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ABSTRACT This paper proposes a generalized predictive control (GPC) with constraints and orthonormal
Laguerre functions using the simplified model of the primary system (reactor core and intermediate heat
exchanger (IHX)) of a prototypical sodium fast reactor (SFR). This paper develops a multiple-input multiple-
output (MIMO) GPC with input constraints able to track polynomial references of any degree applied in
coolant temperature difference across the core and fractional power. The manipulated variables of the GPC-
SFR are the reactivity and the sodium flow rate of the primary and secondary pipes. Moreover, orthonormal
Laguerre functions and step down condition number techniques were also applied to avoid the numerical
ill-conditioning issue in quadratic programming of large systems. Thus, a GPC type-2 was designed to
control fractional power, coolant temperature difference across the core and sodium tank temperature of
the SFR primary system when temperature references change according to a linear ramp after reaching
their steady-state operation, sustaining 100% power operation on the reactor. In order to analyze the load
tracking capability of the GPC-SFR type-2, the load following from 100% fractional power (FP) to 60% FP
at 0.8% FP/min rate is simulated. Constraints on the rate of coolant temperature difference across the core
and reactivity were applied for the design safety. For comparison criteria, this paper compares the GPC-
SFR type-2 with the GPC-SFR type-1, i.e, standard model predictive control (MPC), to verify the viability
and superior performance of the proposal regarding: (a) ramp-tracking capability of temperature and load;
(b) the rejections of a reactivity disturbance of -1 cent and a secondary sodium inlet temperature disturbance
of +10oF ; and (c) a simulation with uncertainty in reactor design. The simulations show that the GPC-SFR
type-2 overcome the GPC-SFR type-1 robustness and performance.

INDEX TERMS Generalized predictive control, orthonormal Laguerre functions, polynomial reference
tracking, quadratic programming, sodium fast reactor.

I. INTRODUCTION
The control of advanced reactors faces significant technique
hurdles in implementation due to the unique characteristics
inherent to their designs, such as demanding huge hardware
size memory, nonlinear model equations, new component
designs, multiple-input multiple-output (MIMO) variables,
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and harsh constraint implementation. Reference [1] simulated
and controlled an integral pressurized water reactor, with
multiple units that operates in parallel and feed steam
to a single turbine. In addition, [2] presents advanced
instrumentation and control methods for small and medium
reactors with IRIS demonstration.

Sodium fast reactors (SFRs) are a class of advanced reactor
design that uses sodium as a coolant to remove heat from
the reactor core, and transfer it to heat exchanges and steam
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generators [3]. The advanced reactor model studied in this
paper is based on the Experimental Breeder Reactor - II
(EBR-II) which operates with a capacity of 62.5 MWth
with 20 MWe output. Many important works were developed
to control SFRs with different techniques. Reference [4]
performed a linear quadratic (LQR) compensator to control
the fractional power, fuel temperature, reactor inlet and outlet
temperatures upon -5 cent reactivity insertion. Moreover, [3]
designed a traditional PI control and an optimal model
predictive control (MPC) as related to core inlet temperature
and temperature change across the core under a variety
of reactor power levels (30 − 100% power) with external
reactivity perturbations of -1 cent. The advances in research
and hardware deployment for industrial applications drive
the study for new control technologies in nonlinear MIMO
models. Accordingly, the state-of-art literature describes
intelligent controllers [5], fractional-order controllers [6]
and advanced variants of LQR [7]. However, none of
these presented studies can achieve either the zero steady-
state error for polynomial references or the polynomial-
exogenous disturbances rejection. In order to address those
shortcomings, the generalized predictive control (GPC) type-
m with Laguerre functions is employed in this work.

The prototypical advanced reactor (PAR) based on coolant
liquid of sodium was designed primary to operate with two
independent reactor cores, each connected to a dedicated
intermediate heat exchanger (IHX) and steam generator [8].
The power unbalance between the core reactors due to power
tilt between the upper and lower half cores can affect the
overall supply of energy [9]. In order to overcome this
problem, load-following power can regulate the total power.
However, in a load-following circumstance, a step-back is
noticed during the time interval of the power fast drop [10].
The power level variation causes irregular circumstances in
control rods and sodium flow rates. As regards [11], an MPC
was applied to the core power control in a Pressurized
Water Reactor (PWR), and a linear load-following test was
simulated. According to the type-1 control theory, the zero
steady-state error through the linear power transition cannot
be achieved by the proposed MPC, surging the demand
of type-2 controllers for linear load tracking. According to
the constraints on reactivity rate and coolant temperature
difference rate across the core, the proposed GPC type-2
controls the linear load-following process with zero steady-
state error to avoid a forced shut down. Recently, many
works have been published as related to the core power
control in [9], [10], [12], and [13]. However, those approaches
provide no study regarding the control of the sodium flow rate
and reactivity to aim the safety of the reactor temperature.

The demand for temperature control for SFRs reactors
arises from the inherent uncertainties of several modeling
parameters such as geometric dimensions and material
compositions as it is impossible to cover all scenarios of
computational analyses [14]. Moreover, the reactor tem-
perature handles directly in the reactor feedback reactivity.
Purposing reactor safety, negative temperature coefficients of

reactivity are required such that the increase of temperature
leads to a reactivity reduction and potential reactor shut
down [15]. According to model uncertainties, the nonlinear
reactor design must be robust to temperature changes for
an operation nominal power. Primary and secondary sodium
flow rates are the stipulated manipulated variables that can
control the inlet and outlet reactor temperatures, i.e. sodium
tank and primary plenum temperatures (core temperature).
Thus, regarding the correlation between temperature and
reactivity aforementioned, an external reactivity as the third
manipulated variable also shows up for the purposing of
maintaining operation at 100% power even with a linear
temperature change of the coolant temperature difference
across the core. Linear temperature change is used due to the
slow dynamics of the reactor, so each change can be designed
as a ramp among a small measured time.

According to output regulation, the internal model princi-
ple (IMP) states that a system is able to track input signals
with a zero steady-state error if a feedback controller is
chosen to provide closed-loop stability when the open-loop
is written with its minimal state realization and it has at
least the unstable part of the exogenous signal embedded on
it [16]. By introducing a controller with the IMP in a minimal
state realization system, reference [17] proposed a GPC with
predicted errors and second-order difference operator in state
variables as an augmented state of a single-input single-
output (SISO) system for ramp-reference tracking. Owing to
the non-integrator feature in the system chosen, the designer
needed to add 2 integrators such that the internal mode of
1/s2 could be inserted into the loop, resulting in tracking
with zero steady-state error. Furthermore, reference [18]
extended the method in [17] by using high-order backward
difference operators to achieve zero steady-state error for
polynomial reference tracking. One can track polynomial
reference of degree m − 1 of a minimal realization system
without integrators embedded if m integrators are inserted
into the open-loop system. Hence, high-order backward
difference operators were applied in error and in system
state variables to achieve augmented states withm integrators
embedded. Again, the method was only developed for SISO
systems, without optimized usage of GPC parameters and
none prescribed stability. Regarding [19], a new approach
was developed to embed an internal model of sinusoidal
reference through the application of the first and second-order
difference operators in a SISO system. More applications
of type-m controllers (m ≥ 2) can be found in [20], [21],
[22], [23], and [24]. Despite being an interesting approach,
no achievements were done concerning MIMO systems or
order reduction by using orthonormal functions to extract
accurately the control variable behavior. For a non-minimal
realization MIMO reactor with 37 state variables, it is aimed
to embed 2 integrators for ramp-reference tracking of the
coolant temperature difference across the core while it is
maintaining the power operation at 100 %. Besides, it is
sought to achieve ramp-reference tracking of the fractional
power and the coolant temperature difference across the
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core while it is controlled the tank temperature. For this
purpose, as high-order systems are a burden for practical
applications, orthonormal Laguerre functions with prescribed
stability were employed to design the MIMO GPC type-m in
this paper.

Laguerre functions are widely used for system identifica-
tion through their orthonormal basis functions [25] and [26].
In [27], the Laguerre basis expansion was used for a linear
parameter-varying (PV) Hammerstein method with low-pass
dynamics and its application was extended to nonlinear PV
Hammerstein identification. The main achievement of using
Laguerre functions was decreasing the number of impulse
response function parameters by 82.41 %. In addition,
Laguerre functions can also solve the challenge of decreasing
the highMPC processing cost with a choice of a few functions
without compromising the dynamic performance of the
system [28]. Thus, aiming for matrices size reduction of the
linearized nuclear reactor, orthonormal Laguerre functions
were applied to the augmented control variables proposed.

The objective of this paper is to develop a MIMO
GPC, with orthonormal Laguerre functions and constraints,
capable to track polynomial references of an arbitrary degree
m − 1 in SFR. It is worth mentioning that this method can
be underwent under any electro-mechanical under-actuated
systems. For practical application, a GPC type-2 is designed
to overcome a GPC type-1 for: (a) disturbance rejection in
reactivity and secondary sodium inlet temperature; (b) ramp-
power tracking and ramp-temperature tracking; and (c) uncer-
tainty in reactor parameters. The Mean Squared Error (MSE)
is the performance index to feature the best controller.
To design this controller, the nonlinear system was developed
usingMATLAB/Simulink. This paper generalized the control
theory presented in [18] through MIMO systems with the
enhancement regarding the condition number of systems
with huge state-space matrices and the order reduction of
Hessian matrix by orthonormal Laguerre functions in control
variables without loss of dynamical responses.

This paper is organized as follows. Section II shows
ERB-II-CORE and Intermediate Heat Exchanger (IHX)
dynamical equations as related to all input and output
variables. Section III presents the proposedMIMOGPC type-
m along with its Laguerre orthonormal function application.
Section IV demonstrates the proposed control approach for
the Prototypical SFR along with the setup parameters of the
GPC type-2 when loading input constraints. An algorithm is
proposed as well. Section V includes simulations and results
comparing the GPC-SFR type-1 with the GPC-SFR type-2
when measured and unmeasured disturbances are applied.
Consequently, the simulations of load and temperature
tracking are assessed as well. Concluding remarks are stated
in Section VI.

II. ERB-II-CORE AND THE INTERMEDIATE HEAT
EXCHANGER (IHX) MODELING
The primary system consists of the following: (a) reactor,
(b) primary cooling systems, (c) neutron shield, (d) fuel

FIGURE 1. Node representation of EBR-II primary system [8].

handling system, (e) control and safety drive systems,
(f) tank and biological shield, (g) fuel unloading and inter-
building transfer, (h) primary sodium purification system,
and (i) argon blanket gas system. For the purpose of PAR
model, only the reactor and primary cooling system are
modeled. A node formulation, of the primary loop and
the IHX, is presented in Figure 1 and the state-variable
names of the Upadhyaya’s model on each node are presented
in [29]. The primary loop includes the active core, inner and
outer blankets, lower and upper reflectors, and piping. The
formulation of the whole model and all the parameters are
adapted using the models in [4]. The primary loop and IHX
models are coupled into one module for the convenience
of simulation studies. The governing equations for each
subsystem and the definition of variables are presented in the
following sections. The parameter value for each constant can
be found in [4].

The variables from 1 to 37 in Figure 1 are described as
following: 1, fractional reactor power; 2, precursor concentra-
tion; 3-7, active core temperatures; 8-9, low pressure plenum
temperatures; 10-11, high pressure plenum temperatures;
12-14, lower reflector temperatures; 15-17, upper reflector
temperatures; 18-20, inner blankets temperatures; 21-23,
outer blankets temperatures; 24, upper plenum temperature;
25-26, IHX inlet plenum temperatures; 27-36, IHX tem-
peratures; 37, sodium tank temperature. Remark that the
fractional reactor power or a percentage of its value is applied
in variables 3, 12, 15, 18 and 21.

Through the ERB-II model by [4], it is used the
ERB-II Core + IHX model to represent the reactor at
MATLAB/Simulink with 4 inputs and 5 outputs. The inputs
are given by the reactivity (ExternalReactivity), the inlet
temperature of the sodium in the secondary region (Sin), the
primary flow rate of sodium (Primary) and the secondary
flow rate of sodium (Secondary). The outputs are the power
fraction of the reactor core (Out1), the temperature in the
upper part of the Plenum (Out2), the temperature in the
second node of the secondary (Out3), inlet temperature of
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FIGURE 2. ERB-II-Core + IHX Modelling in MATLAB/Simulink.

the primary plenum (Core Temp) and the temperature of the
sodium tank (Tank Temp). The block is shown in Figure 2.

A. REACTOR CORE EQUATIONS
The reactor contains the fuel material and blanket material,
which are all in the reactor vessel. In addition to the fuel
material, fuel bearing subassemblies consist of upper and
lower axial blanket regions. The active core dynamics are
described by the point reactor kinetics equations [4], with
a slight modification of the reactivity feedback coefficients
αi (TABLE 1). Note that ρext (external reactivity), Sin
(secondary sodium inlet temperature), φ1 (primary flow rate
of sodium) and φ2 (secondary flow rate of sodium) are
introduced as nodes 38, 39, 40 and 41 in MATLAB/Simulink
model, respectively.

1) NONLINEAR REACTOR KINETICS

dPc
dt
= −

βT

3
Pc + (

βT

100
ρext + ρfeedback )

Pc
3
+ λ̄C;

ρfeedback =
∑
i

αi(Ti − Ti0 ); (1)

dCc
dt
=

βT

3
1Pc − λ̄Cc;

C = Cc + C0;

C0 =
βT

3λ̄
Pc0; (2)

where: Pc = the fractional core power; Pc0 = the steady-state
fractional core power; βT = total delayed neutron fraction;
3 = neutron generation time; ρ = reactivity; λ̄ = precur-
sor average decay constant; C = precursor concentration;
αi = temperature reactivity feedback coefficient correspond-
ing to temperature Ti; Ti = current temperature in channel i;
Ti0 = steady-state temperature for channel i at 100% power.

2) CORE HEAT TRANSFER
Mann’s model is used to represent the heat transfer dynamics.
Average lump temperature is a coupling parameter for the
driving force of heat transfer between the coolant and metal

TABLE 1. αi adjustment factor for values in [4].

nodes. The lower coolant lump outlet temperature is assumed
to present the average lump temperature inMann’s model [4].
Equations (3) - (7) correspond with the five lumps:

dTF
dt
=

PFP0
1.218(MCp)F

Pc −
5640

R1(MCp)F
(TF − TB); (3)

dTB
dt
=

5640
R1(MCp)B

(TF − TB)−
5640

R2(MCp)B
(TB − TC ); (4)

dTC
dt
=

1344.1
R2(MCp)B

(TB − TC )−
7066.9

R3(MCp)θ
(TB − θ1); (5)

dθ1

dt
=

5640
R3(MCp)θ

(TC − θ1)+ 0.003φ1(TL2 − θ1); (6)

dθ2

dt
=

5640
R3(MCp)θ

(TC − θ1)+ 0.003φ1(θ1 − θ2); (7)

where: TF = fuel temperature; TB = sodium-bond tempera-
ture; TC = fuel cladding temperature; θi = temperature of the
ith coolant node; R1,R2,R3 = heat transfer resistances; PF =
fraction of the power deposited in the fuel; (Cp)F = specific
heat capacity of the fuel; (Cp)B = specific heat capacity of the
blanketmaterial; (Cp)θ = specific heat capacity of the coolant;
MF =mass of the fuel;MB =mass of the blanket material;Mθ

= mass of the coolant.

B. REFLECTOR AND BLANKET MODELS
In the EBR-II, reflectors and blankets surround the reactor
core. The core model consists of twelve nodes representing
the reflector and radial blanket region. The same heat transfer
principle used in the core heat transfer model is also applied
to develop the state equations. The equations for the lower,
upper and inner reflectors, along with the outer blanket region
are described by (8) - (19) as shown below [4]:

1) LOWER REFLECTOR

dTML

dt
=

PiLU
2.83(MCp)ML

Pc −
(UA)L

(MCp)ML

(TML − TL1 ); (8)

dTL1
dt
=

(UA)L
(MCp)TL1

(TML − TL1 )+ 0.0021φ1(TH − TL1 );

(9)
dTL2
dt
=

(UA)L
(MCp)TL2

(TML − TL1 )+ 0.0021φ1(TL1 − TL2 );

(10)

2) UPPER REFLECTOR

dTMU

dt
=

10PiLU
(MCp)MU

Pc −
(UA)U

(MCp)MU

(TMU − TU1 ); (11)
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dTU1

dt
=

(UA)U
(MCp)TU1

(TMU − TU1 )+ 0.0021φ1(θ2 − TU1 );

(12)
dTU2

dt
=

(UA)U
(MCp)TU2

(TMU − TU1 )+ 0.0021φ1(TU1 − TU2 );

(13)

3) INNER REFLECTOR

dTMI

dt
=

1.5PiI
(MCp)MI

Pc −
(UA)I

(MCp)MI

(TMI − TI1 ); (14)

dTI1
dt
=

(UA)I
(MCp)TI1

(TMI − TI1 )

+ 8.2254 · 10−4φ1(TH − TI1 ); (15)
dTI2
dt
=

(UA)I
(MCp)TI2

(TMI − TI1 )

+ 8.2254 · 10−4φ1(TI1 − TI2 ); (16)

4) OUTER BLANKET

dTMO

dt
=

10PiO
(MCp)MO

Pc −
(UA)O

(MCp)MO

(TMO − TO1 ); (17)

dTO1

dt
=

(UA)O
(MCp)TO1

(TMO − TO1 )

+ 2.0403 · 10−4φ1(TL − TO1 ); (18)
dTO2

dt
=

(UA)O
(MCp)TO2

(TMO − TO1 )

+ 2.0403 · 10−4φ1(TO1 − TO2 ); (19)

where: Pi = steady-state power of the reflectors or blanket;
TM = temperature of the metal node; T1 = temperature of
the first region coolant node; T2 = temperature of the second
region coolant node; A = total heat transfer area; U = metal
to coolant heat transfer coefficient; (Cp)M = specific heat
capacity of the metal; (Cp)T = specific heat capacity of the
coolant.

C. PIPING AND PLENUM MODEL
The model consists of six nodes for the low and high pressure
plenum, the upper plenum and core inlet-outlet piping region.
A transfer-lag has been assumed for the piping. The other
assumptions include constant coolant density, no heat gain
or loss in the piping, and no axial heat conduction [4]. The
differential equations (20) - (25) are stated below:

dTU
dt
= 1.3322 · 10−5φ1(TU2 − TU )

+ 3.1848 · 10−6φ1(TI2 − TU )

+ 2.7442 · 10−6φ1(TO2 − TU ); (20)
dTout
dt
= 7.2150 · 10−5φ1(TU − Tout ); (21)

dTLI
dt
= 6.1775 · 10−5φ1(θT − TLI ); (22)

dTHI
dt
= 6.2415 · 10−5φ1(θT − THI ); (23)

dTH
dt
= 7.4562 · 10−5φ1(THI − TH ); (24)

dTL
dt
= 6.8302 · 10−6φ1(TLI − TL); (25)

where: TU = upper plenum temperature; Tout = reactor
outlet temperature; θT = sodium tank temperature; TLI =
low-pressure plenum inlet temperature; THI = high-pressure
plenum inlet temperature; TH = high-pressure plenum
temperature; TL = low-pressure plenum temperature.

D. INTERMEDIATE HEAT TRANSFER
The sodium tank and primary inlet plenum are represented by
transport-lag approximations. Mann’s model is also used for
the heat transfer between the primary and intermediate loop
sodium. Twelve nodes (26) - (37) are used to represent the
IHX and sodium tank as related in [4].

dP1
dt
= 5.8543 · 10−5φ1Pin

− (
(UA)p
(MCp)p

+ 6.0966 · 10−5φ1)P1

+
(UA)p
(MCp)p

M1; (26)

dP2
dt
= (5.8543 · 10−5φ1 −

(UA)p
(MCp)p

)P1

− 6.0966 · 10−5φ1P2

+
(UA)p
(MCp)p

M1; (27)

dM1

dt
=

(UA)p
2(MCp)M

P1−(
(UA)p + (UA)S

2(MCp)M
)M1 +

(UA)S
2(MCp)M

S1;

(28)
dS4
dt
=

1.083(UA)S
(MCp)S

M2 − (
(UA)S
(MCp)S

− 2.3745 · 10−4φ2)S3

− 2.3745 · 10−4φ2S4; (29)
dS3
dt
=

1.083(UA)S
(MCp)S

M2 − (
(UA)S
(MCp)S

+ 2.3745 · 10−4φ2)S3

+ 2.3745 · 10−4φ2Sin; (30)
dP3
dt
= 5.8543 · 10−5φ1P2

− (
(UA)p
(MCp)p

+ 6.0966 · 10−5φ1)P3

+
(UA)p
(MCp)p

M2; (31)

dP4
dt
= (5.8543 · 10−5φ1 −

(UA)p
(MCp)p

)P3

− 6.0966 · 10−5φ1P4

+
(UA)p
(MCp)p

M2; (32)

dM2

dt
=

(UA)p
2(MCp)M

P3 − (
(UA)p + (UA)S

2(MCp)M
)M2

+
(UA)S

2(MCp)M
S3; (33)
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dS2
dt
=

1.083(UA)S
(MCp)S

M1

− (
(UA)S
(MCp)S

− 2.3745 · 10−4φ2)S1

− 2.3745 · 10−4φ2S2; (34)
dS1
dt
=

1.083(UA)S
(MCp)S

M1

− (
(UA)S
(MCp)S

+ 2.3745 · 10−4φ2)S1

+ 2.3745 · 10−4φ2S4; (35)
dPin
dt
= 5.8173 · 10−5φ1(Tout − Pin); (36)

dθT

dt
= 2.0107 · 10−7φ1(P4 − θT ); (37)

where: P1 = first primary node temperature; P2 = second pri-
mary node temperature; P3 = third primary node temperature
P4 = fourth primary node temperature;M1 = first (upper) tube
wall temperature;M2 = second (lower) tube wall temperature;
S1 = first secondary node temperature; S2 = second secondary
node temperature; S3 = third secondary node temperature;
S4 = fourth secondary node temperature; Pin = primary
inlet plenum temperature; Tout = reactor outlet temperature;
Sin = secondary sodium inlet temperature.

Regarding (1) and (2), the reactor primary system is
highly nonlinear. Thus, the reactor model was build in
MATLAB/Simulink with the equations (1)-(37) to aim more
reliable simulations. The insertion of primary and secondary
flow rates of sodium also steps up the system nonlinearity as
it can seen in (6)-(7), (9)-(10), (12)-(13), (15)-(16), (18)-(19),
(20)-(27), (29)-(32) and (34)-(37). In order to design theGPC,
the system must be linearized at some operating point for
building the state-space matrices. Reference [29] describes
the arrangement and steady-state values of the state variables
for the system when it operates at 100% power. The Model
Linearizer toolbox of MATLAB/Simulink was employed to
find the continuous state-space matrices of the SFR. The
non-zero entry elements of the continous space-state matrices
A, B and C are presented in appendix A. A sampling time
Ts = 1 second was used to discretize the state-space matrices
for using in the GPC with the MATLAB’s function ‘‘c2dm’’.
It is worth mentioning that the obtained linearization
generated a non-minimal state realization. Finally, the GPC
was inserted to control the nonlinear model.

III. PROPOSED GPC MIMO SYSTEM
A. PROPOSED AUGMENTED PREDICTION MODEL
Consider the following n1-order discrete MIMO plant:

xm(i+ 1) = Axm(i)+ Bum(i),

ym(i) = Cxm(i), (38)

where xm ∈ Rn1×1, A ∈ Rn1×n1 , B ∈ Rn1×nin , um ∈ Rnin×1,
C ∈ Rm1×n1 and ym ∈ Rm1×1. In other words, the plant has
nin inputs, m1 outputs and n1 states. Defining the track error

e(i), where r(i) is the reference applied upon the system, as:

e(i) = r(i)− ym(i), (39)

one can use the mth-order backward difference operator
(∇m) [18] into (38) and in a step beyond of (39) to find:

∇
mxm(i+ 1) = A∇mxm(i)+ B∇mum(i),

∇
me(i+ 1) = ∇mr(i+ 1)− C∇mxm(i+ 1),

= ∇
mr(i+ 1)− CA∇mxm(i)− CB∇mum(i)

(40a)

As regards [18], through the polynomial reference track-
ing, ∇mr(i+ 1) = 0, thus (40a) yields in:

∇
me(i+ 1) = −CA∇mxm(i)− CB∇mum(i). (41)

Let aj = ∇m−je(i + 1). According to the telescoping
sum property,

∑g
j=1(aj − aj−1) = ag − a0 [30]. Moreover

∇
m−(j−1)e(i + 1) = ∇m−je(i + 1) − ∇m−je(i). Hence,

aj − aj−1 = ∇m−je(i + 1) − ∇m−(j−1)e(i + 1) = ∇m−je(i).
Through these results, ∇m−ge(i+ 1) can be found as in (42):

∇
m−ge(i+ 1)︸ ︷︷ ︸

ag

= ∇
me(i+ 1)︸ ︷︷ ︸

a0

+

g∑
j=1

∇
m−je(i)︸ ︷︷ ︸
aj−aj−1

. (42)

Replacing (41) into (42), yields:

∇
m−ge(i+ 1) = −CA∇mxm(i)− CB∇mum(i)

+

g∑
j=1

∇
m−je(i). (43)

Let ~(i) = [e1(t), · · · , em1 (t)︸ ︷︷ ︸
e(t)

,∇e1(t), · · · ,∇em1 (t)︸ ︷︷ ︸
∇e(t)

, · · · ,

∇
m−1e1(t), · · · ,∇m−1em1 (t)︸ ︷︷ ︸

∇m−1e(t)

]T ∈ R(m1∗m)×1. Manipulating

(43), for g = 1, · · · ,m, ~(i+ 1) can be calculated as in (44):
e(i+ 1)
∇e(i+ 1)

...

∇
m−1e(i+ 1)


︸ ︷︷ ︸

~(i+1)

=


Im1 Im1 · · · Im1

0m1 Im1 · · · Im1
...

...
. . .

...

0m1 0m1 · · · Im1


︸ ︷︷ ︸

E


e(i)
∇e(i)

...

∇
m−1e(i)


︸ ︷︷ ︸

~(i)

−


Im1

Im1
...

Im1


︸ ︷︷ ︸

γ

×(CA∇mxm(i)+CB∇mum(i)),

(44)

where E ∈ R(m1∗m)×(m1∗m) is an upper triangular matrix
and γ ∈ R(m1∗m)×(m1). Here, Ia denotes an identity matrix
of a-order, 0m×n a zero matrix with m rows and n columns
and 0a a zero quadratic matrix of a-order with a ∈ N+.
Gathering (40a) with (44) leads to the augmented model of
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the MIMO system where Ae ∈ R(m∗m1+n1)×(m∗m1+n1), Be ∈
R(m∗m1+n1)×nin , Ce ∈ Rm1×(m∗m1+n1), x ∈ R(m∗m1+n1)×1,
with x the new augmented state vector while u(i) = ∇mum(i)
and y(i) are the model input and output, respectively.[

~(i+ 1)
∇
mxm(i+ 1)

]
︸ ︷︷ ︸

x(i+1)

=

[
E −γCA

0n1×(m∗m1) A

]
︸ ︷︷ ︸

Ae

[
~(i)
∇
mxm(i)

]
︸ ︷︷ ︸

x(i)

+

[
−γCB
B

]
︸ ︷︷ ︸

Be

∇
mum(i)︸ ︷︷ ︸
u(i)

,

e(i)︸︷︷︸
y(i)

=
[
Im1 0m1×(m1∗(m−1)+n1)

]︸ ︷︷ ︸
Ce

x(i). (45)

Note that the characteristic polynomial equation of the
augmented model is:

ρ(z) = det
[
(zIm1∗m − E) +γCA
0n1×(m∗m1) (zIn1 − A)

]
= (z− 1)m1∗mdet(zI − A), (46)

where it was used the property that the determinant of an
upper triangular block matrix is equal to the product of the
determinants of the matrices on the diagonal. Hence, the
eigenvalues of the augmented model are the union of the
eigenvalues of the plant model and the m1 ∗ m eigenvalues,
z = 1. This means that there are m1 ∗m integrators embedded
into the augmented design model. Now, it will be proved that
m integrators are inserted on each output of the augmented

system. Let L = zIn1 − A, 0 = zIm1∗m − E , 0
−1
=

[
Z
2

]
and

I =
[

Im1∗m 0(m∗m1)×n1
0n1×(m∗m1) In1

]
, where Z = [ζ1, ζ2, · · · , ζm] ∈

Rm1×(m∗m1) is the m1 first rows of 0−1, ζ ∈ Rm1×m1 and 2 ∈

Rm1∗(m−1)×(m∗m1). Regarding (38), (45) and the definitions
aforementioned, the transfer functions of the plant and the
proposed MIMO model are respectively G(z) = C(zIn1 −
A)−1B = CL−1B andGp(z) = Ce(zI −Ae)−1Be. Remark that
AL−1 = (zIn1 − L)L−1 = zL−1 − In1 . Therefore Gp(z) can
be calculated as follows:

Gp(z) = Ce(zI −
[

E −γCA
0n1×(m∗m1) A

]
)−1Be

=
[
Im1 0m1×(m1∗(m−1))| 0m1×n1

]
×

[
0 γCA

0n1×(m∗m1) L

]−1 [
−γCB
B

]
= −

[
Im1 0m1×(m1∗(m−1))| 0m1×n1

]
×

[
0−1 −0−1γCAL−1

0n1×(m∗m1) L−1

] [
γCB
−B

]
= −

[
Im1 0m1×(m1∗(m−1))

]
×

[
0−1γCB+ 0−1γC(AL−1)B

]
= −

[
Im1 0m1×(m1∗(m−1))

]
× 0−1γ

[
CB+ C(zL−1 − In1 )B

]

= −
[
Im1 0m1×(m1∗(m−1))

] [
Z
2

]
zγ CL−1B︸ ︷︷ ︸

G(z)

∴ Gp(z) = −Zγ zG(z). (47)

As regards (0−10)T = Im1∗m = 0T (0−1)T =

0T
[
ZT 2T

]
=

[
0TZT 0T2T

]
= Im1∗m and 0TZT ∈

R(m1∗m)×m1 , hence 0TZT =
[
Im1 0m1×(m1∗(m−1))

]T . Thus:
(z− 1)Im1 0m1 · · · 0m1

−Im1 (z− 1)Im1 · · · 0m1
...

...
. . .

...

−Im1 −Im1 · · · (z− 1)Im1


︸ ︷︷ ︸

0T


ζ1
ζ2
...

ζm


︸ ︷︷ ︸
ZT

=


Im1

0m1
...

0m1

 . (48)

By [31], one can find Zγ when it is applied the following

steps: it is straightforward that ζ1 =
Im1

z− 1
and ζk =∑k−1

j=1 ζj

z− 1
, k = 2, . . . ,m. By doing b1 = ζ1 and bk =

∑k
j=1 ζj,

then ζk =
bk−1
z− 1

and bk = ζk +
∑k−1

j=1 ζj = ζk + bk−1. Thus:

bk =
bk−1
z− 1

+ bk−1 =
z

z− 1
bk−1, bk =

k∑
j=1

ζj. (49)

It is remarkable that (49) is a geometrical progression

where bm = b1(
z

z− 1
)m−1 =

zm−1

(z− 1)m
Im1 [30]. Also remark

that the factor Zγ is still necessary, therefore, as regards (44):

Zγ =
[
ζ1 · · · ζm

] [
Im1 · · · Im1

]T
=

m∑
j=1

ζj

= bm =
zm−1

(z− 1)m
Im1 . (50)

Replacing (50) into (47), yields:

Gp(z) = −
zm−1

(z− 1)m
Im1zG(z) = −(

z
z− 1

)mIm1G(z) (51)

Here, the term
z

z− 1
denotes a discrete integrator. It is

noticeable that G(z) ∈ Rm1×nin such that each output
transfer function can be written as related to the inputs
U1,U2, . . . ,Unin in (52):

Gpk (z) = −(
z

z− 1
)m

nin∑
j=1

Gk,j(z)Uj(z), (52)

where k = 1, 2, · · · ,m1. Thus, (52) asserts that each
output has m embedded integrators as desired. According
to the IMP, it is required that the plant is controllable
with minimal realization, and Gk,j(z) has no zero at
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z = 1. The required number of embedded integrators (m) is
defined by the reference degree (m − 1). Here, the reactor
linearization generated a non-minimal realization plant such
that one requirement is not achieved. This highlights the
difficulty of controlling high-order nonlinear systems with
MIMO. However, even though missing one prerequisite, the
improvement of the power steady-state error with GPC type-2
is far more preferable than GPC type-1 for ramp-power
tracking and ramp-temperature tracking as it is shown in
Section V.

B. OPERATIONAL PRINCIPLE OF THE GPC WITH
LAGUERRE FUNCTIONS
Discrete-time Laguerre functions form a set of orthonormal
basis in Hilbert space H2[0,∞) [32]. Considering stable the
augmented system in (45), it is straightforward that u(k) is
square-summable on 0 ≤ k ≤ ∞, i.e.

∑
∞

k=0 u
2(k) < ∞.

Thus, u(k) fulfills the necessary requirement to be spanned
in H2[0,∞) space such that orthonormal Laguerre functions
were chosen regarding its simplicity and good resolution
in slow systems. While Fourier spectrum is notorious in
expansion of periodic signals, Laguerre functions have
gained wide application in signal approximation on power
systems [33].

The Laguerre network is determined by its pole (a) and the
number of functions (N ), with 0 ≤ a < 1 and N ∈ N∗.
Here, the slight error of the u(k) expansion with a small value
of N highlights the applicability of Laguerre functions in
this work. Thus, z-transform of the discrete-time Laguerre
functions can be expressed as [34] and [35]:

0N (z) =

√
1− a2

1− az−1
(
z−1 − a
1− az−1

)N−1, (53)

Remark that (53) can be written as a recursive form:

0k (z) = 0k−1(z)(
z−1 − a
1− az−1

),

01(z) =

√
1− a2

1− az−1
. (54)

After doing the inverse discrete-time transform of (53), the
set of discrete-time Laguerre functions L(k), at sample instant
k , satisfies the following difference equation:

L(k + 1) = AlL(k), (55)

where Al is a (N ×N ) inferior triangular Toeplitz matrix and
a function of parameters a and β = (1 − a2) [36]. L(k) has
initial conditions given by:

L(0)T =
√

β
[
1 −a a2 . . . (−1)N−1aN−1

]
, (56)

Using Laguerre functions to find the fittest expansion of the
control trajectory (u(ki+ k)) (45) of a stable dynamic system
at an arbitrary future sample instant k from ki [37], it can be
written (57):

u(ki + k) =
N∑
j=1

cj(k)lj(k) = L(k)Tη, (57)

where the parameter vector ηT =
[
c1 c2 . . . cN

]
comprises

N Laguerre coefficients and L(k)T is the transposed Laguerre
function vector at a future sampling k . Here, the control
horizon used at standard GPC has vanished due to the
approximation feature of the Laguerre expansion. However,
the number of terms N is used to fit u behavior with the
parameter a.

Based on the aforementioned definitions of Laguerre
functions in SISO systems, one can extend toMIMOwith full
flexibility in the choice of a and N on each dimension [38].
Let u(ki) =

[
u1(ki) u2(ki) · · · unin (ki)

]T and the input matrix
be partitioned to Be =

[
Be1 Be2 · · · Benin

]
, hence (57) can be

expressed as the ith (1 ≤ i ≤ nin) control signal by choosing
a pole ai and order Ni, where ai and Ni are selected for this
particular input, such that:

ui(ki + k) = Li(k)Tηi, (58)

where ηi and Li(k) are the Laguerre network description of the
ith control. Based on the state-space (Ae,Be,Ce) initialized at
sample ki, from (45), the future state variables are calculated
sequentially using the set of future control parameters until
the sampling n.

x(ki + 1) = Aex(ki)+ Beu(ki),

x(ki + 2) = A2ex(ki)+ AeBeu(ki)+ Beu(ki + 1),
...

x(ki + n) = Anex(ki)+
n−1∑
i=0

An−i−1e Beu(ki + i). (59)

Notice that, from (45), the predicted output variable
from sample ki to n is found multiplying the future state
variables (59) by Ce, therefore:

y(ki + n) = CeAnex(ki)+
n−1∑
i=0

CeAn−i−1e Beu(ki + i). (60)

Thus, applying (58) in (59) and (60), the prediction of
the future state variable x(ki + n) and the prediction of
the plant output y(ki + n), at sampling instant n, become
(61a) and (61b).

x(ki + n) = Anex(ki)+
n−1∑
i=0

An−i−1e BeL(i)Tη

= Anex(ki)+
n−1∑
i=0

An−i−1e [Be1L1(i)
T

· · ·BeninLnin (i)
T ]η

= Anex(ki)+ ϕ(n)Tη, (61a)

y(ki + n) = CeAnex(ki)+
n−1∑
i=0

CeAn−i−1e BeL(i)Tη

= CeAnex(ki)+
n−1∑
i=0

CeAn−i−1e [Be1L1(i)
T
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· · ·BeninLnin (i)
T ]η

= CeAnex(ki)+ Ceϕ(n)
Tη, (61b)

where the parameter vector ηT and the auxiliary matrix
ϕ(n)T consist of the individual coefficient vectors given
by ηT =

[
ηT1 ηT2 · · · η

T
nin

]
and ϕ(n)T =

∑n−1
i=0 A

n−i−1
e[

Be1L1(i)
T
· · · BeninLnin (i)

T ]
.

From [38], by defining Y (vector of predicted model
outputs), U (vector of future control actions), Np (prediction
horizon) and Nc (control horizon), it can be noted that:

Y =
[
y(ki + 1) y(ki + 2) · · · y(ki + Np)

]T
, (62a)

U =
[
u(ki) u(ki + 1) · · · u(ki + Nc − 1)

]T
, (62b)

The objective of GPC is to find an optimalU that minimize
the cost function J that measures the control performance. Let
Rs ∈ RNp×m1 be the future set-point vector for Y in (62a).
It is assumed that Rs is constant over the prediction horizon.
In [38], the cost function is defined as

J = (Rs − Y )T (Rs − Y )+ UTR∗U , R∗ = rwINp , (63)

with rw > 0. The vector of predictedmodel outputs Y in (62a)
is composed by the predicted errors. It is worth mentioning
that the weight importance of rw in (63) is such that its
reduction yields in a faster control actuation and faster closed-
loop dynamics, however, its robustness is compromised and
wider constraints are demanded. As the desired value of an
error is zero, the set-point vector Rs for Y is a set of zeros, i.e.,
Rs = 0Np×m1 . Noting that Y and U are in a vector form and
using (58) and appendix B, the cost function (63) becomes:

J =
Np∑
n=1

y(ki + n)T y(ki + n)+ ηTRLη, (64)

where RL ∈ R
∑
Ni×

∑
Ni and Np is the prediction horizon, big

enought (Np → ∞) to validate the orthonomal property of
Laguerre functions (65)

∞∑
n=0

li(n)lj(n) =

{
1, if i = j
0, if i ̸= j

, (65)

As regards (61b) in (64) and defining Q = CT
e Ce (positive

semidefinite matrix), one can note that:

J =
Np∑
n=1

x(ki + n)TQx(ki + n)+ ηTRLη. (66)

This paper researches a fitter model to create a accurate
system. In doing so, one must be aware of the problem of
numerical ill-conditioning with respect to a large prediction
horizon. Due to the high dimension of the ERB-II system,
the Q and RL matrices are modified to ensure numerical
stability against numerical ill-condition and created a λ-circle
in which all the closed-loop poles of the predictive control
system are to reside. By doing so, the matrices Q and RL
become Qα and Rα by choosing a pair (α, λ), with α ≥ 1 and

0 < λ ≤ 1, and solving the steady-state Riccati equation
(67a) to find P∞ [38].

AT

λ
[P∞ − P∞

B
λ
(RL +

BTP∞B
λ2

)−1
BT

λ
]
A
λ
+ Q− P∞ = 0,

(67a)

γ =
λ

α
, (67b)

Qα = γ 2Q+ (1− γ 2)P∞, (67c)

Rα = γ 2RL . (67d)

Finally, (66) becomes:

J =
Np∑
n=1

x(ki + n)TQαx(ki + n)+ ηTRαη. (68)

Replacing (61a) in (68), yields:

J =
Np∑
n=1

(Anex(ki)+ ϕ(n)Tη)TQα(Anex(ki)+ ϕ(n)Tη)

+ ηTRαη

J =
Np∑
n=1

[x(ki)T (ATe )
nQαAnex(ki)+ x(ki)

T (ATe )
nQαϕ(n)Tη

+ ηTϕ(n)QαAnex(ki)+ ηTϕ(n)Qαϕ(n)Tη]+ ηTRαη.

(69)

Noting that ηTϕ(n)QαAnex(ki) is a number, i.e., (ηTϕ(n)Qα

Anex(ki))
T
= x(ki)T (ATe )

nQαϕ(n)Tη, hence (69) can be
written as:

J = ηT (
Np∑
n=1

ϕ(n)Qαϕ(n)T + Rα)η

+ 2ηT (
Np∑
n=1

ϕ(n)QαAne)x(ki)

+

Np∑
n=1

x(ki)T (ATe )
nQαAnex(ki). (70)

Without constraints, the partial derivative of the cost
function ∂J

∂η
is performed to find the minimum of (70).

∂J
∂η
= 2(

Np∑
n=1

ϕ(n)Qαϕ(n)T + Rα)η

+ 2(
Np∑
n=1

ϕ(n)QαAne)x(ki). (71)

For simplicity, it is defined that:

� =

Np∑
n=1

ϕ(n)Qαϕ(n)T + Rα. (72a)

9 =

Np∑
n=1

ϕ(n)QαAne . (72b)
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Thus, assuming that �−1 exists when ∂J
∂η
= 0, the optimal

solution of the parameter matrix η is:

η = −�−19x(ki). (73)

Upon obtaining the optimal parameter matrix η, the
receding horizon control law for MIMO systems with
Laguerre functions is obtained by:

u(ki) =


L1(0)T 0T2 · · · 0Tnin
0T1 L2(0)T · · · 0Tnin
...

...
. . .

...

0T1 0T2 · · · Lnin (0)
T

 η, (74)

where 0Tk , k = 1, 2, · · · nin, represents a zero block row vector
with identical dimension to Lk (0)T , i.e., Nk .
The most important constraints are associated with the

control signals, be it the amplitude of the control or the
difference of the control. The less important constraints are
the output constraints, owing to their narrow correlation
with an accurate linearized system [38]. By assuming that
hierarchy, at each iteration of the receding horizon, after
the calculation of parameter matrix η leading to the optimal
control variable u(ki), the algorithm integrates m times u(ki)
to get um(ki) then compares the difference of the control
variable with its constraints. If the difference of the control
variable is higher than its maximum constraint, its value
becomes this maximum value, in the same way, if the
difference of the control variable is lower than its minimum
constraint, its value becomes this minimum value. By doing
that, the algorithm updates the control variable and whether
its value is higher than its maximum constraint, the difference
of the control variable becomes umax − um(ki − 1) and the
control variable becomes umax , in the same way, if the control
variable value is lower than its minimum constraint, the
difference of the control variable becomes umin − um(ki − 1)
and the control variable becomes umin. No output variable
constraints were used in this paper.

IV. PROPOSED CONTROL APPROACH
The main objective of this paper is to design a GPC
controller that controls three measured outputs as regards
three manipulated variables added with three measured
disturbances and one unmeasured disturbance for SFR.
The literature describes physical constraints concerning the
maximum rate of reactivity insertion and the maximum rate
of coolant temperature difference across the core, i.e. the
maximum rate of the temperature between core and tank
(nodes 26 and 37). Those constraints are 1reactivity/1t ≤
1 cent/sec and 1Tcore/1t < 2 F/min [4]. For a correct
functioning of the reactor in any power operation, the
secondary flow rate of sodium need to be controlled to absorb
all heat in excess to maintain the tank temperature (y(3)) at a
constant temperature of 669.72oF [4].
In order to fulfill the temperature constraint, it is required

to control the coolant temperature difference across the core

FIGURE 3. Closed-loop EBR-II Core + IHX controled by the proposed GPC.

(y(2)) as related to its initial operating point of 183.07oF .
For this purpose, the primary flow rate of sodium was
chosen to stabilize the core temperature with the power
variation. Figure 3 shows the overview of the closed-loop
EBR-II Core + IHX controlled by the proposed GPC. The
references to be tracking are fractional power, the coolant
temperature difference across the core and tank temperature,
therefore they were designed with initial value r0 =

[1; 183.07; 699.72] for 100% power operation.
According to the small variations in reactivity defined by

the physical constraint of the reactor, the input weight of u(1)
must be the smallest possible to generate the fastest control.
Accordingly, the input weights of u(2) and u(3) should be
greater than u(1) to ensure the reactor safety as related to the
constraint on the coolant temperature difference rate across
the core. In general, the augmented matrices of the proposed
method create huge � and 8 matrices, therefore it can be
noted a large size of the condition number for the closed-loop
system. This requires a careful choice of setup parameters
for the initialization of the GPC because it is sought in
this paper to avoid ill-conditioned problems with a good
trade-off in terms of the algorithm convergence. However,
small input weights drive to a loss in robustness and an
increase in the Hessian matrix condition number. Moreover,
the exponential factor, responsible to decrease the Hessian
matrix condition number, may compromise the performance
of the closed-loop system if tuned with high value. The
number of Laguerre functions in each manipulated variable
must be capable to identify the augmented manipulated
variable with a reduced number and without losing per-
formance. Thus, following the assumptions aforementioned,
by a trial and error fashion, TABLE 2 presents the setup
parameters of the unconstrained GPC type 1 and 2 with
similar Hessian matrix condition number and identical input
weights.

TABLE 3 presents the setup constraints of GPC as related
to u and∇u. The constraint from -7 to 7 cents on the reactivity
agrees with the robustness aim related to: (a) rejecting
external reactivity disturbance up to -1 cents without violating
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TABLE 2. Setup parameters of the GPC.

TABLE 3. Setup constraints of GPC.

the temperature constraint; and (b) ramp-reference tracking.
It is also noticeable that the control variable rate was
calculated per second so the values in TABLE 3 satisfy
1reactivity/1t ≤ 1 cent/sec. As regards the primary and
secondary sodium flow rates, the startup values for the full
power operation are 9000 gallons per minute (gpm) and
5890 gpm [4], respectively. Thus, the initial values of the
control variables utilized were u0 = [0; 9000; 5890]. The
acting control handles automatically the sodium pumps in
order to control the operation in a flux range around±50% of
the startup. This approach is required due to the disturbance
injection in the secondary sodium inlet temperature and the
ramp-reference tracking. The unconstrained feature of the
flow rate derivative has a reasonable meaning, because
the pump control valves can drop or increase the flow rate
for the entire range in one second. Note that the secondary
sodium inlet temperature (unmeasured disturbance) is set as
588oF [4].
According to the proposed MIMO augmented state-

space matrices (45) generated with the digital state-space
matrices of the reactor and the number of required embedded
integrators, the parameters in TABLE 2 were performed with
the ‘‘dlqr’’ and ‘‘dmpc’’ functions of MATLAB to attain
the matrices � and 9 [38]. Based on MATLAB/Simulink
environment, the algorithm 1 was built with the following
blocks: MATLAB function and data store memory. Note that
the size of global matrices was created regarding the choice
of m. Finally, the ‘‘lagd’’ function was utilized to calculate
the Laguerre coefficients according to a and N [38] while the

binomial coefficient is C i
m =

m!
i!(m− i)!

.

V. SIMULATIONS AND RESULTS
In this section, the step perturbations and the reference
variations were carried out while the closed-loop systems
operated in full-power mode after 8000 seconds from the
startup. In order to perform the coolant temperature differ-
ence rate across the corewith the controllers,1Tcore−m/1t =
(60∇y(2))/(60Ts) = 60∇y(2)oF/min. Remind that the tank

FIGURE 4. First simulation: fractional power.

TABLE 4. MSE - first simulation.

temperature must be unchanged, independently the reactor’s
operating point.

A. DISTURBANCE INJECTION ANALYSIS
Simulations were made to compare step perturbations in
external reactivity and secondary sodium inlet temperature.
The reactivity perturbation is a key process for the measure-
ment of the total delayed neutron fraction [39]. Meanwhile,
the disturbance in the secondary sodium inlet temperature
emerges when it is implemented the coupling of primary
system model to the steam generator [4].

Figures 4 and 5 present the fractional power and the
coolant temperature difference across the core of each
controller in comparison with their references for the -1
cent reactivity perturbation. TABLE 4 displays the MSE
for this first simulation. The absolute maximum rate of the
coolant temperature difference across the core agrees with
the reactor safety, because 1Tcore−1/1t ≤ 1.776oF/min
and 1Tcore−2/1t ≤ 1.796oF/min. Figures 6 and 7 show
the fractional power and the coolant temperature difference
across the core of each controller in comparison with
their references for the 10oF perturbation in the secondary
sodium inlet temperature. TABLE 5 displays the MSE for
this second simulation. The absolute maximum rate of the
coolant temperature difference across the core agrees with
the reactor safety, because 1Tcore−1/1t ≤ 0.1444oF/min
and 1Tcore−2/1t ≤ 0.1023oF/min.

VOLUME 11, 2023 30087



L. F. D. S. C. Pereira et al.: New Proposal GPC Algorithm With Polynomial Reference Tracking Applied for SFRs

Algorithm 1 GPC Type-m Algorithm
1: functionMV = GPC_SFR(y(k), r(k), d(k))

Require: um, xm, e, δx as global variables;
Require: Ad , Bd , Cd matrices;
Require: N , �−19, a, m, umax , umin, ∇umax , ∇umin;
2: [m1, n1]← size(Cd );
3: [n1, nin]← size(Bd );
4: for i = m− 1 to i = 1 do
5: e(k − i)← e(k − (i− 1));
6: end for
7: e(k)← r(k)− y(k);

▷ Error updating
8: ~(k)← zeros;
9: for i = 0 to i = m− 1 do

10: for j = 0 to j = i do
11: ~(m1 ∗ i+1 : m1 ∗ (i+1), k)← ~(m1 ∗ i+1 :

m1 ∗ (i+ 1), k)+ e(j+ 1) ∗ C j
i ∗ (−1)

j;
12: end for
13: end for

▷ ~ updating
14: for i = m to i = 1 do
15: δx(k − i)← δx(k − (i− 1));
16: end for
17: δx(k)← xm(k);

▷ State-variable updating
18: ∇

mxm(k)←
∑m

i=0 C
i
m ∗ (−1)

i
∗ δx(k − i);

19: x(k)← [~(k); ∇mxm(k)];
▷ Augmented state-variable updating

20: L0← lagd(a(1),N (1));
21: Lm(1, 1 : N (1))← LT0 ;
22: if nin > 1 then
23: aux ← 1;
24: for v = 2 to v = nin do
25: L0← lagd(a(v),N (v));
26: aux ← N (v− 1)+ aux;
27: aux2← N (v)+ aux − 1;
28: Lm(v, aux : aux2)← LT0 ;
29: end for
30: end if

▷ Laguerre coefficients
31: η(k)←−�−19 ∗ x(k);
32: u(k)← Lm ∗ η(k);
33: up← um(k);
34: um(k)← u(k)−

∑m
i=1 C

i
m ∗ (−1)

i
∗ um(k − i);

35: ∇um(k)← um(k)− up;
36: Hard limit constraint evaluation of ∇um(k);
37: um(k)← up +∇um(k);
38: Hard limit constraint evaluation of um(k);
39: xm(k)← Ad ∗ xm(k)+ Bd ∗ (um(k)+ d(k));

▷ State-variable updating
40: for i = m to i = 1 do
41: um(k − i)← um(k − (i− 1));
42: end for

▷Manipulated variables updating.
43: MV ← um(k);
44: end function

FIGURE 5. First simulation: coolant temperature difference across the
core.

FIGURE 6. Second simulation: fractional power.

FIGURE 7. Second simulation: coolant temperature difference across the
core.

TABLE 5. MSE - second simulation.

B. TEMPERATURE-TRACKING ANALYSIS
In order to simulate the power behavior with the temperature
modification, the reference of the coolant temperature
difference across the core was established as follows:
• From 8000 to 9200 seconds: the temperature changes as
a linear ramp from 183.07oF to 223.07oF with a slope
of 2oF/min;

• From 9200 to 11700 seconds: the temperature remains
at 223.07oF .

• From 11700 to 13000 seconds: the temperature changes
as a linar ramp from 223.07oF to 183.07oF with a slope
of −2oF/min;
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FIGURE 8. Third simulation: fractional power error.

FIGURE 9. Third simulation: coolant temperature difference error across
the core.

TABLE 6. MSE - third simulation.

Figures 8 and 9 exhibit the fractional power error and the
coolant temperature difference error across the core of each
controller for the ramp-temperature tracking. The fractional
power reference remains at its full-power operation. More-
over, the temperature slope of the simulation agrees with
the absolute maximum rate of coolant temperature difference
across the core. TABLE 6 displays the MSE for this third
simulation. Remark that the GPC-SFR type-1 cannot achieve
the zero steady-state error for the ramp-temperature tracking
while the fractional power missed the operating point.

C. LOAD-TRACKING ANALYSIS
In order to simulate the load-following process of the SFR,
the references of fractional power and coolant temperature
difference across the core were established as follows:
• From 8000 to 11000 seconds: the fractional power
changes as a linear ramp from 100% FP to 60% FP with
a slope of −0.8% FP/min. Meanwhile, the temperature
changes as a linear ramp from 183.07oF to 160.57oF
with a slope of −0.45oF/min;

• From 11000 to 14000 seconds: the fractional power
and the temperature remain at 60% FP and 160.57oF ,
respectively.

FIGURE 10. Fourth simulation: fractional power error.

FIGURE 11. Fourth simulation: coolant temperature difference error
across the core.

TABLE 7. MSE - fourth simulation.

• From 14000 to 17000 seconds: the fractional power
changes as a linear ramp from 60% FP to 100% FP with
a slope of 0.8% FP/min. Meanwhile, the temperature
changes as a linear ramp from 160.57oF to 183.07oF
with a slope of 0.45oF/min;

Figures 10 and 11 present the fractional power error and the
coolant temperature error across the core of each controller
for the load-following process. TABLE 7 displays the MSE
for this fourth simulation. A small oscillatory error for the
GPC-SFR type-2 emerges owing to the external reactivity
constraint (-7 cent). The deviation error is 0.17% of the 60%
FP. However, this oscillatory behavior has no interference
in the reactor safety; therefore, the SFR can operate at
60% FP. The absolute maximum rate of coolant temperature
difference across the core agrees with the reactor safety,
because 1Tcore−1/1t ≤ 0.5666oF/min and 1Tcore−2/1t ≤
0.9056oF/min. Finally, both controllers can handle the power
reduction; however, the GPC-SFR type-2 demonstrated faster
performance than the GPC type-1 and zero steady-state error
in the ramp-load tracking.

D. STABILITY SIMULATION
The SFR fuel alloy composition contains mid-enriched
uranium at the beginning (48.4%) [4]. During the burn-up
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FIGURE 12. Fifth simulation: fractional power.

FIGURE 13. Fifth simulation: coolant temperature difference across the
core.

TABLE 8. MSE - fifth simulation.

process, plutonium and other elements are built up, reducing
the total delayed neutron fraction (βT ). Furthermore, the
uncertainty in the measure of βT is a concurrent problem for
the reactor design [40]. According to the nonlinear equations
(1) and (2), the operating point is highly modified with the
βT reduction. Thus, the GPC-SFR must guarantee robustness
against perturbations at the 100% FP with a reduced βT .

In order to perform a reliable simulation, the non-
linear model was updated with a 5% reduction in βT .
Figures 12 and 13 present the fractional power and the
coolant temperature difference across the core of each
controller in comparison with their references for the -1
cent reactivity perturbation. TABLE 8 displays the MSE
for this fifth simulation. The absolute maximum rate of the
coolant temperature difference across the core agrees with
the reactor safety, because 1Tcore−1/1t ≤ 1.67oF/min
and 1Tcore−2/1t ≤ 1.69oF/min. Figures 14 and 15 show
the fractional power and the coolant temperature difference
across the core of each controller in comparison with
their references for the 10oF perturbation in the secondary
sodium inlet temperature. TABLE 9 displays the MSE for
this sixth simulation. The absolute maximum rate of the
coolant temperature difference across the core agrees for
the reactor safety with 1Tcore−1/1t ≤ 0.1486oF/min and
1Tcore−2/1t ≤ 0.1086oF/min.

FIGURE 14. Sixth simulation: fractional power.

FIGURE 15. Sixth simulation: coolant temperature difference across the
core.

TABLE 9. MSE - sixth simulation.

VI. CONCLUDING REMARKS
This paper has presented a novel MIMO GPC type-m based
on orthonormal Laguerre functions with input constraints
for the primary system of a prototypical SFR (core and
IHX) in MATLAB/Simulink. The fractional power, the
coolant temperature difference across the core and the tank
temperature are regulated through the control of reactivity
and sodium flow rates. The novelty of this paper is addressed
to the zero steady-state error for ramp-temperature tracking
and ramp-load tracking with m = 2 with a simple
algorithm 1. Constraints on the primary sodium flow rate,
secondary flow rate and external reactivity were applied.
For a fair comparison, a GPC type-1 was designed with
similar proposed parameters. To attain the reactor safety
conditions, the coolant temperature difference rate across the
core agreed with the maximum allowable of 2oF/min for
the following simulations: (a) step perturbations on reactivity
and secondary sodium inlet temperature; (b) temperature-
tracking analysis; (c) load-tracking analysis; and (d) simula-
tion with uncertainty in reactor design. The GPC-SFR type-2
demonstrates faster performance than the GPC-SFR type-1
in the aforementioned scenarios. For the assigned MSE, the
evaluation of TABLES 4 - 9 prove the superiority of the
GPC type-2 in 13 of 18 measurements. Finally, the GPC-
SFR displays appropriate robustness with regard to the βT
uncertainty during the burn-up process.
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APPENDIX A: NON-ZERO ENTRY ELEMENTS OF THE SFR’s STATE-SPACE MATRICES
A. MATRIX A

a(1,1) = -0.08 a(1,31) = 46954.8 a(2,2) = -813.38 a(2,13) = 391.46 a(2,24) = 421.92 a(3,3) = -1.3
a(3,4) = 1.3 a(3,31) = 4.59 a(4,3) = 2.62 a(4,4) = -21.49 a(4,37) = 18.87 a(5,3) = 2.62
a(5,4) = 16.25 a(5,5) = -18.87 a(6,6) = -0.08 a(6,7) = 0.08 a(6,31) = 130.02 a(7,6) = 0.17
a(7,7) = -19.04 a(7,33) = 18.87 a(8,6) = 0.17 a(8,7) = 18.7 a(8,8) = -18.87 a(9,9) = -0.08
a(9,10) = 0.08 a(9,31) = 23.04 a(10,9) = 2.25 a(10,10) = -9.65 a(10,37) = 7.4 a(11,9) = 2.25
a(11,10) = 5.16 a(11,11) = -7.4 a(12,12) = -0.01 a(12,14) = 0.01 a(12,31) = 7.25 a(13,2) = 59.66
a(13,13) = -93.29 a(13,32) = 33.64 a(14,12) = 0.07 a(14,14) = -1.9 a(14,35) = 1.84 a(15,12) = 0.07
a(15,14) = 1.77 a(15,15) = -1.84 a(16,8) = 0.12 a(16,11) = 0.03 a(16,15) = 0.02 a(16,16) = -0.17
a(17,16) = 0.65 a(17,17) = -0.65 a(18,17) = 0.52 a(18,18) = -0.52 a(19,18) = 0.53 a(19,19) = -0.76
a(19,21) = 0.22 a(20,19) = 0.31 a(20,20) = -0.55 a(20,21) = 0.22 a(21,19) = 0.3 a(21,21) = -0.66
a(21,23) = 0.36 a(22,21) = 1.15 a(22,22) = -1.4 a(22,23) = 0.34 a(23,21) = 1.15 a(23,23) = -2.46
a(23,28) = 1.4 a(24,2) = 24.61 a(24,24) = -24.61 a(24,31) = 1168.94 a(25,20) = 0.53 a(25,25) = -0.76
a(25,27) = 0.22 a(26,25) = 0.31 a(26,26) = -0.55 a(26,27) =0.22 a(27,25) =0.3 a(27,27) =-0.66
a(27,29) =0.36 a(28,27) =1.15 a(28,28) =-1.4 a(28,29) =0.34 a(29,27) =1.15 a(29,29) =-2.46
a(30,26) = 0.002 a(30,30) =-0.002 a(31,11) =0.08 a(31,4) =-0.09 a(31,5) =-0.09 a(31,7) =-0.09
a(31,8) =-0.09 a(31,10) =-0.38 a(31,11) =-0.38 a(31,13) =-39.76 a(31,24) =-9.82 a(31,31) =-46954.8
a(31,32) =-13.28 a(31,33) =-13.28 a(32,5) =26.67 a(32,13) =26.85 a(32,32) =-53.51 a(33,13) =26.85
a(33,32) =-0.18 a(33,33) =-26.67 a(34,30) =0.56 a(34,34) =-0.56 a(35,34) =0.06 a(35,35) =-0.06
a(36,30) =0.56 a(36,36) =-0.56 a(37,36) =0.67 a(37,37) =-0.67

B. MATRIX B
b(4,3) = -0.001 b(5,3) = -0.001 b(7,3) = -0.03 b(8,3) = -0.03 b(10,3) = -0.07
b(11,3) = -0.07 b(14,3) = -0.0067 b(15,3) = -0.0067 b(16,3) = −6.9 · 10−7 b(18,3) = −6.6 · 10−18

b(19,3) = 5.02 · 10−4 b(20,3) = 5.02 · 10−4 b(22,4) = -0.015 b(23,4) = -0.015 b(25,3) = 0.0011
b(26,3) = 0.0011 b(28,4) = -0.0176 b(29,2) = 1.4 b(29,4) = -0.0176 b(30,3) = −7.84 · 10−18

b(31,1) = 469.55 b(32,3) = -0.27 b(33,3) = -0.27 b(34,3) = −7.02 · 10−18 b(35,3) = −6.69 · 10−18

b(36,3) = −7.1 · 10−18

C. MATRIX C
c(1,31) = 1 c(2,16) = 1 c(3,22) = 1 c(4,18) = 1 c(5,30) = 1

APPENDIX B: UT R∗U

UTR∗U = rw lim
Np→∞

Np∑
m=0

u(ki + m)T u(ki + m)

→ rw lim
Np→∞

Np∑
m=0

ηTL(m)LT (m)η

→ rw lim
Np→∞

Np∑
m=0

ηT


L1(m) 01 · · · 01
02 L2(m) · · · 02
...

...
. . .

...

0v 0v · · · Lv(m)



L1(m)T 0T2 · · · 0Tv
0T1 L2(m)T · · · 0Tv
...

...
. . .

...

0T1 0T2 · · · Lv(m)T

 η

→ rwηT


limNp→∞

∑Np
m=0 L1(m)L1(m)

T 0 · · · 0

0 limNp→∞
∑Np

m=0 L2(m)L2(m)
T
· · · 0

...
...

. . .
...

0 0 · · · limNp→∞
∑Np

m=0 Lv(m)Lv(m)
T

 η

→ rwηT


IN1 0 · · · 0
0 IN2 · · · 0
...

...
. . .

...

0 0 · · · INv

 η

∴ UTR∗U = ηT (rwI∑Ni )η = ηTRLη.
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