overall algorithm start by linearly scaling
Vi“ (x;) the data x; into a range of [0, 2" — 1]. The normalized
data v{' has been then converted into integers using BitBooster
technique xp. The parent node p has been selected half way
between the normalized data vector array. Next, subtree pat-
tern have been formulated by calculating Euclidean distance
Sy over the resultant integer vector. Finally, within-subtree
patterns and between-subtree patterns have been finally clas-
sified using entropy E (Xj). The results has been depicted in
Fig. 15.

The Fig. 15 illustrate the final results of KEC in which
nodes connected together to form subtree pattern and all
subtree pattern have been connected together to form a tree.
Furthermore, the tree structure contains a parent node and rest
of the nodes are child nodes that have been linked together
using Euclidean distance to form the pattern and subtree
patterns. The final classification of subtree patterns have been
done using Euclidean distance. The complete flow of the
proposed KEC has been depicted in Fig. 16. It illustrate the
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FIGURE 15. The flow diagram of proposed K-Ary entropy classifier.

final results of KEC in which nodes connected together to
form subtree pattern and all subtree pattern have been con-
nected together to form a tree. Furthermore, the tree structure
contains a parent node and rest of the nodes are child nodes
that have been linked together using Euclidean distance to
form the pattern and subtree patterns. The final classification
of subtree patterns have been done using Euclidean distance.

Our framework has not only enhanced accuracy but also
enhanced computational efficiency. In order to obtain all
embedded pivots in the tree, the algorithm requires a com-
putational complexity of O(nlogn), where n is the number of
nodes in the tree. In particular, we show that our classifier
performs faster than the existing K-Ary tree classifier on the
benchmark datasets.

Modified K-Ary Entropy Classifier

55

6. o
o o}
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6L . ‘ . . . - 0
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FIGURE 16. The results of the modified K-Ary entropy classifier.

IV. EXPERIMENTAL SETUP AND RESULTS

Experiments are conducted on a hardware platform with an
Intel Core i7 processor clocked at 5 GHz, 16 GB RAM,
Windows 11, and 64-bit operating system. All studies were
carried out in Matlab by using various image-processing
techniques and libraries. We conducted experiments includ-
ing classification accuracy, precision, recall, and F1 score,
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taking into account the leave one subject out (LOSO) cross-
validation scheme, to thoroughly evaluate the suggested
framework. Recall is the ration of true positive instance
over the sum of true positive and true negative instance
respectively. Precision is the ratio of true positive instances
to the total of truly predicted right instances.

The weighted average of recall and precision is the F1
score, which is as follows:

.. TruePositive
Precision = — — 21
TruePositive + FalsePositive
TruePositive
Recall = (22)

TruePositive + TrueNegative

2(Precision x Recall)
Flscore = — (23)
(Precision + Recall)

We have taken into account three challenging benchmark
datasets, namely ORGBD [57], RGBD-HuDaAct [ref], and
CAD-60 [56], to assess the performance of the proposed
architecture. We have described datasets in detail. Multiple
experiments have been performed to compare the perfor-
mance results of benchmark datasets against other state-of-
the-art methods in the following subsections.

FIGURE 17. A sample image of SYSU-ACTION dataset on 12 activities that
include pouring water, drink tea, listening to a phone call, wear a bag,
scrolling mobile phone, sitting on a chair, putting books in a bag, putting
wallet in the pocket, moving the chair aside, clean floor with a besom,
take the card off the wallet, and mop the floor.

bR

FIGURE 18. A sample image of PRECIS HAR dataset performed

16 different actions of sitting down, standing up, sitting still, walking,
writing, reading, throwing paper, moving hands close to the body, move
hands in front of the body, drink from mug, drink from the bottle, raising
one leg up, raising one hand up, faint, cheer up, and fall from the bed.

A. DATASETS DESCRIPTION

We have taken into account three RGBD datasets
(i.e., SYSU-ACTION dataset [75], PRECIS HAR dataset
[76], Northwestern-UCLA (N-UCLA)) [77]. The following
information about these datasets is provided:
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TABLE 3. Confusion matrix of gait recognition accuracies over SYSU-ACTION dataset.

activity ~PW DT LP WB SM SC PB WP MC FB CwW MF
PW 96.00 1.00 0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.00 1.00 0.00
DT 2.00 9350 1.00 0.50 0.00 0.00 0.50 1.00 0.00 0.50 0.00 1.00
LP 0.00 0.78 9522 0.50 1.00 0.50 0.00 2.00 0.00 0.00 0.00 0.00
WB 0.50 0.00 0.50 9450 0.00 0.00 0.50 0.00 2.00 0.50 0.00 1.50
SM 1.00 0.00 0.50 0.00 96.00 0.50 0.00 0.50 0.00 1.00 0.50 0.00
SC 0.50 0.50 2.00 0.50 0.00 95.00 0.00 0.50 1.00 0.00 0.00 0.00
PB 0.00 0.00 0.00 0.00 0.00 0.00 98.00 2.00 0.00 0.00 0.00 0.00
WP 0.55 2.00 0.00 0.50 2.50 2.50 0.00 90.45 0.00 0.00 1.50 0.00
MC 0.00 0.50 2.50 0.00 1.50 0.00 0.50 0.00 9450 0.00 0.50 0.00
FB 1.50 0.00 0.00 0.50 0.00 0.00 0.50 0.00 0.00 97.00 0.00 0.50
CW 1.00 0.50 0.00 0.50 0.00 2.20 0.00 0.50 0.50 0.00 94.80 1.00
MF 0.00 2.27 0.00 0.00 1.00 0.00 0.50 0.50 0.00 0.00 0.00 95.73

Mean gait recognition accuracy = 95.05%

*PW =pour water; DT =drink tea; LP =listen to phone call; WB = wear a bag; SM = scroll mobile phone; SC = sit on a chair; PB = put books in
a bag; WP = put wallet in a pocket; MC = move the chair aside; FB = clean floor with besom; CW = take card off the wallet; MF = mop the

floor.

TABLE 4. Confusion matrix of individual activity recognition accuracies over precis HAR dataset.

Objects SD SU SS WK  WR RD TP HC HF DM DB RL RH FT CU FB
SD 9550 2.50 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SU 172 96.28 0.50 0.00 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SS 0.00 0.00  99.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

WK 0.00 0.00 0.00  100.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
WR 1.00 1.50 0.50 0.00 9045 0.55 0.50 0.50 0.00 0.50 0.50 1.00 2.50 0.50 0.00 0.00
RD 0.50 0.50 1.50 0.00 0.50 9345 0.00 0.55 0.00 0.50 0.00 0.50 0.00 1.50 0.50 0.00
TP 0.50 0.00 0.00 0.00 2.50 0.00 92,50 0.00 0.00 0.00 2.50 0.00 0.50 0.00 1.50 0.00
HC 0.00 0.00 0.00 1.50 0.00 0.00 0.00 9650 0.50 0.50 0.00 0.00 0.50 0.50 0.00 0.00
HF 1.00 0.50 0.50 0.00 0.00 0.55 0.00 0.00 9545 0.00 0.00 0.50 0.50 0.00 0.00 1.00
DM 0.00 0.50 0.50 0.50 0.00 0.50 0.00 0.00 0.00 9750 0.00 0.00 0.50 0.00 0.00 0.00
DB 0.50 0.00 0.50 0.00 0.55 0.00 0.00 0.50 0.00 0.00 9745 0.00 0.50 0.00 0.00 0.00
RL 0.00 2.00 0.00 0.45 0.00 0.55 0.00 0.00 2.00 0.00 0.00 93.00 0.00 2.00 0.00 0.00
RH 2.50 1.00 0.50 0.50 0.50 0.50 0.00 0.50 0.50 0.00 0.50 0.50 9050 1.50 0.50 0.00
FT 0.00 0.50 0.00 0.00 0.50 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 9850 0.00 0.00
Cu 0.50 0.50 0.55 0.50 0.50 0.45 0.5 0.00 1.50 0.00 0.00 0.00 0.00 0.00 95.00 0.00
FB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 0.00  98.00

Mean gait recognition accuracy = 95.56%

*SD = sit down, SU = stand up, SS = sit still, WK = walk, WR = write, RD = read, TP = throw paper, HC = move hands close to the body, HF =
move hands in front of the body, DM = drink from mug, DB = drink from bottle, RL = raise one leg up, RH = raise one hand up, FT = faint, CU
= cheer up, FB = fall from bed.

The RGBD dataset consists of an RGBD dataset performed
by 40 participants based on human-object interactions. The
participants manipulated 5 different objects including a bag,
phone, chair, wallet, besom, and mop to perform 12 differ-
ent actions that include pouring water, drinking tea, listen-
ing to phone calls, wearing a bag, scrolling mobile phone,
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sitting on a chair, put books in a bag, put the wallet in
the pocket, move the chair aside, clean floor with a besom,
take the card off the wallet, and mop the floor. A Microsoft
Kinect was used to record 480 video clips of RGB, depth
sequence, and skeleton data frames within the range of 1.9s
to 21s. In this paper, only RGB and depth sequence frames
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TABLE 5. Confusion matrix of gait recognition accuracies over Northwestern-UCLA dataset.

Scenes PO DT WA CR SuU PT TH DF SD DN
PO 9545  0.00 0.00 1.00 1.00 2.55 0.00 0.00 0.00 0.00
DT 0.50 9525 0.50 1.75 0.50 0.00 0.50 0.00 0.50 0.50
WA 0.50 0.50 94.65 1.50 0.35 0.50 0.50 1.00 0.00 0.50
CR 2.00 0.00 0.00 9635 0.00 1.65 0.00 0.00 0.00 0.00
SU 2.50 0.00 0.00 0.00 94.60 2.50 0.00 0.40 0.00 0.00
PT 0.50 0.50 0.45 0.50 0.50 9555 0.50 0.50 0.00 1.00
TH 0.25 1.00 0.50 2.50 0.00 0.00 9325 0.00 2.50 0.00
DF 1.00 0.65 0.50 0.50 0.50 0.50 0.50 9435 0.50 1.00
SD 0.00 0.65 0.50 0.50 1.00 0.50 0.00 0.00 9635 0.50
DN 0.00 0.50 0.50 0.00 0.50 0.50 0.00 2.95 0.00  95.05

Mean gait recognition accuracy = 95.08%

* PO = pick up with one hand; DT = drop trash; WA = walk around; CR = carry; SU = stand up; PT = pick up with two hands; TH = throw; DF = doffing;

TABLE 6. Measurements of precision, recall and f1 score of the proposed method over SYSU-ACTION dataset.

SD = sit down; DN = donning.

Class Precision Recall F1 score Class Precision Recall F1 score
PW 0.960 0.952 0.957 PB 0.980 0.959 0.938
DT 0.935 0.939 0.931 WP 0.904 0912 0.907
LP 0.952 0.957 0.957 MC 0.945 0.950 0.927
WB 0.945 0.935 0.948 FB 0.970 0.970 0.972
SM 0.960 0.949 0.967 CW 0.948 0.957 0.947
SC 0.950 0.938 0.947 MF 0.957 0917 0.936

Mean Precision = 0.950

Mean Recall = 0.944

Mean F1 score = 0.944

TABLE 7. Measurements of precision, recall and f1 score of proposed method over precis HAR dataset.

Class Precision Recall F1 score Class Precision Recall F1 score
SD 0.955 0.928 0.954 HF 0.954 0.909 0.931
SU 0.962 0.952 0.963 DM 0.975 0.922 0.948
SS 0.990 0.979 0.983 DB 0.974 0.961 0.961

WK 0.999 0.998 0.972 RL 0.930 0.927 0.937

WR 0.904 0.915 0.907 RH 0.905 0.907 0.919
RD 0.934 0.925 0.937 FT 0.985 0.967 0.973
TP 0.925 0.907 0.927 CU 0.950 0.948 0.952
HC 0.965 0.967 0.976 FB 0.980 0.978 0.976

Mean Precision = 95.56

Mean Recall = 0.943

Mean F1 score = 0.951

have been used for the recognition of smart surveillance

system.

The PRECIS HAR is RGBD dataset that contains 16 dif-
ferent actions which includes sit down, standing up, sit still,
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walking, writing, reading, throwing paper, moving hands
close to the body, moving hands in front of the body, drinking
from the mug, drinking from the bottle, raising one leg up,
raising one hand up, faint, cheer up, and fall from the bed.
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TABLE 8. Measurements of precision, recall and f1 score of proposed method over Northwestern-UCLA dataset.

Class Precision Recall F1 score Class Precision Recall F1 score
PO 0.954 0.953 0.970 PT 0.955 0.951 0.915
DT 0.952 0.941 0.945 TH 0.932 0.920 0.935
WA 0.946 0.936 0.953 DF 0.943 0.951 0.908
CR 0.963 0.968 0.945 SD 0.963 0.974 0.967
SU 0.946 0.940 0.947 DN 0.950 0.957 0.954

Mean Precision = 95.08 Mean Recall = 0.949 Mean F1 score = 0.943

TABLE 9. Comparison of recognition accuracy of proposed method with other state-of-the-art methods over MSRC, CALTECH 101 and PASCAL-VOC12
datasets.

Methods SYSU-ACTION PRECIS HAR  Northwestern-UCLA
Temporal fusion mechanism + CNN ) 94.38% )
[29]
Temporal + spatial + multitask
- - .829

convolutional neural network [30] 86.82%
BiLSTM [31] 75.35% - -

CNN, + RNN + LSTM [32] 86.6% - 85.1%
K-Ary Tree Hashing classifier [15] 93.5% - -

Proposed Method 95.05% 95.56% 95.08%

A 3D camera Orbbec Astra Pro was used to record 800 videos
of RGB and depth sequence frames performed by 50 subjects.

The Northwestern-UCLA (N-UCLA) is a benchmark
dataset collected in a multi-view environment that contains
depth and human skeleton data captured sequentially by three
Kinect cameras. In this paper, only RGB and depth images
have been used for the proposed method. The dataset con-
tains total 1494 video clips. The 10 subjects have performed
10 activities including walk around, drop trash, stand up,
carry, pick up with two hands, throw, doffing, sit down, pick
up with one hand and donning.

B. PARAMETER SETTINGS AND EVALUATION

The experimental results show that when combined with our
unique K-Ary entropy accumulation classifier, our proposed
full body and point-based body features, can fairly distinguish
between the various actions classes of the SYSU-ACTION
dataset. With a mean accuracy of 95.05%, Table 3 presents
the action recognition findings for each distinct activity as a
confusion matrix. Some findings have confused some actions,
such as the action of pouring water with the actions of
drinking water, listening to a phone call, scrolling a mobile
phone, and so forth. But overall outcomes have been fairly
impressive.
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FIGURE 19. Sample images of the Northwestern-UCLA dataset perform
ten different activities that include picking up with one hand, dropping
trash, walking around, carrying, stand up, picking up with two hands,
throwing, doffing, sitting down, and donning.

The suggested technique was tested on 16 different actions
using the PRECIS HAR dataset, and the results have been
displayed in Table 4 with the best classification accuracy of
95.56%. However, it has been shown that a few actions, such
as sitting still, walking, fainting, and falling from bed, have
acquired the highest accuracies due to considerable feature
behaviors, which have been favorably reflected in their recog-
nition performance.

In this experiment Table 5 shows the performance of
action recognition over ten different activities using the
Northwestern-UCLA dataset with a mean accuracy of
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95.08% when utilizing a novel K-Ary entropy accumulation
classifier. Here, a few activities improve overall performance.

The precision, recall, and F1 score for each action are
depicted in Tables 6, 7, and 8 of three benchmark datasets:
SYSU-ACTION, PRECIS HAR, and Northwestern-UCL.
At the same time, Table 9 depicts the comparison findings
between the proposed and existing models.

V. CONCLUSION

In this paper, the proposed model has been based on five
modules: pre-processing, feature extraction, optimization,
and classifier. The concept of ground—plane and voxel den-
sity models has been incorporated into a 2.5D model which
was later used in the features extraction module. More-
over, a novel entropy-based K-Ary classifier (KEC) has been
implemented, which is originally based on the K-Ary hash-
ing classifier KATH [70]. The KEC linearly scale the data
using min-max normalization process. The normalized data
is further converted to integer using BitBooster technique.
Later on, parent node has been selected half way between
normalized data vector. Next, subtree patterns have been
formulated by calculating Euclidean distance and Hamming
weight. Finally, entropy calculation lead the nodes into sub-
tree patterns. The algorithm has attained a computational
complexity of O(nlogn), where n is the number of nodes in
the tree. The results have achieved an accuracy of 95.05%,
95.56%, and 95.08% over SYSU-ACTION, PRECIS HAR,
and Northwestern-UCLA datasets.

Future research will focus on entropy-based features, depth
features, and energy characteristics of numerous activities to
enhance the results of activity recognition accuracy. The deep
learning methods with our novel K-ary entropy accumulation
classifier will greatly enhance the accuracy of the surveillance
system. Moreover, we have also planned to implement our
datasets based on RGB-D datasets for activity recognition.
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