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ABSTRACT For a class of discrete-time bidirectional associative memory neural networks (DTBAMNNs)
with multiple time-varying delays, the issue of state estimation is studied. By propose a mathematical
induction method, we first investigate novel delay-dependent and -independent global exponential stability
(GES) criteria of the error system. The obtained GES criteria are described by linear scalar inequalities.
Then, a state observer is derived via the theory of generalized matrix inverses. These exponential stability
conditions are very simple, which is convenient to verify based on the standard software tools (for example,
YALMIP). Finally, we present two illustrative examples to present the effectiveness of the theoretical results.

INDEX TERMS State observer, discrete-time BAM neural network, multiple time-varying delays, global
exponential stability, linear scalar inequalities.

I. INTRODUCTION
In recent years, many excellent results on neural networks
(NNs) have been addressed extensively, since they were
applicable to many fields such as pattern recognition, arti-
ficial intelligence, optimization, etc. [1], [2], [3], [4]. Gen-
erally, many NNs including biological NNs are composed
of many interconnected man-made or/and natural dynamical
units. As one of the interconnected NNs, BAMNNs [5], [6]
is composed of two-layer heteroassociative circuits, which
generalizes the single-layer NNs and possesses the functions
on memory and association of information. Therefore, it has
large theoretical and practical significance to research stabil-
ity of DTBAMNNs.

As everyone knows, time delays can not omitted in the
realization of NNs because of the communication time
among neurons, and further, their existence will result in
performance degradation of NNs, even instability. Motivated
this idea, the problem of testing stability of delayed NNs
has received more attention, and stability conditions for
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BAMNNs with various delays were developed to assure the
asymptotic or exponential stability [7], [8], [9], [10], [11],
[12], [13].

It is worth noting that the neuronal states in large-scale
NNs are usually not fully measurable. Thus, in many practice
applications, estimating the states of neurons through avail-
able measurements is important. The state observer of NNs is
designed bymeans of themeasurement output, so as to realize
the state estimation of the original NNs. Recently, more and
more learners were interested in the problem to estimate the
states of NNs [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32].
The state estimation for delayed NNs was introduced in [16],
[17], [18], [19], [21], and [29]. Through the available out-
puts and feasible solutions of some linear matrix inequalities
(LMIs), general full-order state observers are designed, which
guaranteed GES or global asymptotic stability. While, the
relevant research on discrete-time complex-valued NNs is
mentioned in the literature [30], [31]. To handle possible
fluctuations in the state observer gains during implementation
of the state observer, a resilientH∞ state observer in the light
of discrete-time delayed NNs is adopted in [28] and [32].
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For memristor-based stochastic DTBAMNNs with mixed
delays and additive delays, the problem of state observer
design is investigated in [33] and [34], respectively. For
the delayed switched DTBAMNNs of stochastic perturba-
tions and parameter uncertainties, Arunkumar et al. [23]
proved sufficient conditions guaranteeing the existence of
state observer by making use of the so-called average dwell
time method and constructing a piecewise LKF. Then, the
problem of robust state estimation for delayed uncertain
DTBAMNNs is derived in [24]. Firstly, based on appropriate
LKF and LMI methods, they obtain a asymptotic stability
condition of the error system. Secondly, this result spread
to the problem of designing robust state observer for time-
varying delayed uncertain DTBAMNNs. In [25], under a
weaker hypothesis on the neuron activation functions for
time-varying delayed DTBAMNNs, by establishing a new
LKF, conditions in form of LMIs are got for GES of the
error system, and a state observer is designed. For time-
varying delayedMarkovian jumpDTBAMNNs,Ali et al. [35]
designed finite-time H∞ filtering based on the suitable LKF
and Jensen inequality. By solving LMIwith a fixed parameter,
the filter gains are got.

However, as everyone knows, the problem of designing
state observer for BAMNNs with time-varying delays is
rarely studied, which retains big space to develop further state
estimation methods of BAMNNs with multiple time-varying
delays. This paper continues this work. On this basis, we aim
at establishing some novel sufficient criteria for the existence
of state observers, and GES of the error system is guaranteed.
The contributions of this article are:

(1) Delay-dependent and -independent GES criteria,
described by linear scalar inequalities, are devel-
oped by using the mathematical induction method;

(2) Via generalized inverse theory of matrices, a state
observer is given for DTBAMNNs with multiple
time-varying delays;

(3) These obtained exponential stability criteria are
simple, that can easily be solved by the software
YALMIP.

Structure of the rest is below. The problem formulation
and preliminaries are proceeded in the next section. The
main results of the study, novel criteria of GES are given in
Section III, then new state estimator is designed. Section IV
gives illustrative examples to demonstrate the effectiveness
of derived results. Lastly, in Section V, we give a conclusion.
Notation. Let R be the real number field. The symbol Rs×t

refers to the set of s × t matrices. Let Rs×t
⪰ and Rs×t

≻ are
the subsets of Rs×t containing all nonnegative and positive
matrices, respectively. Similarly, we also use R⪰, R≻, etc.
Let Z be the integer set. For p, q ∈ Z with p ≤ q, let [p, q]Z
denote the set which consists of all integers between p and
q. When hq → ∞, the limit case of [p, q]Z is written by
[p, ∞)Z. For U = [uij] ∈ Rp×q and V = [vij] ∈ Rp×q,
the matrix [uijvij], denoted by U ◦ V , refers to the Hadamard
product of U and V , and the notation U ⪰ V (or V ⪯ U )

denotes uij ≥ vij, ∀i ∈ [1, p]Z, j ∈ [1, q]Z. If uij > vij,
∀i ∈ [1, p]Z, j ∈ [1, q]Z, we say U ≻ V (or V ≺ U ).
If all off-diagonal entries of a square matrix are nonnegative,
then it is called a Metzler matrix. Let |U | = [|uij|]. Then
|MN | ⪯ |M ||N | for all M ∈ Rp×q and N ∈ Rq×r . The
identity matrix in Rn×n is defined by In. For � ∈ Rn×n, set
λ(�) = {z ∈ C : det(zIn − �) = 0}, ρ(�) = max{|λ| : λ ∈

λ(�)} and s(�) = max{Reλ : λ ∈ λ(�)}.

II. PROBLEM DESCRIPTION AND PRELIMINARY RESULTS
A class of DTBAMNN with multiple time-varying delays is
described as [36]:

xi(t + 1) = aixi(t) +

n∑
j=1

[
cijfj(yj(t))

+ eijhj(yj(t − δij(t)))
]
, (1a)

yj(t + 1) = bjyj(t) +

n∑
i=1

[
dji f̃i(xi(t))

+wjih̃i(xi(t − σji(t)))
]
, (1b)

where i, j ∈ [1, n]Z, t ∈ [0, ∞)Z, xi(t) is the ith neuronal
state of layer-X , yj(t) is the jth neuronal state of layer-Y ;
ai, bj : [0, ∞)Z → (−1, 1) describe the state feedback
coefficient, respectively; fj : R → [−s(1)j , s(1)j ], hj : R →

[−s(2)j , s(2)j ], f̃i : R → [−s̃(1)i , s̃(1)i ] and h̃i : R → [−s̃(2)i , s̃(2)i ]

are the neuronal activation functions; s(1)j , s(2)j , s̃(1)i and s̃(2)i
are known positive constants; Constants cij, dji, eij and wji
represent the connection weights; δij : [0, ∞)Z → [0, δ̄ij]
and σji : [0, ∞)Z → [0, σ̄ji] denote the multiple time-varying
delays, σ̄ji > 0 and δ̄ij > 0 are known integers.
Remark 1: The BAMNN is the minimal two-layer non-

linear feedback network. Bidirectionality, forward and back-
ward information flows are introduced in neural nets to
produce two-way associative search for stored associations.
BAMNN generalizes the single layer network model of Hop-
field and some unidirectional network models of Cohen and
Grossberg. It has been shown that BAMNN is capable on
storing paired patterns or memories and the search mode for
stored patterns can be accomplished via both directions, i.e.
forward and backward directions.

We require this assumption:
Assumption 1: There are β

(1)
j , β̃

(1)
i , β

(2)
j , β̃

(2)
i ∈ R≻ such

that

fj(0) = f̃i(0) = hj(0) = h̃i(0) = 0,

0 ≤
fj(α1) − fj(α2)

α1 − α2
≤ β

(1)
j , 0 ≤

f̃i(α1) − f̃i(α2)
α1 − α2

≤ β̃
(1)
i ,

0 ≤
hj(α1) − hj(α2)

α1 − α2
≤ β

(2)
j , 0 ≤

h̃i(α1) − h̃i(α2)
α1 − α2

≤ β̃
(2)
i ,

for any i, j ∈ [1, n]Z, α1, α2 ∈ R subject to α1 ̸= α2.
Let the network measurements of DTBAMNN (1) be given

by:

Z (t) = Mx(t), Z̃ (t) = M̃y(t), (2)

VOLUME 11, 2023 29315



L. Zhu et al.: State Estimation for a Class of DTBAMNNs With Multiple Time-Varying Delays

in which Z (t) and Z̃ (t) are the measurement outputs, M ∈

Rm1×n and M̃ ∈ Rm2×n denote the known full-row-rank
matrices of appropriate dimensions.

For some large scale NNs, obtaining all the information of
neuronal state is difficult. So people often need to employ
the neuronal estimations to realize specific design goals.
Thus, this paper aims at designing the state observer for
DTBAMNNs (1):

x̂i(t + 1) = aix̂i(t) +

n∑
j=1

[
cijfj(ŷj(t))

+ eijhj(ŷj(t − δij(t)))
]

+

m1∑
j=1

rij

[
Zj(t) −

n∑
l=1

mjl x̂l(t)

]
, (3a)

ŷj(t + 1) = bjŷj(t) +

n∑
i=1

[
dji f̃i(x̂i(t))

+wjih̃i(x̂i(t − σji(t)))
]

+

m2∑
i=1

r̃ji

[
Z̃i(t) −

n∑
l=1

m̃il ŷl(t)

]
, (3b)

where t ∈ [0, ∞)Z, i, j ∈ [1, n]Z, rij and r̃ij are the
observer gains that will be determined later, x̂i(t) and ŷj(t)
are respectively the estimations of xi(t) and yj(t), mij and m̃ij
are respectively the (i, j)th entries ofM and M̃ , Zi(t) and Z̃i(t)
are the ith components of Z (t) and Z̃ (t), respectively.

Define the corresponding error variables

κi(t) = xi(t) − x̂i(t), κ̃j(t) = yj(t) − ŷj(t),

i, j ∈ [1, n]Z, t ∈ [0, ∞)Z.

Then, one can be easily obtain from (1)–(3) that the error
system:

κi(t + 1) = aiκi(t) +

n∑
j=1

[
cijf ∗

j (κ̃j(t))

+ eijh∗
j (κ̃j(t − δij(t)))

]
+

m1∑
j=1

n∑
l=1

rijmjlκl(t), (4a)

κ̃j(t + 1) = bjκ̃j(t) +

n∑
i=1

[
dji f̃ ∗

i (κi(t))

+wjih̃∗
i (κi(t − σji(t)))

]
+

m2∑
i=1

n∑
l=1

r̃jim̃il κ̃l(t), (4b)

where t ∈ [0, ∞)Z, i, j ∈ [1, n]Z and
f ∗
j (κ̃j(·)) = fj(κ̃j(·) + ŷj(·)) − fj(ŷj(·)),
h∗
j (κ̃j(·)) = hj(κ̃j(·) + ŷj(·)) − hj(ŷj(·)),
f̃ ∗
i (κi(·)) = f̃i(κi(·) + x̂i(·)) − f̃i(x̂i(·)),
h̃∗
i (κi(·)) = h̃i(κi(·) + x̂i(·)) − h̃i(x̂i(·)).

Due to Assumption 1, we derive that

|f ∗
j (u)| ≤ β

(1)
j |u|, |h∗

j (u)| ≤ β
(2)
j |u|, |f̃ ∗

i (u)| ≤ β̃
(1)
i |u|,

|h̃∗
i (u)| ≤ β̃

(2)
i |u|, u ∈ R, i, j ∈ [1, n]Z. (5)

Let

ϑ = max
1≤i,j≤n

max
{
δij, σji

}
.

The symbol C([−ϑ, 0]Z, Rn) refers to the set containing all
functions ϕ : [−ϑ, 0]Z → Rn. The symbol ∥ · ∥2 refers
to the Euclidean norm of vectors. Let the norm ∥ · ∥ on
Rn

× Rn is defined by ∥(c, d)∥ = (∥c∥22 + ∥d∥
2
2)

1/2, c, d ∈

Rn, and ∥(·, ·)∥ϑ on C([−ϑ, 0]Z, Rn) × C([−ϑ, 0]Z, Rn)
via

∥(ω, ϖ )∥ϑ = sup
s∈[−ϑ,0]Z

max {∥ω(s)∥2, ∥ϖ (s)∥2} .

Definition 1: If there are λ, β ∈ R≻ such that every solu-
tion (κ(t), κ̃(t)) of (4), corresponding to the initial functions
(ω, ϖ ) ∈ C([−ϑ, 0]Z, Rn) × C([−ϑ, 0]Z, Rn), satisfies

∥(κ(t), κ̃(t))∥ ≤ βe−γ t
∥(ω, ϖ )∥ϑ , ∀t ∈ [0, ∞)Z,

where
κ(t) = [κ1(t) . . . κn(t)]T ,
κ̃(t) = [κ̃1(t) . . . κ̃n(t)]T ,

then the error system (4) subject to (5) is globally exponen-
tially stable.

The purpose of this paper is to design a state observer
(3) for DTBAMNN (1) via the measurements (2), that is,
determine observer gains R := [rij] ∈ Rn×m1 and R̃ := [r̃ij] ∈

Rn×m2 guaranteeing GES of the error system (4).
Lemma 1: [38] Let A ∈ Rm×n, C ∈ Rs×n, and A+ is

the Moore-Penrose generalized inverse of A. Then CA+ is a
solution of XA = C when

rank
[
A
C

]
= rankA.

III. MAIN RESULTS
In this part, using the generalized matrix inverses and the
definition of GES, we study directly the GES criteria for the
error system (4), and give a novel approach of designing a
state observer (3) for DTBAMNN (1).

Set

A = diag(a1, . . . , an), B = diag(b1, . . . , bn),

C = [cij], E = [eij], D = [dij], W = [wij],

Bβ = eβδ̄
◦ |E|02 + |C|01, eβδ̄

= [eβδ̄ij],

Cβ = eβσ̄
◦ |W |0̃2 + |D|0̃1, eβσ̄

= [eβσ̄ji ],

Aβ = |A| − e−β In, Dβ = |B| − e−β In,

01 = diag(β(1)
1 , . . . , β(1)

n ), 0̃1 = diag(β̃(1)
1 , . . . , β̃(1)

n ),

02 = diag(β(2)
1 , . . . , β(2)

n ), 0̃2 = diag(β̃(2)
1 , . . . , β̃(2)

n ).
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Theorem 1: If there are β ∈ R≻, ũ, ṽ ∈ Rn
≻ and ζ, η ∈ Rn

such that

Aβ ũ+ Bβ ṽ+ ζ ⪯ 0, (6)

Cβ ũ+ Dβ ṽ+ η ⪯ 0, (7)

then the error system (4) subject to (5) is globally expo-
nentially stable. Furthermore, the desired state observer is
given by (3) with the observer gains R = ζ (|M |ũ)+ and
R̃ = η(|M̃ |ṽ)+.

Proof: For any fixed ω, ϖ ∈ C([−ϑ, 0]Z, Rn), let
(κ(t), κ̃(t)) be the solution of (4) with the initial functions
(ω, ϖ ). We can a choose λ > 0 such that

λũ ≻ [1 · · · 1]T , λṽ ≻ [1 · · · 1]T .

Define

û(t) = λ∥(ω, ϖ )∥ϑe−βt ũ, t ∈ [−ϑ, ∞)Z, (8)

v̂(t) = λ∥(ω, ϖ )∥ϑe−βt ṽ, t ∈ [−ϑ, ∞)Z, (9)

where
ũ = [ũ1 · · · ũn]T , ṽ = [ṽ1 · · · ṽn]T ,

û(t) = [û1(t) · · · ûn(t)]T , v̂(t) = [v̂1(t) · · · v̂n(t)]T .

Now the mathematical induction method will be employed
to investigate the following conclusions

|κ(t)| ⪯ û(t), |κ̃(t)| ⪯ v̂(t), t ∈ [−ϑ, ∞)Z. (10)

Clearly, combined with the choice of λ and the definition
of ∥ · ∥ϑ , one can obtain

|κ(k)| ⪯ û(k), |κ̃(k)| ⪯ v̂(k), ∀k ∈ [−ϑ, 0]Z.

Assume that inequality (10) holds when t ≤ k for arbitrary
but fixed k ≥ 0. When t = k + 1, for any i ∈ [1, n]Z, using
(4a) and (5), we get

|κi(k + 1)| ≤ |ai||κi(k)| +

n∑
j=1

[
|cij||f ∗

j (κ̃j(k))|

+ |eij||h∗
j (κ̃j(k − δij(k)))|

]
+ umm1

j=1

n∑
l=1

|rij||mjl ||κl(k)|

≤ |ai||κi(k)| +

n∑
j=1

[
|cij|β

(1)
j |κ̃j(k)|

+ |eij|β
(2)
j |κ̃j(k − δij(k))|

]
+

m1∑
j=1

n∑
l=1

|rij||mjl ||κl(k)|.

By using the inductive hypothesis, we can obtain

|κi(k + 1)| ≤ |ai|ûi(k) +

n∑
j=1

[
|cij|β

(1)
j v̂j(k)

+ |eij|β
(2)
j v̂j(k − δij(k))

]
+

m1∑
j=1

n∑
l=1

|rij||mjl ||ûl(k)|, (11)

Substituting (8) and (9) into (11), we get

|κi(k + 1)| ≤ |ai|λ∥(ω, ϖ )∥ϑe−βk ũi

+

n∑
j=1

|cij|β
(1)
j λ∥(ω, ϖ )∥ϑe−βk ṽj

+

n∑
j=1

|eij|β
(2)
j λ∥(ω, ϖ )∥ϑe−β(k−δij(k))ṽj

+

m1∑
j=1

n∑
l=1

|rij||mjl ||λ∥(ω, ϖ )∥ϑe−βk ũl

≤ λ∥(ω, ϖ )∥ϑe−βk

×

|ai|ũi +
n∑
j=1

(|cij|β
(1)
j

+ |eij|β
(2)
j eβδ̄ij )ṽj

+

m1∑
j=1

n∑
l=1

|rij||mjl |ũl

 , (12)

Due to rankM = m1 and ũ ∈ Rn
≻, we have

rank
[
|M |ũ

ζ

]
= rank(|M |ũ) = 1.

Applying Lemma 1, one can obtain that ζ (|M |ũ)+ is a solu-
tion of X |M |ũ = ζ . Set R = ζ (|M |ũ)+. Then

m1∑
j=1

n∑
l=1

|rij||mjl |ũl = ζi,

where ζi is the ith component of ζ . According to the arbitrari-
ness of i ∈ [1, n]Z, we get that (12) is equivalent to

|κ(k + 1)| ⪯ λ∥(ω, ϖ )∥ϑe−βk (|A|ũ+ Bβ ṽ+ ζ ).

By using (6) and (8), we have

|κ(k + 1)| ⪯ λ∥(ω, ϖ )∥ϑe−β(k+1)ũ = û(k + 1). (13)

Similarly, through a process similar to derivation (13),
we obtain

|κ̃(k + 1)| ⪯ λ∥(ω, ϖ )∥ϑe−β(k+1)ṽ = v̂(k + 1).

Therefore, (10) is true.
Then, together with (8)–(10), we have

∥(κ(t), κ̃(t))∥ = (∥κ(t)∥22 + ∥κ̃(t)∥22)
1
2

≤ (∥û(t)∥22 + ∥v̂(t)∥22)
1
2

= λe−βt
∥(ω, ϖ )∥ϑ (∥ũ∥22 + ∥ṽ∥22)

1
2 ,

∀t ∈ [0, ∞)Z.

Let H = λ(∥ũ∥22 + ∥ṽ∥22)
1
2 , Then

∥(κ(t), κ̃(t))∥ ≤ He−βt
∥(ω, ϖ )∥ϑ , ∀t ∈ [0, ∞)Z.

The arbitrariness of ϖ, ω ∈ C([−ϑ, 0]Z, Rn) guarantees
GES of the error system (4). In addition, one can easily design
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the state observer (3) with the gains R = ζ (|M |ũ)+ and
R̃ = η(|M̃ |ṽ)+.
Remark 2: In the study, the involved main difficulty is

how to determine the observer gain matrices. In the existing
results (see [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32] and the
references therein), they mostly are derived by using the LKF
method that is difficult to be extended to the multiple time-
varying delays; even it is done, there will greatly increase
the computational complexity. While this paper overcomes
the shortcoming of LKF method by proposing a mathemati-
cal induction method associated with the generalized matrix
inverses, that decreases a lot of decision variables in the
obtained stability conditions, so the computation amount is
reduced. In addition, the observer gain of the designed state
observer can be easily obtained by the generalized inverse
theory of the matrices.
Remark 3: In this paper, a neuron state estimator is

designed based on available output measurements. Theorem
1 shows a delay-dependent GES condition of (4), the method
is applicable to the case that the numbers of neurons in the
two neural domains are different. In addition, the obtained
stability criterion can used to give the relation between upper-
bounds of delays and decay rate.

Set

A0 = |A| − In, B0 = |E|02 + |C|01,

C0 = |D|0̃1 + |W |0̃2, D0 = |B| − In.

Combining [39, Theorems 1 and 3], one can easily get the
following conclusion.
Theorem 2: If there are ũ, ṽ ∈ Rn

≻ and ζ, η ∈ Rn such that

A0ũ+ B0ṽ+ ζ ⪯ 0, (14)

C0ũ+ D0ṽ+ η ⪯ 0. (15)

then (4) subject to (5) is globally exponentially stable. Fur-
thermore, the desired state observer is given by (3) with the
observer gains R = ζ (|M |ũ)+ and R̃ = η(|M̃ |ṽ)+.
Remark 4: In [23, Theorem 3.1], [24, Theorem 3.1], and

[25, Theorem 1], by constructing LKFs the state observers
similar to (3) are designed. The proposed method here is
directly based on the generalized matrix inverses and the
definition of GES. We overcome the difficulties of construct-
ing appropriate LKFs and offer simple sufficient conditions
which is convenient to use.

We conclude this section by demonstrating the following
result.
Lemma 2: [37] For a Metzler matrix A0 ∈ Rn×n and

matrices B0,C0,D0 ∈ Rn×n
⪰ , the items (a)–(c) are equivalent:

(a) There are φ, ϕ ∈ Rn
≻ such that A0φ + B0ϕ ≺ 0 and

C0φ + D0ϕ ≺ ϕ.
(b) ρ(D0) < 1, s(A0 + B0(In − D0)−1C0) < 0.
(c) s(A0) < 0,d ρ(C0(−A0)−1B0 + D0) < 1.

Theorem 3: Assume that a number β > 0 and diagonal
matrices ∧1 and ∧2 satisfy Âβ = |A| − e−β In + ∧1 ≥ 0 and

D̂β := |B| − e−β In +∧2 ≥ 0. The error system (4) subject to
(5) is globally exponentially stable, when

(a) ρ(D̂β + In) < 1, s(Âβ − BβD̂
−1
β Cβ ) < 0; or

(b) ρ(D̂β + In − Cβ Â
−1
β Bβ ) < 1, s(Âβ ) < 0.

Furthermore, the desired state observer is given by (3) with
ζ = ∧1x∗ and η = ∧2y∗, where x∗, y∗ ∈ Rn

≻.
Proof: Observe, that Âβ is a Metzler matrix, and Bβ ,Cβ

and D̂β + In are non-negative matrices. If one of (a) and (b) in
Theorem 3 is true, using Lemma 2, there exist x∗, y∗ ∈ Rn

≻

satisfy

Âβx∗
+ Bβy∗ ≺ 0,Cβx∗

+ D̂βy∗ ≺ 0.

Let ζ = ∧1x∗, η = ∧2y∗, by Theorem 1, which ensures GES
of the error system (4) subject to (5).

IV. ILLUSTRATIVE EXAMPLES
Two illustrative examples will be offered to explain the merits
of the proposed approach.
Example 1: A DTBAMNN in the form of (1) is involved,

where

A =

[
0.15 0
0 0.25

]
, B =

[
0.14 0
0 0.23

]
,

C =

[
−0.03 −0.01
0.02 0.06

]
, E =

[
0.05 −0.04
0.2 0.01

]
,

D =

[
0.04 0.03
0.02 0.01

]
, W =

[
0.03 0.05
−0.2 0.01

]
,

f1(s) = 0.2tanh(s), h1(s) = −0.2tanh(s),

f̃1(s) = 0.2tanh(s), h̃1(s) = 0.1tanh(s),

f2(s) = 0.8tanh(s), h2(s) = 0.9tanh(s),

f̃2(s) = 0.3tanh(s), h̃2(s) = 0.4tanh(s), s ∈ R,

δij(t) = rij + sij sin(tπ/2),

σji(t) = pji + qji cos(tπ ), t ∈ [0, ∞)Z, i, j ∈ [1, 2]Z,

r11 = 6, r12 = 5, r21 = 8, r22 = 7,

s11 = s12 = s21 = s22 = 1,

p11 = 6, p12 = 5, p21 = p22 = 7,

q11 = q21 = q12 = q22 = 1.

Clearly, δ̄11 = σ̄11 = 7, δ̄12 = σ̄12 = 6, δ̄21 = 9 and δ̄22 =

σ̄21 = σ̄22 = 8. Furthermore, when β
(1)
1 = β̃

(1)
1 = β

(2)
1 =

0.2, β̃
(2)
1 = 0.1, β

(2)
2 = 0.9, β̃

(1)
2 = 0.3 and β̃

(2)
2 = 0.4,

Assumption 1 is satisfied.
Assume that the measurements of DTBAMNN under con-

sideration are given by (2) with

M =
[
0.7 0.66

]
, M̃ =

[
0.4 0.7

]
.

By solving the inequalities (14)–(15) in Theorem 2, and
feasible solutions are obtained below:

ũ = [0.25 × 103, 0.75 × 103]T ,

ṽ = [0.15 × 103, 2.48 × 103]T ,

ζ = [−0.5956 × 102, 0.2741 × 103]T ,

η = [−0.1591 × 103, −0.8807 × 102]T .
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FIGURE 1. x1(t) and its estimations x̂1(t) (Example 1).

FIGURE 2. x2(t) and its estimations x̂2(t) (Example 1).

Accordingly,the gain matrices of the desired state observer
are given follows:

R = ζ (|M |ũ)+ =

[
−0.0899
0.4091

]
,

R̃ = η(|M̃ |ṽ)+ =

[
−0.6810
−0.3769

]
.

Moreover, when
x(s) = [−4.21 2.38]T , y(s) = [−3.23 2.90]T ,
x̂(s) = [0 0]T , ŷ(s) = [0 0]T , s ∈ [−9, 0]Z,

the trajectories of the considered DTBAMNN, designed
observer and corresponding error system are given in Figures
1–6, respectively. Further, we can find the observer trajec-
tories are convergent to state trajectories little by little, and
the error system trajectories approach zero. So, the obtained
observer is applicable, which explains the theoretical results
presented in Theorem 2.
Example 2: Consider a delayed DTBAMNN (1) with

A =

[
0.08 0
0 0.09

]
, B =

[
0.05 0
0 0.06

]
,

FIGURE 3. y1(t) and its estimations ŷ1(t) (Example 1).

FIGURE 4. y2(t) and its estimations ŷ2(t) (Example 1).

FIGURE 5. The error system. (Example 1).

C =

[
−0.03 −0.01
0.02 0.02

]
, E =

[
0.05 −0.02
0.02 0.01

]
,

D =

[
0.04 0.03
0.03 0.01

]
, W =

[
0.03 0.06

−0.02 0.01

]
,

fj(θ ) = f̃i(θ ) = hj(θ ) = h̃i(θ ) = tanh(θ), θ ∈ R,

δij(t) ≡ σji(t) ≡ 7, t ∈ [0, ∞)Z, i, j ∈ [1, 2]Z.
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FIGURE 6. The error system. (Example 1).

FIGURE 7. x1(t) and its estimations x̂1(t) (Example 2).

If we choose β
(1)
1 = β

(2)
1 = β̃

(2)
1 = β̃

(1)
1 = β

(1)
2 = β

(2)
2 =

β̃
(2)
2 = β̃

(1)
2 = 1 (i.e., 01 = 02 = 0̃1 = 0̃2 = I2), then

Assumption 1 is satisfied.
Assume that the measurements of DTBAMNN (1) are

given by (2), where

M =
[
0.50 0.90

]
, M̃ =

[
0.10 0.60

]
.

Choose β = 0.02 and solve the inequalities (6) and (7) in
Theorem 1 by the software YALMIP, we can get

ũ = [50, 550]T , ṽ = [418.9, 600]T ,

ζ = [−430.3, 33.78]T , η = [−87.42, 118.73]T .

Accordingly, the gain matrices of the desired state observer
are given follows:

R = ζ (|M |ũ)+ =

[
−0.8726
0.0650

]
,

R̃ = η(|M̃ |ṽ)+ =

[
−0.2175
0.2955

]
.

Moreover, when

x(s) = [0.2794 − 0.3307]T , y(s) = [1.1674 0.7279]T ,

x̂(s) = [0 0]T and ŷ(s) = [0 0]T , s ∈ [−7, 0]Z,

FIGURE 8. x2(t) and its estimations x̂2(t) (Example 2).

FIGURE 9. y1(t) and its estimations ŷ1(t) (Example 2).

FIGURE 10. y2(t) and its estimations ŷ2(t) (Example 2).

Figures 7–12 describes the trajectories of DTBAMNN, the
trajectories of state observer and the trajectories of error
system, respectively. Further, we can find that the observer
trajectories are convergent to state trajectories little by little,
and the trajectories of error system approach zero. This also
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FIGURE 11. The error system. (Example 2).

FIGURE 12. The error system. (Example 2).

proves the effectiveness of the state observer designed by
Theorem 1.

V. CONCLUSION
This paper involves the problem designing state observer for
DTBAMNNs with multiple time-varying delays. By using
the definition of GES and generalize inverse theory of matri-
ces, we first derive delay-dependent and -independent GES
criteria for the error system. Then, by using Moore-Penrose
inverses of matrices to represent observer gains, a state
observer is given. Finally, we offer two illustrative examples
to illustrate the applicability of conclusions. Compared with
the previous conclusions, the proposed method has three
merits:

(1) The method directly uses the generalized matrix
inverses and the definitions of GES, and it avoids
the construction of any LKF;

(2) The obtained sufficient conditions are composed of
linear scalars inequalities that is easy to solve;

(3) It is suitable for the more general neural net-
work models after a small modification. For

example, memristor-based NNs [40], inertial neural
works [41] and high-order NNs [4], [42], [43].
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