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ABSTRACT Recently, video and image compression methods using neural networks have received much
attention. In MPEG standardization, Video Coding for Machine (VCM) is a newly arising topic which
attempts to compress features/images for the purpose of machine vision tasks. Especially, compressing
features has advantages in terms of privacy protection and computation off-loading. In this paper, we propose
an effective feature compression method equipped with a super-resolution (SR) module for features. Our
main motivation comes from the observation that features are somewhat robust to spatial distortions (e.g.,
AWGN, blur, quantization distortions, coding artifacts), which leads us to integrating an SR module into
the compression framework. We also further explore the best training strategy of the proposed method,
i.e., finding the best combination of various losses and proper input feature shapes. Our comprehensive
experiments show that the proposed method outperforms the baseline in the original VCM anchor scenario
on various QP values with Versatile Video Coding (VVC). Specifically, the proposed framework achieved
up to 50% BD-rate reduction compared to the conventional P-layer feature map compression method for the
object detection task on the OpenImage dataset.

INDEX TERMS Versatile video codec, video coding for machine, feature compression, deep neural network,
super resolution.

I. INTRODUCTION
With the recent development of artificial intelligence
research, deep neural networks (DNN) outperform the
conventional shallow models on various vision tasks such
as image classification, object detection, segmentation,
and tracking [2], [3], [4], [6], [7], [8]. Likewise, for
video/image compression purpose, DNNs have been utilized
and shown promising performance. Especially, Video Coding
for Machine (VCM), a new rising research field in video
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compression, has made to effectively compress images and/or
features which are to be transmitted for machine vision tasks
such as object detection and segmentation [9].

In general, VCM approaches can be categorized into two
methods, i.e., feature compression and image compression-
based VCM methods. Image compression-based VCM
(I-VCM) compresses images using conventional image/video
coding tools. On the other hand, feature compression-based
VCM (F-VCM) compresses intermediate features in DNNs
rather than images. Since features in the early stages
of DNNs tend to have lower dimensions than input
images, F-VCM may achieve higher compression efficiency.
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Moreover, transmitting features can protect privacy due to the
difficulty of interpretation of the features by humans. Lastly,
F-VCM can enjoy exploiting computational off-loading
schemes which can effectively allocate computation burdens
to a device (backbone and encoder) and server (decoder
and machine vision models) in a collaborative intelligence
manner [12], [45].

In this paper, we focus on F-VCM. Specifically, we study
an efficient F-VCM scheme based on our preliminary
experiments for the distortion-sensitivity characteristics of
features. Our experimental findings suggest that features
are much less sensitive to various distortions compared to
images which lead us to incorporating super-resolution and
quantization modules into the proposed F-VCM scheme.
Consequently, our comprehensive experiments verify the
effectiveness of the proposed F-VCM, showing that the
proposed method outperforms the baseline by a large margin
in the rate-distortion optimization perspective, verifying the
efficiency of the integrated SR module.

Our main contributions are as follows:
• We observed that, in machine vision tasks (e.g., object
detection and semantic segmentation), intermediate
features in DNNs tends to be more robust than images to
various spatial distortions. This observation implies that
that proper feature manipulation that introduces sustain-
able distortions can enhance compression efficiency of
the VCM framework.

• Based on the aforementioned observation, we propose
a new F-VCM framework that incorporates down and
up-scaling modules in the encoder and decoder sides of
the F-VCM framework, respectively. Especially for up-
sampling, we adopted a super-resolution (SR) network
which significantly enhances the coding efficiency.

• We explored optimal conditions for using the SR
network within the F-VCM framework. Our results
showed that the MSE and SSIM loss combination
achieved the best performance among the various loss
combinations tested. We also found that, in terms of
the input shape of the SR module, using features
with multiple channels was a more effective design
choice than using single-channel features, based on our
experiments.

• Finally, to verify the effectiveness of the proposed
method, we perform comprehensive experiments with
various SR models on the object detection task. Our
experimental results reveal that, compared to the con-
ventional baseline, the proposed framework shows up to
50% higher BD-rate on average over the 6 QP levels.
Especially, our method exhibits promising performance
with much higher performance gap than the baseline
under high QP conditions.

II. RELATED WORKS
A. VIDEO CODING FOR MACHINE
Across the world, digital media content increased expo-
nentially with the growth of content market consumers

(e.g., YouTube, Netflix, and Zoom). The size of contents has
grown in proportion to their quality (i.e., resolution). Large
videos must also be compressed before being transmitted
or stored. In response to commercial demands, compression
techniques have been developed to reduce bitrates while
maintaining visual quality. In the compression pipeline
designed exclusively for machine vision tasks, features
extracted from DNNs can be replaced with images. In this
regard, the MPEG standardization also aims to focus on
compressing machine vision task-centric information rather
than plain images [42].

Feature compression is an efficient approach of compress-
ing data by employing features as a transmission medium,
and has several advantages over image compression. The top
and bottom sub-figures in Figure 1 show the conventional
image/video coding pipeline and the Feature compression
pipeline, each of which encodes, transmits, and decodes DNN
images/features. Kang et al. [13] first proposed splitting the
computationally expensive DNN into the cloud and edge
devices. According to a recent collaborative intelligence
study [14], it is possible to efficiently spread compute
burdens across cloud and edge devices and reduce energy
usage in most circumstances. As mobile devices grow more
capable and energy-efficient, performing feature extraction
calculations on the front-end mobile device can provide
computational power offloading while decreasing energy
usage in the back-end data center [11]. Bajić et al. [15]
claim that transmitting the features can also prevent privacy
issues due to the complexity of feature interpretation by an
intercepter. Furthermore, our experimental findings lead to
the conclusion that the extracted features have the advantage
of being able to tolerate substantial distortions that may occur
during data transmission. The aforementioned experiment
will be discussed further in Section IV.

B. SINGLE IMAGE SUPER RESOLUTION
Deep neural network (DNN) models have demonstrated
impressive performance and strong representational capabil-
ity on image restoration tasks. SRCNN is the first CNN-based
Super Resolution (SR) approach that reconstructs a high-
resolution (HR) image from its low-resolution (LR) coun-
terpart using only three convolution layers. Following that,
a slew of deeper Single Image Super Resolution (SISR)
networks were proposed with the intent of enhancing recon-
struction performance [25], [33], [34], [35], [37]. VDSR [25]
showed significant performance improvement by using a
deeper network with skip connections. Repeated block
architectures which are made up of a series of convolutions,
activations, skip connections, and other elements, have been
popular since the launch of SRResNet [36] and EDSR [37].
Following that, several remarkable approaches, such as
MSRN [33], DDBPN [34], and RCAN [35] were proposed,
all of which offer promising reconstruction abilities. Feature
Super Resolution (FSR) is a domain evolved from SISR
research that tries to reconstruct a high-quality discriminative
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FIGURE 1. Comparison between the generic image compression pipeline and the F-VCM pipeline.

FIGURE 2. Our proposed F-VCM pipeline which incorporate down-scaling, feature rearrangement, quantization, de-quantization, and SR module.

feature from a provided LR ambiguous feature [22], [23].
Preliminary studies use newly designed networks or modules
to investigate super resolution of features. However, they
focused solely on feature enhancement and did not examine
its impact on machine vision applications. To the best of our
knowledge, this work is the first to propose using DNN-based
SR models for F-VCM in an experimental setting.

III. METHODOLOGY
In this section, we will explain our framework in detail
by appending the scaling process into the F-VCM baseline
pipeline. To deploy the feature maps in the F-VCM pipeline,
additional pre and post-processing steps are required since
feature maps are to be compressed using conventional video-
codecs. Figure 2 is the overview of our proposed framework.
The blue blocks in the pipeline indicate feature compression
anchors, whereas the light red blocks represent our proposed
down and up-scaling blocks.We follow the predefined anchor
setting defined in the 136th MPEG VCM meeting [46].

A. FEATURE EXTRACTION AND DOWN-SCALING
In high-level vision tasks like detection and segmentation,
features are extracted using the backbone network. The
ResNet-based FPN architecture is used as a backbone
network in well-known DNN-based vision task models (e.g.,
Faster-RCNN [4], Retinanet [5], andMask-RCNN [6]). In our
F-VCM pipeline, we apply compression on P-layer features
extracted from the Resnet-based FPN backbone network.
The P-layer feature maps are generated through top-down
and lateral connection steps using c-layer features from the
ResNet backbone intermediate step of feature extraction. We
additionally use the bicubic down-sampling to reduce the

FIGURE 3. The ‘‘temporal arrangement’’ method is depicted in the lower
portion of the figure, while the ‘‘spatial arrangement’’ method is shown in
the upper portion.

spatial size of the features, which helps in achieving a reduced
bitrate. The downsized features after further pre-processing
are then passed through a compressor. After obtaining the
restored features from the compressor, with the help of the
FSRmodel, we upscale the features back to their original size
and restore a significant portion of the lost high and low-level
feature information.

B. FEATURE ARRANGEMENT
Recent research has revealed methods for processing deep
features like images using several arrangement schemes that
take advantage of the spatial and temporal correlations in
the features [26], [45]. Chen et al. [32] evaluated three
repacking modules to investigate inter-channel redundancy,
and found that the channel tiling approach outperformed the
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FIGURE 4. The VVC encoder inner architecture, used in the F-VCM pipeline.

FIGURE 5. Comparison of restoration performance of the proposed training method and conventional method.

other concatenation based approaches on high-level features.
Chen et al. [32] also proposed a ‘‘temporal arrangement’’
method that considers the temporal similarity of deep
features. The proposed method arranges the deep features
temporally and compresses them as a video, as shown in the
lower part of Figure 3.

In our F-VCMpipeline, we employ the spatial arrangement
method since it is computationally efficient and yields
good results compared to the ‘‘temporal arrangement’’
method. It reshapes a three-dimensional feature into a two-
dimensional feature, reducing the channel axis by combining
the features in width and height directions, as shown in the
upper part of Figure 3. Our three-dimensional feature map is

transformed into a sizeable two-dimensional feature before it
is fed into the compressor using this method.

C. FEATURE QUANTIZATION
The value range of features extracted from the backbone
network consists of both positive and negative numbers.
The value range of the feature must span from 0 to
255 integer values for compression using a conventional VVC
compressor. There are numerous approaches for quantizing
a value with a minimal error margin, such as analyzing
the value distribution or using k-means clustering. However,
preliminary experiments show that the performance loss
caused by quantization error in the feature domain is not
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FIGURE 6. RD-performance curve for various FSR models. In comparison to all FSR models, RCAN shows the
best performance and achieves a BD-Rate gain of over 50% when compared to the anchor.

TABLE 1. mAP inference result of five different SISR models with various training losses (i.e., L2 and (L2 + LSSIM )). Since the same feature map is used for
up-sampling across all experiments, comparisons are made using the same bpp condition.

TABLE 2. RD-performance comparison of the anchor method and our proposed method. The QP is adjusted so that it corresponds to the anchor’s bpp.
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FIGURE 7. Analysis of the effects of different distortions on Images (I) and Features (F).

TABLE 3. RD-performance comparison of the anchor method with our
proposed method using single-channel and multi-channel features as
input.

TABLE 4. The performance of our proposed method on the object
detection task at QP27. The bpp was 6.18 in all cases.

significant (Section IV-F). As a result, to quantize the
feature values, we simply utilize the uniform quantization
approach with an equal step size in each interval. The uniform
quantization is defined as:

Fq=Round(
(F − Vmin) × (2t − 1)

Vmax − Vmin
)×(

Vmax − Vmin
2t − 1

) + Vmin

(1)

where Fq denotes the quantized feature value and F denotes
the original feature value. In Eq. (1), t is the bit-depth
for quantization, and Vmin and Vmax are the minimum and
maximum value of the whole feature maps.

Dequantization process is performed after the features are
received at the decoder side. The uniform dequantization
equation is the inverse of the quantization equation, and is
expressed as:

Fdq = Fq × (Vmax − Vmin)/(2t − 1) + Vmin (2)

where Fdq and Fq represent the dequantized and quantized
feature values, respectively.

D. ENCODER AND DECODER
In our pipeline, we use a VVC-based encoder and decoder
for compression. However, for training, we use VVenC [49]
and VVdeC [50] as the compressor, since VVenC and VVdeC
are faster variants of VVC based on the VVC Test Model
(VTM). VVenC/VVdeC removes bottlenecks from the VVC
algorithm and increases speed through various optimization
and multi-threading-based operations [44]. We utilize the
‘faster’ preset for training, among several presets presenting
a trade-off between running speed and output quality. The
compression performance is 2-4 times worse when using
the ‘‘faster’’ preset than the ‘‘medium’’ preset. VVenC only
supports the YUV420 format, therefore features are trans-
formed to the YUV420 format. We transformed the features
to the YUV420 format using FFmpeg 4.2.2 software. As the
feature data originally had only one channel, we replicated
the data to utilize the three channels required by the YUV420
format. The loop filter is turned off in the experiments as
blurring out the regions where the feature window overlap
is not necessary. Since VVC is slow and computationally
expensive, it is not feasible to deploy VVC during training.
As a result, we employ VVenc’s ‘faster’ preset, which is the
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TABLE 5. Details of the computational complexity of the SR models compared to Anchor.

FIGURE 8. The visual quality of the restored multi-channel and
single-channel features compared to the HR target.

fastest of various presets based on the speed/quality trade-
off. We employ VVenC and VVdeC as encoder and decoder
during training and use the VVC compressor for testing.
Figure 4 depicts the internal working of the VVC. We follow
the same anchor settings as defined in the 136th MPEG VCM
meeting [46] for fair comparison.

E. FEATURE SUPER RESOLUTION
Using an FSR model, we aim to convert low resolution
features to high resolution features while preserving feature
quality. This conversion is expressed by:

FSR = G(FLR) (3)

where G(·) is the FSR model, FLR and FHR refer to
low-resolution and high-resolution features, respectively.
We deploy the existent state-of-the-art SISR models and
replace the input image with features. We chose five
well-known SISR models of various computational budget
and complexity to test the generality of our proposed pipeline,
i.e., SRResNet [36], EDSR [37], MSRN [33], CARN [31],
and RCAN [35]). The FSR model’s output is then fed
into a task evaluation network to measure performance in
mAP(Mean Average Precision).

F. OBJECTIVE FUNCTION
In the image restoration task, the objective function employed
for training plays a critical role. L2 loss is the most widely
used loss function due to its simplicity and good performance.
However, it often fails to performwell in the reconstruction of

FIGURE 9. Comparison of the restoration performance at QP27 of the
model trained on QP27 to the model trained on QP35-QP45, using the
ground truth image as a reference. Features are restored using RCAN.

high-quality images as it ignores the interdependence among
adjacent pixels and channels. Since our task objective is to
reconstruct highly-discriminative features, using L2 loss may
not be the ideal choice, as shown in the results in Figure 5.
Figure 5 visualizes the L2 loss per pixel for the original LR,
RCAN, and Bicubic. Figure 5 shows that RCAN reconstructs
the structure of the features in a better fashion than LR and
Bicubic reconstructed features, implying that PSNR is less
correlated with the representation power of the features. We,
therefore, consider other metrics reflecting the visual quality
perception of the human visual system (HVS). Accordingly,
we adopt the SSIMmetric [48], which is commonly used as a
quality metric for comparing restoration performance. SSIM
is a perception-based metric that treats image degradation
as a perceived change in structural information while also
taking into account perceptual cues in perceiving quality
such as luminance, contrast, and structural similarities.
Zhao et al. [38] explored various losses for the denoising
task and found that using the combination loss of L1 and
MS-SSIM for training preserves the high contrast in restored
images.

We investigated various metrics for feature reconstruction
with machine vision tasks and found that the weighted sum of
SSIM and MSE produced the best results of all the metrics.
The loss can be represented as a linear combination L as
follows:

L = αL2 + βLSSIM (4)
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where

L2(F) =

N∑
i=1

|y(i) − ŷ(i)|2 (5)

and

LSSIM (F) =

N∑
i=1

1 − SSIM (y(i), ŷ(i)) (6)

where i denotes a window in a feature map F with a total of
N windows. In Eq. (4), we set α as 10 and β as 1. In Eq. (5)
and Eq. (6), y and ŷ represent the ground-truth and restored
features, respectively. We experimented with several loss
function combinations, using perceptual [39] and adversarial
losses [40], and discovered that the loss function in Eq. (4)
yielded the best results.

G. EVALUATION PROCESS AND METRIC
We evaluated the Mean Average Precision (mAP) perfor-
mance of the pre-trained Faster-RCNN [4] using 5000 pre-
selected images from the OpenImage test dataset [1]. The
assessment was carried out using the Detectron2 [41]
object detection framework. To verify the feature restoration
performance of the FSR models, we used the PSNR and
SSIM metrics. Since the pre-trained box predictor generates
numerous proposals for each image, the classification model
assigns a box proposal score to each prediction box. We cal-
culated the mAP score using the COCO API, considering
IOU values ranging from 0.50 to 0.95 for all areas and
maxDets values of 100. The IOU score reflects the percentage
of overlap between two regions, calculated by dividing the
area of overlap by the area of the union. In our case, the IOU
score was calculated by comparing the positions of the label
and prediction boxes. The maxDets value, which is 100 in our
case, determines the maximum number of boxes the model
will evaluate.

IV. EXPERIMENTAL RESULTS
A. VCM BENCHMARK STANDARDS
The VCM feature compression standardization meeting
selected the benchmark datasets to validate the pro-
posed methodologies. OpenImage [1], CityScape [17] and
Tsinghua-Tencent 100k dataset [18] are among the bench-
mark datasets. Mask-RCNN [6] was selected as an evaluation
model for instance segmentation, while Faster-RCNN [4] was
selected for object detection.

B. MODELS AND DATASET
We conducted experiments using five distinct SISR models
for validating the effectiveness of the proposed F-VCM
pipeline. We observed that the complexity of residual
connections significantly impacts the proposed method’s
compression efficiency. As a result, we categorize SISR
networks into two types based on the intricacy of residual
connections: i) simple models (SRResNet [36], EDSR [37]);
and ii) densely connected models (MSRN [33], CARN [31],

and RCAN [35]). We employ a single model to handle all
the QP distortion levels, similar to various image denoising
models that use a single model to handle a variety of
unknown noise levels [27], [28], [29]. We partially use
the COCO dataset [16] by selecting 500 random images
(indexes of the selected images are provided in the Appendix
Section) to perform the experiments. Using the ResNet50
FPN backbone, we extract P2 feature maps to create pairs of
reference and distorted features. We utilize VVenc to distort
the features with two different QP values (QP35 and QP41) to
span various distortion ranges. We generated 1,000 distorted
features from the 500 reference images.

C. TRAINING
The SR models are trained using a mini-batch size of 10.
All the weights are randomly generated using a Gaussian
distribution with a mean of 0 and a standard deviation of
0.02. We use the ADAM optimizer [21] for training, with a
initial learning rate of 1 × 10−4, and momentum parameters
β1 = 0.5, β2 = 0.99. The proposed SR models are trained
and inferred using a singleNVIDIATeslaV100 SXM232GB
using the PyTorch [51] framework. It took approximately
12 hours to train the model for 200 epochs.

D. ANALYSIS OF THE OBJECTIVE FUNCTION
We compare our proposed loss function in Eq. 4 to the MSE
loss to verify the effectiveness of our proposed loss function.
Table 1 shows themAP inference results. Table 1 demonstrate
that our proposed loss function consistently outperforms the
L2 loss for all models. RCAN shows the best performance for
most QP levels, followed by EDSR and CARN.

E. RD-PERFORMANCE COMPARED WITH ANCHOR
The experimental results of comparing anchor with our
proposed method (i.e., best performing model RCAN) are
shown in Table 1. The results in Table 2 show that spatially
reducing the feature size improves the bpp rate significantly.
Our proposed method achieved a 50.31% BD-rate reduction
compared with the anchor baseline. Figure 6 shows the
comparison of FSR models with the anchor baseline. All
the models were able to significantly outperform the anchor
baseline, especially for the lower bpps.

F. FEATURE ROBUSTNESS
Features extracted by DNN show high tolerance against
distortions compared to raw images [47]. The robustness
of the features against various distortions is shown in
Figure 7. We generate five noises (Artificial White Gaussian
Noise (AWGN), blur, resizing, quantization distortions, and
coding artifacts) that occur naturally in the compression
pipeline [43]. We extract the P2-P6 feature maps, using a
ResNet [19] FPN-based pre-trained backbone with standard
COCO2017 [16] image dataset. Pretrained Mask-RCNN is
used to evaluate the quality of the distorted features and
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TABLE 6. Images selected from the COCO dataset for training and testing.

images. Note that the baseline accuracy for the Mask-RCNN
on instance segmentation is 40.3 mAP.

For Gaussian blur, σ = [1, 1.5, 3]. The results show
that in the case of low variance (sigma=1, sigma=1.5),
distortion impacts feature more than the image domain,

and in the case of high variance (sigma=3), mAP for
the image domain lowers more severely than the features.
As the feature size is 4× smaller than the image size,
we employ Gaussian kernel window sizes of 21 and 5,
respectively.
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For AWGN, σ = [1, 3, 5]. Features have higher robustness
against AWGN than images. Images show a considerable loss
in mAP accuracy compared to features, as shown in Figure 7.

We employ the downscale factor of 2, 4, and 8 for resizing.
The results demonstrate that SR noise (resizing) impacts
images more than features, as illustrated in Figure 7.

We vary the distortion rate by using different bit-depth
levels = [8, 4, 2] for quantization. The result in the feature
domain reveals no significant loss in mAP performance, but
the image domain indicates a considerable drop in mAP with
2-bit quantization, as shown in Figure 7.
For Coding Noise, we use VVenC [49] and VVdeC [50].

To distort the images and features, we experiment on several
different QP = [QP32, QP40, QP47] levels. Figure 7 shows a
considerable decrease in mAP in the image domain compared
to the features domain for coding noise. We may conclude
from this extensive experiment that features aremore resistant
to various distortions than images and thus provide a strong
basis for using features in the F-VCM pipeline.

G. INPUT SHAPE OF SR FEATURES
We trained the SRmodel CARN to compare the effectiveness
of using single-channel versus multi-channel features as
input. We evaluated the model on the COCO dataset using
a pre-trained Mask R-CNN ResNet50 backbone. The results
in Table 3 reveal that multi-channel features significantly
outperform single-channel features in terms of mAP, with
a BD-rate gain of 59.27% compared to the anchor and a
21.81% gain over single-channel features. Figure 8 illustrates
the visual quality of the restored multi-channel and single-
channel features, showing that the multi-channel restored
features are more similar to the target HR features.

H. PERFORMANCE ON LOW QP LEVEL
In some applications, such as medical imaging, maintaining
high quality is more important than achieving high compres-
sion rates. To examine how our proposed method performs
under these conditions, we evaluated it at the low QP level
of 27. We trained a model using QP27 and compared its
performance to a model trained on features from higher QP
levels (35-45). Our results in Table 4 indicate that the model
trained on QP27 performs significantly better than the model
trained on higher QP levels. The bpp was 6.18 in all cases.
The baseline mAP score was 0.7927, while the mAP score
for our proposed method with EDSR was 0.7878. Figure 9
illustrates the visual quality of the restored features, revealing
that the features restored by the model trained on QP27
are visually closer to the ground truth. The model trained
on QP27 achieved a PSNR of 34.29 and an SSIM of 0.93,
while the model trained on high QP values had a PSNR of
31.04 and an SSIM of 0.8406. These results demonstrate the
effectiveness of our proposed method in maintaining feature
quality at low QP levels.

I. COMPUTATIONAL COMPLEXITY
The inclusion of an SR module in the F-VCM pipeline
may increase computational complexity. To assess the

impact of this addition, we compared the increase in the
framework’s overall inference time due to the SR module.
The results indicated that using the SR module increased
the computational parameters by an average of 38.97% and
the inference time of the VCM pipeline by 7.08%. These
results are shown in Table 5, which also presents the inference
time, model running time, number of parameters, and total
number of FLOPS for the SR models and compares them to
the baseline anchor. The anchor method has a relatively short
running time, as it does not require reading a large amount
of feature information from memory and does not include
pre or post-processing steps. These factors contribute to the
efficient running time of the anchor method. These results
provide insights into our proposed method’s computational
complexity and efficiency.

V. CONCLUSION
This paper proposes an F-VCM pipeline for preserving
machine vision task performance by compressing features
rather than images. We propose that features, as opposed to
images, are more resistant to distortions, and thus transferring
features through the compression pipeline can prevent the
loss of vital information. As a result, we downscale the
encoder features and upscale them on the decoder side,
resulting in high compression rates with no performance
degradation. Experimental results demonstrate that the
proposed method outperforms the anchor pipeline, which
employs the VVC encoder. Our proposed method generalizes
effectively for a wide range of QP noise levels. Compared to
traditional upsampling methods, our model provides a high
visual quality reconstruction of the features.

APPENDIX
A. ANCHOR SETTINGS
As shown in Figure 2, the VCM Feature Compression anchor
process consists of feature extraction, feature rearrange, and
quantization before encoding. For decoding, the process is
reversed with the steps of dequantization, feature rearrange,
and evaluation network for the specified machine vision task.
In the feature extraction process, P-Layer features from P2 to
P6 are extracted using the ResNet-FPN backbone network.
In feature rearrange, the 256-channel feature map of each
layer is spatially tiled into a single channel. Quantization then
converts the feature maps, which have floating point values,
to integer values between 0 and 255 using the minimum and
maximum values of the entire feature map as reference. The
feature maps are then converted to the YUV 4:0:0 format
using FFmpeg 4.2.0. The features are encoded and decoded
using VTM 12.0, after which the reverse encoding process
is carried out, including inverse quantization to restore the
featuremaps to floating point values using the sameminimum
and maximum values used in the initial quantization step.
In the feature rearrange step, the spatially tiled channels
are separated. The feature maps for the P2 to P6 layers are
reconstituted with 256 channels each, concatenated in the
channel direction. Finally, the evaluation network performs
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the specified machine vision task using the restored feature
map.

B. COCO DATASET SETTINGS
We selected 500 images from the COCO dataset for training
the model with instance segmentation task. Table 6 lists the
indexes of the COCO dataset images used for training and
testing. These images were carefully chosen to ensure an even
distribution of object classes.
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