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ABSTRACT In big-data era, large amount of facial images could be used to breach the face identification
system, which demands effective Face IDentification Differential Privacy (FaceIDP) of the facial images
for widespread adoption of the face identification technique. In this paper, to our best knowledge, we take
the first step to systematically study an effective important FaceIDP approach via the help of Dictionary
Learning (DL) for secure releasing of facial images. First, a Dictionary Learning neural Network (DLNet)
has been developed and trained with the facial images database, to learn the common dictionary basis of
the facial image database. Then, the coding coefficients of the facial images are obtained. After that, the
sanitizing noise is added to the coding coefficients, which obfuscates the facial feature vector that is used
to identify a user’s identification. We have also proved that the FaceIDP is ε-differentially private. More
importantly, optimal noise scale parameters have been obtained via the Lagrange Multiplier (LM) method to
achieve better data utility for a given privacy budget ε. Finally, substantial experiments have been conducted
to validate the efficiency of the FaceIDP with two real-life facial image databases.

INDEX TERMS Face-IDentification Privacy (FaceIDP), differential privacy, dictionary learning neural
network.

I. INTRODUCTION
Face identification has been extensively used as a biometric
authentication system in many fields such as public safety,
finance, e-commerce, etc., due to its super convenience [1].
Also, in the 5G and beyond era where images and videos on
the internet clouds can be transmitted and shared in real time
and faster speed than ever [2], [3]. This poses great threat
to face identification systems because the adversaries could
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combine an individual’s multiple facial images to form the 3D
feature vectors and breaches the face identification system to
identify the individual of interest [4]. This is especially true in
the era of Artificial Intelligence (AI) [5], [6]: through training
an AI system with large number of facial images of individ-
uals, facial feature vectors could be learned accurately; then
the face identification of the individual is carried out through
deep learning, leading to privacy leakage from mining infor-
mation of the publicly shared facial images [7]. However,
the General Data Protection Regulations (GDPR) [8] clearly
point out that individuals’ privacy should be protected when
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their data is used. Because the identification systems face
the real risk of being breached, they are forbidden in many
cities, such as San Francisco and Boston, in USA. Therefore,
an effective face identification privacy protection approach is
urgent for widespread adoption of face identification based
applications.

However, there is lack of research on such face iden-
tification privacy problem, i.e., adversaries may intrude
face identification systems by utilizing falsified feature vec-
tors generated from publicly released facial images through
machine learning, although researches on other privacy prob-
lems other than the face identification privacy of publicly
shared facial images exist. For example, in order to protect the
facial image privacy, image obfuscation [9], [10], [11] such
as pixelization and blurring, are adopted to protect image fea-
tures. Unfortunately, these approaches could be re-identified.
To fix this problem, a differentially private pixelization is
proposed [12]. Furthermore, under the deep learning envi-
ronment, adversarial perturbation generative network is pro-
posed to preserve image features [13], [14]. However, these
privacy protection approaches do not aim at protecting the
face identification privacy with optimal utility.

To reduce the data space of facial images for the efficient
face identification privacy algorithm, it is preferred that the
basis set of the facial images can be learned in advance, which
calls for the Dictionary Learning neural Network (DLNet) to
learn the sparsifying basis set adaptively in real time [2], [15],
[16], [17], [18].

To efficiently deal with the face identification privacy
problem, we propose a novel Face-IDentification Privacy
(FaceIDP) approach with the help of the DLNet. Without loss
of generality, the 2D face identification, instead of the 3D face
identification, is used to present the FaceIDP approach. Our
major contributions are

• We integrate our recently developed effectiveDLNet [18]
in the proposed FaceIDP approach to efficiently protect
the face identification privacy, i.e., to prevent adversaries
from using the individuals’ facial images to breach the
face identification systems.

• To achieve the optimal DP performance, the DLNet is
developed to adaptively learn the common dictionary
facial image basis of the facial image database so that
only weighted sanitizing noise is distributed to those
face coding coefficients that correspond to the important
dictionary facial image basis.

• The LM method is used to obtain the mathemati-
cal formula of the optimized distributed partial noise
scale parameters of the face coding coefficients for
the global constrained optimization problem of max-
imizing the data utility for a given global privacy
budget ε.

• Extensive experiments have been conducted with the
Labeled Faces in the Wild (LFW) database [19] and
PubFig database [20], which show that the proposed
FaceIDP approach outperforms other DP approaches.

II. RELATED WORK
The face identification system which is an important identity
authentication system, has been widely used. Meanwhile,
its privacy problem is also very important and challeng-
ing. Works have the cryptography-based face identification
problems [1], [11]. These cryptography-based approaches
can deal with facial image data securely. But the facial
images collection center and the third party need to exchange
secrets/keys in a secure channel. It does not fit into our non-
interactive setting.

To the best of our knowledge, little research has been
conducted on the face identification privacy protections.
However, researches on other privacy problems of the
facial images have been conducted. For example, to protect
image privacy, researchers used pixelization [9] and blur-
ring approaches to achieve image obfuscation. Unfortunately,
McPherson et al. [10] studied pixelization and YouTube face
blurring and concluded that the obfuscated images using
those approaches can be re-identified. Furthermore, in order
to deal with such problem, Fan [12] proposed the differen-
tially private pixelization approach to protect image features.
However, it doesn’t focus on differentially private face iden-
tification problem.

Furthermore, regarding the deep learning, Tong and
Zheng [13] proposed an adversarial perturbation generative
network to generate perturbation to preserve image privacy.
Yang et al. [14] proposed a facial image privacy protection
approach by adding perturbation in the principal components
of the facial images.

Therefore, it is necessary to study the optimal face iden-
tification privacy approach in order to achieve better data
utility while still protecting the face identification system
from being attacked by the adversaries, which is the focus
of this paper.

III. PRELIMINARIES AND PROBLEM FORMULATION
In this section, we first provide preliminaries. It then presents
the system model and the adversary model for technical
discussions and the problem statement of the paper.

To start, Table 1 lists some key variables used across this
paper with their explanations.

A. THE DP FRAMEWORK
In this paper, we are interested only in whether there exists
an effective FaceIP Privacy approach (FaceIDP) that can
prevents the adversary to use a user’s facial images to breach
the face identification system, as shown in Fig. 1: without
the FaceIDP, the adversary can use the publicly available
facial images of a user to recognize the user, i.e., to breach
the face identification system (top of Fig. 1); while with the
FaceIDP, the sanitizing noise is added in such a way that
face identification system cannot recognize whether the facial
images belong to the user or not. In the terminology of the
differential privacy, the neighboring data records are a facial
images set of an individual and a facial image set of the closest
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TABLE 1. Notations and Definitions.

FIGURE 1. System Model.

individual, characterized by the ℓ1-norm distance between
their coding coefficients vectors.

Furthermore, the closest neighboring facial images are a
pair of most similar facial images of the neighboring facial
image sets in Definition 1, under the measure function M.
The definition is as Definition 2.
Definition 1 (The Neighboring Facial Image Sets): The

neighboring facial image sets are the facial image set of an
individual (A ∈ A) and the facial image set of all other
individuals (B ∈ B),

({
F
(A)
M : A ∈ A

}
,
{
F
(B)
M : B ∈ B

})
: B ∪A = ∅,

where the facial image is represented by its coding coeffi-
cients vector FM .

Definition 2 (The Closest Neighboring Face Images): The
closest neighboring facial images pair is,

(A,B) : argmin
B

{∣∣∣M (
F
(A)
M

)
−M

(
F
(B)
M

)∣∣∣} .

Definition 3 (Differential Privacy): LetM′ be a obfuscat-
ing measure function with sanitizing random noise added,
and O be any outcome of the measure function M. For
the two closest neighboring datasets A and B, the measure
functionM will be ε-differential private, if the following is
satisfied

exp(−ε) ≤

Pr
(
M′(F

(A)
M

)
= O)

Pr(M′

(
F
(B)
M

)
= O)

≤ exp(ε).

Because the feature vector F
(A)
M and F

(B)
M consists of

M elements, the privacy budget ε defined in Definition 3
can be further expressed in terms of the partial differ-
ential privacy budgets of all M elements defined below
[21], [22], [23],
Definition 4 (The Partial Differential Privacy): The obfus-

cating measure functionM′ adds noise to an element Fm of
a facial image coding coefficients vector {FM : Fm ∈ FM ,
m = 1, · · ·M}, it is said to be εm-differentially private if the
following probability condition is satisfied after the sanitizing
noise is added to Fm,

exp (−εm) ≤

Pr
{
M′

(
F (i)
m

)
= F ′

m

}
Pr
{
M′

(
F (j)
m

)
= F ′

m

} ≤ exp (εm) ,

where in this paper, the obfuscating measure function M′

adds independent Laplace noise to each element Fm.
It is clear that the total privacy is a function of the partial

privacy budget vector, i.e., ε (εM ) , εM = [ε1, · · · , εM ]T .

B. JOINT PROBABILITY BOUNDS
From Definition 3 and Definition 4, it is clear that the
privacy budget ε is closely related to the lower and upper
bounds of numerator and denominator. So in this section,
we will obtain the lower and upper bounds of the proba-
bilities in Definition 3 and Definition 4, which later will
be used to prove that our FaceIDP satisfies the differential
privacy.

The joint Probability Distribution Function (PDF) of the
multivariate random variables vector FM with length M ,
denoted as f (FM ), has its lower and upper bounds on a
domain � given as follows,
Lemma 1 (Bounds of the Joint Probability): The lower

and upper bounds of the joint probability f (FM ) on a domain
� is

Pr(FN ∈ �)

≥ max
�Fm

{
M∏
m=1

Pr(Xm ∈ �Fm )
}

,

≤ Pr(FM ∈ �) ≤ minm {Pr(Fm ∈ �)} ,
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where � = I − � is the complementary domain with I being
the entire domain of interest; and �Fm is the sub-domain in
which all FM belongs to �.

Proof: The joint probability distribution can be
expressed in terms of the conditional probability distribution,

f (F) = f (Fm)f (· · ·Fm−1,Fm+1, · · · |Fm) ≤ f (Fm),

where the following conditional probability property has been
used,

f (· · ·Fm−1,Fm+1, · · · |Fm) ≤ 1.

from which the probability in domain � is given by,

Pr(F ∈ �) =

∫
F1

· · ·

∫
FM

f (F)dF1 · · · dFM

≤

∫
F1

· · ·

∫
FM

f (Fm)dF1 · · · dFM

= Pr(Fm ∈ �),

and the upper bound on the right hand side of Lemma 1 is
proved,

Pr(F ∈ �) ≤ min
m

{Pr(Fm ∈ �)} .

The lower bound of the left hand side of Lemma 1 can
be obtained by finding the sub-domains of all Fn, denoted
as �Fm , in which all FM belongs to � and the probability is
given by,

Pr(FM ∈ �) ≤ min
m

{
Pr(Fm ∈ �)

}
,

from which the probability lower bound in domain � is
given by,

Pr(F ∈ �) ≥

∫
F1

· · ·

∫
FN

f (F)dF1 · · · dFM

≥

∫
�F1

· · ·

∫
�FM

f (Fm)dF1 · · · dFM

=

M∏
n=1

Pr(Fm ∈ �Fm ),

where independence has been assumed for all elements of
FM and the lower bound is thus obtained as,

Pr(F ∈ �) ≥ max
�Fm

{
M∏
m=1

Pr(Fm ∈ �Fm )

}
,

from which Lemma 1 is proved. □

C. DATA UTILITY
When the coding coefficients noise nM is added to a facial
image’s coding coefficients FM , the noisy image is thus

obtained as,

P
′

N = PN + DN×MnM . (1)

So, the data utility is thus defined as follows,
Definition 5 (Data Utility): The data utility is defined as

the visual quality of the image [13]: here the expectation
of the variance of the reconstructed noisy image from the
original image,

U = E
{∣∣∣P′

N − PN
∣∣∣2
2

}
. (2)

Substituting Eq. (1) into Eq. (2), the data utility is obtained,

U =

M∑
m=1

Wmσ 2
m Wm =

N∑
n=1

D2
n,m (3)

where σm is the standard deviation of the noise component
nm, which is assumed to be independent of each other.

D. MODELS AND PROBLEM STATEMENT
1) SYSTEM MODEL
Again, the typical working scenarios of the FaceIDP prob-
lem are shown in Fig 1. Generally, a huge amount of facial
images are available in the public domain for individuals,
i.e., facial images searchers, to download for entertainment
and others. Without privacy protection, the searchers could
use the downloaded facial images to analysis the facial fea-
ture vectors in order to breach some face identification sys-
tem such as a smartphone, as shown on the top of Fig. 1.
Furthermore, as shown on the bottom of Fig. 1, when an extra
FaceIDP approach runs on the public domain side to sanitize
the facial images before their releasing, the individuals’ face
identification systems could be well protected from the face
identification leaking.

In this model, an individual’s facial image is characterized
by its 1D pixel vector denoted as PN of length N . What’s
more, the facial image set P consists of all individuals’ facial
images, P =

{
PN |N = 0, 1, · · ·

}
.

2) PROBLEM STATEMENT
In this paper, we study the privacy problem of the face
identification: our goal is to prevent adversaries from using
individuals’ facial images to breach the face identification
systems, which is characterized by the Euclidean norm mea-
sure M on the face identification feature vector space V ,
which is a function of the coding coefficient components FM .
For example, if a facial image belongs to user A(A) if the
following statement holds

FM ∈ A : M
{
V L
}

=
∣∣∣∣V L

∣∣∣∣
2 ∈

{
�A =

∣∣∣∣V L
∣∣∣∣
2 ≤ R

}
,

(4)

where R is the radius of user A(A).
Our purpose is to design an efficient face identification

privacy protection approach by adding random perturbation
on the original facial images, denoted by P, to hide the face
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identification feature vector space V from the adversaries.
Under the face identification privacy protection approach,
the face identification system cannot distinguish whether a
set of noisy facial images belong to the certain individual or
not, with some confidence probability level or ε−differential
privacy has been achieved.

Finally, optimal data utility should be obtained for a given
global differential privacy level ε.

3) ADVERSARY MODEL
For the well-known semi-honest adversary model, adver-
saries are honest but curious. In our paper, the facial image
searchers are considered as adversaries. They can access the
facial images on public domains and may be interested in
breaching an individual’s face identification systems. Once
adversaries obtain the images, they may analyze the user’s
facial data set F which is the unique identification of an
individual. Furthermore, the face identification could be rep-
resented by the coding coefficients vector FM , i.e.,

{
FM

}
:

F ∈ F . Then, through the face identification query measure
function, which is to validate an individual’s identification,
adversaries could intrude the face identification systems.
With the facial images obtained by the adversaries as input,
the query measure function gives the outcome of ‘‘1’’ if it can
validate the individual’s identification or ‘‘0’’ otherwise.

4) THE DLNet
The authors recently developed a concise DLNet that can
obtain the coding coefficients vector FM effectively [18].
As shown in Fig. 2, the DLNet consists of mainly
2 sub-networks:

1) The sparse representation sub-network: it consists of
multiple Fully Connected Layers (FCL)with their basis

denoted as D
(k)

Mi+1×Mk
, k = 1,K and the corresponding

coding coefficients denoted asF
(k)
Mk

. The initially recon-

structed image P
0
N can be expressed as follows,

P
0
N = DN×MK

(
K∏
k=1

DMk+1×Mk

)
DM1×MFM .

2) The smoothing Convolutional Neural Network (CNN)
sub-network: it takes the initially reconstructed image
P
0
N as input and makes the Total Variation (TV) of the

output image P
′

N smooth,

TV
(
P′

)
=
∑n

i
∑m

j

[(`h
i,j P

′

)2
+

(`v
i,j P

′

)2]
;

hh

i,j

P′ = P′

i+1,j − P′
i,j,

`v
i,j P

′

= P′

i,j+1 − P′
i,j.

The purpose of the sparse representation sub-network is
to learn the sparse representation of the facial images’ details
and the smoothing CNN sub-network is used to fill in the area
between the facial images’ details.

During the DLNet training process, both the dictionary
basis and the coding coefficients can be trained through min-
imizing the two error functions, i.e., the mean square error of
the reconstructed image E and the ℓ1 norm of the sparse code

F
(k)
Mk

Specifically, the DLNet is trained through two sequential
steps: 1) updating of the parameters through the Stochas-
tic Gradient Descent (SGD) method; and 2) performing the
ℓ1 norm sparsification operation.
1) The SGD updating: first, the gradient of parame-

ter x, denoted as ∇xE , can be obtained through the
chain rule,

∇xE = −2
N∑
n=1

(
Pn − P′

n
)
∇xP′

n,

and the parameter x is updated as follows

x = x − η∇xE,

with η being the learning rate and the parameter x is
either the dictionary bases or the coding coefficients,

x =

{
DMk×M ,F

(k)
Mk

}
.

2) The ℓ1-norm sparsification operation: Then, the
ℓ1-norm Operation is performed on the SGD updated

coding coefficients F
(k)
Mk

through the Iterative Soft
Thresholding Algorithm (ISTA) to achieve the sparsity
of the coding coefficients,

F
(k)
Mk

= sign
{
F
(k)
Mk

}
max

{
0,F

(k)
Mk

− λ

}
,

where λ is the thresholding value.
Finally, after the training of the DLNet, the total dictionary

basis DN×M is obtained as follows,

DN×M = DN×MK

(
K∏
k=1

DMk+1×Mk

)
DM1×M .

According to the definition of the privacy budget in
Definition 3, the privacy budget ϵ is an implicit function of
the partial privacy budget ϵm given in Definition 4 whose
relation depends on the face identification measure func-
tion M, which is usually nonlinear. Also, according to
Definition 5, the data utility U is also an implicit function
of the partial privacy budget ϵm. Thus there exists the con-
strained optimization problem of finding the optimal data
utility U given a partial privacy budget ϵm, which is the focus
of this paper.

Now let’s calculate the privacy budget defined in
Definition 3 and Definition 4.

According to Section III-B, it is known that the lower
bound and upper bound of two probabilities have to be com-
puted: 1) the probability that a noisy facial image of user B,
denoted as B′(B), is mistakenly assigned to user A(A); and
2) the probability that a noisy image of user A, denoted as
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FIGURE 2. The working principle of the DLNet to learn the sparse dictionary basis of the facial images.

FIGURE 3. PDF spaces of the feature vectors for the closest neighboring facial image pair (A ∈ A, B ∈ B) showing the sensitivities of the FaceIDP.

A′
∈ A, is still assigned the correct user A(A). These prob-

abilities are related to the face identification feature vector
space V L of length L, which is a function of the firstM signif-
icant coding coefficient components FM : V L

(
FM

)
, as shown

in Fig. 3. First, the user A(A) is assigned to a facial image F
through the Euclidean normmeasureM on the feature vector
V L , as shown in Eq. (4).

Then, the probability of a face F assigned user A(A) is
given by,

PF = Pr
(
M
{
V L
}

∈ �A
)
. (5)

Also, the feature vector space V L is related to the first
M significant face coding coefficients components FM .

For example, when the change of a single face coding
coefficients element Fm corresponds to a probability curve∣∣∣∣V L

∣∣∣∣
2 in the feature vector space V L , as shown in Fig. 3.

Definition 6 (Probability Boundary Edges): The proba-
bility boundary edges define the probability space within
which the noisy image B′ is assigned user A(A), while other
coefficients elements are set to zeros, i.e., F (B′)

m′ = 0,m′
̸= m,(

s−m, s+m
)

≡ F (B′)
m ∈

(
s−m, s+m

)
∈ �A. (6)

5) PROBABILITY OF THE NOISY FACE B ASSIGNED TO A

The probability that a noisy facial image from its orig-
inal facial image B(B) is mistakenly assigned to A is

31834 VOLUME 11, 2023



L. Ou et al.: FaceIDP: Face Identification Differential Privacy via DLNets

given by,

PB ≡ Pr
(
F
(B′)
M : B′

∈ A
∣∣∣ bM) = Pr

(
M
{
F
(B′)
M

}
∈ �A

)
=

∫
· · ·

∫
M
{
F
(B′)
M

}
∈�A

fbM

(
F (B′)
1 , · · · ,F (B′)

M

)
dF

(B′)
M ,

where fbM is the joint Laplace PDF of F
(B′)
M with the noise

scale parameter vector of bM ,

fbM

(
F (B′)
1 , · · · ,F (B′)

M

)
= Lap

(
F
(B′)
M

∣∣∣ bM)
=

M∏
m=1

Lap
(
F (B′)
m

∣∣∣ bm) ,

where independence has been assumed for FM .
Now look at the lower and upper bounds of the prob-

ability according to Lemma 1. First, the upper bound is
given by,

P+

B ≡ max
{
Pr
(
M
{
F
(B′)
M

}
∈ �A

)}
= min

m

∫
· · ·

∫
Fm∈�A

Lap
(
F (B′)
m − F (B)

m

∣∣∣ bm) dF (B′)
m ,

= min
m

{
CDF

(
s+m − F (B)

m

)
− CDF

(
s−m − F (B)

m

)}
, (7)

where CDF is the cumulative distribution function of the
Laplace distribution; and s−m and s+m are the left and right
probability boundary edges of coding coefficients element m
in �A given in Definition 6.

Similary, according to according to Lemma 1, the proba-
bility lower bound is given by,

P−

B ≡ min
{
Pr
(
M
{
F
(B′)
M

}
∈ �A

)}
= max

�A,m

{
M∏
m=1

Pr
(
F (B′)
m ∈ �A,m

)}
, (8)

where the private probability domain �A,m is obtained as
follows,
Definition 7 (The Private probability Domain): The pri-

vate probability domain is defined as the maximum linear
scaling of space bounded by the probability boundary edges
such that the noisy image B′ is assigned the A,

�A,m = α
(
s−m, s+m

)
: α = argmax

α

{
B′

→ A
}
,

for all coding coefficients elements m = 1, · · ·M and α is the
linear scaling parameter.

Now the probability lower bound in Eq. (8) reduces to

P−

B =

M∏
m=1

{
CDF

(
αs+m − F (B)

m

)
− CDF

(
αs−m − F (B)

m

)}
.

(9)

6) PROBABILITY OF THE NOISY FACE A ASSIGNED TO A
Similarly, the probability that a noisy image A′ from A ∈ A
is still assigned correctly to A are bounded as follows

PA ≡ Pr
(
M
{
F
(A′)
M

}
∈ �A

)
P+

A ≡ max
{
Pr
(
M
{
F
(A′)
M

}
∈ �A

)}
= min

m

{
CDF

(
s+m
)
− CDF

(
s−m
)}

,

P−

A ≡ min
{
Pr
(
M
{
F
(A′)
M

}
∈ �A

)}
=

M∏
m=1

{
CDF

(
αs+m

)
− CDF

(
αs−m

)}
. (10)

7) PRIVACY BUDGET BOUNDS
With the above probability bounds, the privacy budget bounds
can be obtained.
Lemma 2: The privacy budget has the lower bound and

upper bound of

ε−
(
bM
)

≤ ε
(
bM
)

≤ ε+
(
bM
)
,

where ε− and ε+ are the lower bound and upper bound given
below.

Proof: The privacy budget ε is obtained from
Definition 3,

ε
(
bM
)

= − ln
(
max
(A,B)

{
PB
PA

})
.

From Eq. (7) and Eq. (10), the privacy budget lower
bound is

ε−
= max

(A,B)

{
ln

(
P−

A

P+

B

)}
= max

(A,B)

ln
 P−

A

min
{
P+o
B ,P+i

B

}
 ,

where

P−

A =

∏
m

1 −

exp
(
−

αs+m
bm

)
+ exp

(
αs−m
bm

)
2

 ,

P+o
B = min

FBm /∈
(
s−m ,s+m

)

∣∣∣exp (− S+

m
bm

)
− exp

(
−
S−
m
bm

)∣∣∣
2

 ,

P+i
B = 1 − max

FBm∈
(
s−m ,s+m

)
exp

(
−
S+
m
bm

)
+ exp

(
−
S−
m
bm

)
2

 ,

and S−
m and S+

m are the distances from the left and right
probability boundary edges given below,

S−
m =

∣∣∣FBm − s−m
∣∣∣ ; S+

m =

∣∣∣FBm − s+m
∣∣∣ .

Similarly, from Eq. (9) and Eq. (10), the upper bound of
the privacy budget is given by,

ε+
= max

(A,B)

{
ln

(
P+

A

P−i
B P

−o
B

)}
,
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where

P+

A = min
m

1 −

exp
(
−
S+
m
bm

)
+ exp

(
−
S−
m
bm

)
2

 ,

P−o
B =

∏
FBm /∈

(
s−m ,s+m

)

∣∣∣exp (− S̃+

m
bm

)
− exp

(
−
S̃−
m
bm

)∣∣∣
2

 ,

P−i
B =

∏
FBm∈

(
s−m ,s+m

)
1 −

exp
(
−
S̃+
m
bm

)
+ exp

(
−
S̃−
m
bm

)
2

 , (11)

where S̃+
m and S̃−

m are defined as follows,

S̃+
m =

∣∣∣FBm − αs+m
∣∣∣ , S̃−

m =

∣∣∣FBm − αs−m
∣∣∣ .

After some mathematics calculation, the upper bound of
the privacy budget can be expressed as follows,

ε+
= δ +

∑
FBm /∈

(
s−m ,s+m

)
Sm
bm

,

with

δ = max
(A,B)

{
ln

(
P+

A∏
P−i
B
∏
P̃−o
B

)}

P̃−o
B =

∏
FBm /∈

(
s−m ,s+m

)



∣∣∣∣∣1 − exp

(
−

∣∣∣S̃+
m−S̃−

m

∣∣∣
bm

)∣∣∣∣∣
2

 ,

where the partial sensitivity Sm is defined as follows,
Definition 8 (Partial Sensitivity): The partial sensitivity is

defined as closest distance from the coding coefficients ele-
ments to their probability boundary edges,

Sm = min
{
S̃−
m , S̃+

m

}
. (12)

□
Now, it is ready to show that the FaceIDP noise mechanism

satisfies the ε-differentially private guarantee,
Theorem 1: The noise mechanism of the FaceIDP satisfies

ε-differential privacy,

exp (−ε) ≤

Pr
(
F
(B′)
M : B ∈ A

)
Pr
(
F
(A′)
M : A ∈ A

) ≤ exp (ε) ,

with

ε = δ +

∑
FBm /∈

(
s−m ,s+m

)
Sm
bm

.

Proof: From Lemma 2, the privacy budget satisfies

ε
(
bM
)

≤ δ +
∑

FBm /∈
(
s−m ,s+m

) Smbm ,

from which Theorem 1 is proved. □

IV. THE FACEIDP OPTIMIZATION
In this Section, the optimal noise distribution over elements of
the facial imaging coding coefficients vector is obtained for
a given global privacy budget ε and the FaceIDP algorithm is
presented.

A. OPTIMAL NOISE DISTRIBUTION FOR BETTER UTILITY
For joint Laplace distribution of FM , the data utility U in
Definition 5 is reduced to the following,

U =

M∑
m=1

2Wmb2m, (13)

where the Laplace distribution variance σ 2
m = 2 b2m has

been used.
The data utility in Definition 5 and the privacy budget in

Definition 3 are a balanced pair: if the data utility is high
(U is low), the privacy is low (ε is high) and vice versa. Also
they are both functions of the noise scale parameter of nM ,
denoted as bM . So it is desire to optimize the data utility U
for the given privacy budget ε = ε0, which is the constrained
optimization problem,
Lemma 3: The constrained optimization of the data utility

U for a given privacy budget ε can be done through the
Lagrange Multiplier (LM) method,

∂

∂bM
L(bM ) = 0; ε(bM ) = ε0,

L(bM ) = U(bM ) + λ
[
ε(bM ) − ε0

]
,

Proof: The constrained optimization problem is given
as follows,

min
{
U(b)

}
, s.t. ε(b) = ε0,

whose solution is obtained when Lemma 3 is satisfied. □
From Lemma 3, the data utility U can be optimized to

obtain the optimal noise scale parameter bM , for a given
privacy budget ε,

min
bM

{
U =

M∑
m=1

2Wmb2m

∣∣∣∣∣ ε(bM ) = ε0

}
. (14)

With the probabilities given in Eq. (11), the LM optimiza-
tion problem in Eq. (14) can be solved numerically. Under the
approximation that P+

A , P
−i
B and P−i

B are constants, the privacy
budget factor δ is also a constant and an effective privacy
given budget ε′

0 can be defined according to Theorem 1

ε′

0 = ε0 − δ =

∑
FBm /∈

(
s−m ,s+m

)
Sm
bm

,

and the LM optimization problem in Eq. (14) reduces to the
following,

∂

∂bM
L(bM ) = 0 ;

∑
FBm /∈

(
s−m ,s+m

)
Sm
bm

= ε′

0 = ε0 − δ,
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L(bM ) =

∑
FBm /∈

(
s−m ,s+m

) 2Wmb2m + λ

 ∑
FBm /∈

(
s−m ,s+m

)
Sm
bm

− ε′

0

 .

(15)

Theorem 2 (Optimal Noise Scale Parameters): The opti-
mal noise scale parameters vector b∗

m is given by,

b∗
m =

Sm
ε′
m

,

with

ε′
m = pmε′

0 pm =
W 1/3
m S2/3m∑

FBm /∈
(
s−m ,s+m

)W 1/3
m S2/3m

.

Proof: From Eq. (15),

∂

∂bM
L(bM ) = 0 → bm =

(
λSm
4Wm

)1/3

, (16)

from which the constraint of the privacy budget is given by,

∑
FBm /∈

(
s−m ,s+m

)
S2/3m (4Wm)1/3

(λ)1/3
= ε′

0, (17)

and

λ =


∑

FBm /∈
(
s−m ,s+m

) S2/3m (4Wm)1/3

ε′

0


3

. (18)

Substituting Eq. (18) into Eq. (16), the noise scale param-
eters are obtained and Theorem 2 is proved. □

B. FaceIDP ALGORITHM
In this section, we give the algorithm for the FaceIDP
approach.And the whole work pipeline of our proposed
approach is clearly stated in Algorithm 1.

V. EXPERIMENTAL RESULTS
During the FaceIDP experiment, the pre-trained model of
Dlib, a ResNet based neural network, is used in Python 3.7 to
perform the face identification. The neural network has been
trained and tested with two databases: 1) LFW database [19]
and 2) PubFig database [20]. On one hand, LFW is a database
of face photographs designed for studying the problem of
unconstrained face identification. On the other hand, unlike
most other existing face databases, these images of the Pub-
Fig database are taken in completely uncontrolled situations
with non-cooperative subjects.

The face identification consists of 4 common stages: face
detection, face eqnarray, face encoding representation and
face verification. The face encoding feature vector V L has a
dimension of L = 128 and the Euclidean distance is used to
recognize the faces with a threshold of 0.6.

Algorithm 1 FaceIDP
Input: Face images P and privacy budget ε.
Output: Sanitized facial images P′ satisfying DP.
1: P′

= ∅
2: Learn the sparse dictionary basis D of the facial images

data set through the DLNet.
3: for each facial image PN ∈ P do
4: Decompose the facial image PN into the product of

the selected dictionary basis DN×M and coding coeffi-
cients vector FM .

5: Compute the weight vectorWM according to Eq. (3).
6: Calculate the sensitivity vector SM according to

Eq. (12).
7: Compute the optimal noise scale parameters bM

according to Theorem 2.
8: Obtain the coding coefficients noise through the joint

Laplace distribution: δM =
∏M

m=1 Lap(Fm|bm).
9: Obtain the sanitized noisy image P

′

N according to
Eq. (1).

10: Update the sanitized image dataset: P′
= P′

∪ P
′

N .

11: return P′.

To show the efficiency of our optimal FaceIDP approach,
we compared it to the standard-DP approach and the partial-
DP approach where sanitizing noise is added to partial cod-
ing coefficients that lie outside of the Probability Boundary
Edges according to Definition 6: FBm /∈

(
s−m, s+m

)
, i.e., san-

itizing noise is added to coding coefficients that have the
most significant effect on the face encoding feature vectors,
as shown in Theorem 1.

A. THE DLNet
First, the common bases of the facial images DN×M are
learned through the DLNet in Section III-D4. 1000 facial
images of the LFW database are used to train the DLNet
to obtain 100 face dictionary bases. During the training, the
learning rate of the SGD η and the ISTA thresholding value
λ are set as follows,

η = 0.01; λ = 0.01max
{
F
(k)
Mk

}
, k = 1, 2, · · · ,K .

B. THE SANITIZED FACE IMAGES
Then, we obtained the closest neighboring facial image pair
according to Definition 2, i.e., the minimum Euclidean dis-
tance difference. For the LFW database, the obtained closest
neighboring facial images are shown in the 1st column of
Fig. 4, which are labeled as Face A and Face B. Next, the
sanitizing noise for a given data utility U = 13 in Eq. (13) is
added to the closest neighboring facial images with the 3 DP
approaches, i.e., the Standard-DP sanitized facial images in
the 2nd column; the Partial-DP sanitized facial images in
the 3rd column; and the optimal FaceIDP sanitized facial
images in the 4th column. To show the difference clearly,
Fig. 5 zooms in the left eye of Face A and mouth of Face B,
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FIGURE 4. The closest neighboring face pair for a given data utility U = 13 (LFW Database).

FIGURE 5. The zoom-in view of the left eye and mouth of the closest neighboring Face A and Face B of Fig. 4, for a given data utility
U = 13 (LFW Database).

from which we can see that the optimal FaceIDP approach
obtain the most significant difference from the original facial
images, providing better protection for the face identification
privacy or smaller privacy budget ε, for a given data utility U .
Similar results are obtained for the PubFig database, which
are not shown here.

C. THE SANITIZED FEATURE VECTORS
After that, to show the quantified results of the privacy pro-
tection, the standard deviation of the sanitized feature vectors
difference from its original value: the larger the standard devi-
ation, the better the privacy protection. Fig. 6 shows results
for both the LFW database (left) and the PubFig database
(right) for 3 approaches, from which one can see better face

identification privacy protection has been achieved for the
optimal FaceIDP approach.

D. THE PRIVACY BUDGET AND DATA UTILITY
To show the performance of the optimal FaceIDP, the privacy
budgets ε for different data utilities have been obtained. For
the LFW database, ε is calculated for U = [5, 30] and the
result is shown on the left plot of Fig. 7, from which it can
be seen that the face identification privacy protection of the
FaceIDP approach is the best among all approaches, i.e., it has
the smallest privacy budget ε (green stars). Also, the Partial-
DP approach is better than the Standard-DP approach, which
is because that only the most significant coding coefficients
are used in the Partial-DP approach to achieve better privacy
protection with smaller data utility U . Also, on the right plot
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FIGURE 6. Standard deviation of feature vector difference vs. privacy budget ε.

FIGURE 7. Privacy budget ε vs. data utility U .

of Fig. 7, the data utility U is plotted against the privacy
budget ε, which again shows that the optimal FaceIDP has
the smallest data utility (the best data utility) for a given
privacy budget ε = (2.2, 2.9). Also, the Partial-DP approach
shows better performance than the Standard-DP approach,
i.e., for a given privacy budget ε, the data utility U is smaller
(better). Similarly, for the PubFig database, the left and right
plots of Fig. 7 show the privacy budget ε for different data
utility U and vice versa respectively, from which again it

can be seen that the optimal FaceIDP outperforms the other
2 approaches.

VI. CONCLUSION
In this paper, the differential privacy problem of face identifi-
cation, i.e., the FaceIDP, has been studied. First, the DLNet is
built to learn the dictionary basis of the facial images. After
that, the sanitizing noise is added to the coding coefficients
of the facial images. Then the FaceIDP is proved to be

VOLUME 11, 2023 31839



L. Ou et al.: FaceIDP: Face Identification Differential Privacy via DLNets

ε-differentially private and the lower and upper bounds of
the privacy budget are obtained. What’s more important,
the formulas of the optimal noise parameters to achieve
better data utility have been derived. Also, experiment has
been carried out with 2 facial images database, i.e., the
LFW and the PubFig databases, to confirm the efficiency
of the FaceIDP to protect the face identification privacy
while still achieving good data utility. Although only 2D face
identification privacy problem is studied in this paper, the
FaceIDP approach can be readily extended to the 3D face
identification privacy problem. At last, the FaceIDP can be
deployed in many scenarios, including facial images transfer
between the cloud server and the smartphones, point-to-point
facial images transmission, as well as face-to-face real-time
video chat.

REFERENCES
[1] Z. Ma, Y. Liu, X. Liu, J. Ma, and K. Ren, ‘‘Lightweight privacy-preserving

ensemble classification for face recognition,’’ IEEE Internet Things J.,
vol. 6, no. 3, pp. 5778–5790, Jun. 2019.

[2] L. Ou, S. Liao, Z. Qin, and H. Yin, ‘‘Millimeter wave wireless Hadamard
image transmission for MIMO enabled 5G and beyond,’’ IEEE Wireless
Commun., vol. 27, no. 6, pp. 134–139, Dec. 2020.

[3] H. Wang, S. Xie, and Y. Hong, ‘‘Videodp: A flexible platform for video
analytics with differential privacy,’’ in Proc. Privacy Enhancing Technol.,
vol. 4, Jul. 2020, pp. 277–297.

[4] V. Mirjalili, S. Raschka, and A. Ross, ‘‘PrivacyNet: Semi-adversarial
networks for multi-attribute face privacy,’’ IEEE Trans. Image Process.,
vol. 29, pp. 9400–9412, 2020.

[5] S. Shan, E. Wenger, J. Zhang, H. Li, H. Zheng, and B. Y. Zhao, ‘‘Fawkes:
Protecting privacy against unauthorized deep learning models,’’ in Proc.
29th USENIX Secur. Symp., 2020, pp. 1589–1604.

[6] K. Hill and A. Krolik, ‘‘How photos of your kids are powering surveillance
technology,’’ The New York Times, Oct. 2019.

[7] A. Tonge and C. Caragea, ‘‘Image privacy prediction using deep neural
networks,’’ ACM Trans. Web, vol. 14, no. 2, pp. 1–32, Apr. 2020.

[8] EU Commission. (2018). 2018 Reform of EU Data Protection Rules.
[Online]. Available: https://www.eeas.europa.eu/node/44451_en

[9] S. Hill, Z. Zhou, L. Saul, and H. Shacham, ‘‘On the (In) effectiveness of
mosaicing and blurring as tools for document redaction,’’ in Proc. Privacy
Enhancing Technol., 2016, pp. 403–417.

[10] R.McPherson, R. Shokri, andV. Shmatikov, ‘‘Defeating image obfuscation
with deep learning,’’ 2016, arXiv:1609.00408.

[11] M. R. Ra, R. Govindan, and A. Ortega, ‘‘P3: Toward privacy-preserving
photo sharing,’’ in Proc. 10th USENIX Symp. Netw. Syst. Design Imple-
ment. (NSDI), 2013, pp. 515–528.

[12] L. Fan, ‘‘Image pixelization with differential privacy,’’ in Data and Appli-
cations Security and Privacy XXXII. Cham, Switzerland: Springer, 2018,
pp. 148–162.

[13] C. Tong, M. Zhang, C. Lang, and Z. Zheng, ‘‘An image privacy protection
algorithm based on adversarial perturbation generative networks,’’ ACM
Trans. Multimedia Comput., Commun., Appl., vol. 17, no. 2, pp. 1–14,
May 2021.

[14] J. Yang, J. Liu, and J. Wu, ‘‘Facial image privacy protection based on prin-
cipal components of adversarial segmented image blocks,’’ IEEE Access,
vol. 8, pp. 103385–103394, 2020.

[15] C. Jiang, Q. Zhang, R. Fan, and Z. Hu, ‘‘Super-resolution CT image
reconstruction based on dictionary learning and sparse representation,’’
Sci. Rep., vol. 8, no. 1, p. 8799, Jun. 2018.

[16] S. Tariyal, A. Majumdar, R. Singh, and M. Vatsa, ‘‘Deep dictionary learn-
ing,’’ IEEE Access, vol. 4, pp. 10096–10109, 2016.

[17] S. Liao and L. Ou, ‘‘High-speed millimeter-wave 5G/6G image transmis-
sion via artificial intelligence,’’ in Proc. IEEE Asia–Pacific Microw. Conf.
(APMC), Dec. 2020, pp. 655–657.

[18] Y. Qiu, C. Zhang, R. Huang, H. Tian, C. Xiong, and S. Liao, ‘‘DL-CSNet:
Dictionary learning based compressed sensing neural network,’’ in Proc.
J. Phys., Conf., vol. 2245, 2022, Art. no. 012015.

[19] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, ‘‘Labeled faces
in the wild: A database for studying face recognition in unconstrained envi-
ronments,’’ Univ. Massachusetts, Amherst, MA, USA, Tech. Rep. 07-49,
Oct. 2007.

[20] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar, ‘‘Attribute
and simile classifiers for face verification,’’ in Proc. IEEE 12th Int. Conf.
Comput. Vis., Sep. 2009, pp. 365–372.

[21] L. Ou, Z. Qin, S. Liao, T. Li, andD. Zhang, ‘‘Singular spectrum analysis for
local differential privacy of classifications in the smart grid,’’ IEEE Internet
Things J., vol. 7, no. 6, pp. 5246–5255, Jun. 2020.

[22] L. Ou, Z. Qin, S. Liao, Y. Hong, and X. Jia, ‘‘Releasing correlated tra-
jectories: Towards high utility and optimal differential privacy,’’ IEEE
Trans. Dependable Secure Comput., vol. 17, no. 5, pp. 1109–1123,
Sep. 2020.

[23] L. Ou, Z. Qin, S. Liao, H. Yin, and X. Jia, ‘‘An optimal pufferfish privacy
mechanism for temporally correlated trajectories,’’ IEEE Access, vol. 6,
pp. 37150–37165, 2018.

LU OU (Member, IEEE) received the Ph.D. degree
in software engineering from Hunan University,
Changsha, China, in 2018. From 2015 to 2016,
she was a Visiting Student with the Department
of Computer Science, The University of Texas at
Arlington, Arlington, TX, USA. She was a Post-
doctoral Fellow with the College of Computer
Science and Electronic Engineering, Hunan Uni-
versity. She is currently an Associate Professor
with the School of Journalism and Communica-

tion, Hunan University. Her research interests include data security, privacy
and big data, as well as signal, image, and video analysis.

YI HE received the bachelor’s degree in radio and
television from the Nanjing University of Aero-
nautics and Astronautics, in 2021. She is currently
pursuing the master’s degree with the School of
Journalism and Communication, Hunan Univer-
sity. Her research interests include short video
communication, data security and privacy, and
social media science.

SHAOLIN LIAO (Senior Member, IEEE) received
the B.S. degree inmaterial science and engineering
fromTsinghua University, Beijing, China, in 2000,
and the Ph.D. degree in electrical engineering
from the University of Wisconsin–Madison, USA,
in 2008. He is currently a Professor with the
School of Electronics and Information Technol-
ogy, Sun Yat-sen University (SYSU), Guangzhou,
Guangdong, China, and an Adjunct Faculty with
the Department of Electrical and Computer Engi-

neering, Illinois Institute of Technology (IIT), Chicago, IL, USA. Before
joining SYSU, he was with the Argonne National Laboratory. He was also
a Postdoctoral Fellow with the Department of Physics, The City University
of New York (CUNY), from 2008 to 2010. His research interests include
artificial intelligence (AI) techniques for big data analysis, algorithms for
signal processing, and efficient methods for multiphysics simulation, includ-
ing computational electromagnetics (CEM). He was an Associate Editor of
IEEE ACCESS.

31840 VOLUME 11, 2023



L. Ou et al.: FaceIDP: Face Identification Differential Privacy via DLNets

ZHENG QIN (Member, IEEE) received the
Ph.D. degree in computer software and the-
ory from Chongqing University, China, in 2001.
From 2010 to 2011, he was a Visiting Scholar
with the Department of Computer Science, Michi-
gan University. He is currently a Professor with
the College of Computer Science and Electronic
Engineering, Hunan University, where he serves
as the Vice Dean. He is also the Director of the
Hunan Key Laboratory of Big Data Research and

Application and the Vice Director of the Hunan Engineering Laboratory of
Authentication and Data Security. His research interests include network
and data security, privacy, data analytics and applications, machine learn-
ing, and applied cryptography. He is a member of the China Computer
Federation (CCF).

YUAN HONG (Senior Member, IEEE) received
the Ph.D. degree in information technology from
Rutgers, The State University of New Jersey. He is
currently an Associate Professor with the Com-
puter Science and Engineering Department, Uni-
versity of Connecticut. His research was supported
by the National Science Foundation. His research
interests include the intersection of privacy, secu-
rity, optimization, and data mining.

DAFANG ZHANG received the Ph.D. degree in
application mathematics from Hunan University,
Changsha, China, in 1997. He is currently a Pro-
fessor with the College of Computer Science
and Electronic Engineering, Hunan University.
His current research interests include dependable
systems/networks, network security, big data, and
privacy.

XIAOHUA JIA (Fellow, IEEE) received the B.Sc.
and M.Eng. degrees from the University of Sci-
ence and Technology of China, in 1984 and 1987,
respectively, and the D.Sc. degree in information
science from The University of Tokyo, in 1991.
He is currently a Chair Professor with the Depart-
ment of Computer Science, City University of
Hong Kong. His research interests include cloud
computing and distributed systems, data secu-
rity and privacy, computer networks, and mobile

computing. He was the General Chair of ACM MobiHoc, in 2008,
the TPC Co-Chair of IEEE GlobeCom—Ad Hoc and Sensor Network-
ing Symposium, in 2010, and the Area-Chair of IEEE INFOCOM, in
2010 and from 2015 to 2017. He was an Editor of IEEE INTERNET OF

THINGS JOURNAL, IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS,
from 2006 to 2009, Wireless Networks, World Wide Web Journal, and
Journal of Combinatorial Optimization.

VOLUME 11, 2023 31841


