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ABSTRACT The absence of standards and the diverse nature of the Internet of Things (IoT) have made
security and privacy concerns more acute. Attacks such as distributed denial of service (DDoS) are becoming
increasingly widespread in 10T, and the need for ways to stop them is growing. The use of newly formed
Software-Defined Networking (SDN) significantly lowers the computational burden on IoT network nodes
and makes it possible to perform more security measurements. This paper proposes an SDN-based, four-
module DDoS attack detection and mitigation framework for IoT networks called FMDADM. The proposed
FMDADM framework comprises four main modules and five-tier architecture. The first module implements
an early detection process based on the average drop rate (ADR) principle using a 32-packet window size.
The second module uses a novel double-check mapping function (DCMF), that aids in earlier attack detection
at the data plane level. The third module is an ML-based detection application comprising four phases: data
preprocessing, feature extraction, training and testing, and classification. This module detects DDoS attacks
using only seven features: two selected and five newly computed features. The last module introduces an
attack mitigation process. We applied the proposed framework to three test cases: one single-node attack test
case and two multi-node attack test cases, all with real IoT traffic generated and deployed in Mininet-IoT.
The proposed FMDADM framework efficiently detects DDoS attacks at high and low rates, can discriminate
between attack traffic and flash crowds, and protects both local and remote IoT nodes by preventing infection
from propagating to the ISP level. The FMDADM outperformed most existing cutting-edge approaches
across ten different evaluation criteria. According to the experimental results, FMDADM achieved the
following accuracy, precision, F-measure, recall, specificity, negative predictive value, false positive rate,
false detection rate, false negative rate, and average detection time benchmarks:- 99.79%, 99.43%, 99.77%,
99.79%, 99.95%, 00.21%, 00.91%, 00.23%, and 2.64 us, respectively.

INDEX TERMS DDoS, detection, IoT, machine learning, mitigation, network security, SDN, SD-IoT.

I. INTRODUCTION lenge [1]. This is because various IoT applications have

The diffusion and integration of the Internet of Things
(IoT) into several critical industries, including transporta-
tion, healthcare, energy, and agriculture, has become undeni-
able. IoT is a revolutionary technology that links numerous
nodes via wireless technologies to automatically send and
receive data. The IoT systems have transformed conventional
systems into intelligent, economical, and scalable systems.
The heterogeneous nature of IoT networks is a major chal-
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distinct network requirements that must be met to operate the
system optimally [2]. In addition to the benefits of IoT ser-
vices, we have recently noticed their negative consequences
on network security. According to Sarker et al. [3], IoT nodes
may be vulnerable to malware outbreaks that spread surrepti-
tiously among unprotected nodes to form an enormous num-
ber of IoT botnets. An IoT network’s nodes are vulnerable to
various attacks that attempt to obstruct the services offered
by the IoT or control the entire network. Among these attack
types, distributed denial of service (DDoS) attacks can be
the IoT system’s most challenging security risk [4]. When a
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DDoS attack is launched against an IoT network, the network
immediately begins to allocate resources to handle these
requests. Any new requests would be rejected even if they
came from a legitimate user, which would prevent the IoT
network from providing its services as intended [5]. The most
straightforward mitigation strategy is to develop cutting-edge
security solutions that safeguard the IoT networks. The main
obstacles in deploying any attack detection strategy are the
limited power, processing, network bandwidth, and storage
capacity resources over different IoT layers [6]. To avoid
security breaches, it is critical to protect each layer of the [oT
environment. IoT may be attacked at three different layers:
the device layer, where data are gathered; the network layer,
where data are transported for processing; and the cloud layer,
where data are saved [7]. The proposed framework focuses on
IoT network layer security.

In recent years, a range of technologies, systems, and
approaches have been proposed for solving security issues
in IoT. Software-defined networking (SDN) and machine
learning (ML) technologies have attracted the interest of
researchers to address different IoT security concerns [8].
On the one hand, a new technique known as ““Stateful SDN”’
has expanded the basic functions of OpenFlow, the most
widely used protocol for communication between data and
control planes [9], by adding the ability to apply multiple
match-action rules depending on the distinct states detected
in the switch’s SDN flow tables [10], [11], [12]. This feature
gives the switch the ability to respond to events at the packet-
level. The switch can take appropriate action if the results of
the packet analysis agree with the switch rules listed in the
flow tables [13].

Meanwhile, academics have developed many ML-based
approaches and strategies for identifying DDoS attacks in
SD-IoT. ML-based approaches have yielded good results in
detecting DDoS attacks in SD-IoT networks [14]. Building a
learned parameter model used to accurately forecast attacks
requires training the system on both normal and attack behav-
iors. A substantial amount of data is produced by an IoT
network. Choosing the most pertinent features of a dataset for
model training and testing remains a challenging task. Using a
large number of features in ML models increases both the cost
and time complexity [15]. However, the inclusion of unrelated
features renders the model less effective in detecting attacks.
The construction of an effective ML-based DDoS detection
model depends on the packet feature engineering approach,
which is crucial [16], [17]. Considering these factors, we pro-
pose a new framework called FMDADM, which comprises
four phases: data preprocessing, feature extraction, train-
ing and testing, and classification. The proposed FMDADM
uses only five new computed features to detect an attack.
By using fewer features, attacks can be detected more quickly.
A variety of ML models for traffic classification, including
Support Vector Machine (SVM), k-Nearest Neighbor (kNN),
Gaussian Naive Bayes (GNB), Binomial Logistic Regression
(BLR), Decision Tree (DT), and Random Forest (RF) clas-
sifiers, are used to construct the proposed detection model.
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The research questions of our proposed framework can be
summarized as follows:

1. Which ML-based DDoS attack detection model is the
most suitable for stateful SDN-enabled IoT networks?

2. Which ML-based DDoS attack detection algorithm is
best for multi-node attacks in SDN-enabled IoT net-
works?

3. How can a remote server be protected from botnet
attacks over an IoT LAN network?

Whereas the main contributions are as follows:

1. The proposed FMDADM framework employs feature
engineering to identify DDoS attacks using only five
new computed features. The model can successfully
overcome the over-fitting problem and provides a good
fit as a result.

2. The second detection module, which uses a novel
proposed mapping function called DCMF, provides
two crucial features:- (a) detecting the attack at the
data plane level before overwhelming the controller,
and (b) discriminating between attack traffic and flash
crowds. As a result, the controller has an extra layer of
protection against the attack.

3. A small 32-packet window size is used for fea-
ture extraction in the third detection module. The
three detection modules resulted in a reduction in
the amount of time needed for training, testing, and
detection.

4. FMDADM effectively detects DDoS in multi-node
attack scenarios. This is a crucial area of strength for
the proposed framework because it is generally known
that conventional defenses fall short in the face of these
attack scenarios.

5. FMDADM protects both local and remote IoT nodes by
preventing infections from spreading to the ISP level.
By protecting the controller and remote nodes in this
form, we can stop DDoS attacks before they reach the
Internet.

6. FMDADM uses actual IoT traffic features to build
the detection model. Most literature-based studies deal
with either simulated traffic or network traffic that is
not extracted from actual IoT networks.

7. According to the experimental results, FMDADM
outperformed most of the existing cutting-edge
approaches across ten different evaluation criteria.

The remainder of this paper is organized as follows. Sec-
tion II provides a summary of related research on the subject.
Section III elaborates the proposed detection framework. The
experimental results of the proposed framework are presented
in Section I'V. Section V provides a summary of the original
contributions and discusses future work.

Il. RELATED WORKS

Recently, relevant Al-based studies have been presented for
DDoS attack detection in Software-Defined IoT (SD-IoT)
networks, where SDN was used to improve the security
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aspects of IoT networks. A DDoS detection solution for
an SDN-based IoT network, called LEDEM, was suggested
in [18]. The main issue with this model is its lack of adapt-
ability, as LEDEM uses only one classification method and
is incapable of dealing with various types of DDoS attacks.
Yin et al. [19] proposed a broad architecture for the SD-
IoT. The proposed SD-IoT architecture analyzes IoT net-
work traffic and detects DDoS attacks based on the network
attributes. The SD-IoT is further constrained by insufficient
ML-based categorization algorithms. Xie et al. [20] employed
traffic-flow patterns to identify DDoS attacks. This solution
shows efficient DDoS information detection with a compara-
bly low overhead compared with other approaches. However,
this solution falls short when dealing with heavy network traf-
fic, necessitating the implementation of a more sophisticated
security solution. In [21], a new SVM-based security mecha-
nism for [oT networks was proposed. Their model uses learn-
ing algorithms for both observing and reacting agents. Their
proposed method achieved a general accuracy rate of 99.71%
for anomaly identification. The authors of [22] suggested a
feed-forward neural network model for attack detection in
IIoT networks. The proposed model performed well in terms
of accuracy; however, the dataset was not designed for the
IIoT domain.

Ullah and Mahmoud [23] developed a new anomaly-based
detection system for IoT networks. They devised a multi-
class classification technique using a convolutional neural
network (CNN) algorithm. This classification technique was
admirably performed. However, ML approaches are pre-
ferred in intrusion detection systems (IDSs) for implementing
highly secure capabilities [24]. The authors of [24] exam-
ined several ML models to conduct both binary and mul-
ticlass classification. They concluded that, compared with
other classifiers, the XGBoost technique produced higher
performance outcomes. Another CNN-based DDoS attack
detection system for IoT networks, which restricts attacks
at the source end, was proposed by the authors of [25].
They evaluated the proposed CNN using the freely accessible
dataset CIC-DDo0S2019 [26]. Two test cases were used to
obtain the performance results; however, this dataset was
insufficient for analyzing the behavior of IoT network traffic.
Using a recurrent neural network (RNN), Yousuf and Mir [27]
proposed an algorithm called DALCNN. DALCNN employs
OpenDayLight (ODL) as a suitable SDN controller to address
the problem of identifying DDoS attacks in IoT. The gap
in DALCNN is that the RNN algorithm was trained using
the NSL-KDD dataset, which is unfortunately inadequate for
IoT network traffic characteristics. Another detection mech-
anism for abnormalities in IoT environments was proposed
by Alanazi and Aljuhani [28]. The proposed mechanism
uses several ML techniques for feature selection and an
ensemble learning approach for traffic classification. Numer-
ous constraints were considered in this study. For instance,
detection accuracy may be affected by employing custom
datasets instead of real-time IIoT traffic. Another problem
is that obsolete datasets are restricted to particular types
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of cyber-attacks and cannot recognize contemporary attack
scenarios.

Another RNN-based deep learning solution termed ‘‘Deep
Defense” was proposed by Yuan et al. [29] for detecting
DDoS attacks in IoT. This solution employs a series of
consecutive network packets to extract low-level features to
discriminate between normal and attack packets. However,
the authors still need to test their model under numerous real-
time scenarios. A Deep Neural Network (DNN) approach was
proposed in [30] to identify DDoS attack in SDN scenarios.
The tests results show that the Deep IDS system is a workable
solution with a low network load. The proposed approach
does not affect the functionality of the POX controller. Fur-
thermore, the authors needed to improve the model to obtain
better detection rates with low false-alarm rates across mul-
tiple OpenFlow Controllers. Zhang et al. [31] presented a
technique for detecting low rate (LR) DoS attacks based on
the Power Spectral Density (PSD). In [31], an SVM model
was used to extract features from the KDD99 dataset. The
PSD entropy limit values were separately set for the normal
and attack groups. There was a trade-off between the accuracy
and detection rates in the proposed IDS, which was not
Al-based. A hybrid model developed by ElSayed et al. [32]
utilizes a CNN and RF to determine whether the incoming
flow to an SDN is normal. Empirical analysis revealed that
the model performed well on a variety of publicly accessible
datasets. However, the proposed model lacks support for
feature reduction. In this context, Silveira et al. [33] evaluated
the effectiveness of their proposed IDS in identifying LR
DoS attacks in an SD-IoT system using a freely accessible
CIC DoS 2017 dataset [34]. Unfortunately, this dataset is
not ideal choice to employ because it has no relation to
IoT network traffic features. Tang et al. proposed a similar
LR DoS detection technique employing AdaBoost [35]. The
authors selected a group of 28 traffic flow features to train
and test the classifier effectiveness. The last three LR DoS
detection techniques [32], [33], and [35] presented above
are signature-based and may not accurately identify new
attacks. In another attempt to provide a solution for identify-
ing LR DoS attacks in SD-IoT, the authors of [36] introduced
a FeedForward-Convolutional Neural Network (FFCNN),
an Al-based anomaly detection method. FFCNN detects LR
DoS attacks by combining a FeedForward Neural Network
(FFNN) with a CNN. The drawback of this method is that
it uses the CIC DoS 2017 dataset, which was not primarily
extracted from real or simulated IoT networks. Motivated
by the research gaps identified in the literature, we propose
the FMDADM framework, which we explain in detail in the
following sections.

Ill. PROPOSED FRAMEWORK

The Internet connects many ISP networks, which in turn con-
nect multiple LANs made up of heterogeneous nodes. These
LANSs are growing rapidly in size and volume, and IoT nodes
may be vulnerable to malware outbreaks, making them potent
sources of DDoS attacks. In the worst case, infected IoT
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nodes (botnets) from multiple compromised ISP LANs may
attack a remote server, causing severe resource scarcity on
both the controller and the server. The proposed framework
aims to prevent local DDoS attacks generated by IoT Botnets
inside infected LANs from spreading to the ISP level. In this
way, we can safeguard both the controller and remote nodes
and block DDoS attacks from reaching the Internet. Figure 1
shows the five-layer architecture of the proposed FMDADM
framework.

The proposed framework consisted of four modules: three
detection modules and one mitigation module. The first mod-
ule uses a small window size of 32 packets. This window
size was then employed in the third detection module to
achieve an earlier and more efficient attack detection. The
second detection module presents a new mapping function
to help detect DDoS attacks at the data plane level. The third
module provides an ML-based detection application that is
implemented and deployed at the controller level. The last
module is a mitigation technique that operates at both switch
and controller levels. Most related research uses a conven-
tional, stateless approach to design detection and mitigation
processes. The switch scans its flow table to match the incom-
ing packets. If no match was found, the packets were treated
as new and routed to the controller for processing. However,
this approach lacks scalability and efficiency. In this paper,
we make use of the aforementioned ‘‘Stateful SDN,”” where
the switches are given stateful packet analysis privileges by
the SDN network. Therefore, when new packets arrive at the
network, the switch considers the packets that have already
been received in addition to the new packet features. The
following subsections describe the proposed framework in
detail.

A. THE FIRST DETECTION MODULE

The first detection module uses a 32-packet window size for
early attack detection. Several factors must be considered
when selecting the appropriate window size. One of these
factors is the constrained number of fresh connections that
may be established for each node in an IoT network. The
number of nodes and switches of each controller within the
network should also be considered. The third factor is that
an attack within a frame of 32 packets is recognized more
quickly than that of 50, 100, or even 500 packets [37]. The
choice of 32-packet window is based on two principles: the
average window entropy drop rate (AWEDR) and the test
of significance (ToS). These two principles demonstrate that
a 32-packet window is the best window size for detecting
DDoS attacks. These principles are discussed in the following
subsections.

1) WINDOW SIZE SELECTION BASED ON AWEDR

The window entropy drop rate (WEDR) is the rate at which
the entropy value decreases in each window. There is a greater
chance that an attack will be underway if the pace of the
decrease is faster. For seven different attack rates from 20%
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TABLE 1. Average window drop rate for different window sizes.

WS Ng AE Ng-Ar  Ap Np
20 1501 1377 0.124 4
24 1501 1367 0.134 5
28 1.501 1363 0.138 6
32 1501 1.288 0213 7
7
8
9

AWEDR Z-Score
08.20% 1.001
08.87% 1.023
09.17% 1.073
14.13 % 1.203
14.26% 1.225
14.37% 1.234
14.49% 1.262
14.57% 1.293

36 1501 1.286 0.215
40 1.501 1.285 0.216
44 1501 1.283 0218
48 1.501 1.282 0219 10

50 1501 1.278  0.223 10 14.90% 1.301
100 1501 1271 0.230 20 15.30% 1.339
500 1.501 1.116 0.385 100 25.63% 1.389

to 80%, a 32-packet window size achieved the first acceptable
average drop rate among the other ten window sizes. Equation
(1) shows the calculation of the average window entropy drop
rate (AWEDR) for a window size of n packets.

AWNE — AWAE
AWNE

AWNE and AWAE represent the average window normal
entropy and the average window attack entropy, respectively.
Table 1 lists the AWEDR for the 11 window sizes when
the attack rate was 20%. WS, NE, AE, (NE-AE), AP, and
NP refer to the window size, normal entropy, attack entropy,
difference between normal and attack entropy, number of
packets in the attack case, and number of packets in the
normal case, respectively. The AWEDR was calculated based
on 840 experimental tests (120 runs for each attack rate) using
two test cases: a single-node attack (attack packets targeting a
single node) and a multi-node attack (attack packets targeting
multiple nodes), both using real traffic generated in Mininet-
IoT. Figure 2 shows the entropy drop rate in the single-node
attack test case. The entropy drop rate increases concurrently
with an increase in the attack rate. As shown in table 1, the
number of attack packets targeting a single host for a 32-
packet window size is seven times higher than the normal rate,
with an average drop rate of 14.13%. The average drop rate
in the 20, 24, and 28 window sizes was less than 10%, which
was insufficient to pose a real threat to the controller. In the
following subsection, we use a significance test to test this
hypothesis. In table 1, the Ag threshold values are computed
by running a series of experiments to determine how the
attack affected the entropy value. Attack rates varying from
10% to 80% were launched and analyzed. In 120 experiments,
attack rates of 10% and 15% yielded ADR of 7.08% and
9.32%, respectively.

These drop rates are insignificant and should not be consid-
ered when calculating the threshold. The attack rate of 20%
was the lowest, which recorded an approved entropy drop rate
value of 14.64% between the normal and attack entropies.
Consequently, the Ag threshold was set to identify any attack
that consumes 20% or more of the total network bandwidth.
Table 2 presents the threshold value selection procedure.
In table 2, ANTEPC, ANTEMC, ANTEDIFF, AATEPC,
AATEMC, SD, and CI denote the maximum average normal

AWEDR = x 100 (1)
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FIGURE 1. The general architecture of the proposed FMDADM framework.
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FIGURE 2. AEDR for different attack rates in a single-node attack test case.

TABLE 2. Entropy threshold value calculation.

Parameter Normal State  Attack State
Entropy 1.564 1.343

SD 0.007 0.011

CI +0.0037 +0.0049
ANTEPC 1.5675

ANTEMC 1.5605 -
AATEPC - 1.3477
AATEMC - 1.3383
ANTEDIFF 0.2128

ADR 14.64 %

entropy, the minimum average normal entropy, the difference
between ANTEMC and ANTEPC, the maximum average
attack entropy, the minimum average attack entropy, standard
deviation, and confidence interval, respectively. Three steps
were executed to obtain the Ag threshold as follows:

1. The least normal traffic entropy (LNTE) was calculated
by subtracting CI from ANTEMC.

2. The highest attack traffic entropy (HATE) was calcu-
lated by adding CI to AATEPC.

3. Calculated the difference between HATE and LNTE.

Although the calculations stated above imply that the
threshold may be worth 1.32, experiments show that this
value is not optimal. After repeating the simulation 120 times,
we found that a threshold value of 1.28 produced much
fewer false positives (FP) and false negatives (FN). Moreover,
it provides a clear-cut and detects any outright attack that
dominates 20% or more of the entire traffic. It is worth noting
that SDN can be adapted. In other words, the threshold value
can be changed at any moment based on the packet tracking
and monitoring of the controller. This threshold change is
intended to limit the number of FP and FN, based on differ-
ent network conditions. Consequently, in the third detection
module, we used an adaptive entropy threshold as a computed
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feature. This threshold varies based on the attack situation to
enhance the detection accuracy.

2) WINDOW SIZE SELECTION BASED ON TOS

The test of significance (ToS) determines the validity of
a hypothesis by comparing the two averages from differ-
ent population groups. First, we computed the two average
entropy values under normal and attack conditions. Then,
we computed the Z-Score to test the significance of the
difference between the two conditions to determine whether
the difference was acceptable. This test was performed for
different window sizes to determine the optimal window size.
The Z-Score in (2) was computed as follows:

INE — Ag|

2 2
oz
where (0, 0,) are the normal and attack entropy standard
deviations, respectively; and (n, a) is the number of samples.
We fixed (n = a = 7), where we had seven attack rates vary-
ing from 20% to 80%. A 32-packet window yielded the least
acceptable variation in findings. Consequently, we selected
it as the optimal detection window size and employed it to

calculate the features for the third module of the proposed
framework.

@

Z — Score =

B. THE SECOND DETECTION MODULE

The second module proposes a new double-check mapping
function called DCMF, which is used to provide early attack
detection at the switch level. The proposed DCMF uses state
monitoring (OpenState extension) to offer Stateful SDN func-
tionalities across an Open Virtual Switch (OVS). The DCMF
has two state tables: State Table 1, which contains the source
IP address entries, and State Table 2, which contains the
source MAC address entries. The DCMF function verifies
that each source MAC address is associated with only one
source IP address during a given time frame. DCMF uses
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one-to-one mapping to perform the detection process. The
initial state values for the entries in Tables 1 and 2 are 0.
If the state value for any state table entry is more than one,
it signifies that either the source IP or the source MAC is
counterfeit, and an attack is detected. In this manner, the
DCMF can prevent attack traffic from overwhelming the
controller by blocking any traffic with forged source IPPMAC
addresses at the data plane. Algorithm 1 shows the four
FMDADM module algorithms including the DCMF function.
The DCMF process flow is illustrated in figure 3. The only
legitimate request is the final entry into the state tables. This
function effectively distinguishes between attack traffic and
flash crowds. The third detection module leverages DCMF as
a calculated binary feature with values of 0 and 1. A DCMF
value of 1 denotes attack traffic status, whereas a value of
0 denotes normal traffic.

C. THE THIRD DETECTION MODULE

The third detection module operates at the application layer,
which is equivalent to the cloud layer of IoT architecture. The
proposed module watches the switches at regular intervals of
1 s, and the information collected from the switches was used
to feed the module. The third module consists of four phases:
data preprocessing, feature extraction, training and testing,
and classification, which are explained in the following sub-
sections.

1) PREPROCESSING PHASE

Preparing raw data to be acceptable for a machine learning
model is known as data preprocessing. The three most crucial
steps in the data preprocessing phase are 1) missing values
replacement, 2) encoding categorical data, and 3) feature
scaling. The first step starts by computing the mean of the
column or row containing any missing values, and placing the
mean in place of the missing value. For this purpose, we used
the Scikit-learn library in Spyder using Anaconda. In the
second step, we used the sklearn library’s LabelEncoder
class to encode categorical data. This class converts variables
into digits. In the final step, feature scaling is performed in
two ways: standardization and normalization. We employed
the standardization procedure in our proposed strategy to
scale the features. We used StandardScaler class from the
sklearn.preprocessing library to standardize the independent
variables in the range of 0 to 1. The new scaled features are
computed in (3) as follows:

x — mean (x)

== ®

where Y is the new scaled value, x the original feature value,
and d the standard deviation.

2) FEATURE EXTRACTION PHASE

Feature engineering is the process of selecting and trans-
forming the most important features from the original data
when building a machine learning predictive model. Feature
engineering comprises two processes: feature selection and
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Algorithm 1 The Proposed FMDADM Framework Algo-
rithm

Inputs: T_IoT, Com_F, Tr_S, S_tel, S_te2, and TN
1 T_IoT <« IoT Network Traffic

2 Com_F < Computed Features

3 A_IoT <« Attack IoT Traffic

4 N_IoT <« Normal IoT Traffic

510T_S <« IoT Traffic State (Normal: 0, Attack: 1)

6 Pkt_n <« Packet Count

7 WS <« Window Size

8 Tr_S < Training Set

9 TN <« Trees Number in Forest (F)

10 Tr_S A single sample from Tr_S

11 Dst_IPN <« Destination IP Count

12 Dst_Add_Table < Destination IP Address Table
13 Ag < Attack Entropy Threshold

14 S_t <« State Table

15 S_tel < State Table 1 Entry

16S_te2 <« State Table 2 Entry

17 Src_IP < Source IP Address

18Dst_IP <« Destination IP Address

Output: Classified IoT Traffic as Normal or Attack

19 Window Initialization

20 Pki_n = 0, WS =32, Dst_IPN = 0, and Ag Threshold = 1.28
21 CPWE Feature Calculation

22 for each (Packet_in):

23 if (Dst_IP in Dst_Add_Table):

24 Add Dst_IP to Dst_IPN

25 else

26 Add Dst_IP to Dst_Add_Table
27 if (Pkt_n % WS = 0):

28 Calculate CPWE

29 else

30 Pkt_n =Pkt_n+ 1

31 end for

32 FMDADM Second Detection Module
33 for each (S_t):
34 if (S_tel_value > 1):

35 Src_IP — forged

36 DCME_State = 1

37 else if (S_te2_value > 1):

38 Src_MAC — forged

39 DCME_State = 1

40 else

41 DCMEF_State =0

42 Send DCMEF_State — Controller
43 end for

ird Detection Module
45 Function RF(Tr_S, Com_F)
46 foric (1,....,F)do: i
47 RTL; < Random Learn (Tr_S ©, Com_F)
48 L < LU (RTL))

49 if loT_S ==1):

50 Attack Traffic
51 else

52 Normal Traffic
53 end for

54 return L

55 end Function
56 FMDADM Mitigation Module

or each (T_IoT<A _ToT):
58 Send FlowMod — Switch
59 Add new flow entry — Switch
60 Set Drop_All rule — Switch
61 end for
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FIGURE 3. The proposed DCMF mapping function.

feature extraction. Whereas feature extraction generates new
features, feature selection only selects a subset of the initial
feature set. Both processes are required for the classification
phase. Both the selected and extracted features are critical
for shrinking large datasets, improving detection accuracy,
and speeding up predictions. To achieve the early and accu-
rate detection of attacks, we propose five new computed
features. The five proposed new features are the computed
particular window entropy (CPWE), computed packet rate
feature (CPRF), received flow packets standard deviation
(RFPSD), received flow bytes standard deviation (RFBSD),
and computed flow entry rate (CFER). The features and their
computations are discussed in the following subsections.

3) TRAINING AND TESTING PHASE

In the third proposed module, the dataset was split into
training and testing sets. To split the dataset, we imported
the train_test_split() function from sklearn.model-selection
library into Anaconda’s Spyder IDE. The model was then
fitted to the training dataset using SVM, GNB, kNN, BLR,
DT, and RF algorithms. After completing the training task,
the trained classification models used the testing set to predict
the final results of DDoS detection. In addition, a confusion
matrix was set up to save and evaluate the results of the trained
models. Finally, joblib from sklearn.externals is imported to
save the trained classification models.

4) CLASSIFICATION PHASE

In this phase, the detection results from an actual inspected
dataset are predicted using trained classification models. The
computed features are merged to determine whether an inter-
active flow is attack or normal traffic. When a DDoS attack
occurs, both CPRF and CFER features increase rapidly over
time, whereas CPWE, RFPSD, and RFBSD feature values
decrease. The following subsections describe the classifica-
tion models used to create the proposed model.
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5) ATTACK MITIGATION PHASE

The proposed mitigation module receives instructions from
the two detection modules. When a malicious traffic flow is
identified, the mitigation module protects the IoT nodes by
adding extra high-priority flow rules to switch flow tables that
match the attack packet rules. The switch receives a FlowMod
message from the controller to add a new flow table entry
and then drops all packets originating from the attack source.
This reduces and mitigates the impact of the attack. Figure 5
illustrates this process and depicts a general flowchart of the
proposed framework.

D. THE CLASSIFICATION MODELS

1) SUPPORT VECTOR MACHINE (SVM)

The SVM algorithm is a supervised machine learning two-
class classification model that can be used to determine
whether a particular traffic flow is regular or malicious. The
SVM model executes the learning by supplying a sample set
to each class. The algorithm defines a hyperplane that distin-
guishes between the two classes to perform the classification
process. The two-dimensional line that splits the hyperplane
into two classes is known as the classifier’s decision line,
where each class is assigned a unique location. After graphi-
cally depicting the points, the next task is to distinguish them
using a line known as the decision boundary.

2) K-NEAREST NEIGHBOR (KNN)

The KNN algorithm is a supervised learning technique that
is used to address classification problems. KNN assesses the
possibility that input data points from a particular training
set fall into any of the two classes, depending on which data
points are nearest to it. To use the KNN, the data points
are first converted into numerical values. Using Euclidean
distance, the classifier calculates the difference between the
data points. The k dataset with the least distance was used
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FIGURE 4. Flowchart of the proposed FMDADM framework.
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FIGURE 5. The general test architecture for the proposed detection framework.

as the classification set. Subsequently, an item is classified
based on the majority of votes of its neighbors.

3) GAUSSIAN NAIVE BAYES (GNB)

Naive Bayes (NB) employs the independent variable compar-
ison principle to ascertain the links between these indepen-
dent variables. This is easy to build, because the algorithm
does not evaluate the parameters. This enables it to operate on
extremely large datasets. Moreover, the GNB model employs
the probability of estimating continuous predictive features.
Where Z— [0, 1] is the result of employing F— [F1, F2,
....... Fn] independent features.

4) BINOMIAL LOGISTIC REGRESSION (BLR)

One of the most well-known machine learning algorithms
within the category of supervised learning is logistic regres-
sion (LR). LR uses a collection of independent variables
to predict the category of the dependent variable. In BLR,
the dependent variables can fall into one of two categories:-
0 or 1, normal or attack, etc. After preprocessing and splitting
the dataset, we fitted the model to the training set by import-
ing the LogisticRegression class from the Sklearn package.
After the model was successfully trained, we forecasted the
dependent variable class and determined the accuracy of the
expected outcome by analyzing the confusion matrix.

5) DECISION TREE (DT)
The DT is a popular classification and prediction technique
that uses supervised learning. The three primary components
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of DT are the root node, which symbolizes the decision; the
branches that grow out of the root, which represent the various
alternatives; and the leaf nodes, which represent the potential
outcomes. These components form a tree when integrated.
The primary problem is choosing the best property for both
root nodes and sub-nodes.

An approach known as the attribute selection measure
(ASM) was developed to address these issues. The (Infor-
mation Gain) and the (Gini Index) are the two main ASM
techniques. This study employs information gain by calcu-
lating the variation in entropy before and after splitting, and
determines the defilement in class features.

6) RANDOM FOREST (RF)

The Random forest algorithm is an ensemble learning
approach with applications in regression, classification, and
other areas. During training, the RF builds many decision
trees and produces a classification or regression for the mean
prediction of all classes. A total of 1000 trees made up the RF
classifier of the proposed model, and the minimum number of
leaf nodes was 1.

E. THE COMPUTED FEATURES

1) COMPUTED PARTICULAR WINDOW ENTROPY (CPWE)
This feature refers to the entropy of a 32-packet window.
To extract this feature, we created a function called Dstlp-
Collect.py in Python and added it to the controller. This func-
tion collects destination IP addresses in a 32-packet window.
Every new packet received by the controller was stored in an
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array table. The entropy of the window was calculated when
the array (packet_count) reached 32. The window entropy
was computed under both normal and attack conditions.

2) COMPUTED PACKET RATE FEATURE (CPRF)

Packet rate is an extracted feature that indicates the number
of data packets sent per second. The packet rate feature is
calculated by dividing the packet per flow by the monitoring
interval. The Packet per flow (PPF) is another computed
feature that measures the total number of packets in a single
flow at any given time. The packet rate feature is calculated
using (4) as follows:

FPcount (4)
T % Mlnt

CPRF =

where FPcoun: represents the total number of packets in a
single flow, T represents the time frame used to compute the
packets per flow and My, is the monitoring interval.

3) RECEIVED FLOW PACKETS STANDARD DEVIATION
(RFPSD)

The packet per flow (PPF) feature is a calculated feature that
equals the packet count (number of packets) for a single flow.
The standard deviation of the packets per flow was proposed
as a computed feature. This parameter is highly correlated
with the likelihood of DDoS. An attacker broadcasts many
small packets. This metric will be significantly decreased
because these packets will have a far smaller standard devia-
tion than the normal data packets. The RFPSD feature in (5)
is computed for a 32-packet window size as follows:

f
RFPSD = (}) £ > (n— AvgP) 5)
i=1

where f represents the number of live flows, n represents the
number of packets in each live flow at a given time, and AvgP
represents the average number of packets across all the flows
over a specified time.

4) RECEIVED FLOW BYTES STANDARD DEVIATION (RFBSD)
The byte per flow feature is a calculated feature that refers to
the number of bytes transferred into a single flow. Similar to
RFPSD, this metric has a significant link with the frequency
of DDoS attacks, and its predicted value is smaller under
attack conditions than that under regular traffic conditions.
The RFBSD feature in (6) is computed as follows:

/
RFBSD = G) * Y (n— AvgB) (6)

i=1

where f represents the number of live flows, n represents the
number of packets in each live flow at a given time, and AvgB
is the average number of bytes across all the flows over a
specified time.
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5) COMPUTED FLOW ENTRY RATE (CFER)

The flow entry rate (FER) is defined as the total number of
flows that enter the OpenFlow switch during a given moni-
toring interval. When a DDoS attack occurs, the number of
flow entries rapidly increases for a certain amount of time.
Consequently, this feature is crucial in identifying DDoS
attacks. The CFER feature in (7) is the computed FER for
a 32-packet window size, and is computed as follows:

CFER — FCount

(N
Int

where Fcoun: represents the total number of flows during a

given time and My, is the monitoring interval.

IV. EXPERIMENTAL RESULTS

The experiments were conducted on an Ubuntu server
20.04 LTS virtual machine running on an Intel core i5-
1135G7 processor with 12 GB of RAM and a Microsoft Win-
dows 10 host operating system. To develop and run the IoT
test topologies, the following software tools were employed:
VMware Workstation 12 Pro, Mininet-IoT, sFlow-test, and
sFlow Mininet dashboard. Figure 6 shows the overall SDN-
based IoT network topology architecture, which includes
one POX controller, six switches, four access points (AP),
one IoT default gateway, and 40 IoT nodes. We employed
three different test cases to evaluate the performance of the
proposed detection framework:- 1) single-node attack test
case (SNATC), 2) two-node attack test case (TNATC), and
3) four-node attack test case (FNATC). In the first case, the
attacker only targets one victim node. In the second case, the
attack traffic is launched simultaneously against two target
nodes. The last scenario involves sending attack packets to
four target nodes at the same time.

Python scripts were developed using Spyder (a research
development environment that is part of Anaconda) to create
the proposed detection module. This module imports the
Numpy and Pandas Python libraries to preprocess the dataset,
default-timer and date-time modules for performing real-time
IoT network topology experiments, and matplotlib library for
visual analytics.

To assess the effectiveness of the ML classifiers,
we employed the following measures: accuracy (ACC), pre-
cision or positive predictive value (PPV), Fl-score (F1),
recall or sensitivity or true positive rate (TPR), specificity
(SPC) or true negative rate (TNR), negative predictive value
(NPV), fall-out or false-positive rate (FPR), false discovery
rate (FDR), missor false-negative rate (FNR), and average
detection time (ADT). These assessment measures were
computed using the confusion matrix, except for detection
time, which was calculated using a function added to the
code. The performance of ML classifiers is critical for an
accurate DDoS attack detection process. These metrics have
the following mathematical definitions:

B TP + TN
" FP+FN +TP+ TN

ACC ®)
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FIGURE 6. Confusion matrices of the tested classifiers based on the four-node attack test case.

PPV = i 9) TABLE 3. The five new computed features.
FP+TP
N
NPV = (10 ATC CPWE CPRF RFPSD RFBSD CFER CLASS
FN + TN SNATC 1.501 6 0.827 75.337 17 0
TPR TP an 1.288 14 0.227 435.38 39 1
AN TP TATC S % o s a
(PPV % TPR) : : :
Fl=2% ——— (12) FNATC 1.501 9 0.727 178.26 18 0
(PPV + TPR) 1348 78 0397 69530 68 1
N
SPC = ———— 13)
FP+TN
FPR — FP (14) label “0” in the dataset. True positives (TP) are the number of
IN + FP real attack traffic cases that were correctly classified with the
FDR — FP (15) label ““1” as in the dataset; true negatives (TN) are the number
TP + FP of real normal traffic cases that were correctly classified with
FNR = FN (16) the label “0” as in the dataset. DTR, refers to the detection
TP + FN time of a single test trial and n represents the total number of
", DTR i .
ADT — Dt X a7 experimental tests
n

where false positives (FP) are the number of real normal
traffic cases that were incorrectly classified with the label ““1”
in the dataset; false negatives (FN) are the number of real
attack traffic cases that were incorrectly classified with the
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A. DATASET DESCRIPTION

A crucial step in validating the proposed detection framework
is to select the most suitable dataset that should include real-
time IoT traffic. The Edge-IloTset dataset [38], which is the
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most contemporary and relevant dataset for DDoS attacks in
IoT contexts, serves as the basis for our analysis and evalua-
tion of the proposed detection framework. The two selected
features were the source and destination ports. Table 3 lists
the newly calculated features derived from the dataset. The
last column represents the traffic type, with “1” indicating
attack traffic and “0”’ indicating normal traffic. In table 3, the
feature values of the two classes clearly distinguish between
the normal and attack traffic. The term “ATC” stands for
attack test case class and is divided into the aforementioned
three classes: SNATC, TNATC, and FNATC. These three test
cases are addressed in detail in the following sections.

B. EXPERIMENTAL TEST CASES

1) SINGLE-NODE ATTACK TEST CASE (SNATC)

In this experiment, we used the (IocT Network 1) topology
depicted in figure 5. In this case, the network is managed
by a single POX controller and the proposed detection and
mitigation application runs on top of it. In this topology,
N1 through N5 represent the IoT nodes and S5 designates
the OpenState-enabled network switch. The IoT nodes are
directly connected to the S5 switch through a wireless access
point (AP 1). After that, the S5 switch is linked to the aggre-
gation S2 switch. Three of the nodes, N2, N3, and N4, were
legitimate nodes capable of exchanging regular traffic. N5 is
the target of the attack generated by N1, which is an attacker.
We begin the experiment by running the pingall command,
which generates and exchanges ICMP packets between the
nodes. This process aims to verify the connection between
the linked nodes of the network and collect real-time fea-
tures under normal traffic conditions. Subsequently, we route
normal traffic between all the network nodes. Throughout
the experiment, this connection remained open, resulting in
a point where legitimate and attack traffic intermingled. Fol-
lowing this, we use the Mininet-IoT’s xterm command to
open the terminal of the attacker N1 node. We initiated attack
traffic against N5 node using the hping3 tool. The attack
traffic rate was set to 20%, which means that attack packets
accounted for 20% of all the traffic routed to the target node,
whereas normal packets accounted for the remaining 80%.

2) TWO-NODE ATTACK TEST CASE (TNATC)

In this test case, the general network settings were the same
as those used in the previous scenario. The sole distinction
is the number of target nodes attacked concurrently. In this
case, the attacker node (n6) from the (iot network 2) simulta-
neously sends attack packets to nodes n7 and n9. To achieve
the highest possible attack detection accuracy, the proposed
framework must be adapted to identify any differences in
certain network features and deal with them. one property that
can change from the previous scenario is the entropy. in this
case, the entropy values increased relatively close to normal
values. This is because the attack was distributed to more than
one victim.

28946

Thus, when calculating the CPWE feature in a particular
window, it may give us normal results; therefore, other fea-
tures must be considered to be able to detect the attack, even
at low rates. We configured the CPWE feature value to three
distinct levels to efficiently detect a DDoS attack in different
test situations, with attack rates ranging from 20% to 80%.
The (IoT Network 2) in figure 6 depicts the topology of this
test case.

3) FOUR-NODE ATTACK TEST CASE (FNATC)

In this instance, the attack is simultaneously performed at
four nodes at the same time. Nodes N12, N13, N14, and N15
from the (IoT Network 3) are simultaneously attacked by
N11 node. The goal of this scenario is to assess the accuracy
and efficiency of the proposed framework in dealing with
various types and intensities of attack. Attack rates varying
from 30 to 80% were employed in this scenario. An attack
rate of 20% cannot be considered because it is distributed
over four victims. Therefore, the number of packets received
by each victim is within the expected normal range.

In this scenario, the CPRF and CFER features both
increased rapidly over time, whereas the CPWE, RFPSD, and
RFBSD feature values declined. Under the attack condition,
the CPWE, CPRF, RFPSD, RFBSD, and CFER features had
values of 1.348, 78, 0.397, 695.30, and 68, respectively,
compared with 1.501, 9, 0.727, 178.26, and 18, respectively,
for the normal condition. The disparity in the feature values
between the two conditions clearly differentiates between
normal and attack traffic.

C. PERFORMANCE ANALYSIS AND EVALUATION

We extensively simulated the proposed FMDADM frame-
work using the trained BLR, GNB, SVM, kNN, DT, and
RF models to evaluate their performance and select the opti-
mal model. We refer to these models as: BLR-FMDADM,
GNB-FMDADM, SVM-FMDADM, kNN-FMDADM, DT-
FMDADM, and RF-FMDADM. We used the sFlow-RT to
periodically record the performance metrics of the mod-
els. The three aforementioned test scenarios were executed
120 times with flow entries varying between 5000 and
30,000. Here, we present the results of the FNATC scenario.
Because this is the most challenging detection situation, its
results are sufficient for judging the proposed framework. The
different evaluation metric results for FNATC are listed in
table 4. These results were derived from the confusion matri-
ces of the six classification models, as illustrated in figure 6.
The “ADT?” in table 4 stands for the average detection time
across all simulations run for each model under the FNATC
scenario, at a 20% attack rate. Of the models tested, RF-
FMDADM had the lowest ADT and outperformed the other
five ML models for all the metrics.

Table 4 shows that the RF-FFMDADM model achieved
the highest accuracy rate of 99.79%. DT-FMDADM and
KNN-FMDADM came in second and third, with accu-
racy rates of 99.53% and 98.19%, respectively. The
RF-FMDADM recall ratio of 99.77% indicates that out of
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TABLE 4. Evaluation metrics results for the four-node attack test case using different classifiers.

Model ACC PPV F1 TPR SPC NPV FPR FDR FNR  ADT(us)
BLR-FMDADM  95.84 88.13 8952 9095 97.02 9778 0298 11.87 09.05  7.94
GNB-FMDADM 9694 9033 9227 9429 9757 98.61 0243 09.67 0571  19.36
SVM-FMDADM  97.45 9253 9346 9442 98.17 98.66 01.83 0747 0558  39.17
KNN-FMDADM ~ 98.19 9461 9531 96.03 9870 99.06 0130 0539 0397 423
DT-FMDADM  99.53 9838 9875 99.13 99.62 99.80 0038 01.62 0087  3.85
RF-FMDADM 9979 99.09 9943 99.77 99.79 9995 0021 0091 0023 231
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FIGURE 7. Adaptive accuracy results for the six ML models at different flow intensities.

5000 attack flows, the model would be able to identify
4989 flows as attacks. In line with this, among the ML
models included in this study, RF-FMDADM provided the
highest F1 score of 99.43%. Both GNB-FMDADM and
SVM-FMDADM achieved similar results for all metrics
except the average detection time. SVM-FMDADM recorded
the longest ADT among the six models at 39.17 s. Compared
with the other models, BLR-FMDADM achieved the lowest
performance results, with scores of 95.84%, 88.13%, 89.52%,
90.95%, 97.02%, 97.78%, 02.98%, 11.87%, and 09.05%
for ACC, PPV, F1, TPR, SPC, NPV, FPR, FDR, and FNR,
respectively. In table 4, the RF-FFMDADM precision value of
99.09% 1is the proportion of flows successfully identified as
attacks across all real attack flows. Among all the models,
RF-FMDADM had the lowest false-alarm rates, with an FPR
of 0.21%, FDR of 0.91%, and FNR of 0.23%.

Based on these findings, the RF-FMDADM model was
considered the best detection model, and its efficacy was eval-
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uated by comparing it with other contemporary techniques.
In terms of the adaptive detection accuracy, the proposed
RF-FMDADM model outperformed the BLR-FMDADM,
GNB-FMDADM, SVM-FMDADM, kNN-FMDADM, and
DT-FMDADM models, as shown in figure 7. The number of
test flows increased with simulation time, which enhanced
the general performance of the RF-FMDADM framework.
Following RF-FMDADM, the descending order of ML mod-
els that achieved better adaptive accuracy was as follows:
DT-FMDADM, kNN-FMDADM, SVM-FMDADM, GNB-
FMDADM, and BLR-FMDADM.

Figure 8 shows a Wireshark capture of the IO graph during
the SNATC. We can observe how the attack overwhelmed
the destination, with TCP requests reaching 2600 packets/s,
causing the destination to cease responding to legitimate
hosts. Figures 9 and 10 depict a graphical comparison of the
total traffic transferred between IoT network nodes in both
normal and attack situations, as displayed by the Mininet-IoT
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Wireshark capture of the 10 Graph during SNATC scenario.
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FIGURE 9. The loT network state under the normal condition.

dashboard. There was significant variation in the overall
traffic between the two scenarios. In figure 9, the traffic
reaches a maximum of 15 kbps when all 40 nodes are linked
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to the network to exchange normal traffic. However, in the
attack situation, the traffic exceeded 38 Mbps, as shown
in figure 10.
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FIGURE 10. The loT network state under the attack condition.

TABLE 5. Comparison of the proposed framework to existing ML approaches.

Evaluation Metrics

Hyperparameter Settings

Model  — cc PPV FI TPR FPR  TI(s) DT(us) Parameter Selected value
MLP 920 99.7 6470 4790 N/A 2577  LI11 Number of neurons/layer 10
Activation function Sigmoid
No. of hidden layers 2
Kernel Rbf
SMO 957 96.0 9630 96.60 06.00 N/A N/A Kernel coefficient 10%
Number of neighbors K 6
IBK 97.8 979 9790 97.90 0220 N/A N/A Neighbors weight distance-based
148 937 999 7410 5890 0130 0249  02.04 Splitting criterion Entropy
Min. samples split 2
Kernel Sigmoid
SVM 97.6 99.7 91.60 8470 N/A 223 139.08 Reg. parameter coefficient 10
Kernel coefficient 10
Splitting criterion Entropy
REP 932 01.0 7130 5540 N/A 0098 01.72 Number of trees 70
Min. samples leaf 1
FFCNN 990 975 96.90 9630 N/A 101  03.81 Number of neurons/layer 64
Activation function Relu
KNN 988 N/A NA 9847 0097 NA  NA Number of neighbors K- 3
Neighbors weight Uniform
Splitting criterion Gini
Number of trees 1000
Proposed 99.8 99.0 9943 99.77 0021 00.97 2.64 Min. samples leaf 1
Min. samples split 2
Max features 7
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FIGURE 11. The proposed RF-FMDADM framework’s detection and mitigation performance.
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FIGURE 12. The loT network resources after applying the mitigation strategy.
As seen in figure 10, the attack traffic is combined addresses 10.0.0.1 and 10.0.0.4, communicate regularly with
with benign traffic during the attack operation. The screen- the destination nodes 10.0.0.2 and 10.0.0.3. In contrast, three

shot demonstrates that two legitimate source nodes with IP nodes using spoof IP addresses are targeting node 10.0.0.1.
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FIGURE 13. Graphical representation of the evaluation metrics for the compared ML methods.
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This is an example of TCP flooding attack. The network
bandwidth increased to 40 Mbps, representing a very high
traffic load compared with the regular condition of a max-
imum of 10 Kbps. The included switches count the flows,
verify the sequence number, compare the byte and packet
flows to counters, and provide the required information
regarding ingress and egress ports. With a very high packet
rate of 6000 packets/s, the network bandwidth increased sig-
nificantly to 40 Mbps. As the simulation runs longer, network
traffic demand increases exponentially. When the proposed
framework reduces the effects of the attack, the network
traffic drops in chunks, demonstrating the efficacy of the RF-
FMDADM deployment. In figure 8, high traffic flow peaks
represent DDoS attack-related network traffic, while low
dips represent the impact of the RF-FMDADM functionality,
which efficiently restores regular traffic flow via OpenState
switches by detecting and mitigating the attack.

The proposed RF-FMDADM detects the attack and
returns the network performance to the pre-attack condition,
as shown in figures 11 and 12. Figure 11 provides convincing
evidence that the proposed RF-FMDADM effectively iden-
tifies and stops the attack, restoring the network to its pre-
attack state. The network measurements demonstrate that the
communicating nodes in figure 11 are legitimate and the
attackers are blocked. The network was restored to its normal
state at a maximum of four packets/s.

Table 5 compares the proposed RF-FMDADM model’s
performance metrics to those of the current ML approaches
and includes the hyperparameter settings for all compared
methods. The majority of the algorithms evaluated employ
WEKA hyperparameter values. The “TT” abbreviation in
table 5 stands for the length of time each approach required
for training. It is clear that the proposed RF-FMDADM
model performs better than the existing ML methods in terms
of accuracy, Fl-score, recall, and false positive rate, with
scores of 99.89%, 99.43%, 99.77%, and 00.21%, respec-
tively. In terms of accuracy, the FFCNN [36] approach
comes second after the proposed RF-FMDADM approach,
with an accuracy rate of 99.0%. With a precision rate of
99.9%, J48 [36] was the most precise among the nine
techniques included in the comparison. However, com-
pared to other approaches, it has a very low recall, F1-
score, and accuracy rate of 58.90%, 74.10%, and 93.70%,
respectively.

Similarly, the REP Tree [36] achieved comparable results
for all metrics to those of J48. In all metrics, SMO [39] and
IBK [39] had comparable outcomes, except for FPR, where
IBK had a lower FPR of 2.20% and SMO had a higher FPR
of 6%. With scores of 98.47% and 00.97%, the kKNN [40]
approach was second only to the RF-FMDADM in terms of
recall and FPR, respectively. However, the authors of [40] did
not indicate the method’s F1-score or its precision. As seen in
table 5, The SVM [36] approach obtained the longest training
and detection times among all methods of 223.86 s and
139.08 us, respectively. MLP [36] had the quickest detection
time among all approaches, but it had the lowest F1-score and
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recall rates of 64.70% and 47.90%, respectively. Figure 13
shows a graphical representation of the accuracy, precision,
recall, F1-measure, DT, and FPR for the various ML methods
included in the comparison.

V. CONCLUSION

In this paper, we introduced FMDADM, an ML-based DDoS
detection, and mitigation framework for SDN-enabled IoT
networks. The proposed framework comprises three detection
modules and a mitigation module. The first module employs a
32-packet window size used for feature extraction in the third
detection module. The second detection module introduces a
novel mapping function called DCMF. The DCMF provides
two crucial features:- (a) detecting the attack at the data plane
level before overwhelming the controller, and (b) discriminat-
ing between attack traffic and flash crowds. As a result, the
controller has an extra layer of protection against the attack.
The third detection module employs feature engineering to
identify DDoS attacks using only five new computed features.
As a result, the model gives a good fit and can successfully
handle the over-fitting problem. The three detection modules
resulted in a reduction in the amount of time needed for
training, testing, and detection.

We thoroughly tested the proposed framework by employ-
ing trained BLR, GNB, SVM, kNN, DT, and RF models
to assess their performance outcomes and select the best
model. The RF model performed best across all ten evaluation
metrics. Three different test scenarios were used to evaluate
the performance of the proposed framework. According to
the experiments, the FMDADM can detect DDoS with high
accuracy in multi-node attack scenarios. This is a crucial area
of strength for the proposed framework because it is generally
known that conventional defences fall short in the face of
these attack scenarios.

The proposed framework is designed to prevent local
DDoS attacks produced by IoT Botnets inside compromised
LANs from propagating to the ISP level. By protecting the
controller and remote nodes in this form, we can stop DDoS
attacks before they can reach the Internet. The proposed
FMDADM framework can effectively identify DDoS attacks
at both high and low rates.

The experimental results show that the proposed frame-
work performed better than most cutting-edge solutions cur-
rently available with the following benchmarks for accuracy,
precision, F-measure, recall, specificity, negative predictive
value, false positive rate, false detection rate, false negative
rate, and average detection time: 99.79%, 99.09%, 99.43%,
99.77%, 99.79%, 99.95%, 00.21%, 00.91%, 00.23%, and
2.64 us.

In the future, we plan to deploy and evaluate the proposed
framework in a multi-controller SD-IoT environment. Addi-
tionally, we plan to test the proposed framework with other
controllers to determine which one works best for the IoT
network. In addition, we will test increasingly sophisticated
test scenarios. Finally, the detection of more attack types on
an SDN-based IoT network may be added to this study.

VOLUME 11, 2023



W. 1. Khedr et al.: FMDADM: A Multi-Layer DDoS Attack Detection and Mitigation Framework

IEEE Access

REFERENCES

(1]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

A. E. Omolara, A. Alabdulatif, O. I. Abiodun, M. Alawida, A. Alabdulatif,
W. H. Alshoura, and H. Arshad, “The Internet of Things security: A
survey encompassing unexplored areas and new insights,” Comput. Secur.,
vol. 112, Jan. 2022, Art. no. 102494, doi: 10.1016/j.cose.2021.102494.
R. Ahmad and I. Alsmadi, “Machine learning approaches to IoT secu-
rity: A systematic literature review,” Internet Things, vol. 14, Jun. 2021,
Art. no. 100365, doi: 10.1016/j.i0t.2021.100365.

1. H. Sarker, A. I. Khan, Y. B. Abushark, and F. Alsolami, “Internet of
Things (IoT) security intelligence: A comprehensive overview, machine
learning solutions and research directions,” Mobile Netw. Appl., pp. 1-17,
Mar. 2022, doi: 10.1007/s11036-022-01937-3.

V. Mothukuri, P. Khare, R. M. Parizi, S. Pouriyeh, A. Dehghantanha, and
G. Srivastava, “‘Federated-learning-based anomaly detection for IoT secu-
rity attacks,” IEEE Internet Things J., vol. 9, no. 4, pp. 2545-2554,
Feb. 2022, doi: 10.1109/J1I0T.2021.3077803.

M. Azrour, J. Mabrouki, A. Guezzaz, and A. Kanwal, “Internet of Things
security: Challenges and key issues,” Secur. Commun. Netw., vol. 2021,
pp. 1-11, Sep. 2021, doi: 10.1155/2021/5533843.

A. Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini,
“A survey on federated learning for resource-constrained IoT devices,”
IEEE Internet Things J., vol. 9, no. 1, pp.1-24, Jan. 2022, doi:
10.1109/J1I0T.2021.3095077.

H. Tougeer, S. Zaman, R. Amin, M. Hussain, F. Al-Turjman, and M. Bilal,
“Smart home security: Challenges, issues and solutions at different IoT
layers,” J. Supercomput., vol. 77, no. 12, pp. 14053-14089, Dec. 2021,
doi: 10.1007/s11227-021-03825-1.

S. Siddiqui, S. Hameed, S. A. Shah, I. Ahmad, A. Aneiba,
D. Draheim, and S. Dustdar, “Towards software-defined networking-
based IoT frameworks: A systematic literature review, taxonomy, open
challenges and prospects,” IEEE Access, vol. 10, pp. 70850-70901, 2022,
doi: 10.1109/ACCESS.2022.3188311.

B. Isyaku, K. B. A. Bakar, F. A. Ghaleb, and A. Al-Nahari, “Dynamic
routing and failure recovery approaches for efficient resource utilization
in OpenFlow-SDN: A survey,” IEEE Access, vol. 10, pp. 121791-121815,
2022, doi: 10.1109/ACCESS.2022.3222849.

X. Zhang, L. Cui, K. Wei, E. P. Tso, Y. Ji, and W. Jia, “A survey on
stateful data plane in software defined networks,” Comput. Netw., vol. 184,
Jan. 2021, Art. no. 107597, doi: 10.1016/j.comnet.2020.107597.

J. Galeano-Brajones, J. Carmona-Murillo, J. F. Valenzuela-Valdés, and
F. Luna-Valero, “Detection and mitigation of dos and DDoS attacks in IoT-
based stateful SDN: An experimental approach,” Sensors, vol. 20, no. 3,
p. 816, 2020, doi: 10.3390/s20030816.

A. Mahmood, C. Casetti, C. F. Chiasserini, P. Giaccone, and J. Hirri,
“Efficient caching through stateful SDN in named data networking,”
Trans. Emerg. Telecommun. Technol., vol. 29, no. 1, p. 3271, Jan. 2018,
doi: 10.1002/ett.3271.

F. Paolucci, F. Cugini, P. Castoldi, and T. Osinski, “Enhancing 5G
SDN/NFV edge with p4 data plane programmability,” IEEE Netw., vol. 35,
no. 3, pp. 154-160, May 2021, doi: 10.1109/MNET.021.1900599.

A. Rahman, M. J. Islam, A. Montieri, M. K. Nasir, M. M. Reza,
S. S. Band, A. Pescape, M. Hasan, M. Sookhak, and A. Mosavi,
“SmartBlock-SDN: An optimized blockchain-SDN framework for
resource management in IoT,” IEEE Access, vol. 9, pp. 28361-28376,
2021, doi: 10.1109/ACCESS.2021.3058244.

V. Ravi, R. Chaganti, and M. Alazab, “Deep learning feature fusion
approach for an intrusion detection system in SDN-based IoT networks,”
IEEE Internet Things Mag., vol. 5, no. 2, pp.24-29, Jun. 2022, doi:
10.1109/10TM.003.2200001.

S. Wang, J. F. Balarezo, S. Kandeepan, A. Al-Hourani, K. G. Chavez,
and B. Rubinstein, “Machine learning in network anomaly detec-
tion: A survey,” IEEE Access, vol. 9, pp. 152379-152396, 2021, doi:
10.1109/ACCESS.2021.3126834.

M. A. Razib, D. Javeed, M. T. Khan, R. Alkanhel, and M. S. A. Muthanna,
“Cyber threats detection in smart environments using SDN-enabled DNN-
LSTM hybrid framework,” IEEE Access, vol. 10, pp. 53015-53026, 2022,
doi: 10.1109/ACCESS.2022.3172304.

N. Ravi and S. M. Shalinie, “Learning-driven detection and mitigation of
DDoS attack in ToT via SDN-cloud architecture,” IEEE Internet Things J.,
vol. 7, no. 4, pp. 3559-3570, Apr. 2020, doi: 10.1109/J10T.2020.2973176.
D. Yin, L. Zhang, and K. Yang, “A DDoS attack detection and mitigation
with software-defined Internet of Things framework,” IEEE Access, vol. 6,
pp. 24694-24705, 2018, doi: 10.1109/ACCESS.2018.2831284.

VOLUME 11, 2023

(20]

[21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

J. Xie, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, “A survey of machine
learning techniques applied to software defined networking (SDN):
Research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 21,
no. 1, pp. 393-430, 1st Quart., 2019, doi: 10.1109/COMST.2018.2866942.
M. Bagaa, T. Taleb, J. B. Bernabe, and A. Skarmeta, “A machine
learning security framework for IoT systems,” IEEE Access, vol. 8,
pp. 114066114077, 2020, doi: 10.1109/ACCESS.2020.2996214.

J. B. Awotunde, C. Chakraborty, and A. E. Adeniyi, “Intrusion detection
in industrial Internet of Things network-based on deep learning model
with rule-based feature selection,” Wireless Commun. Mobile Comput.,
vol. 2021, pp. 1-17, Sep. 2021, doi: 10.1155/2021/7154587.

1. Ullah and Q. H. Mahmoud, ‘“‘Design and development of a deep learning-
based model for anomaly detection in IoT networks,” IEEE Access, vol. 9,
pp. 103906-103926, 2021, doi: 10.1109/ACCESS.2021.3094024.

A. R. Gad, A. A. Nashat, and T. M. Barkat, “Intrusion detection sys-
tem using machine learning for vehicular ad hoc networks based on
ToN-IoT dataset,” IEEE Access, vol. 9, pp. 142206-142217, 2021, doi:
10.1109/ACCESS.2021.3120626.

M. V. O. de Assis, L. F. Carvalho, J. J. P. C. Rodrigues, J. Lloret,
and M. L. Proenga Jr., “Near real-time security system applied to
SDN environments in IoT networks using convolutional neural net-
work,” Comput. Electr. Eng., vol. 86, Sep. 2020, Art. no. 106738, doi:
10.1016/j.compeleceng.2020.106738.

1. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani, ‘“‘Developing
realistic distributed denial of service (DDoS) attack dataset and taxon-
omy,” in Proc. Int. Carnahan Conf. Secur. Technol. (ICCST), Oct. 2019,
pp. 1-8, doi: 10.1109/CCST.2019.8888419.

O. Yousuf and R. N. Mir, “DDoS attack detection in Internet of Things
using recurrent neural network,” Comput. Electr. Eng., vol. 101, Jul. 2022,
Art. no. 108034, doi: 10.1016/j.compeleceng.2022.108034.

M. Alanazi and A. Aljuhani, “Anomaly detection for Internet of Things
cyberattacks,” Comput., Mater. Continua, vol. 72, no. 1, pp. 261-279,
2022, doi: 10.32604/cmc.2022.024496.

X. Yuan, C. Li, and X. Li, “DeepDefense: Identifying DDoS attack via
deep learning,” in Proc. IEEE Int. Conf. Smart Comput. (SMARTCOMP),
May 2017, pp. 1-8, doi: 10.1109/SMARTCOMP.2017.7946998.

T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and
M. Ghogho, “Deep learning approach for network intrusion detection
in software defined networking,” in Proc. Int. Conf. Wireless
Netw. Mobile Commun. (WINCOM), Oct. 2016, pp.258-263, doi:
10.1109/WINCOM.2016.7777224.

N. Zhang, F. Jaafar, and Y. Malik, “Low-rate DoS attack detection
using PSD based entropy and machine learning,” in Proc. 6th IEEE
Int. Conf. Cyber Secur. Cloud Comput. (CSCloud)/5th IEEE Int. Conf.
Edge Comput. Scalable Cloud (EdgeCom), Jun. 2019, pp. 59-62, doi:
10.1109/CSCloud/EdgeCom.2019.00020.

M. S. ElSayed, N.-A. Le-Khac, M. A. Albahar, and A. Jurcut, “A novel
hybrid model for intrusion detection systems in SDNs based on CNN and a
new regularization technique,” J. Netw. Comput. Appl., vol. 191, Oct. 2021,
Art. no. 103160, doi: 10.1016/j.jnca.2021.103160.

F. A. Fernandes Silveira, F. Lima-Filho, F. S. Dantas Silva, A. de Medeiros
Brito Junior, and L. F. Silveira, “Smart detection-IoT: A DDoS sen-
sor system for Internet of Things,” in Proc. Int. Conf. Syst., Signals
Image Process. (IWSSIP), Jul. 2020, pp. 343-348, doi: 10.1109/IWS-
SIP48289.2020.9145265.

H. H. Jazi, H. Gonzalez, N. Stakhanova, and A. A. Ghorbani, “Detecting
HTTP-based application layer DoS attacks on Web servers in the pres-
ence of sampling,” Comput. Netw., vol. 121, pp. 25-36, Jul. 2017, doi:
10.1016/j.comnet.2017.03.018.

D. Tang, L. Tang, R. Dai, J. Chen, X. Li, and J. J. P. C. Rodrigues,
“MF-AdaBoost: LDoS attack detection based on multi-features and
improved adaboost,” Future Gener. Comput. Syst., vol. 106, pp. 347-359,
May 2020, doi: 10.1016/j.future.2019.12.034.

H. S. Ilango, M. Ma, and R. Su, “A feedforward—convolutional neural
network to detect low-rate DoS in IoT,” Eng. Appl. Artif. Intell., vol. 114,
Sep. 2022, Art. no. 105059, doi: 10.1016/j.engappai.2022.105059.

S. M. Mousavi and M. St-Hilaire, ““Early detection of DDoS attacks against
software defined network controllers,” J. Netw. Syst. Manage., vol. 26,
no. 3, pp. 573-591, Jul. 2018, doi: 10.1007/s10922-017-9432-1.

M. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke, “Edge-
IIoTset: A new comprehensive realistic cyber security dataset of IoT and
IIoT applications for centralized and federated learning,” IEEE Access,
vol. 10, pp. 40281-40306, 2022, doi: 10.1109/ACCESS.2022.3165809.

28953


http://dx.doi.org/10.1016/j.cose.2021.102494
http://dx.doi.org/10.1016/j.iot.2021.100365
http://dx.doi.org/10.1007/s11036-022-01937-3
http://dx.doi.org/10.1109/JIOT.2021.3077803
http://dx.doi.org/10.1155/2021/5533843
http://dx.doi.org/10.1109/JIOT.2021.3095077
http://dx.doi.org/10.1007/s11227-021-03825-1
http://dx.doi.org/10.1109/ACCESS.2022.3188311
http://dx.doi.org/10.1109/ACCESS.2022.3222849
http://dx.doi.org/10.1016/j.comnet.2020.107597
http://dx.doi.org/10.3390/s20030816
http://dx.doi.org/10.1002/ett.3271
http://dx.doi.org/10.1109/MNET.021.1900599
http://dx.doi.org/10.1109/ACCESS.2021.3058244
http://dx.doi.org/10.1109/IOTM.003.2200001
http://dx.doi.org/10.1109/ACCESS.2021.3126834
http://dx.doi.org/10.1109/ACCESS.2022.3172304
http://dx.doi.org/10.1109/JIOT.2020.2973176
http://dx.doi.org/10.1109/ACCESS.2018.2831284
http://dx.doi.org/10.1109/COMST.2018.2866942
http://dx.doi.org/10.1109/ACCESS.2020.2996214
http://dx.doi.org/10.1155/2021/7154587
http://dx.doi.org/10.1109/ACCESS.2021.3094024
http://dx.doi.org/10.1109/ACCESS.2021.3120626
http://dx.doi.org/10.1016/j.compeleceng.2020.106738
http://dx.doi.org/10.1109/CCST.2019.8888419
http://dx.doi.org/10.1016/j.compeleceng.2022.108034
http://dx.doi.org/10.32604/cmc.2022.024496
http://dx.doi.org/10.1109/SMARTCOMP.2017.7946998
http://dx.doi.org/10.1109/WINCOM.2016.7777224
http://dx.doi.org/10.1109/CSCloud/EdgeCom.2019.00020
http://dx.doi.org/10.1016/j.jnca.2021.103160
http://dx.doi.org/10.1109/IWSSIP48289.2020.9145265
http://dx.doi.org/10.1109/IWSSIP48289.2020.9145265
http://dx.doi.org/10.1016/j.comnet.2017.03.018
http://dx.doi.org/10.1016/j.future.2019.12.034
http://dx.doi.org/10.1016/j.engappai.2022.105059
http://dx.doi.org/10.1007/s10922-017-9432-1
http://dx.doi.org/10.1109/ACCESS.2022.3165809

IEEE Access

W. . Khedr et al.: FMDADM: A Multi-Layer DDoS Attack Detection and Mitigation Framework

[39]

[40]

S. Das, A. M. Mahfouz, D. Venugopal, and S. Shiva, “DDoS intru-
sion detection through machine learning ensemble,” in Proc. IEEE 19th
Int. Conf. Softw. Quality, Rel. Secur. Companion (QRS-C), Jul. 2019,
pp. 471-477, doi: 10.1109/QRS-C.2019.00090.

L. Tan, Y. Pan, J. Wu, J. Zhou, H. Jiang, and Y. Deng,
“A new framework for DDoS attack detection and defense in SDN
environment,” [EEE Access, vol. 8, pp. 161908-161919, 2020, doi:
10.1109/ACCESS.2020.3021435.

WALID 1. KHEDR received the Ph.D. degree
in computer science from Ain Shams University,
in 2009. He is currently a Professor of informa-
tion technology with the Faculty of Computers
and Informatics, Zagazig University. His current
research interests include network security proto-
cols, key management protocols, cloud security,
and the Internet of Things security.

28954

-

(-
| -

.-.f: \ -

"1‘.\& h\

AMEER E. GOUDA received the B.Sc. and M.Sc.
degrees from Zagazig University, Zagazig, Egypt,
in 2012 and 2019, respectively. He is currently a
Teaching Assistant with the Information Technol-
ogy Department, Faculty of Computers and Infor-
matics, Zagazig University. His current research
interests include network security, machine learn-
ing, cloud computing, the Internet of Things, and
SDN.

EHAB R. MOHAMED received the B.Sc.,
M.Sc., and Ph.D. degrees in communication from
the Faculty of Engineering, Zagazig University.
He is currently a Lecturer with the Information
Technology Department, Faculty of Computers
and Informatics, Zagazig University. His current
research interests include optimization, computa-
tional intelligence, wireless networks, SDN, cloud
computing, and multimedia.

VOLUME 11, 2023


http://dx.doi.org/10.1109/QRS-C.2019.00090
http://dx.doi.org/10.1109/ACCESS.2020.3021435

