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ABSTRACT The radial basis function (RBF) neural network is a type of universal approximator, and has
been widely used in various fields. Improving the training speed and compactness of RBF networks are
critical for promoting their applications. In the present study, we propose a simple, fast, and effective RBF
networks training method, which is based on the residual extreme points and their neighborhoods (thus
called the RENmethod for short in this paper). The RENmethod calculates RBF centers and widths through
a two-level iterative process, and realizes two main functionalities, namely 1) adding multiple centers within
one pass through the whole data set, and 2) calculating RBF widths specifically for each center. The use of
this algorithm does not need any parameter adjustments, and the models for approximation or classification
can be obtained by only one run. The performance of the proposed REN algorithm is compared with the
classic and powerful orthogonal least squares (OLS) algorithm. By reaching the same accuracies, the REN
algorithm trains RBF networks 50 and 320 times faster, in the chirp (0˜50 Hz, 2 s, 1 kHz, 2001 samples)
and two-dimensional peaks (2401 samples) signal approximation tasks respectively, than the OLS algorithm
does, and the number of centers obtained by the REN algorithm is reduced by half. When incorporating the
same number of centers, the REN algorithm achieves accuracies up to 3 orders of magnitude higher than
the best results obtained by the OLS algorithm. In the classification task of a real discrete breast cancer
data, both methods result in accuracies comparable to many existent methods, but the REN algorithm has
the advantages of fast training speeds and no requirements for parameter adjustments. The REN algorithm
proposed in this study may potentially be used for tasks with large scale of data or applications that require
high model performances.

INDEX TERMS Radial basis function (RBF) neural networks, residual, RBF center estimation, RBF width
estimation, approximation, classification.

I. INTRODUCTION
Radial basis function (RBF) neural networks have been
proved to be universal approximators [1], [2], [3], which
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means that they are capable of approximating any continuous
functions with satisfied accuracies when an adequate network
size and appropriate parameter settings are considered. The
method of RBF network has attracted much attention in the
past several decades due to its simple structure and excellent
performance, and it has been widely used in many fields,
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such as system identification and modeling [4], [5], [6], non-
linear system control [7], imaging processing [8], [9], [10],
data generation [11], graph-based signal representation and
processing [12], pattern recognition and classification [12],
[13], [14], neuro-rehabilitation of tremor suppression [15],
etc. Many currently popular methods, such as fuzzy [16] and
particle swarm optimization (PSO) [6], [17], [18] algorithms,
have been drawn to be used extensively in combination with
RBF networks for efficient determinations of RBF model
structures and parameters.

A typical RBF network consists of three layers, namely
the input layer, the hidden layer, and the output layer. The
input layer has as many nodes as the dimensions of input data,
which is responsible for receiving input samples; The number
of hidden layer nodes needs to be determined through certain
training methods, and each of the hidden node, which has
an activation function called an RBF, connects to all of the
input layer nodes with the coefficients constituting the center
vector of the RBF; During the calculation process of an RBF
network, the distances between the inputs and centers will be
calculated and fed to the RBFs; The output layer provides
multi-dimensional outputs, with each of them being a linear
combination of the hidden layer RBF outputs and, in most
cases, an additional bias. In practical applications, appro-
priate values must be determined for the parameters of the
number of centers (m1), their locations (C) and widths (σ ),
and the connecting coefficients (ω) between the hidden and
output layers, by using some training methods on a training
data for the RBF networks to perform well in solving specific
problems.

Compared to other types of neural networks, RBF net-
works have some special characteristics that can be employed
for designing their training methods. Schwenker et al. [13]
make a good systematic summary for RBF network training
methods according to the number of training phases involved,
and put forward the concepts of one-phase, two-phase and
three-phase RBF network trainingmethods. One-phasemeth-
ods train all the parameters in a single learning process,
such as the support vector learning (SVL) method [13], the
orthogonal least squares (OLS) method [19], and the gradi-
ent descent algorithms [20], [21], [22], in which the target
information is employed during training; Two-phase methods
train RBF networks in two separate learning processes for the
hidden layer and output layer parameters respectively. And
the hidden layer parameters (RBFs centers and widths) can
be obtained by using unsupervised clustering methods (such
as k-means clustering) or supervised methods (such as LVQ
or decision trees); The three-phase methods try to fine-tune
the obtained results further to achieve a more optimal model
through, e.g., the error back-propagation algorithms. This
third phase treatment is reasonable and necessary, since con-
tinuous adjustments of centers and widths may result in better
results, while adaptations of them totally from inappropriate
initial values would usually cause very slow training speeds
and high computational demands. In fact, this fine-tuning

process is not only for combination with the two-phase meth-
ods, but can also be applied to RBF networks obtained with
any methods. These concepts of phase-wise training is a
good reference for selecting or designing appropriate training
strategies for RBF networks.

For the output layer connecting coefficients, due to their
linear characteristics, no matter what algorithms (direct
inverse, least squares, or gradient descent methods, etc.) or
process (calculated separately or together with the hidden
layer parameters) are adopted, the determination of their
values is relatively simple and the optimal values of them
can always be obtained easily. On the contrary, it is com-
monly known that the number of centers, their positions,
and RBF widths are essentially important and difficult to
determine for achieving the optimal performance of RBF
networks.

Previous research results have shown that the two-phase
learning methods only realize the supervised or unsupervised
learning of the center positions, and does not make full use of
the label information of training data or the expression ability
of the hidden layer, especially for the determination of RBF
widths [13]. Therefore, it is generally hard for the method to
obtain optimal results, and the performance obtained is gen-
erally worse than those of, e.g., multilayer perceptron neural
networks. These can also be understood in that, if different
set of RBFs are adopted comprising the target functions,
then the optimal centers and widths might also be different
accordingly; thus, only employing some clustering criterion
arbitrarily without considering RBFs would be hard to get the
best results. However, this kind of methods might also work
well for some kind of data set, and have the advantage of
having fast training speeds and being capable of providing
very good initial conditions for other methods for further
optimizations.

Training methods based on gradient information are one
of the most popular RBF network training methods at
present [14], [17], [21], [22], [23], [24]. They can not
only be used as the third phase learning algorithm to opti-
mize RBF networks further, but can also be used as the
one-phase learning method to train all parameters in one
process. Since the gradient based methods are implemented
by using RBF network prediction errors in a supervised
manner, which involves the evaluations of RBFs, they usu-
ally result in better performance [13], [21]. Recently, great
progresses have been made in the gradient based training
methods for RBF networks [17], [21], [22]. However, there
still exist some problems and/or drawbacks that need to be
solved for the gradient based methods to be more effective,
such as tending to fall easily into local optima, demand-
ing more computational resources, having slow converging
speeds, and requiring repetitive adjustments of parameter
values or thresholds (e.g. the learning rates). These make
the performance of RBF networks trained by gradient based
methods severely depend on the initial values of param-
eters and the pattern of input data. In Schwenker et al.’s
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study [13], although fast training speeds and relatively higher
accuracies are achieved, the gradient based back-propagation
method does not alter center positions too much when it
is used as the third phase training method, implicating that
the RBF networks obtained might not be the global opti-
mal one, but be deeply affected and constrained by the
initial conditions provided by the prior two-phase training
results.

To achieve better initial conditions, Zhang et al. [14] adopt
the OLS-based forward subset selection method [19], [25]
to specify centers in their study for further optimization that
is implemented by a new Levenberg–Marquardt (LM) based
method. The ErrCor algorithm proposed by Yu et al. [26]
uses the location of the sample with the maximum error as
the initial value for each newly added unit in each itera-
tion, before learning the optimal results through the gradient
method of modified Levenberg-Marquardt (LM) algorithm.
With these methods of specifying initial center positions,
faster training speeds and higher model performances are
achieved.

In addition to the gradient based methods, some methods
such as the orthogonal least squares (OLS) [19], [25] and
support vector learning (SVL) [13] methods are considered
as special one-phase RBF network training methods, since
they achieve optimal results with respect to their respec-
tive criteria by incorporating the RBFs’ outputs and label
information. These methods are different from the two-phase
methods, in which the outputs of RBFs are only used for
determinations of the output layer weights. Both OLS and
SVL select a portion of the input data as centers to produce
compact RBF networks, and are quite effective in achieving
satisfactory accuracies. However, SVL often leads to complex
network structures, and OLS is computationally demanding.
When dealing with large data sets, they usually need a large
amount of calculations and memories, and a long training
time. In addition, although RBFs’ outputs have been involved
during training, these methods do not consider the shape
dependence of RBFs on the training data. Apparently, training
methods which can update centers and widths simultaneously
according to the training data would improve model accura-
cies and compactness.

To improve the performance of RBF networks, some
researchers design training algorithms by using more accu-
rate information, such as more appropriate basis functions
and model prediction errors. Singla et al. [27] propose that
using more appropriate basis functions with adapted shapes,
scalings, and rotations according to the training data, rather
than the predetermined ones, would help in achieving more
compact RBF models while improving model accuracies.
Lai et al. [28] propose a set of RBFs with adaptive inputs
and composite trend representations for portfolio selection
and achieve effective and robust asset price prediction per-
formance. Reiner and Wilamowski [29] utilize the input data
with the greatest error magnitude as centers for incrementally
constructing RBF networks and determine the corresponding

widths iteratively with the Nelder Mead’s Simplex method,
which greatly reduces the size of RBF networks while main-
taining their approximating capabilities. Some researches
have also tried other methods of RBF widths calculations.
For examples, Yao et al. [30] propose a width optimization
method, called the concurrent subspace width opti-
mization (CSWO), to decompose the large-scale width
optimization problem into several subspace optimization
(SSO) problems, and Huan et al. [31] directly compute RBF
widths by replacing the Euclidean norm by the Mahalanobis
norm.

Considering that each RBF actually expresses a partial
aspect of the input-output mapping of training data, they,
of course, also represent the residual information that RBF
networks can improve or lack. Therefore, it can be spec-
ulated that determining RBF centers and widths accord-
ing to model residuals, rather than just using the relatively
constant or pre-determined RBFs to express the training
data, will be of great help in improving RBF network
performance.

The aim of this study is to construct a simple, fast and easy-
to-use algorithm for RBF networks training. The algorithm
automatically determines RBF centers and widths simulta-
neously based on model residual extreme points and their
neighboring fields (so called the REN method in short in
this paper), and involves significantly less distance compu-
tations. The hidden layer nodes are added recursively into the
model in an incremental manner, with one or more centers
determined in each learning iteration. With the proposed
algorithm, the RBF network with accuracies of 3 orders of
magnitude higher and decreased number of hidden nodes
approximately by half could be obtained with less memory
and computation requirements and a training speed about
50˜320 times faster, in contrast to the OLS method. In addi-
tion, no parameters or thresholds need to be preset for the use
of this algorithm.

The paper is organized as follows. In section II. METH-
ODS, first, the concepts and architectures of RBF networks
are given; then the REN algorithm for RBF networks training
is described in details, including the descriptions about the
overall iterative and evaluation process, the inner iterative
process, and the treatments of an internal parameter of multi-
plying factor. After summarization of the algorithm, an exam-
ple of function approximation, meant to demonstrate the
algorithm running process, is given. In section III. RESULTS,
the influences of some critical internal parameters on RBF
models are demonstrated first, and then the results of approx-
imation of chirp signal with various frequency components
are given to demonstrate the superiority of the REN algo-
rithm, which is followed by a two-dimensional peaks func-
tion approximation. Finally, classifications on a real breast
cancer data set are given to preliminarily demonstrate the
feasibility of the REN algorithm in solving practical applica-
tions. At the end, discussion and conclusion are provided in
section IV and V respectively.
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II. METHODS
A. ARCHITECTURES OF RBF NETWORKS
As described above, an RBF network consists of three layers.
The input layer feeds input data to the network; the hidden
layer contains a number of nodes of RBFs to implement
the mapping from the input data space to the feature space
(RBF outputs); the output layer performs linear combinations
of the RBF outputs, realizing a linear fitting or classification
of the feature space data. If the Gaussian function φ(x) is
used as the RBF, and the training data set D contains N
input-output data pairs {(xi, yi)|i = 1, 2, . . . ,N }, where xi
is an m0 dimensional input data and yi is the corresponding
m2 dimensional output data, the output of the jth RBF (m1
RBFs in all, indicating that the feature space of the hidden
layer is m1 dimensional) can be expressed as:

φi,j = φ(∥xi − cj∥) = e
−
∥xi−cj∥

2

2σ2j 1 ⩽ i ⩽ N , 1 ⩽ j ⩽ m1 (1)

in which cj and σj are the center and width of the jth RBF,
respectively, and ∥ · ∥ represents the l2 norm calculating the
Euclidean distance between the ith input data and the jth center
point. The output layer can be multi-dimensional, and the k th

dimensional output for the ith input sample is expressed as:

yik =
m1∑
j=1

ωjkφi,j =

m1∑
j=1

ωjke
−
∥xi−cj∥

2

2σ2j (2)

in which ωjk (1 ⩽ j ⩽ m1, 1 ⩽ k ⩽ m2) is the connecting
coefficient between the jth RBF and k th output layer unit.

If the following notations are defined such that

ωk = [ω1k , ω2k , · · · , ωm1k ]
T

� = [ω1, ω2, · · · , ωm2 ]
T

yi = [yi1, yi2, · · · , yim2 ]
T

Y = [y1, y2, · · · , yN ]T

φ =

φ1,1 · · · φ1,m1
...

. . .
...

φN ,1 · · · φN ,m1

 (3)

in which �,Y, φ are of m2xm1, Nxm2, Nxm1 dimensions
respectively and [·]T means the transpose of matrices or
vectors, then we have

φ�T
= Y (4)

The training task of an RBF network is to determine all
the RBF parameters (C = [c1, · · · , cm1 ]

T and σ =

[σ1, · · · , σm1 ]
T ) and the connecting coefficients (�) by using

the given training data set. After training is finished, the
obtained model can be used to process new unlabeled input
data to get the corresponding output in the task of, e.g., pattern
classifications or function approximations.

FIGURE 1. Flow chart for the implementation of the REN algorithm.

B. THE REN ALGORITHM FOR RBF NETWORKS TRAINING
1) THE ITERATIVE PROCESS OF THE REN ALGORITHM AND
EVALUATION OF THE RBF NETWORK PERFORMANCE
The proposed REN algorithm (see Fig. 1 for the flow chart)
is implemented in a two-level iterative process, namely the
outer and inner iterative processes. In each outer iteration,
two steps are involved. One is to update the RBF network
parameters, namely the centers (Cn) and widths (σ n) (here-
after, the iteration number is denoted by the subscript n),
through the inner nested iterative process, and the other is
to evaluate the performance of the updated RBF network.
This two-step outer iterative training process will be contin-
ued until a stopping criterion is met. Usually, the stopping
criteria could be that a satisfactory performance has been
reached, or that a predetermined number of nodes have been
added.

Within the nth (n ⩾ 1) outer iteration, the nested
inner iterative process firstly computes RBF centers (Cn =

[c1, c2, · · · , cm1,n]
T ) and widths (σ n = [σ1, σ2, · · · , σm1,n ]

T )
based on the squared residual norm vector ∥En−1∥2 returned
from the (n− 1)th iteration, in which

En−1 = Y− Ŷn−1 (5)

is defined as the model residual (the detailed definition pro-
cess will be described below). Given the input data X =
[x1, x2, · · · , xN ]T , the RBF layer output is then computed
as φn. Through the formula φn�

T
n = Y (4) and the least

squares (LS) or pseudo inverse algorithms, the estimate �̂n
can be obtained. These complete the construction of the
whole RBF network in the nth iteration (at this time point, the
model has the parameters of Cn, σ n, and �̂n). The obtained
model has a prediction error of ei,k,n = yi,k − ŷi,k,n at the
k th output for the ith input data. The error for all dimen-
sional outputs is expressed in a vector form as ei,n =
[ei,1,n, ei,2,n, · · · , ei,m2,n]

T
= yi − ŷi,n, and for all inputs as

En = [e1,n, e2,n, · · · , eN ,n]T = Y − Ŷn (in which Ŷn =

φn�̂
T
n ). The normalized root mean square error (nRMSE), i.e.

the square root of the percentage of the model residual energy
to the total energy of the targets, is used to evaluate the model
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performance and expressed as

nRMSEn =

√
∥En∥2F
∥Y∥2F

=

√√√√∑
i
∑

k e
2
i,k,n∑

i
∑

k y
2
i,k

1 ⩽ i ⩽ N , 1 ⩽ k ⩽ m2 (6)

in which ∥ · ∥F denotes the Frobenius norm. The reason
for the use of nRMSE is that even one single value of it
could give a direct and intuitive index about the model perfor-
mance. Meanwhile, the obtained residual norm is used as the
input for the next iteration, which is computed as ∥En∥2 =
[∥e1,n∥2, ∥e2,n∥2, · · · , ∥eN ,n∥

2]T , in which ∥ · ∥ denotes the
Euclidean norm of column vectors ei,n or rows in the matrix
of En. This outer iterative training process continues until the
stopping condition is met, i.e. nRMSEn ⩽ ϵ or m1,n ⩾ m1,
in which ϵ is a preset model performance threshold value and
m1,n is the number of centers at the end of the nth iteration.

2) THE INNER ITERATIVE PROCESS - CALCULATIONS OF RBF
CENTERS AND WIDTHS
During the nested inner iterative process of the nth outer
iteration, the squared residual norm (∥En−1∥2) obtained in the
(n−1)th iteration are employed to estimate RBFs centers and
widths, by regarding residual local extreme points as RBFs
centers and utilizing a preset residual norm threshold (e2th) to
locate RBFs boundaries and thus obtaining the RBFs widths.
By doing these, the obtained several RBFs are deemed to
be able to compensate the residuals, thus improve the model
accuracies. The detailed process is described as follows.

The input training data set is firstly divided into two sets
according to the residual norm vector ∥En−1∥2 and the pre-
set threshold value e2th. Here in this paper, we set e2th =
0.1(max(∥En−1∥2) − min(∥En−1∥2)) + min(∥En−1∥2). The
first set contains those input data points (Xnz = {xnz,i|i =
1, 2, · · · }) with non-zero amplitude residual norms recog-
nized by ∥En−1∥2 ⩾ e2th, which correspond to points of
residual extremes and their neighborhoods, and are used to
locate RBF centers; The second set contains those input
data points (Xz =

{
xz,i|i = 1, 2, · · ·

}
) with zero amplitude

residual norms recognized by ∥En∥2 < e2th, which correspond
to points far from RBF centers beyond distances proportional
to RBF widths, and are used to calculate RBF widths as
the distances between centers and their nearest points in Xz
multiplied by a constant factor λ (see section II-B3).
The point in Xnz with the maximum residual norm is rec-

ognized as one RBF center (denoted as cn,p = xmax, in which
the subscript p = 1, 2, . . .Pn is the inner iteration number),
and the shortest distance (dmz,min = min(dmz)) between xmax
and Xz is used to calculate the corresponding RBF width as
σn,p = λdmz,min. If we define the distance between xmax and
Xnz as dmn, then the neighboring points of xmax correspond
to those with dmn < dmz,min. Following specifications of
the center cn,p = xmax and width σn,p = λdmz,min, the
point xmax and its neighbors within the radius of dmz,min can
be removed from the set of Xnz (the corresponding residual

norms in ∥En−1∥2 are discarded too), and new updated Xnz
and ∥En−1∥2 can be obtained. In order to improve the model
training speed, more centers and widths can be identified
iteratively in this inner iterative process by repeating the steps
described above, until all points in Xnz are processed and
discarded, or a predetermined number of inner iterations are
finished.

3) MULTIPLYING FACTOR (λ) OF RBF WIDTHS
If the error surface (in ∥E∥2 in this paper) could be repre-
sented by an RBF in some ideal situation, then the width
can be measured as the distance from the center to some
peripheral point. In our REN algorithm, the boundaries are
arbitrarily determined based on the predetermined residual
norm threshold (some percentage of the maximum norm).
The minimal distance between the center and boundaries is
of course not equal to the true width value, but should be
proportional to it and could be used to estimate the true value
by multiplying a constant factor. In order to achieve more
accurate RBF width values and thus improve the RBF model
performance, the proposed REN training algorithm computes
RBF widths σn,p as the minimal distances (dmz,min) between
centers and boundaries multiplied by a constant factor λ, i.e.
σn,p = λdmz,min, with dmz,min tracing the varied residual
components to be compensated for and λ scaling dmz,min to
some extents more suitable for residual compensations. The
width multiplying factor (WMF) λ may be related to many
aspects or parameters in optimizing model performance, and
one of them is obviously the parameter of residual norm
threshold. It can be inferred that, for a fixed residual norm
threshold, λwould remain unchanged to maximize the model
performance. The suitable value of λ is determined by per-
forming a series of model training and testing experiments
with different values of it and selecting the one with the best
model performance. It is shown that the suitable values of
λ are between 3˜10 in our study, and that, once specified
experimentally, it does not need to be changed any more in
further training applications of the REN algorithm in different
tasks.

C. SUMMARIZED STEPS OF THE REN ALGORITHM
IMPLEMENTATION
The computing process in one outer iteration of the REN
algorithm is summarized as follows:

1) Initialize ∥E0∥
2
= ∥Y − Ŷ0∥

2 and nRMSE0 =√
∥E0∥

2
F

∥Y∥2F
=

√∑
i
∑

k e
2
i,k,0∑

i
∑

k y
2
i,k

, in which Y0 can be simply

set to 0, or the average or a linear fitting of the input
data.

2) During the first step in the nth(n ⩾ 1) outer itera-
tion, compute cn,p and σn,p through the inner iterative
process as described in the next paragraph by using
∥En−1∥2 returned from the (n−1)th outer iteration. All
obtained centers and widths then constitute Cn and σ n.
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3) During the second step in the nth(n ⩾ 1) outer iteration,
compute the hidden layer outputs φn based on centers
(Cn), widths (σ n), and network inputs (X); compute
the output layer weights (�̂n) through φn�

T
n = Y

and the least squares algorithm; compute the model
residual norm ∥En∥2 = ∥Y − Ŷn∥

2 and the network

performance nRMSEn =

√
∥En∥2F
∥Y∥2F

=

√∑
i
∑

k e
2
i,k,n∑

i
∑

k y
2
i,k

,

in which Ŷn = φn�̂
T
n .

4) If nRMSEn > ϵ and m1,n < m1, then repeat the
above process from step 2; otherwise, the computations
of centers C and widths σ are completed, and C =
Cn, σ = σ n, and� = �̂n are returned.

The inner iterative process of updating RBF centers and
widths of the REN algorithm, implemented in the second step
in the paragraph above for the nth outer iteration, is summa-
rized as follows:

1) Divide the input data set X into two sets
(Xnz and Xz) based on the residual norm ∥En−1∥2 =
[∥e1,n−1∥2, ∥e2,n−1∥2, · · · , ∥eN ,n−1∥

2]T = ∥Y −
Ŷn−1∥

2 and the preset threshold (e2th), with Xnz ={
xnz,i = arg

xnz,i
(∥En−1∥2 ⩾ e2th)|i = 1, 2, · · ·

}
contain-

ing points of non-zero amplitude residual norms and

Xz =

{
xz,i = arg

xz,i
(∥En−1∥2 < e2th)|i = 1, 2, · · ·

}
containing points of zero amplitude residual norms.

2) Identify one RBF center as cn,p = xmax =

arg
x
max

(
∥En−1∥2|x∈Xnz

)
(with p = 1, 2, . . .Pn being

the inner iteration number) if this xmax point has
not ever been identified as a center before, and
the corresponding RBF width as σn,p = λdmz,min
with dmz,min being the shortest distance (dmz,min =

min(dmz)) between xmax and Xz (dmz ={dmz,i =∥∥xmax − xz,i
∥∥ |i = 1, 2, · · · }).

3) Compute distances

dmn =

{
dmn,i =

∥∥xmax − xnz,i
∥∥ |i = 1, 2, · · ·

}
between xmax and points in Xnz.

4) Update Xnz ←

{
arg
xnz,i

(dmn ⩾ dmz,min)

}
and ∥En∥2 ←

∥En∥2|x∈Xnz .
5) Repeat the above steps, until Xnz becomes empty or Pn

is equal to a preset value.

D. AN EXAMPLE OF FUNCTION APPROXIMATION WITH
THE REN ALGORITHM - DEMONSTRATION OF THE
IMPLEMENTATION STEPS
When used for the function approximation task (the
example function waveform is as shown in Fig. 2d-g),
the data generated in each stage during the implemen-
tation of the REN algorithm is shown in Fig. 2. All

FIGURE 2. Results of three iterations when implementing the REN
algorithm to train an RBF network to approximate the function as shown
in d-g. Figures in each column are for one outer iteration, with the bottom
left most figure providing the initial conditions for the learning
procedure. The top row figures show the results of updating network
parameters (step #1 in outer iterations), in each of which the centers are
identified iteratively through the inner iterative process based on the
provided residuals, and marked by blue circles. The bottom row figures
show the results of evaluating network performance (step #2 in outer
iterations) based on the obtained centers and widths, below each of
which the computed nRMSE is displayed. The legends for the top and
bottom row figures are only shown in the last figures respectively.

the programs, for this example and others in this paper,
are implemented in the MATLAB environment on a
macOS MacBook Pro (2.8 GHz Intel Core i7 processor
and 16 GB RAM).

At start of the REN training procedure, no centers are
selected and the model outputs are computed just based
on the linear fitting of the training data (Fig. 2d). Model
residuals are the squared errors between the expected and
real model outputs (Fig. 2a). By comparing the obtained
residuals with a preset threshold (the cyan line in Fig. 2a-c),
the training data points are divided into two sets, namely
the supra-threshold points (i.e. residual extreme points and
their neighborhoods, indicated by red dots in Fig. 2a-c) and
sub-threshold points (i.e. points beyond RBF widths, indi-
cated by dark dots in Fig. 2a-c). The point with the highest
residual amplitude is recognized as one center, and its nearest
distance to sub-threshold points is used to compute the corre-
sponding width. This center point and its neighborhoods are
then removed for further recognition of centers by repeating
the above process. Eight centers in all (Fig. 2a) are recognized
in this inner iterative process. With the obtained centers and
widths, the RBF model is updated and new outputs can be
obtained (Fig. 2e). At this time point (the end of outer itera-
tion), the model performance (nRMSE) is evaluated to deter-
minewhether a further iteration would be required. If nRMSE
is greater than a predetermined threshold, and the number of
centers has not reached its preset maximum number, another
iteration will be initiated with the residuals as inputs. In this
example, after three iterations, 26 centers in all are added into
the RBF model, and the nRMSE is reduced from 0.9942 to
2.5212x10−4. In fact, after 2 iterations, the result of 20 centers
and nRMSE=0.0013 has already given a satisfactory fitting
waveform (Fig. 2f).
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FIGURE 3. Influences of the REN algorithm width multiplying factor λ on
the model performance. The train and test data are extracted from a
sinusoidal signal of two cycles (41 and 401 points respectively).

III. RESULTS
Firstly, by taking function approximations as examples, the
characteristics and advantages of the REN algorithm related
to some inherent parameters are demonstrated; Then, in the
example of chirp and peaks signal approximations, the effec-
tiveness of the REN algorithm for approximating multi-
frequency and multi-dimensional signals is shown; Finally,
the task of breast cancer data classification is performed to
demonstrate the feasibility of the REN algorithm in training
RBF models to deal with practical classification problems.
In addition, since the OLSmethod has displayed good perfor-
mance in training RBF networks due to its ability of selecting
relatively optimal centers [19], it is also used in this paper to
train RBF networks in all approximation and classification
tasks for comparison purposes. The OLS method for RBF
network training has a function implementation (newrb.m) in
MATLAB Neural Networks toolbox.

A. INFLUENCES OF SOME INHERENT PARAMETERS OF
THE REN ALGORITHM ON RBF NETWORK
PERFORMANCES
There are some inherent parameters involved in the REN
algorithm that is closely related to the algorithm’s training
performance. These include the RBF widths multiplication
factor (λ), RBF widths (σ ), and the number of centers added
in each iteration (Pn). Once specified, their values do no need
to be changed in further practical applications.

1) INFLUENCES AND DETERMINATIONS OF THE CONSTANT
RBF WIDTH MULTIPLICATION FACTOR (λ)
As described in theMethods section, the REN algorithm auto-
matically calculates RBF widths σn,p = λdmz,min, where the
multiplying factor λ is a preset constant relating the calculated
distance dmz,min to the actual width value. Thus, the value of
λ directly affects the performance of the trained networks.
To determine suitable values of λ, here the REN algorithm is
applied to approximating a sinusoidal signal of two cycles
with 41 points (the testing data is the 10 times sampled
data points). The results (Fig. 3) show that small λ values
(< 2x100) result in over fitted models (high training accura-
cies and low testing accuracies), and large λ values (> 2x101)
the poorly trained models (low training and testing accura-
cies). With medium values of λ (about 2x100 < λ < 2x101),

TABLE 1. Schemes of parameter combinations for demonstrating the two
functionalities realized by the REN algorithm.

the best results are obtained. Fortunately, once specified,
the value of λ does not need to be changed for the REN
algorithm to perform successfully in different approximation
or classification tasks. In practical applications, λ can be set
to some values in the range of 3˜10.

2) TWO SUPERIOR PROPERTIES (Pn AND σn,p) REALIZED BY
THE REN ALGORITHM AND THEIR INFLUENCES ON MODEL
PERFORMANCES
The proposed REN algorithm realizes two major function-
alities in determining centers and widths. One is that more
than one centers (Pn ⩾ 1) can be added one time through
the inner iterative process, and the other is that the RBF
width (σn,p) for each center is determined automatically by
computations. To demonstrate the important roles of these
two aspects in improving RBF network performances and
training speeds, the REN algorithm is applied to approximat-
ing the function as shown in Fig. 2d-g, by using different
combination schemes of the parameter values (specifically,
i.e. Pn is limited to 1 or not, and σn,p is fixed or not). The four
possible combination schemes are named REN 1, REN 2,
REN 3, and REN 4 respectively here (see Table 1). The
scheme REN 3 has complete inherent properties of the REN
algorithm, while the other three schemes limit one or two of
the listed aspects. The performance curves of five models
trained by the REN and OLS algorithms are compared on
the testing data (10 times sampled points of the function in
Fig. 2d-g) and the results are shown in Fig. 4.
The experiment results for 15 different width values in

the range of 0.01˜0.29 are obtained, but only 4 performance
curves of them are shown in Fig. 4.When employing constant
width values, the REN 1 (add one center per outer iteration)
and 4 (add multiple centers per outer iteration) schemes result
in approximately the same performance curves as the OLS
method for all RBF widths and number of centers (Fig. 4a-d).
This implicates that the REN algorithm has the same basic
effectiveness as the OLS method, when the parameters are
limited to using fixed RBF widths and Pn = 1. However,
when employing center-dependent widths calculated auto-
matically in the REN algorithm, it is found as expected, that
the REN 2 (add one center per outer iteration) and REN 3
(add multiple centers per outer iteration) schemes result in
significantly better performance curves in contrast to the
REN 1 and 4 schemes and the OLS method (Fig. 4a-d),
which becomes especially apparent as more centers are incor-
porated in the networks (Fig. 4a-d). When less centers are
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FIGURE 4. Comparison of the influences of the REN algorithm’s two
functional characteristics (i.e. adding multiple centers one time and
determining width values for each center) on the model performance. The
four subfigures show the results for different Gaussian RBF widths (RBF
Widths=0.01, 0.09, 0.19, and 0.29). In each subfigure, the RBF width value
used by the REN 1 and 4 and OLS algorithm is displayed above. It should
be noted that the results of the REN 2 and 3 remain the same for different
width values indicated (because the actual widths used are calculated
automatically, not assigned manually), and they are drawn repeatedly in
the four subfigures just for comparison purposes. The values of the
relevant parameters, i.e. Pn (the number of centers added in each outer
iteration) and σn,p (the width value), are summarized in Table 1.

FIGURE 5. Testing performances (nRMSE) for the 50-center RBF networks
obtained with different RBF widths. See Table 1 for explanations on the
parameter specifications.

used, all schemes or methods here tend to result in similar
performances (Fig. 4a-d).

In order to obtain the optimal width values for the
REN 1 and 4 and OLS methods, and to see how their corre-
sponding optimal performances are compared to those for the
REN 2 and 3 schemes, the results for the 50-center models at
15 RBF width values between 0.01˜0.29 are shown in Fig. 5.
It is seen that the results for the REN 1 and 4 and OLS
methods are approximately the same at all widths, and reach
their optimums only at medium width values (around 0.1 in
this example) (Fig. 5). This leads to the problem of having to
search for the optimal values of widths in a trial-by-trial man-
ner, if the best performance needs to be achieved. In contrast,
the schemes of REN 2 and 3, which compute RBF widths

FIGURE 6. Comparison of training time lengths (mean±standard
deviation) for the four REN schemes and OLS method. The statistics is
made upon the 15 results corresponding to different RBF widths as
described above. Note that the REN 3 and 4 schemes employ widths
calculated automatically. See Table 1 for explanations on the parameter
specifications.

automatically, do not have this problem and achieve the final
results only in one training run. The REN 2 and 3 schemes
result in performances two orders ofmagnitude better than the
optimal ones obtained by the REN 1 and 4 and OLS methods
(Fig. 5). These results clearly demonstrate that, by computing
RBFwidths that fit the training data better, the REN algorithm
can significantly improve the RBF network performance.

The training time lengths consumed by the REN and
OLS algorithms are shown in Fig. 6. It is seen that the
REN 3 and 4 schemes (adding multiple centers per outer iter-
ation) need significantly less time than the others. Moreover,
from the above results (Figs. 4 and 5), we can see that the
REN 3 and 4 schemes result in performance results similar
to REN 2 and 1 respectively, implicating that accelerating the
training speed by identifying multiple centers at one time has
no negative effects on the model performance. In addition,
by automatically calculating suitable RBF widths from the
training data, the REN algorithm avoids performing multiple
training runs to select the most appropriate width, thus further
reducing the time lengths required for the construction of
RBF networks.

3) THE INFLUENCE OF THE UPPER LIMIT (P ′) OF Pn ON THE
RBF MODEL PERFORMANCE AND TRAINING SPEED
In order to get a further understand of how Pn impacts the
model performance and training speed, an upper limit (P′)
is applied to it in the REN algorithm, such that the number
of centers added in each outer iteration will not exceed that
limit. The same function approximation process is conducted
as above, and 28 different values of P′ between 1 and 100 are
used for RBF networks training. The results are shown in
Fig. 7. It can be seen that the standard deviations of the
28 performance curves are relatively small (Fig. 7a). Thus,
P′ has little impacts on both training and testing accuracies
of RBF networks. On the other hand, the training speed
displays great sensitivities to P′ (Fig. 7b). Too small P′ values
(i.e. adding fewer centers each time) result in apparently
longer training time lengths (Fig. 7b), which are significantly
and rapidly decreased as larger P′ values are used (Fig. 7b).
Relaxing P′ to some certain values can reduce the training
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FIGURE 7. Influences of the upper limit (P ′) of Pn on the model
performance and training speed. Model training and testing are
conducted for 28 different values of P ′ between 1 and 100. The results in
(a) are expressed as mean±(standard deviation) of the 28 results.
(b) shows the training time lengths, when using different P ′ to train a
100-center RBF network.

FIGURE 8. Approximation performances for the sinusoidal signals of 1,
10, 100, and 1000 Hz with the REN algorithm. (a) Training performances.
(b) Mean±(standard deviation) of the four model results. All sinusoidal
signals have two cycles of 41 samples. The testing data are the 10 times
sampled points. The REN algorithm are applied without any adjustments
during training the four models.

time lengths to a minimum value while maintaining the same
model accuracies. It should be noted here that, in each iter-
ation of the REN algorithm, the value of Pn (⩽ P′) will
be determined automatically according to residuals, and is
iteration specific and probably smaller than P′. In practical
applications of the REN algorithm, P′ can be simply set to
infinity, or to the maximum number of centers allowed by the
trained RBF network model.

B. APPROXIMATION OF SIGNALS OF MULTIPLE
FREQUENCY COMPONENTS
1) INSENSITIVITIES OF THE REN ALGORITHM TO SIGNAL
FREQUENCIES
Since the REN algorithm is designed to automatically calcu-
late RBFwidths, the obtainedmodel performance is supposed
to be insensitive to the shapes or frequencies of signals.
In order to verify this, the approximation of sinusoidal signals
with different frequencies (1, 10, 100, and 1000 Hz) are stud-
ied here. All the sinusoidal signals consist of two cycles with
a total of 41 points. The testing points are those 10 times sam-
pled (thus 401 points in all). The results show that, although
used without any adjustments, the REN algorithm results in
almost the same training performance curves for all signals
of different frequencies (Fig. 8a). Further statistical results
(mean±standard deviation of the four model performances)

FIGURE 9. The cosine (chirp) signal of linear swept-frequencies. (a) time
varying signal shape (only 0.5 of 2 s is shown here for the clarity
purpose). (b) the corresponding time-frequency spectrum. The chirp
signal frequency increases linearly from 0 Hz (at 0 s) to 50 Hz (at 2 s).
Sampling rate: 1 kHz. The testing data are the randomly sampled
2001 data points in the range of 0˜2 s.

FIGURE 10. The testing performance curves for the chirp signal (0˜50 Hz,
2 s, 1 kHz, as shown in Fig. 9) approximations with the REN and OLS
algorithms. The OLS algorithm is implemented with various Gaussian RBF
width values (GW=0.3/(1˜200 Hz)=0.0015˜0.3).

display small variances for both the training and testing per-
formance curves (Fig. 8b). The testing performance is a little
poorer than the training performance when more centers are
incorporated, but still smaller than 10−10 (Fig. 8b). When
less centers are used, the two curves are almost the same.
This result show that the REN algorithm is insensitive to
frequencies and may well be used for approximations of sig-
nals with multi-frequency components. This will be further
demonstrated and verified by the approximations of chirp and
peaks signals next.

2) FAST CONVERGENCE AND BETTER PERFORMANCE OF
THE REN ALGORITHM IN APPROXIMATING CHIRP SIGNALS
In order to determine the performance differences between
the REN (automatically calculating center specific RBF
widths σ ) and OLS algorithms (using the fixed RBF width
value) in dealingwithmultiple-frequency signals, the approx-
imations of a chirp signal (0-50 Hz, 2 s) by using the two
algorithms are carried out. For the OLS algorithm, various
Gaussian RBF widths (GW) are tested. The chirp signal and
its time-frequency spectrum are shown in Fig. 9.

The obtained testing performance curves (Fig. 10) show
that the REN algorithm results in a faster and better (low
nRMSE values) RBF network training, while the results
obtained by the OLS algorithm with various width values
exhibit either slow converging speeds or poor performances
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FIGURE 11. The testing performances for the 1800-center networks
obtained by using the REN and OLS algorithms. The REN algorithm
automatically calculates the center-specific RBF widths, and the OLS
algorithm is implemented with various fixed RBF width values. These
results correspond to those for 1800 centers in Fig. 10.

FIGURE 12. Training time lengths required by the REN and OLS algorithms
in the chirp signal (0˜50 Hz, 2 s, 1 kHz, Fig. 9) approximation task.
(a) Training time lengths for constructing the 2001-center models.
(b) Training time lengths (mean±standard deviation) averaged over those
obtained by the OLS algorithm with various Gaussian RBF width values.
(c) Training time lengths for different number of iterations of the REN
algorithm. (d) Ratios between the training time lengths for the OLS and
REN algorithms versus the number of centers of the constructed models.
(e) Training performance (nRMSE) versus the number of iterations for the
REN algorithm. (f) Number of centers acquired versus the number of
iterations for the REN algorithm. The corresponding performance curves
are shown in Fig. 10.

(relatively big nRMSE values). To achieve a specific level
performance, the REN algorithm leads to a network with
only approximately half number of centers of those obtained
by the OLS algorithm (Fig. 10), implicating that more com-
pact models can be obtained by using the REN algorithm.
In addition, as shown in Fig. 10 and 11, only in a very narrow
range of width values (0.0021-0.0030), the OLS algorithm
gets its best performance (by taking the training results of the
1800-center networks for examples in this approximation task
for the linear swept-frequency chirp signal). This implicates
that more runs of training will be required to find the best
width value when adopting the fixed RBF width training
strategy. While, in contrast, the REN algorithm obtains much
better results in one training run without any specific param-
eter settings or adjustments.

3) LESS TRAINING TIME AND NUMBER OF CENTERS
ACHIEVED BY THE REN ALGORITHM
The training time lengths for approximating the chirp signal
are shown in Fig. 12. It is seen that the REN algorithm

completes the training procedure in about 17 s ending with
the 2001-center model (Fig. 12a, c, and f). In fact, the
REN algorithm identifies all significant centers (i.e. about
1000 out of the 2001 training points) and achieves a sta-
tionary performance of nearly the smallest nRMSE within
much less number of iterations (18 iterations out of 39 in all)
(Fig. 12e), and this takes only about 8 s training time
(Fig. 12e and c). In contrast, theOLS algorithm requires about
430 s to complete one single training process (Fig. 12a and b,
see Fig. 10 for the corresponding performance curves). The
REN algorithm trains the chirp signal approximation model
up to 53.75 times faster than the OLS algorithm while main-
taining a better performance. Even though the same number
of centers are employed for the comparison purpose, the REN
algorithm still exhibits up to 22 times at most (in this task)
faster training speeds than the OLS algorithm (Fig. 12.d).
Moreover, considering that the training strategy like the OLS
algorithm using fixed width values usually needs more time
by repeating model training several times to acquire the opti-
mal result, the REN algorithm proposed in this paper is more
effective in reducing the training time due to its capability of
training RBF models successfully in one run.

Furthermore, the efficiency of the REN algorithm is also
at its ability of constructing more compact networks with
less number of centers. Take the chirp signal approximation
task here for an example, by employing half (1000) of the
training data as centers (Figs. 10, 12e, and f), the REN
algorithm achieves the same performance results as the OLS
algorithm that uses all of the training data (2001) as centers.
This means that the models obtained by the REN algorithm
will be computationally efficient and fast in later prediction
applications.

One commonly used criterion of stopping an RBF network
training is to see if the model error is already small enough
compared with a preset threshold. Different problems may
have different tolerance. The results in Fig. 10 and 12 are re-
drawn in Fig. 13 to display the dependancies of training time
lengths and number of centers on the expected performance
for the REN and OLS methods. It is seen that, as the training
performance increases (i.e., nRMSE values decrease), the
training time lengths and number of centers increase rapidly
for the OLS method, while remain relatively plat for the
REN method. This implicates that the REN algorithm may
work efficiently with larger data sets or higher performance
requirements.

C. TWO DIMENSIONAL PEAKS FUNCTION
APPROXIMATION
The peaks function (Fig. 14a) generates several peaks and
valleys in the three-dimensional space and is commonly used
to evaluate algorithms of approximations. Here, the perfor-
mance of the REN and OLS algorithms are compared by
approximating the peaks function. The peaks function is spa-
tially regularly sampled (49× 49 points) as the training data,
and randomly sampled (also 49×49=2401 points) as the test
data.
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FIGURE 13. Training time lengths and the number of centers versus the
training performance (nRMSE) for the REN and OLS methods.

FIGURE 14. Approximation of the peaks function. (a) The peaks function
shape. (b) The approximation performance by the REN and OLS
algorithms. Peaks function: z = 3(1 − x)2e(−x2) − (y + 1)2 − 10

( 1
5 x −

x3 − y5)
e(−x2−y2) −

1
3 e(−(x+1)2−y2). Train data: 49 × 49 spatially equally

sampled points; Test data: 49 × 49 randomly sampled points.

The results show that the OLS algorithm gives its best
performance at the Gaussian RBF width of about GW=0.3×
2=0.6 (Fig. 14b). In contrast, the REN algorithm, although
achieving the same level of best results as the OLS algorithm
in this task, results in faster convergence, thus exhibiting
superior performance results for models of about 500-1500
centers (Fig. 14b).
Different from the approximation of the chirp signal for

which the OLS method needs to incorporate all of the train-
ing data points as centers to achieve the best approximation
results (Fig. 10), this time for the peaks function approx-
imation, the OLS method reaches its best result by using
only 1500 out of 2401 points as centers. This is probably
because the variations of the peaks function (Fig. 14a) do
not occur at all positions as the chirp signal (Fig. 9a). The
corresponding training time at 1500 centers is about 400 s
for the OLS method (Fig. 15b). The REN method achieves
the same performance with approximately 794 centers (only
about half of that for the OLS method) (Fig. 14b) at the 6th

iteration (Fig. 15e and f), and the corresponding training time
is 1.2358 s. Thus, the RENmethod is about 324 (400/1.2358)
times faster than the OLS method for achieving the best
performance in this peaks function approximation task.

D. CLASSIFICATION OF THE DISCRETE BREAST CANCER
DATA
The above approximation tasks are conducted on the con-
structed, relatively more densely distributed, and noise free

FIGURE 15. Training time lengths of the peaks function (Fig. 14a)
approximation models by using the REN and OLS algorithms. (a) Training
time lengths for constructing the 2401-center model. The OLS algorithm is
implemented with 5 different Gaussian RBF widths. (b) Training time
lengths (mean±standard deviation) averaged over those obtained by the
OLS algorithm with 5 Gaussian RBF width values. (c) Training time lengths
for different number of iterations of the REN algorithm. (d) Ratios
between the training time lengths for the OLS and REN algorithms versus
the number of centers of the constructed models. (e) Training
performance (nRMSE) versus the number of iterations for the REN
algorithm. (f) Number of centers acquired versus the number of iterations
for the REN algorithm. The corresponding performance curves are shown
in Fig. 14.

data to demonstrate the characteristics and superior properties
of the REN algorithm in RBF network training. Real prob-
lems commonly encountered in the real world also include
other situations, such as the classification of discrete patterns,
in which many different patterns may correspond to one same
target (class), and the same patterns acquired at different time
points may be of different targets with certain probabilities.
In order to test the feasibility and ability of the REN algo-
rithm in dealing with the real classification problems of noisy
and uncertain data, RBF networks are trained with the REN
algorithm on the Breast CancerWisconsin (Original) Data Set
obtained from the UCI Machine Learning Repository [32],
and compared with the OLS algorithm.

The data set contains 683 samples (with 16 other unavail-
able ones discarded in our study) of 9 morphological features
of breast tumor cells, and provides the labels of 2 (benign) or 4
(malignant). Each feature of a sample is an integer between
1 and 10. The 5-fold cross validation method is implemented,
with all the samples randomly divided into 5 disjoint groups
while maintaining constant ratios of sample numbers among
categories in each group. When one of them is selected as
the test set, the other four are used as the training set. Note
that some other-fold cross validations are also tested for
comparisons (see Table 2). The classification results obtained
on the five test sets are averaged (mean±standard deviation)
as indications of the model performance. The category of an
input pattern is determined by the label of 2 or 4which is near-
est to the one-dimensional output of the RBF network. This
method, instead of the commonly used m2-output method,
is used in this paper due to the purpose of simplicity and the
fact that the RBF model implemented here is inherently an
approximation model.
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TABLE 2. Comparisons of classification results Ao of the REN algorithm
with some other methods on the Breast Cancer data.

The results of overall classification accuracies defined as

Ao =
TP+TN

TP+TN+FP+FN
where TP=True Positive, TN=TrueNegative, FP=False Pos-
itive, FN=False Negative, and obtained by the REN and
OLS algorithms and linear regression (LR) models in this
paper are shown in Table 2 for comparisons with some other
methods having been published. Many of the methods listed
in the table are quite powerful for pattern classifications,
but usually need to find the optimal and problem specific
parameter values by using the exhaustive search or some
specially designed methods [33], [34], [35]. The REN algo-
rithm achieves classification accuracies comparable to those
methods, and has the advantages of simple and fast one-run
training. In addition to the overall classification accuracies,
the results of classification accuracies (precisions) and recall
rates on each class are also given as shown in Table 3.
The classification accuracies on each class are defined as
pc = TP

TP+FP , and the recall rates as rc = TP
TP+FN . It can be

seen from Table 3 that the REN algorithm achieves results
comparable to LR and OLS methods also in terms of pc and
rc for each class.
The breast cancer data is actually highly linearly separable,

which is implicated by the high classification accuracies (an
average of 96.1%) for 0 number of centers in Table 2 and
Fig. 16a that is obtained by using linear regression models.
The REN algorithm results in classification accuracies com-
parable to the linear models (Fig. 16a), implicating that, for
one or more center models, RBF width values suitable for
this classification task have been identified and computed by
the REN algorithm successfully (Fig. 16a). In contrast, the
OLS algorithm leads to results depending upon RBF widths
as before (Fig. 16b), which shows that, in this experiment,
larger RBF width values result in higher classification accu-
racies (Fig. 16b), while smaller RBFwidths result in complex

TABLE 3. Mean and standard deviation of the classification results on
each class with LR, REN and OLS methods. In all, 50 classification results
from all 5-fold testing data sets and corresponding models of 1˜10
centers are used for REN and OLS methods respectively. The LR model
gives rise to 10 classification results in all.

FIGURE 16. Classification accuracies of RBF networks on the breast
cancer data obtained with the REN and OLS methods. (a) classification
accuracies expressed as mean±(standard deviation) of the five test set
results for 0˜20 center models trained by the REN algorithm.
(b) classification accuracies expressed as mean±(standard deviation) of
the five test set results for 1-center models trained by the OLS algorithm
by using different Gaussian RBF width values. The 5-fold cross validation
method is used for achieving this result.

results with lower accuracies of about 65% occurring at two
discontinuous ranges of width values for the one-center mod-
els (Fig. 16b). This implicates that, even for the linearly sepa-
rable problems, the data may also exhibit complex RBFwidth
dependent structures, and the REN algorithm can automat-
ically calculate the width values effectively. Simply adopt-
ing large width values in algorithms employing fixed RBF
widths, of course, could achieve good classification results
for the linearly separable problems. However, for the nonlin-
early separable problems, large width values would result in
poor approximations at class boundaries and thus poor classi-
fication accuracies, and of course, would also lead to models
of more centers, similar to those shown in Fig. 10 and 14b.
These, however, need to be verified and explored extensively
on more data sets with various distribution characteristics by
further intensively designed experiments, although the results
here tentatively demonstrate the feasibility and ability of the
REN algorithm in classifying the breast cancer data.

IV. DISCUSSION
In this paper, a brand-new REN algorithm for training RBF
neural network models is designed and implemented, and
the corresponding characteristics and performance results
are provided based on approximations of some artificially
synthetic signals; also, a preliminary attempt of classification
with the REN algorithm is made on a real breast cancer data
and results comparable to some other methods are obtained,
indicating that the REN training algorithm may be used in
practical applications. Since this paper focuses mainly on
the implementation and characteristics analysis of the REN
algorithm and demonstration of its applicability, synthetic
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one- and two-dimensional data with desired characteristics
are employed to demonstrate and explain the use of the
algorithm. At the same time, considering that different data
sets may have different distribution characteristics and mod-
eling demands, no models, generally speaking, are optimally
applicable to all data sets. Thus, this paper employed only one
real data set just to preliminarily demonstrate the feasibility
of REN algorithm in solving practical classification tasks.
We hope that in the future work, we can further analyze
and determine the characteristics and performance of REN
algorithm on more data sets with different distribution char-
acteristics by comparing with other methods.

Application schemes of the REN algorithm need further
consideration for problems of, for example, how to deal with
noise and how to use it for classifications. Generally speak-
ing, in the application of traditional machine learning meth-
ods, noise removal is completed in the data preprocessing
stage, which requires a deep understand of the characteristics
of the input data, so as to effectively remove noise and retain
the useful information; the subsequent learning algorithms
following noise removal, such as approximation or classifi-
cation, can be considered to be implemented based on clean
data samples, and only need to carry out effective and fast
fitting or classification at the cost of some information loss.
In this sense, the implementation of REN algorithm may not
consider the effects of noise. But in specific applications, the
REN algorithm capable of dealing with noise will of course
give great benefits, and this kind of improvement and inves-
tigation will be one of our main works in the future. For the
classification task, it is clear that the classifier, as obtained in
this paper by simply approximating the input data, should not
be the optimal one. In the further, we will intensely design a
classifier based on the proposed REN algorithmmore suitable
for pattern recognition and classification applications.

The implemented REN training algorithm for RBF mod-
els in this paper has several important internal parameters,
including the number of center points in each iteration,
width, width factor and data division threshold. Section III-A
explores the impacts of some parameters on the performance
of the algorithm, and gives suggestions about the correspond-
ing parameter values. Among them, the results about data
set division thresholds are not given in the paper, which
however, is shown to have a certain impact on the REN
algorithm performance. Selecting a threshold value of 0.1 as
adopted in this paper or dividing the dataset evenly in each
iteration can usually give rise to a stable and good model
performance. Other data set segmentation strategies in each
iteration and their impacts on the model performance need
further thorough investigations.

By means of automatically calculating the center point
position and corresponding width, the proposed REN algo-
rithm trains RBF models adaptively, thus without having to
adjust parameter values specifically for different data sets.
There are actually more ways to get the widths and center
positions from the residual space. For example, the widths
may also be calculated for each orthogonal basis, instead of

each center point as done in this paper. Whether this would
give improvements to the algorithm needs further investiga-
tion; for the calculation of center points, the information of
their neighborhood including the number of neighbor points
and the average value of the residual errors, etc, can be uti-
lized. These treatments may eliminate the impacts of various
types of noise, and have center positions not necessarily at
the given data set points. The statistics made on the residual
extreme neighborhood may provide more functions to the
REN training algorithm. We would like to do more work on
this topic in the near future.

The results in this paper show that the REN algorithm can
train RBF models faster by identifying multiple center points
in each iteration. Thus, determining center points as many as
possible in one cycle may be a useful working direction to
make full use of residual information to further improve the
REN algorithm training speed. Additionally, the width factor
corrects the computed distances in a certain scale, so that the
width values obtained automatically by the REN algorithm
can correspond to the true widths of the data set. However,
in order to meet certain requirements, such as improving the
anti-noise capability, eliminating high-frequency interference
or components, or being inclined to model signal components
in certain frequency ranges, adjusting width factor values
appropriately may be necessary and reasonable. These also
require deep detailed exploration and verification.

Finally, the proposed REN algorithm trains RBF models
in a batch manner, which has the advantage of fast training,
but will also require a large amount of memory and thus
limit the ability of the algorithm to process larger data sets.
In order for the REN algorithm to be used for larger data sets,
and even online, one of our further work is to improve the
REN algorithm to process data in a mini-batch or sequential
manner.

V. CONCLUSION
The brand-new REN algorithm proposed in this paper is
implemented based on the residual extreme points and their
neighborhoods, and realized by a two-level iterative process.
The outer iterations calculate the model performance and
control whether to update the model. The inner iterative
process, implemented within each outer iteration, calculates
RBF centers and widths by locating the residual extreme
points and estimating the size of their neighborhoods. The
experimental results show that the REN algorithm is simple
to implement and use, and fast and effective for training
RBF networks. By reaching the same accuracies, the REN
algorithm trains RBF networks 50 and 320 times faster, in the
chirp and two-dimensional peaks signal approximation tasks
respectively, than the OLS algorithm does, and the number
of centers obtained by the REN algorithm is reduced by half.
When incorporating the same number of centers, the REN
algorithm achieves accuracies up to 3 orders of magnitude
higher than the best results obtained by the OLS algorithm.

Two important characteristics are realized by the REN
algorithm, including 1) adding multiple centers within each
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cycle of data set processing in each outer iteration, and 2) cal-
culating RBFwidths separately for each center. When limited
to adding only one center in each iteration and employing a
constant RBF width, the REN algorithm achieves the same
training speed and model performance as the OLS algorithm.
When no limitation is applied, the two characteristics of the
REN algorithm make it capable of obtaining faster training
speeds and higher model performances. The RBF widths cal-
culated by the REN algorithm make the basis functions adapt
better to the changing signals, so that the obtained models
are insensitive to data changes or frequencies of components.
This gives the REN algorithm the ability of modeling those
data that contains many distinct components.

The REN algorithm not only results in fast training speeds
and high accuracies, but also tends to generate a more com-
pact network. The number of centers is only half of that
obtained by the OLS algorithm, implicating the effectiveness
of the obtained centers and RBF widths. This will greatly
promote the applications of the obtained models, since the
more compactness means the less computation and faster
application speed.

The implementation of the REN algorithm is simple. Less
distance calculations are involved in the determinations of
centers and RBF widths. This makes it capable of dealing
with tasks that contain more data. In addition, the REN
algorithm is easy to use, and the inherent parameters, that can
be determined experimentally prior to applications, do not
need any adjustments even for solving different problems.
In addition to intentionally modifying parameter values to
verify their effects, all tasks in this paper implement the
REN algorithm with the same experimentally predetermined
parameter values.

Due to the characteristics of being simple to implement
and use, fast training speed, and being able to result in more
accurate and compact RBF networks, the REN algorithm
proposed in this paper may be used to solve problems with
large amount of data or high performance requirements.
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