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ABSTRACT The intensive care units are a key element of patient flow, but due to high demand and an
alternating rate of arriving patients, these units are often challenged by insufficient capacity, very high
expenses, and in some cases, an unfair distribution of resources. Proper allocation of resources to match
demand is, therefore, a vital task for many wards in these units. The patient bed assignment problem consists
ofmanaging in the best possibleway a set of bedswith equipment to be assigned to a particular type of patient.
However, in real-world scenarios, constraints like a possible treatment trajectory are violated in most cases.
In this paper, we present a new approach for solving patient bed assignment problems constrained by targets
on survival function estimation, cost estimation, and possible treatment trajectory estimation for patients
with cardiovascular diseases. For survival function estimations, we used the nave estimator and Kaplan-
Meier, and for treatment effect estimations, we used logistic regression and T-learning. Estimations of the
three components are used as weights in a genetic algorithm. This technique allows for the consideration
of various constraints, which, unlike other techniques, allows for the selection of dominant solutions as
solutions that satisfy dominant constraints. In addition, we demonstrate the robustness of our approach by
testing the algorithms with multiple classes of patients, testing multiple sets of parameters, and comparing
our results with several similar research studies showing the added value of working on this management
axis in hospitals using the new approach to bed allocation.

INDEX TERMS Bed allocation, costs, multi-objectives optimization, machine learning, intensive care units,
survival analysis, treatment effect estimation.

I. INTRODUCTION
By far, the health care industry is one of the largest industries
in the world, and it is number one in the United States with
a total expenditure of 1553 billion dollars in 2002, while this
amount reached 3.8 trillion dollars in 2019 according to the
Centers for Medicare and Medicaid Services [1], [2]. In the
United Kingdom, the total expenditure has been estimated at
269 billion pounds sterling [3]. In Germany, this amount rose
to 410.8 billion euros in 2019, according to the German Fed-
eral Statistical Office [4]. In 2017, France spent 469 billion
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euros [5]. In terms of the Gross Domestic Product (GDP),
in 2019, European countries devoted at least 10% of their
GDP on health, with Germany (11.7%) and France (11.2%)
having the highest shares. The lowest shares of GDP allo-
cated to health care were in Luxembourg (5.4%), Romania
(5.7%), Poland (6.2%), and Latvia (6.3%). Across Europe,
Switzerland allocated the largest share (12.1%) of its GDP to
health [6]. The tremendous growth of this industry is further
demonstrated by the fact that this expenditure is double the
size of health care’s share of these countries’ economies
30 years ago [6], [7]. These expenditures include personal
health care (curative care, rehabilitative care, long-term care,
ancillary services, and medical goods) and collective services
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(prevention and public health services, as well as health
administration) [8]. On a more detailed level, the dynam-
ics governing a hospital system and the flow of patients,
and as a result, the health care expenditures, involve com-
plexity, uncertainty, and variability. All these features point
towards the need for sophisticated hospital capacity modeling
that includes the necessary level of detail, incorporates the
time-dependent demand profiles of hospitals, and uses mean-
ingful statistical distributions to capture the inherent vari-
ability. Yet it must be accessible to stakeholders to support
their understanding, planning, and management of hospital
resources [9].

From a managerial perspective, understanding the inef-
ficiencies in the hospital and improving them is crucial
for making health care policy and budgeting decisions.
These managerial insights can, in fact, improve expendi-
ture to eliminate waste and improve medical care quality.
Indeed, higher operational efficiency of the hospital has
been demonstrated to help control the cost of medical ser-
vices and, as a result, provide more affordable care and
improved access to the public, not to mention high quality
care [10], [11], [12].There is very extensive evidence for the
importance of patient-centered care in the decision-making
process to use medical resources more efficiently [13]. There
are many other problems being encountered both by hospitals
and patients. Longer waiting times for the inpatients to be
admitted to the hospital, diversion from a unit as it reaches
the underlined capacity, longer waiting lists and delays for
elective patients, and higher operational costs due to ineffi-
ciencies are some of these challenges.

Studying and optimizing such variations that impact hos-
pitals’ performance requires, in a much-elaborated way, the
use of multiple approaches. Such problems, with a dou-
ble orientation, namely limitations in medical resources
and high expectations regarding service quality, are gener-
ally multi-objective problems. Hence, multi-objective opti-
mization deals with such problems by giving as solutions
a set of non-dominated candidates based on two main
approaches [14]. a generative approach and a preferences-
based approach. Regarding the generating approach, the
given set of solutions does not follow any preferences
and covers the entire Pareto front. While the preferences-
based approach requires predefined conditions and, in most
cases, turns a multi-objective task into a single objective
task [15], [16]. In hospital management systems, multi-
objective optimization is almost always oriented toward
capacity improvement, quality improvement, and other con-
strained medical issues. Furthermore, hospitals have faced
and continue to face an increasing number of patients in
recent years [17]. As a result of the increased demand in
emergency departments (ED), most patient admissions are
unexpected. The crucial point is that the growing demand for
inpatient beds from the ED cannot be addressed at a strategic
level by increasing bed capacity due to the persisting situation
of public health budget cuts. The solution should instead be
found at an operational and tactical level [18]. Many studies

have been conducted on this subject; for example, in the
United States, an occupancy rate of 89.7%was reported, with
an average of 155 patient visits per day [19]. In the United
Kingdom, in the period between the first quarter of 2010/11
and the first quarter of 2019/20, the total number of National
Health Services (NHS) hospital beds decreased by 11%, from
144,455 to 128,943. But the number of occupied beds only
decreased by 9%, from 122,551 to 111,321. Therefore, the
bed occupancy rate increased slightly from 85% in the first
quarter of 2010/11 to 86% in the first quarter of 2019/20 [20].
A holistic view of the whole patient process is therefore
needed. Thus, hospital resource management is a complex
and dynamic problem that requires a close study of state-of-
the-art techniques.

To solve these issues, it has been demonstrated that early
determination of severity scores, survival function, and pre-
dicting the trajectory of the treatment can help efficiently
allocate or, in the case of reorganization, reallocate beds
specifically in high intensity care units [21], [22], [23], [24].
We are adopting this evidence as a base for our research
paper. In the following, we will be using the MIMIC III
database, comprising thousands of recorded physiological
signals, logistic transfers, and other patients’ related data
like their location, ethnicity, and so on. The core of the
implementation will be divided into two main parts. We start
by estimating the survival function and treatment effect of
the drugs and therapy received by patients. Based on these
results, we are using a weighted genetic algorithm to optimize
the use of these beds in intensive care units (ICUs).

The rest of the paper will be as follows: in the second
section, we will study the state of the art related to bed man-
agement and optimization techniques. The third section will
contain the dynamics and implementation of our approach.
In the fourth section, we present the results of our approach
and a discussion of existing works. We finish the paper with
a conclusion and perspective.

II. RELATED WORK
In the years between 2000 and 2020, healthcare resource
usage has tripled according to the sustainable development
goals of the World Health Organization [25], which has
become problematic evidence against delivering high-quality
healthcare services. Thus, it is declared that if the need for
treatment resources exceeds availability and a safe trans-
fer to another facility due to the patient’s circumstances or
an emergency, the resource triage team is responsible for
allocating or re-allocating critical care resources. Decisions
made regarding the allocation or reallocation of critical care
resources in an extreme scenario should be evidence-based
and applied uniformly and consistently, according to the
US Department of Health Services’ Resource Triage Team
Implementation Protocol [26]. Such pressure decreases the
quality and outcome of the medical care service. Indeed,
many studies have addressed this issue of scarce resources
from different perspectives.
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A wide range of different techniques have been used. [27]
used multi-objective comprehensive learning particle swarm
optimization to solve the bed allocation problem based
on binary search. Another study [28] introduced a
multi-objective decision model based on queuing theory
and goal programming to solve the same problem. Other
studies used deterministic mathematical modeling, stochastic
models with mixed exponential distributions, continuous-
time Markov modes, and Bayesian belief networks to either
minimize the overflow of patients in the emergency depart-
ment, optimize stuff services, or efficiently allocate beds in
high-priority departments [29], [30], [31], [32], [33].

Setting the threshold for medical need for ICU admis-
sion or continued ICU care depends on medical knowledge
and professional judgment. Ideally, these judgments should
be based on well-designed studies of outcomes comparing
subsets of patients with differing degrees of medical need
treated in ICUs compared with being treated in monitored
non-ICU units [34]. Regarding the bed allocation problem,
one can also focus on the relationship between the rate of
usage of these resources and the epidemiology concerns to
be considered [35].

From other perspectives, artificial intelligence (AI) has
been used to discover many new roadmaps to optimize
patient flow in hospitals. [36]. When a patient arrives at a
hospital, AI models can stratify them based on their risk,
allowing for more efficient resource allocation and signifi-
cantly improved treatment outcomes and hospital stay. For
example, in the emergency department, AI can provide an
automatic diagnosis based on radiographs, thereby expediting
the patient care plan [37], [38].At discharge, AI models can
predict possible outcomes, most notably adverse events, and
provide the patient with a personalized post-hospitalization
plan [39], [40].Authors in [41] used an adaptive neural-fuzzy
inference system, a feed-forward neural network, a recur-
rent neural network, AdaBoost, and genetic algorithms to
decide the optimal way to allocate resources in the emer-
gency department. In another study [42], the authors used
heart-rate variability in the emergency department alongside
other demographic information as input features to a support
vector machine. This study is oriented to allow clinicians
to predict resource utilization in the cardiac department.
Other studies used logistic regression, gradient boosting,
long short-term memory (LSTM), and natural language pro-
cessing (NLP) approaches to predict and manage medical
resources based either on demographic features or clinical
features, or simply on a ‘‘similar patterns, similar outcomes’’
approach [43], [44], [45], [46].

Long Lengths of Stay (LOS) have been identified as one
of the primary factors contributing to scarcity of resources,
particularly bed availability [47], [48], [49]. Other studies
found that longer LOS, which are highly proportional to
a drop in the hospitals’ accessibility and medical resource
availability, especially in peak waves, are mostly recorded
in ICUs [50], [51]. Critical illness is characterized by
the presence or risk of developing life-threatening organ

dysfunction. It is in this case that patients are treated in
ICUs, which specialize in providing continuous monitoring
and advanced therapeutic and diagnostic technologies [52].
Large amounts of data frommany patients stored in electronic
patient-data management systems are presented to ICU infor-
mation systems, making it increasingly difficult to identify
the most important information for care decisions [53], [54].
To improve efficiency and effectiveness in these ICUs, the
patient flow needs to be focused, since it is central to an orga-
nization’s capacity to provide specialized and very crucial
healthcare services, while other operations provide support
with the aim of creating conditions for an efficient and effec-
tive patient flow [55].

III. THE STRUCTURE OF THE PROPOSED APPROACH
Hospital managers and decision-makers faced significant
challenges as the demand for healthcare increased. The chal-
lenges involve high costs, a limited budget, and limited
resources, but more importantly, a decreased quality of care.
The vision in the current paper is a patient-centered approach
in which optimization of bed allocation efficiency will be a
function of patient condition in intensive care units. Also,
the approach considers costs related to the patient’s stay in
the ICUs.

The research in this article is divided into two parts. The
first part is the statistics and analysis of the basic information
of all patients in the MIMIC-III database, and the second part
is the calculation of patients’ related survival functions and
treatment trajectories, followed, based on these parameters,
by the optimization of bed allocation as well as related costs.
A major part of this section includes a detailed study of
the patient’s treatment centered on drug therapy, as it is one
of the most outcome-determining factors in the ICU. More
specifically, the analysis includes drug therapy for patients
with cardiovascular disorders: arrhythmias, heart failure, and
congestive heart failure.

The emergency department admits a high proportion of
patients with severe illness to ICUs. Once admitted, they
will be dependent on a variety of different resources. Upon
arrival, the patient is first triaged to determine the severity of
their condition. A physician will then conduct an examination
to determine whether more extensive treatment is required.
Our objective is to contribute to the methodology related
to balancing the ICU’s capacity against service by consid-
ering the possible developments and changes in the admit-
ted patients’ treatment trajectory as well as their survival
assessment. As waiting time has been shown to influence
the patient’s survival analysis as well as the final outcomes,
the optimization model will be constrained by the waiting
time target. Figure 1 describes the overall architecture of our
proposed approach.

The ICU allocation model addresses the following situa-
tion: there are candidate patients for occupying available ICU
beds, and the doctor must decide which patients need to be
admitted to ICUs based on the survival function while also
taking the treatment trajectory of patients already admitted to
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FIGURE 1. Architecture of our proposed approach.

ICUs into account. This includes their stay in ICUs or in low-
care wards. For simplicity in addressing the actual problem,
we consider the two following assumptions:
Assumption 1: Different types of patients arrive indepen-

dently. Patients of the same type have the same distribution
and arrival rate.
Assumption 2: The unit revenue is specific to patient

types. We average revenues across all diseases, insurance
policies, and lengths of stay within each patient type and take
this as the revenue from serving one patient of that type..

A. DATA DESCRIPTION AND PROCESSING
Medical Information Mart for Intensive Care abbreviated
MIMIC III is a large, single center database that contains
deidentified, comprehensive clinical information related to
patients admitted to ICUs at Beth Israel Deaconess Medi-
cal Center in Boston (BIDMC), Massachusetts. It includes
measurements of patients’ vital signs, laboratory tests, med-
ications, procedures, diagnosis, length of stay and other
information. This data is associated to more than 50000
admissions in the period between 2001 and 2012 shifted
and deidentified in accordance with the Health Insurance
Portability and Accountability Act (HIPAA) standards and
grouped in 26 tables [56].

The ICU’s department with the largest number of patients
is the Medical Intensive Care Unit (MICU). The number of
patients who died in the hospital and the number of survived
patients within 90-day after discharge in the MICU are also
much higher than those in other wards. This shows that
patients with internal diseases have the largest number of
patients and the highest mortality rate. In subsequent stud-
ies, we can study the survival function of patients and their
treatment trajectory in MICU and use machine learning to
predict the health of patients. Also, the number of patients
admitted to Cardiac Surgery Intensive Care Unit (CSRU) was
second only to MICU, but the number of deaths in hospital
and the number of 90-day deaths after discharge is the lowest

compared to other ICUs.We counted the mortality of patients
admitted to each type of ICU wards, and we found that the
highest mortality rate was 32.6% in MICU followed by the
Cardiology Critical Care Unit (CCCU) with a mortality rate
of 24%.

Figure 2 explains the observations we made on the patients
with cardiovascular diseases in different wards. The main
goal of such observations is to determine the number of time
(in days) necessary for an event to happen.

The actual study will consider treatment complied to
patients with cardiovascular disease. To follow the treatment
effect, we will be considering a list of widely used drugs
and track their effect on the records of patients transfer
in the MIMIC III dataset. We categorize these drugs into
five main categories: 1) anticoagulant drugs [57], antiplatelet
drugs [58], [59], antiarrhythmic drugs [60], vasoactive
drugs [62], and statins [64].We followed condition of patients
who received these drugs. The treatment effect is considered
positive if the patient is discharged alive or if did not neces-
sarily need to be discharged to a more intense care unit.

B. SURVIVAL FUNCTION, TREATMENT EFFECT AND COST
ESTIMATION
1) SURVIVAL FUNCTION
Intensive Care Units take care of patients with themost severe
and life-threatening illnesses and injuries, which require con-
stant, close monitoring and support from special equipment
and medication to maintain normal body functions. They
are staffed by highly trained doctors and critical care nurses
who specialize in caring for seriously ill patients. Critical
care support with correct and accurate interventions prevents
deaths. Factors that influence mortality need to be investi-
gated to see the trend in our setup and how these factors can
be improved. Researchers through the years have tried to use
different techniques called ‘‘survival function estimation’’ to
determine these factors [63]. Kaplan-Meier and its derivative
nave estimator are reported to be the most used survival
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FIGURE 2. Binary counting of the duration survived before censorship or
events related to a cardiac event. (a): frequency of patients not
experiencing any event during the observation interval. (b): frequency of
patients experiencing an event (change in their medical condition),
(c): observation time before we notice any censored patients.

functions in the case of censored data [64]. These techniques
are data-based and calculated using probabilistic calculus.

Kaplan Meier and naïve estimators were used to compare
survival distribution of data dealing with differing survival
times (times to death), especially when all the subjects do not
continue in the study. The importance of deciding the survival
estimation of patients is the ability to draw a treatment and
availability trajectory.

a: Naïve ESTIMATOR
We’ll start with a naive estimator of the above survival func-
tion. To estimate this quantity, we’ll divide the number of
people whowe know lived past time t by the number of people
who were not censored before t.

S (t)= P (T > t) (1)

FIGURE 3. The role of survival to decide of patient’s flow.

Formally, let i = 1, . . . , n be the cases, and let ti be the
time when i was censored or an event happened. Let ei = 1 if
an event was observed for i and 0 otherwise. Then let Xt =

{i : Ti > t}, and letMt = {i : ei = 1orTi > t} . The estimator
we will be computing will be:

Ŝ (t) =
|Xt |
|Mt |

(2)

b: KAPLAN MEIER
Next we are comparing Naïve estimate with the KaplanMeier
estimate. In the cell below, write a function that computes the
Kaplan Meier estimate of S(t) at every distinct time in the
dataset.

S (t)
∏

ti≤t

(
1 −

di
ni

)
(3)

where ti are the events observed in the dataset and di is
the number of deaths at time ti and ni is the number of
people who we know have survived up to time ti. Resulting
estimations are represented in figure 4. The main conclusion

FIGURE 4. The survival probability estimation by Naïve and Kaplan Meier
estimators in time (hours).
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from the results shown in figure above is that using the naïve
estimator shows continuously decreasing survival probability
estimation while the Kaplan-Meier show stable situation after
spending an average of 250 hours in ICUs.

2) TREATMENT EFFECT ESTIMATION
Patient data were considered as a multivariate timeseries
defined by the times when patient events were recorded, the
sequence of indexes mapped from each patient’s discretized
timeseries, and the set of outcomes for each patient episode.

To draw a patient’s individual treatment trajectory,
we started by counting every time every patient have been
taken a dose of the specified drug.

Let the probability of dying for a patient who received the
treatment be defined as:

Ptreatment,death = ntreatment,death
/
ntreatment (4)

where ntreatment,death is the number of patients who received
the treatment and died, while ntreatment is the number of
patients who received treatment.

The probability of dying for patients in the control group
(who did not receive treatment):

Pcontrol,death = ncontrol,death
/
ncontrol (5)

where ncontrol,death is the number of patients in the control
group who died, while ncontrol is the number of patients in
the control group. The flowchart of the treatment trajectory is
represented in figure 5.

FIGURE 5. Treatment trajectory and its relationship with newly admitted
patients to ICUs.

To estimate the outcome of a predetermined treatment
we are using T-learner which uses logistic regression as the
base learner. The T-learner is a meta-algorithm used for the
estimation of heterogeneous treatment effects. It takes two

steps: first, it uses the so-called base learners to estimate the
conditional expectations of the outcomes separately for units
under control (in this case we are considering 5 main units)
and those under treatment. Second, it takes the difference
between these estimates. This approach has been analyzed
when the base learners are linear-regression [65] or tree-based
methods [66].

Closely related to the T-learner is the idea of estimating the
outcome by using all the features and the treatment indicator,
without giving the treatment indicator a special role. The
predicted average treatment effect for an individual unit is
then the difference between the predicted values when the
treatment-assignment indicator is changed from control to
treatment, with all other features held fixed.

To apply the T-learner to our case, we first model
the treatment effect using a standard logistic regression.
Let x(i) be the input vector, based on this variable, we model
the probability of death withing 5 years as:

σ
(
θT x(i)

)
= 1

/
1 + exp(−θT x(i)) (6)

where θT x(i) =
∑

j θjx
(i)
j is an inner product.

We also consider three main features, TRTMT (presented
by drug therapy) by which we reflect the treatment received
by patients in the ICUs mainly including drug therapy, age,
and sex. As a result, we reformulated the probability of death:

σ
(
θT x(i)

)
= 1

/
1 + exp(−θTRTMT x

(i)
TRTMT

− θAGEx
(i)
AGE − θSEXx

(i)
SEX ) (7)

Considering this equation, x(i)TRTMT is the treatment vari-
able. Therefore, θTRTMT tells us what the effect of the treat-
ment is. If θTRTMT is negative, then having treatment reduces
the log-odds of death, which means death is less likely than
if treatment is not taken. Note that this assumes a constant
relative treatment effect, since the impact of treatment does
not depend on any other covariates.

We set x(i)TRTMT = 1 when a patient received treatment.
If we calculating the odds related to a treated patient, it will
take the following form:

log(Oddstreatment = log
(
ptreatment

/
1 − ptreatment

)
= θTRTMT × 1 + θAGEx

(i)
AGE + θSEXx

(i)
SEX
(8)

By raising to the power of the exponential to take the
inverse of the natural log, we will get:

Oddstreatment = eθTRTMT×1+θAGE x
(i)
AGE+θSEX x

(i)
SEX (9)

Similarly, when the patient has no treatment, this is denoted
by x(i)TRTMT = 0. So, the log odds for the untreated patients can
be expressed in the following way:

log(Oddsbaseline = log
(
Pbaseline

/
1 − pbaseline

)
= θTRTMT × 0 + θAGEx

(i)
AGE + θSEXx

(i)
SEX
(10)
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and so:

Oddsbaseline = eθAGEx
(i)
AGE+θSEX x

(i)
SEX (11)

We also define the Odds ratio as the subdivision of the
pbaseline and ptreatment :

OddsRatio = Oddstreatment
/
Oddsbaseline = eθTRTMT (12)

From the other side, we calculate the Absolute Risk Reduc-
tion (ARR)which reflects the risk when we do something
protective, such as stop drinking alcohol. Otherwise, the ARR
is a manifestation of how well goes a treatment received by a
patient.

If we consider pbaseline as the baseline probability of death
after receiving the treatment and ptreatment is the probability
of death if treated, then ARR = pbaseline − ptreatment .
From other hand, we also define the empirical (actual)

risk reduction. This variable measures how well the risk
reduction calculated by the logistic regression model match
actual values. This is complicated by the fact that for each
patient, we only observe one outcome: treatment or no
treatment.

Therefore, we will group patients into groups based on
their baseline risk as predicted by the model, and then plot
their empirical ARR within groups that have similar baseline
risks. The empirical ARR is the death rate of the untreated
patients in that group minus the death rate of the treated
patients in that group.

The logistic regression model assumes that treatment has
a constant effect in terms of odds ratio and is independent of
other covariates. However, this does not mean that absolute
risk reduction is necessarily constant for any baseline risk
pbaseline. To illustrate this, we executed the previously men-
tioned calculus. Results are shown in figure 6.

Note that when viewed on an absolute scale, the treatment
effect is not constant, even though we used a model with no
interactions between the features. As shown in the plot, when
the baseline risk is either very low (close to zero) or very high
(close to one), absolute risk reduction from treatment is low.
When the baseline risk is closer to 0.5 the ARR of treatment
is higher (closer to 0.10).

In the plot of figure 6, the empirical absolute risk reduction
is shown as circles, whereas the predicted risk reduction from
the logistic regressionmodel is given by the solid line. If ARR
depended only on baseline risk, then if we plotted actual
(empirical) ARR grouped by baseline risk, then it would
follow themodel’s predictions closely (the dots would be near
the line in most cases).

Our simulation study is designed to consider a range
of situations. We include conditions under which the
T-learner is likely to perform the best [67]. We con-
sider cases where the treatment effect is zero for all units
(and so pooling the treatment and control groups would
be beneficial) and cases where the treatment and control
response functions are completely different (and so pooling
would be harmful). We consider cases of patients having

FIGURE 6. Absolute risk reduction compared with empirical absolute risk
reduction.

interfering treatment and tuples of patient with no interfering
treatments.

All simulations discussed in this section are based on
synthetic data.

FIGURE 7. T-learner approach.

VOLUME 11, 2023 31705



K. Karboub, M. Tabaa: Bed Allocation Optimization

The T-learner, on the other hand, does not combine the
treated and control groups. This can be a disadvantage when
the treatment effect is simple because, by not pooling the data,
it is more difficult for the T-learner to mimic a behavior that
appears in both the control- and treatment-response functions.
Therefore, the following figures represent the resulting treat-
ment effect estimations both based on the logistic regression
model alone or using the T-learner estimator.

FIGURE 8. (a): Regression and (b) T-learner prediction of Risk Reduction.

Note that although it predicts different absolute risk reduc-
tion, it never predicts that the treatment will adversely impact
risk. This is because the odds ratio of treatment is less than 1,
so the model always predicts a decrease in the baseline risk.
We predicted a lower risk reduction for patients with actual
lower risk reduction. Similarly, a higher risk reduction for
patients with actual higher risk reduction.

3) COST ESTIMATION
Cost estimation of healthcare activities can be carried
out using either micro-costing (bottom-up) [68] or macro-
costing (top-down) [69] methods. In the bottom-up method,
costs are derived for each element of intervention: staff
time, supplies and medications, diagnostic and laboratory

examinations, and so on. In the top-down view, there are no
details available on the cost of every component of the inpa-
tient’s stay. The degree of aggregation used in this method
is high. The type of cost information available usually deter-
mines the method that will be used in the analysis. In this
case, estimation of the cost was performed using a top-
down (macro-costing) approach, as shown in Figure 9, since
data were retrospectively collected and patients’ records did
not provide analytical resource consumption. In all clinical
affiliations of the Beth Israel Deaconess Medical Center
(BIDMC), resource utilization was reported per hospital unit
rather than per patient, and data were derived from their offi-
cial website between 2001 and 2011 [70], [71]. All quarters
were considered.

FIGURE 9. Critical care medicine costs estimation techniques.

Pharmaceutical costs included the cost of any drug used
during the patient’s overall stay in the ICU. In 2002 alone,
approximately 705 pharmaceutical products were used,
including anticoagulant drugs, statins, and antiarrhythmic
drugs.The cost of angiotensin-converting enzyme (ACE)
inhibitors, angiotensin-2 receptor blockers (ARBs), beta
blockers, mineralocorticoid receptor antagonists, diuretics,
ivabradine, hydralazine with nitrate, and digoxin used for
heart failure treatment represented an important part of all
hospitals’ expenditures with a total amount of $30,482.00.
This cost represents only pharmaceutical and variable costs
(like hygienic needs, medicines, and others) and does not
include fixed costs. Between 2000 and 2010, annual critical
care medicine costs increased by 92%, from $56.6 billion to
$108 billion. The 2010 costs represent 13.2% of all hospital
costs, 4.1% of national health expenditures, and 0.754% of
gross domestic product in the period between 2001 and 2011.
Costs related to an intensive care unit per day in 2010 were
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estimated to be $4300 per day, a 63.5% increase since the
2000 cost per day of $2649.

In this case, resource utilization in the considered affil-
iation of the BIDMC was not reported on a per patient
basis, as previously mentioned, but per hospital unit, and
data were derived from the 2012 budgetary control state-
ments and balance sheets provided by the hospitals’ finance
department [72]. These were offered at a total cost. As such,
the analysis included the annual cost of resource consump-
tion (but not necessarily supplies, medication, laboratory,
and medical tests), infrastructure and overhead costs (but
not necessarily electricity, watering, heating, building main-
tenance, and repairs), and finally personnel costs (medical,
nursing, administrative, paramedical, and auxiliary staff). The
cost of the paramedical, administrative, and other staff was
calculated according to the number of patients admitted to
the hospital. Laboratory and diagnostic imaging costs were
based on the aggregate annual records of the ICU and not
on a per-patient basis. Only drug utilization was calculated
per patient using data from the hospital pharmacy. The cost
of oxygen and other consumables was obtained from the
hospital supply department on an annual basis. Infrastructure
and general overhead costs were allocated with respect to the
area occupied (in square meters) by the ICU over the total
area of the hospital. They were found in budgetary control
statements provided by the hospital’s finance department.
Table 1 summarizes the results of the calculus we performed
using the Russell formula.

TABLE 1. Macro-estimation related to the average ICU’s patients stay.

IV. OPTIMIZATION OF BED’S ALLOCATION AND
REALLOCATION
[73] presented a model of the patient flow using Non-
HomogenousDiscrete TimeMarkovian Chains and derive the
time-dependent behavior of the bed’s occupancy.

This approach yields a complex non-linear relation
between assigning beds and the resulting patient waiting time.

In these 35 hospitals, the inpatient units can be broadly
divided according to their varying nurse-to patient ratios and
treatment and monitoring levels. Generally, the ICUs have a
nurse-to-patient ratio of 1:1 to 1:2. There are two other kinds
of inpatient units: general wards, with a ratio of 1:3.5 to 1:4,
and intermediate care units, with a ratio of 1:2.5 to 1:3, though
not all hospitals have intermediate care units. Although there
is some differentiation within each level of care, the units
are relatively fungible, so if the medical ICU is very full, a
patient may be admitted to the surgical ICU instead.We focus
on the ICU admission decision for patients who were admit-
ted to a medical service at the hospital through the ED for
the reasons discussed in the introduction. In our data set,
about 55% of patients admitted to ICUs were admitted via
the ED to a medical service. The admission process works
as follows. If an ED physician believes that a patient is
eligible for ICU admission, an intensivist will be called to
the ED for consultation. Although the intensivist makes the
ultimate decision about whether to admit the patient from
the ED, the decision is typically based on a negotiation
between the two physicians as to what the individual patient’s
needs are and what resources (e.g., ICU versus non-ICU
beds) are available. The patient-level information in our data
set includes patient age, gender, admitting diagnosis, hospi-
tal, and severity-of-illness function. In addition, we collect
operational data that includes every unit that each patient
visits, along with unit admission and discharge dates and
times.

We present an approach to solve the problem of optimiz-
ing the way bed resources are allocated in ICUs. This is a
constrained optimization problem. The constraints are mainly
subject to the targets on the patient waiting times and by
the patient’s survival estimation, treatment effect and cost
estimation.

We consider a set of beds in different ward types denoted
C = {1,2,3,4,5} in ICUs and C = 6 to be any ward other than
ICUs, which is subject to a limited set of characteristics or
patterns, J. The patient waiting time is a non-linear function
of the available capacity in the ICUs. Given this, we define
the following objective function:

Minimize
∑
c∈C

∑
j∈J

qcj (13)

Subject to : Lct (zct)≤ τ ∀t ∈ T, c ∈ C,

where zct =

∑
j∈J

acjtqcj (14)∑
j∈J

acjtqcj≥bct ∀t ∈ T, c ∈ C (15)

qcj ∈ N0 ∀j ∈ J, c ∈ C (16)

where qcj is the number of beds of type c ∈ C assigned to
patients with patterns j ∈ J. The term ‘‘patterns’’ reflects the
presence of the ‘‘actual’’ factors and characteristics for a
patient to be assigned to a specific type of bed in ICUs.
The equation (13) is then the total amount of beds allocated
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‘‘efficiently’’ to patients admitted to ICUs. And the equation:

Lct (Z) =

∑wc−1

i=0
fci (Z)+

∑Mc

k=w
fck (Z)

.

(
(1+

∑k−1

j=0
(µcwc)

j
/
j!
)

∗ e−(µcwc)) (17)

is the fraction of patients waiting for a bed to be available
of type c ∈ C below a predefined time t ∈ T where T is a
discrete set of the hours in a week T = {1, 2, . . . , 168}. This
predefined time can vary depending on the day of the week
or staff availability. Here, Z is a |T|×|C|. Whileµc is defined
to satisfy the following equation:

log
(
acjt (u)

)
= α + βu+ θu2 + γj + δi + φju+ ζju2 + ψiu

+ ξiu2 + ρij + ηiju+ wiju2 (18)

where acjt (u) is the expected number of arrivals on hour in
a given day in the ICUs {u ∈ R|0 ≤ u ≤ 24}, on the day
of the week j ∈ {Monday,Tuesday, . . . , Saturday, Sunday}
for patients of triage priority i ∈ {1, 2, 3, 4, 5}. We used
survival estimation Kaplan-Meier estimator to determine the
priority and the way a certain treatment mainly drug therapy
used for cardiovascular diseases patients admitted in ICUs.
The variables {β, θ, γ, φ, ζ, ψ, ξ, η, ω} represent the survival
function estimations and service rates accordingly with this
illness severity following our estimations. Each pathology is
assigned to three variables to represent survival estimation,
treatment effect and cost.

We also denote W as the waiting time at a queue with w
beds, and k is the number of patients present at the queue at
the time of arrival. ThenW = 0 if k ≤ w−1. For exponential
service times, means patients need more time to be treated,
which means priority of 4 or 5, and k ≥ w we have W =∑k

i=w Zi where Zi are the independent exponential random
variables of rate w times the service rate of each server. The
goal, then, is to derive the fraction of patients waiting below
a specific target as function of time of the week:

Prob {Wc (Z ) ≤ vc} =

∑wc−1

i=0
fci (Z )+

∑Mc

k=wc
fck (Z )

.Prob(
∑k

i=1
zi ≤ vc) ∀c ∈ C (19)

With fci (Z ) =
∑

j∈J Prob {s = (.., kc = i, . . .)} to define
the marginal time-dependent state distribution obtained
in [73] where J = S|s = (.., kc ̸= i, . . .) is the probability
that queue c ∈ C is occupied by patients of type i. And vc
is the target waiting times. Defining readmission requires
specifying a maximum elapsed time between consecutive
hospital discharges and admissions. As this elapsed time
increases, it becomes less likely that the complications were
related to the care received during the initial hospitalization.
Thus, based on research in literature, we define a relatively
short time window for hospital readmission: within the first
two weeks following hospital discharge. In the readmission
analysis, ‘‘deceased’’ patients are not considered because
they will not be readmitted to hospital.

In the following, we use constraint optimization based
on the genetic algorithm [74], [75] to solve equation (13)
whereas constraint (14), (15) and (16).

The computational study in this section has three objec-
tives. First, to analyze and observe the convergence property
of the integrated genetic algorithm as well as determining
the termination condition and number of generations. Second,
to study the performance and solution quality of the integrated
genetic algorithm under various parameter combinations.
Third, to identify the best parameter settings to generate the
approximate optimal set of non-dominated resource alloca-
tion solutions. This objective is set because the performance
of the genetic algorithm-based optimization strongly depends
on the setting of various parameters.

In modelling the system behavior, we have limited our
scope to the hospitalization of patients to the medical area
of the hospital. More specifically, we focus on patient flow
in MICU, SICU, CCCU, and CSRU. We present the data
obtained from the case-hospital and test our homogeneous
discrete-time Markov chain (CTMC) model [73] that pre-
dicts time dependent bed occupancy. Results are presented
in figure 10.

FIGURE 10. Forecasting of bed occupancy in ICUs wards and patients’
admissions.

As shown in the figure above, it is very clear that bed
occupancy distribution is very frequently estimated to exceed
the demand related to newly admitted patients. As a result,
we conducted a total of five different basic tests, where patient
flow or available resources were changed. Tables 2-a and 2-b
below represent the parameters that were subject to change
in bold font. The results for each of tests from 1 to 5 are
presented in table 3.

To avoid biased results, we have run our code, imple-
mented on python 3.9, ten times which includes all con-
figurations mentioned in tables 2-a and 2-b. In this step,
it is necessary to compare specific conditions for algo-
rithm termination in the different decision-making blocks.
The first condition is to reach the maximum number of
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TABLE 2. Parameters tuning for first and second round of experiments.

TABLE 3. Results of fixed configurations.

generations (iterations). The second condition is to reach
or exceed the highest permissible fitness value or objective
function. The third condition is to reach maximum solu-
tion time. The last condition is to exceed a set of itera-
tion numbers without improving a reached solution. The
last condition was integrated into the proposal to prevent
extensive calculation time if the required or unachievable

fitness function value is not set, and fitness function value
is not improving. Therefore, there is an assumption that the
extreme has been found in a group of solutions. When meet-
ing any out of the stated conditions, the genetic algorithm is
completed.

In case none of the finishing criteria was fulfilled,
the algorithm continues by selection, in other words, by
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selecting individuals who will crossbreed and eventually
mutate between each other. For such a solution, the roulette
wheel rule was selected. Probability selection was propor-
tional to an individual’s achieved suitability. This form was
chosen based on a better possibility to search a complex set of
solutions when later combining parents and their evaluation
as well as their calculation speed.

To prevent a duplicate of identical bed transfers in
crossover or omission of the same patient from the genetic
chain, a mechanism of partially matched crossover was
designed. We used single point crossover and double point
crossover.

V. RESULTS AND DISCUSSION
According to the results of the experiments, functioning
converges later with low probability mutation because it is
primarily dependent on a randomly generated initial pop-
ulation and crossbreeding in all iterations. Only a small
number of individuals are modified by mutation operators.
With increasing mutation probability, the algorithm con-
verges on average earlier with a higher quality solution,
although it is accompanied by a higher generation dispersion
of a found solution. This is caused bymutational randomness.
The optimal mutation probability range was set between
0.05 and 0.15. As we want to avoid the algorithm going into a
random search, we do not recommend higher probabilities for
initial settings. One of the conditions of an algorithm’s func-
tioning termination is crossing the fixed number of iterations
without improving the solution reached.

To verify this, the variable mutation was implemented in
the algorithm. This variable mutation increases the prob-
ability of its application with an increasing number of
interactions, without any improvement. In the basic setting,
when functioning finishes after 100 interactions without
any improvement, after 70 iterations, there is a mutation
probability increased to 1.5 times the original value. After
80 iterations, it is a 1.75 multiple of the original value, and
eventually, after 90 iterations, it is a total 2.04 multiple of the
original value. Table 3 below recapitulates the results of the
different runs:

Waiting time is the main index for measuring patient-
reported quality of care with the feature of medical service
quality in a specific situation of medical treatments and
medical expenses. In our own experiments, we carried out
three types of inputs: a survival function estimation system,
treatment effect estimation, and cost estimation.

The main goal of our approach is not only to optimize
the bed occupancy rate but also to make sure that these beds
are allocated efficiently to patients that need to be admitted
to ICUs. The authors of the article [73] provided a bed
occupancy rate estimator based on Markov chains. In this
paper, we present an optimization of estimation using other
parameters that makes bed allocation personalized. Thus, bed
allocation is a function of the patient’s actual state, estimation
of the treatment trajectory, and cost.

FIGURE 11. Minimized bed occupancy rate based on the patient’s
survival, treatment estimation and cost estimation.

It is not uncommon to experience a situation where the
number of ICU beds available is less than the number required
to attend to patients who require them: the availability of this
scarce resource is highly impacted by patient demands and
stochastic service times, in a way that makes managing such
a resource a complex problem [77].

In figure 11 represent the new bed occupancy rate
after adding all the constraints previously mentioned. The
approach is introducing a new way to investigate the alloca-
tion of beds.

On the one hand, the ICU allocation problem has been
investigated in the literature (as shown in table 4) for a long
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TABLE 4. State of art works on optimization and medical resources scheduling.
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time since the resources for critical care are limited and very
expensive.

Thus, some studies presented in the literature propose tech-
niques or models to support the ICU allocation problem.

In [78], the authors presented a systematic literature review
of research design and modeling techniques to support inpa-
tient bed management. The authors recognized the complex-
ity of this problem, which is affected by several factors, such
as uncertainties about the patients’ length of stay, fluctua-
tions in demands, and unexpected admissions. They verified
that simulation has been the main tool used in studies in
this area. [79] discussed the use of big data and machine
learning to improve the way the ICU allocation problem is
handled.

Adding to this, [77] pointed out that most of the literature
about the ICU allocation problem deals with the admission
problem, but few studies tackles supporting the discharge
decision problem. They investigated the ICU discharge prob-
lem: a univariate logistic regression model was proposed to
assess the impact of the length of stay in the ICU, using data
from two surgical ICUs of a large academic medical center.
They observed that the absence of appropriate beds in the
regular ward is the main cause of the delay in ICU discharge.
They emphasized that this problem is of economic and ethical
relevance since the resources of the ICU are scarce. [22] also
focused on the ICU discharge problem: they present a review
of the literature on patient discharge decisions and propose a
simulation framework that enables the real-world processes
for discharging patients to be modeled in a more realistic
way. Some studies have addressed the ethical issues inherent
to the ICU allocation problem: [90] conducted interviews
with health professionals concerning ethical problems, such
as how full ICU occupancy and treatment decisions are
reached in terms of choosing what patients should benefit
from them. Health professionals’ attitudes were collected to
provide insights to improve the management of intensive care
resources. As a conclusion, the authors suggested that the
collective responsibility and effort by health professionals
(ICU professionals and different professionals in the wards)
must be reinforced in a hospital routine to alleviate moral
distress caused by the ethical dilemmas faced, since these
two factors are mutually dependent on each other. Con-
sequently, health professionals must work together for an
optimal transfer of patients between hospital depart-
ments. [91] also discuss fairness and ethics in the ICU alloca-
tion problem, suggesting that an alliance of ethical and moral
principles must be applied to obtain a moral, ethical, and
common-sense approach to deal with this complex problem.
This review demonstrates that the ICU allocation problem
is not a trivial decision problem, first, because the scarcity
of resources for intensive care cannot be overcome quickly
because the cost of doing so is very high and there are short-
ages of appropriately qualified and experienced personnel
and, secondly, because the no allocation of a place in an ICU
in some cases is likely to increase the probability that the
patient will die.

VI. CONCLUSION
The patient bed assignment problem is a complex combinato-
rial problem. In this paper, we have presented a genetic algo-
rithm optimization model and shown the main differences
in terms of parameters and stopping conditions. Our work
focused on the implementation of a decision support system
for bed assignment, considering the availability of suitable
hospital beds. Decision support relies on estimations of sur-
vival function, treatment trajectory, and costs to provide the
calculation of an optimal assignment plan for a given group of
patients and its implementation in an intensive care unit. The
admission planning and assignment problem was formally
described in our previous work on bed occupancy calculation
based on Markov chains. To solve the objective function, two
types of cross-over techniques were used to assure population
diversity and avoid premature convergence. Putting cost and
waiting times as constraints of the objective function and not
directly in the objective function helps achieve good results
in a very short time.

Further research into the bed allocation problem is required
as a follow-up to our work. To be a generic solution,
the actual approach may require more datasets and con-
texts to be tested on. Such investigations may necessitate
the use of parameters based on the dataset and applicable
regulations.
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