
Received 26 February 2023, accepted 12 March 2023, date of publication 22 March 2023, date of current version 22 May 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3260179

Vizard: Passing Over Profiling-Based Detection
by Manipulating Performance Counters
MINKYU SONG , (Member, IEEE), TAEWEON SUH , (Member, IEEE),
AND GUNJAE KOO , (Member, IEEE)
Department of Computer Science and Engineering, Korea University, Seoul 02841, Republic of Korea

Corresponding author: Gunjae Koo (gunjaekoo@korea.ac.kr)

This work was supported in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) funded
by the Korean Government (MSIT) (Research on CPU Vulnerability Detection and Validation) under Grant 2019-0-00533, in part by the
ICT Creative Consilience Program under Grant IITP-2022-2020-0-01819, and in part by the National Research Foundation of Korea
(NRF) funded by the Korean Government (MSIT) under Grant NRF-2022R1A2C1011469 and Grant NRF-2021R1C1C1012172.

ABSTRACT Cache side-channel attacks have been serious security threats to server computer systems, thus
researchers have proposed software-based defense approaches that can detect the security attacks. Profiling-
based detectors are lightweight detection solutions that rely on hardware performance counters to identify
unique cache performance behaviors by cache side-channel attacks. The detectors typically need to set appro-
priate criteria to differentiate between attack processes and normal applications. In this paper, we explore
the limitations of profiling-based detectors that rely on hardware performance counters. We present an
attack scenario, called Vizard, that can bypass the existing profiling-based detectors by manipulating
cache performance behaviors of an attack process. Our analysis discloses that cache side-channel attacks
include idle periods that can be exploited as attack windows for creating cache events. Vizard generates
counterbalancing cache events within the attack windows to hide particular cache performance behaviors
of cache side-channel attacks. Our evaluation exhibits that Vizard can effectively bypass profiling-based
detectors while maintaining high attack success rates. Our research work represents that attackers can bypass
the existing detection approaches by manipulating performance counters.

INDEX TERMS Security attacks, cache side-channel attacks, security attack detectors, hardware perfor-
mance counters.

I. INTRODUCTION
Cache side-channel attacks have been significant security
threats to server computer systems since attackers can leak
secret or private data by exploiting the timing differences
observed in the cache hierarchy. Note that cache hierar-
chy is an essential architectural component automatically
managed by hardware, and many processes can share the
resources in the cache hierarchy. Furthermore, most caches
exhibit deterministic access behaviors to achieve efficient
data reuse rates in limited cache spaces. As such, attackers
monitor cache block allocations/evictions provoked by vic-
tims’ cache accesses to estimate secret data referenced by
victim processes. Researchers have disclosed that attackers

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masucci .

can effectively decode victims’ confidential data using var-
ious cache side-channel attack approaches [1], [2], [3], [4],
[5], [6], [7], [8], [9]. The attacker usually elaborates the cache
side-channel attacks by preparing shared cache space before
a target victim process references secret data. Then the victim
process can modify the prepared cache blocks while the
victim accesses the secret data. The attacker finally decodes
the changed cache blocks by referencing the prepared cache
space. The attacker can identify the modified cache states
since the changed cache blocks exhibit distinct access timing.

Researchers have proposed architectural defense
approaches to defend against cache side-channel attacks [10],
[11], [12], [13]. Such approaches focus on mitigating
the architectural vulnerabilities exploited by the attacks.
Moreover, the recent generations of commodity proces-
sors include hardware patches for defending against the

VOLUME 11, 2023
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 48099

https://orcid.org/0000-0003-3992-3665
https://orcid.org/0000-0002-6377-5482
https://orcid.org/0000-0003-1706-6850
https://orcid.org/0000-0002-1570-8576

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

cache side-channel attacks [14], [15]. However, many server
systems still equip old generations of processors, which
are vulnerable to the cache side-channel attacks. Hence
software-based mitigations are the only possible approaches
for such systems even though the software patches lead to
significant performance drops [16], [17], [18], [19]. Another
possible solution is to detect the attack processes that per-
form cache side-channel attacks. As mentioned, most cache
side-channel attacks include the preparation and scanning of
cache blocks; thus, the attacks exhibit particular performance
behaviors. Researchers have presented profiling-based detec-
tors that can detect the unique performance behaviors of the
cache side-channel attacks [20], [21], [22], [23], [24], [25],
[26], [27]. The profiling-based detectors monitor system-
wide or per-process performance counters to identify the par-
ticular performance behaviors of the target attacks. Since the
cache side-channel attacks exhibit extremely distinct behav-
iors compared to normal applications, the profiling-based
detectors can effectively catch attack processes using the
cache-related performance counters. Once an attack process
is detected, an administrator can terminate the detected attack
process to protect confidential data.

Although the profiling-based detectors are effective
lightweight solutions for protecting systems from cache
side-channel attacks, the detectors may incorrectly catch an
innocent application as an attack process if the normal appli-
cation exhibits unusual cache performance behaviors (e.g.
extremely high cache miss rates). Inversely, the detectors
may struggle to recognize an attack process if the attack
exhibits the commonly observed cache performance levels.
Note that the profiling-based detectors rely on the perfor-
mance counters that monitor the cache behaviors of running
processes. Therefore, attackers may evade the detectors by
generating counterbalancing cache events that can perturb
cache performance counters.

In this paper, we explore an attack scenario, called Vizard,
which can hide the unique cache performance behaviors
of cache side-channel attacks to bypass the profiling-based
detection approaches that rely on cache performance coun-
ters. We observe that a typical cache side-channel attack
consists of two steps - preparation and scanning. An attack
process usually postpones the scanning phase until the target
victim changes the prepared cache space. The Vizard uses the
time gap between the preparation and the scanning phases
for creating the cache events that can counterbalance the
cache performance counters by the attack process. By ana-
lyzing the cache side-channel attack on a cryptography appli-
cation, we can figure out an appropriate window size for
compensating cache performance levels while maintaining
an attack success rate. Our evaluation reveals that the Vizard
can effectively hide the unique cache behaviors of the cache
side-channel attack to bypass the profiling-based detectors.

The followings are the contributions of this paper.
• Weexplore the limitations of the existing profiling-based
detection approaches that heavily rely on cache perfor-
mance counters.

• Based on the analysis of cache side-channel attacks,
we disclose the attacks include enough idle cycles for
creating cache events.

• We present how to set the window size for counter-
balancing cache performance while maintaining attack
performance.

• We present an efficient way to generate compensating
cache events within a limited attack window.

• We evaluate the Vizard attack scenario to exhibit that
our proposed evasive attacks can bypass profiling-based
detectors.

The rest of this paper is organized as follows. We pro-
vide background about cache organizations and cache
side-channel attacks in Section II. We discuss the limita-
tions of profiling-based detection approaches in Section III.
In Section IV, we propose the Vizard attack scenario.
In Section V, we explore how the Vizard attack scenario
can be designed with an exemplar cache side-channel attack.
We evaluate the effectiveness of the proposed Vizard attack
in Section VI. We conclude in Section VIII.

II. BACKGROUND
A. CACHE MANAGEMENT
Cache hierarchy is one of the major attack surfaces in com-
puter processors since attackers can exploit the timing dis-
crepancies in accessing different cache hierarchy levels to
leak secret data. Namely, attackers can estimate whether the
target data blocks exist at a certain cache level by monitoring
the data access time. Processors usually manage cache blocks
in a deterministic way, thus attackers elaborately prepare
security attacks by exploiting the deterministic cache behav-
iors. In this subsection, we introduce the deterministic cache
organization and management policies that can be exploited
by security attacks.

1) CACHE ORGANIZATION
Most modern processors employ cache hierarchy. A memory
transaction from a processor core sequentially references
multiple cache levels to check whether the requested data is
stored in a target cache level. Usually, a cache closer to a
processor core is smaller and faster than lower-level caches.
When a data block is initially allocated in the cache hierarchy,
the inclusion policy of the cache hierarchy manages where to
place it.

Each cache in the cache hierarchy is configured as a set-
associative cache; there are S sets in a cache and W ways in
each set. When a memory transaction accesses a target cache,
a set index of the cache is computed from the address of a
demanded data block. Normally, a processor uses a physical
address for calculating cache indexes. However, a virtual
address can be used to compute the index of the L1 cache
in order to reduce the access latency to the L1 cache by
excluding accesses to a translation lookaside buffer (TLB).
Once a set is computed, a cache checks whether it holds the
demanded data block by comparing the tags of cache blocks

48100 VOLUME 11, 2023

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

within the selected set. If the demanded data is not found in
the cache (i.e. a cache miss), the cache forwards the memory
transaction to the lower-level cache, then the demanded data
block can be provided from the lower-level caches or main
memory.

2) INCLUSIVE AND EXCLUSIVE CACHES
The inclusion policy of the cache hierarchy decides target
cache levels that will include a data block when the block
is allocated to caches or evicted from one of the cache levels.
Different inclusion policies can be configured by processor
generations or target systems (i.e. personal or server systems).

The inclusive cache policy is generally adopted by most
processors. This policy guarantees that all lower-level caches
contain copies of the data block if a current cache level
includes the data block. In other words, the data blocks
in a higher-level cache are a subset of the data blocks of
lower-level caches. Even if a cache block is evicted from
a higher-level cache due to cache replacement, lower-level
caches still include copies of the data block. Thus, if a previ-
ously evicted block is re-referenced, the data block can be
provided from lower-level caches with a high probability.
On the other hand, if a data block is evicted from a lower-
level cache, the same data blocks in all higher-level caches
need to be evicted from the caches to meet the inclusive cache
policy. Since the same data blocks are included in multiple
cache levels, inclusive caches exhibit relatively lower access
latency if data blocks are re-referenced frequently. However,
cache spaces are wasted by multiple copies of data blocks.
Intel’s personal-use CPUs usually employ inclusive caches.

On the other hand, a data block is placed in only one
cache level with the exclusive cache policy. When a data
block is first referenced, the data block is only placed in the
highest-level cache (usually L1 cache). The cache block is
allocated to the lower-level cache if the block is evicted from a
current cache level. If the data is re-referenced, the data block
can be provided from one of the lower-level caches if found,
then the data block is allocated to the highest-level cache
only. Exclusive caches utilize cache spaces more efficiently
compared to inclusive caches. However, exclusive caches
provoke frequent data movements between cache levels when
allocating or evicting cache blocks. Recent ARM processors
typically adopt exclusive caches.

3) CACHE REPLACEMENT
The cache replacement policy determines which block is
evicted from a cache set if the target set is already full
and a new block needs to be allocated. With LRU policy,
a cache chooses the least recently accessed block in a target
set when cache block replacement is necessary. However,
LRU policy requires complex hardware design. Thus, most
processors employ a pseudo-LRU policy, which mimics the
LRU policy using a simpler prioritizing mechanism. A recent
article discloses that Intel’s modern processors employ a

modified pseudo-LRU policy called quad-age LRU [5]. Even
though the LRU policy is not the optimal replacement policy,
it is known that LRU-like policies exhibit higher cache hit
rates compared to other non-deterministic policies, such as
a random policy. However, the deterministic mechanisms of
LRU-like policies can be exploited by cache side-channel
attacks [5].

B. CACHE SIDE-CHANNEL ATTACKS
Cache side-channel attacks exploit differences in access
latency observed in the cache hierarchy to leak secret infor-
mation [1], [2], [3], [4], [5]. The attacks manipulate cache
blocks and then monitor cache states modified by victim
processes. The modified cache states can be identified by
exploiting different access latency between cache hits and
misses. Attackers that exploit cache side-channel attacks can
effectively decode secret data if the secret information can
be decoded by checking executions of specific instructions
(e.g. RSA cryptography) [1] or static data accesses (e.g. AES
cryptography) [6]. A typical cache side-channel attack is
composed of two steps. In the first step (a preparation step),
an attack process manipulates target cache blocks, which
victim processes can change. Then in the second step (a
scanning step), the attacker scans the previously manipulated
cache blocks to monitor cache blocks changed by the target
secret data accessed by the victim processes. The attacker can
figure out whether a known cache block exists in the target
cache level by using time-measuring instructions (e.g. rdtsc
of x86 ISA).

Flush+Reload is a cache side-channel attack that can iden-
tify secret information by detecting loaded cache blocks
indexed by secret data [1]. In the preparation step, the attack
process removes target cache blocks by exploiting cache
manipulation instructions such as clflush of x86 ISA. Then
in the scanning step, the attack process measures the access
latency to the cache blocks evicted during the preparation
step. The attacker can identify the secret target data if a
victim reallocates the evicted blocks to the target cache
level. Since the Flush+Reload attacks rely on privileged
cache manipulation instructions, the attacks can be available
only for specific processors. However, several researchers
disclosed that Flush+Reload attacks could be implemented
by exploiting other types of instructions such as dccisw of
ARM ISA [7], [8].

Prime+Probe utilizes an eviction set, which is a group of
data blocks that can be mapped into the same cache set [2].
The Prime+Probe attack can be designed as follows. The
attacker first fills the target sets of a target cache level with a
prepared eviction set. Then a victim process can allocate new
cache blocks in the target cache level by accessing secret data.
While the victim allocates new cache blocks, some primed
blocks (i.e. the data blocks in the eviction set) are evicted
from the target cache. The attacker can identify which blocks
are evicted from the cache by measuring access cycles to the
eviction set.

VOLUME 11, 2023 48101

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

FIGURE 1. L2/LLC miss rates of a Flush+Reload attack and gcc.

III. LIMITATIONS OF PROFILING-BASED DETECTION
As introduced in the previous section, cache side-channel
attacks manipulate target cache blocks to prime and/or
monitor cache block sets. Hence, the attacks inevitably influ-
ence the cache performance counters while the attack pro-
cesses are running. The existing profiling-based detection
approaches monitor such unique performance changes to
detect cache side-channel attacks. In this section, we analyze
the existing attack detection approaches that rely on perfor-
mance counters to reveal the limitations of such approaches.

A. BREAKDOWN OF DETECTION APPROACHES
The profile-based security attack detection approaches rely
on unique performance footprints by attack processes.
Figure 1 exhibits the changes in L2/LLC performance counts
by a normal application (gcc from SPEC2017) and an attack
process (Flush+Reload). The profiling-based detector col-
lects performance counters (i.e. L2 miss rates and LLC miss
rates) every 10 ms for each process. As shown in the figure,
the hardware profiler exhibits relatively low miss rates on L2
cache (around 10% – 70%) and LLC (lower than 40%) while
gcc is running. On the other hand, the Flush+Reload attack
exhibits extremely high miss rates (nearly 100%) on both
cache levels while an attack process is working. Note that
Flush+Reload creates bursts of cache misses since the attack
process accesses the cache blocks that were mainly flushed
from the target cache. Hence, the detector can recognize the
abnormally high cache miss rates by Flush+Reload to check
whether the attack process is running.

As described in Figure 1, the profiling-based detectors
exploit hardware performance counters (HPCs) in cache hier-
archy to identify cache side-channel attacks. The detection
approaches can efficiently collect the performance counters
since system processes can read the values in HPC registers

without heavy performance overhead. We can categorize the
existing detection approaches as signature-based detection
and anomaly-based detection.

In order to detect malicious processes, signature-based
approaches detect unique footprints of cache-related perfor-
mance counters created by cache side-channel attacks [20],
[21], [22], [23]. Figure 1 describes an exemplar detec-
tion mechanism by signature-based detection. Namely, such
detection approaches recognize the unique performance
counts (e.g. extremely high L2/LLCmiss rates) by attack pro-
cesses. Researchers have proposed several signature-based
detection approaches against security attacks. HexPADS
monitors cache accesses and misses by each process to detect
cache-based attacks that provoke high cache miss rates and
significant cache misses [20]. RT-Sniper exploits several per-
formance counters such as instruction counts, L2 misses,
and LLC misses to detect cache side-channel attacks more
accurately [21]. RT-Sniper also employs two-step monitor-
ing phases to minimize performance overhead. Depoix et al.
proposed a recurrent neural network (RNN) model using
LLC access counts and miss rates of running processes [22].
CBA-detector employs multiple machine learning-based
models and a self-feedback mechanism using PinTool in
order to detect security attacks more precisely [23].

Anomaly-based detection approaches can recognize abnor-
mal performance behaviors of the target applications (e.g.
encryption/decryption libraries) that demand secure execu-
tions [24], [25], [26], [27]. Such detection methods monitor
the performance counters of possible victim processes since
the performance behaviors of the victim processes can be
influenced while attack processes are working. For instance,
an attack process evicts cache blocks that target victims may
reference to monitor the victims’ footprints. Then the victim
processes can encounter unusual cache misses. In order

48102 VOLUME 11, 2023

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

TABLE 1. Analysis of the existing profiling-based detection solutions.

to detect atypical performance behaviors of target applica-
tions, an anomaly-based detector has been trained using per-
formance counters of the target applications. The detector
can consider that the target applications are under attack if
anomalous performance behaviors from the target processes
are observed. In that case, the detector can halt the target
applications to protect secret data.

To summarize, the existing profiling-based detection
approaches count on hardware performance counters to pin-
point attack processes (signature-based approaches) or test
whether victim processes are under attack (anomaly-based
approaches). Table 1 lists the existing detection solutions
that utilize hardware performance counters. The columns in
the table exhibit detectable attacks, monitored performance
counters, and detection algorithms by each detection method.
In the detectable attacks column, FR, PP, and FF repre-
sent Flush+Reload, Prime+Probe, and Flush+Flush attacks
respectively.

B. LIMITATIONS OF PROFILING-BASED DETECTION
Our analysis of the existing profiling-based detection
approaches exhibits that the detection solutions rely on
cache performance counters to detect popular cache side-
channel attacks. It is because cache side-channel attacks
exhibit unique performance behaviors in cache hierarchy
and/or provoke remarkable cache performance changes of
victim processes, as described in the previous section. For
instance, a signature-based detection method can exploit the
significant cache performance gap between attack processes
(Flush+Reload) and normal applications (gcc), as shown in
Figure 1. However, if the cache performance differences
between normal applications and security attacks are insignif-
icant, the detector may struggle to identify attack processes.
In that case, the detector may fail to catch attack processes or
incorrectly recognize normal processes as cache side-channel
attacks (i.e. false positive detection).

Moreover, attackers can manipulate cache performance
counts to conceal the unique cache behaviors of cache side-
channel attacks. It is a possible attack scenario since attackers
can create cache events unrelated to cache side-channel
attacks within the same attack process. In the next sec-
tion, we will present such attack scenarios that can perturb
unique cache performance behaviors from cache side-
channel attacks.

IV. PROPOSED VIZARD ATTACK SCENARIO
As motivated in the previous section, the existing
profiling-based detection approaches may fail to detect secu-
rity attacks if the target attacks exhibit eccentric perfor-
mance behaviors. Especially, the detectors that target cache
side-channel attacks will struggle to detect the attacks if
malicious processes exhibit unexpected (e.g. low cache miss
rates) cache behaviors. As such, attackers may intentionally
include specific procedures that can counterbalance cache
hit/miss rates in their attack processes to hide the unique
cache behaviors from the cache side-channel attacks. In order
to reveal the vulnerabilities of the existing profiling-based
detection approaches to such attack scenarios, we study a
cache side-channel attack method, called Vizard, that can
bypass the existing detectors by counterbalancing cache
hit/miss rates.

In this section, we describe how the proposed attack
scenario can be employed in the existing cache side-
channel attacks. As mentioned in Section II, a typical cache
side-channel attack composes two separate steps, preparation
and scanning steps, to check the cache state changed by
victim processes. The attack process allows the target victim
process to modify the prepared cache blocks before starting
the scanning step. Namely, the attack process takes cycles to
monitor cache state changes or wait until the target victim
process accesses secret data before the scanning step. In this
paper, we call the time gap between the preparation and the
scanning steps a attack window. The proposed Vizard attack
exploits this attack window to hide particular cache perfor-
mance behaviors caused by the cache side-channel attack by
creating opposite cache events. For instance, the Vizard attack
can create cache hits for the target cache to neutralize high
cache miss rates by Flush+Reload. Hence, the Vizard attack
can evade the disclosure from the profiling-based detectors
since it perturbs the cache performance counters utilized by
the detection solutions within the attack window.

To summarize, the Vizard attack scenario can be designed
as follows.

1) IDENTIFYING AN ATTACK WINDOW
In order to leak secret or private data, the attack process
exploiting cache side-channel attacks allows the target victim
process to access the primed cache blocks. Then the attack
process monitors the changed cache states. The Vizard attack

VOLUME 11, 2023 48103

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

utilizes the attack window between the preparation and the
scanning steps of the attack process to hide the unique perfor-
mance behaviors of the cache side-channel attack. Hence, the
attackers should break down the interplay between the attack
process (i.e. two required attack steps) and the victim process
to identify the attack window.

2) EVALUATING THE ATTACK WINDOW SIZE
Once the attackers identify the attack window, they can eval-
uate the attack success rates by adjusting the attack window
size. In order to leak secret data effectively, the attack process
needs to set the appropriate attack window size between the
preparation and the scanning steps. Note that the attacker
cannot decode the target data if the scanning step is initi-
ated before the victim accesses the secret data or after the
victim’s multiple accesses. The attack process can monitor
the accesses by the victim process on the prepared cache
blocks to wait until the victim accesses secret data. Moreover,
the attack success rates usually go down as the attack window
size increases. It is because the prepared cache blocks can
be modified by other normal data transactions as well as
access to the target secret data if the scanning step starts too
late. Hence, in order to design an effective Vizard attack,
attackers need to set allowable attack success rates for target
victim applications, and then the attackers evaluate the attack
window sizes that can guarantee the defined attack success
rates. The attackers can set the largest attack window size
that can achieve the allowable attack success rate as the attack
window size of Vizard.

3) GENERATING PERFORMANCE EVENTS
In order to hide the unique performance behaviors of the
exploited security attacks, the Vizard attack creates coun-
terbalancing performance events during the attack window.
Note that the attacker sets the largest attack window that
can guarantee the allowable attack success rate for designing
the Vizard attack. During this attack window, the attack pro-
cess generates events that can perturb the target performance
counters. For instance, to hide the extremely high cache miss
rates by a cache side-channel attack, the Vizard attack can
create many cache hits on the target cache level. The attacker
should create the counterbalancing performance events effec-
tively within the pre-defined attack window to hide the attack
behaviors.

V. VIZARD ATTACK EXPLORATION
In this section, we explore the usage model of the Vizard
attack using the Flush+Reload cache side-channel attack on
RSA [1]. As described in the previous section, we design the
Vizard attack scenario on the Flush+Reload attack to hide the
unique cache access patterns by the Flush+Reload. We first
analyze themechanism of the Flush+Reload attack to identify
the attack window. Then, we evaluate the key recovery rates
of the attack by adjusting the size of the attack window in
order to figure out the available attack window size. Finally,
we explain how to design the cache hit generation module

that can compensate for the high miss rates caused by the
Flush+Reload attack.

A. ANALYSIS OF ATTACK MECHANISM
We use the Flush+Reload attack on RSA as an example of the
Vizard attack scenario. Figure 2 briefly illustrates the cache
side-channel attack mechanism on RSA cryptography [1].
In this attack, the attacker targets the square-and-multiply
exponentiation functions that perform the exponential com-
putation of be(mod m) [28]. This approach is widely adopted
in the popular RSA cryptography libraries since it exhibits
less computational complexity of O(log(e)) compared to the
original RSA algorithm that exhibits the complexity of O(e).
As shown in the code snippet in Figure 2 (see 1⃝), the RSA
encryption executes the diverged function sequences based
on the bit value of each key digit. Namely, RSA executes
square–modulo–multiply–modulo instructions if the bit value
of the processed key digit is 1. Otherwise, the RSA function
performs square–modulo instructions only if the bit value is 0.

Attackers can exploit such diverged instruction sequences
of RSA to leak the encryption key using the Flush+Reload
cache side-channel attack. The instructions that perform the
RSA encryption can be found in a shared cache (usually
LLC in most processors) if inclusive cache hierarchy is
employed (2⃝ in Figure 2). In order to track the instruction
sequences performed by the victim (i.e. RSA encryption)
process, the attacker applies the Flush+Reload attack to the
target instruction data in the shared cache. Namely, the attack
process flushes the target instruction data from the shared
cache to make the instructions evicted from the private caches
(L1 instructions cache and L2 cache of most processors) in
the core that is executing the RSA cryptography. This is
the preparation step of the attack process. Then, the victim
fetches the required instructions based on the bit value of
the encryption key. The victim process sends the requests for
the missing instructions to the private L1 instruction cache,
then the requested instruction data are also allocated to the
shared cache by the inclusive cache policy. By scanning the
cache blocks flushed during the preparation step in the shared
cache, the attacker can figure out which instructions are
requested by the victim process (3⃝). This is the scanning step
of the Flush+Reload attack. Finally, the attacker can figure
out the bit value of the key digit by decoding the instruction
sequences referenced by the victim process (4⃝).
In order to identify available attack windows in the tar-

get security attacks, we analyze the Flush+Reload attacks
that prove the function sequences in the RSA encryption
process. Figure 3 exhibits an example of the RSA function
sequences (i.e. the sequences of square,multiply, andmodulo
functions) probed by the Flush+Reload attacks. The X-axis
of the graphs represents the time (in cycle number) of the
function sequences. The attacker checks the executions of
the square, multiply, and modulo instructions by exploit-
ing the Flush+Reload attacks as described in the previous
paragraph. Each dot in the graphs represents the try of the
Flush+Reload attack to check the execution of the target

48104 VOLUME 11, 2023

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

FIGURE 2. Cache side-channel attack on RSA encryption.

FIGURE 3. Proving RSA function sequences using Flush+Reload.

function. The Y-axis of each graph represents the reload time
(in cycles) of the Flush+Reload attack. If the target func-
tion has been executed, the reload time of the Flush+Reload
attack is low since the target instructions are found in LLC.
As shown in the Figure, the execution times of square and
multiply functions are relatively short (around 2000–3000
cycles) thus two or three attack tries exhibit low reload
cycles. On the other hand, the modulo functions exhibit long
execution time, thus 15–20 consecutive attack tries exhibit
low reload cycles. Such frequent attack tries are redundant
since only one or two probes are sufficient for detecting
the executions of the modulo function. Consequently, the
Vizard attack can exploit the Flush+Reload attacks towards
the modulo function as attack windows for perturbing cache
performance counters.

B. DECIDING ATTACK WINDOW SIZE
For the Vizard attack scenario, we define the time gap
between the preparation (flush) and the scanning (reload)
steps targeting RSA’s square functions as an attack window.
Now, we describe how to decide the appropriate attack win-
dow size for an effective Vizard attack. Figure 4 exhibits the

FIGURE 4. Key recovery rate by attack window size.

key recovery rates of the Flush+Reload attacks on the RSA
encryption by the attack window size. For this evaluation,
we adjust the size of the attack window by inserting sleep
instructions between flush and reload steps of the attacks,
then we evaluate the key recovery rates by the sleep cycles.

Our evaluation results reveal the recovery rates by the
Flush+Reload attack are high even if the attackwindow size is
large. As shown in Figure 4 the high key recovery rates (over
80%) are observed until the attack window size is increased
up to 13,000 cycles. Then the recovery rates go down steadily
if the attack window size increases over 13,000 cycles. Based
on our evaluation results, we set the attack window size of the
Vizard attack as 13,000 cycles since the Flush+Reload attacks
on the RSA encryption guarantee high recovery rates even if
the reload phase is delayed. Note that the Vizard attack can
utilize more cycles for perturbing performance counters if a
larger attack window is configured. However, the attack may
exhibit lower success rates if the Vizard attack applies too
large attack windows.

C. PERTURBING PERFORMANCE COUNTERS BY
GENERATING CACHE HITS
In this section, we describe how to perturb performance coun-
ters for hiding unique cache performance behaviors. Since
we take the Flush+Reload attacks that exhibit extremely high

VOLUME 11, 2023 48105

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

FIGURE 5. Cache block allocations by CHG with respect to set
associativity.

miss rates in L2 and LLC as an example, Vizard’s coun-
terbalancing procedure creates many cache hits within the
defined attack window. Note that the Vizard attack should
create cache hit events as many as possible within the limited
attack window period. As such, we will explain how to create
a bunch of cache hits effectively in the target cache levels.
We call this procedure that creates many cache hit events a
cache hit generator (CHG).
Simply, we may generate cache hits by referencing the

same data element repeatedly. However, such approaches
cannot be used for increasing the cache hit counts in L2 and
LLC since cache requests are filtered by L1 caches. Thus
CHG needs to be elaborately designed to manipulate L2/LLC
performance counters. For this purpose, CHG constructs a
block set that exists in the target cache level, not in the higher-
level caches. For instance, in order to increase cache hit
counts in L2, CHG loads data elements in L2, but the loaded
data needs to be evicted from L1. Namely, CHG allocates
cache blocks exclusively in the target cache level to generate
cache hit events.

CHG employs the following mechanism in order to allo-
cate the necessary cache blocks to the target cache level
exclusively. Let us assume CHG allocates the cache blocks to
the cache level L exclusively, thus the allocated cache blocks

are not found in the higher-level (i.e. level L − 1) cache.
First CHG prepares N data elements that can fill the cache
blocks in the same cache set of the higher-level cache. Note
that N should be larger than the associativity (SL−1) of the
higher-level cache. Then CHG allocates the SL−1 elements
out of the prepared N elements, thus all blocks in the target
set of the higher-level cache are occupied. CHG continues
allocating the prepared data elements to make the one of
occupied blocks evicted from the higher-level cache. Thus
the evicted block can be found in the level L cache, not in the
higher-level cache. Finally, CHG accesses the evicted block
to increase the cache hit counter of the level L cache.
Figure 5 illustrates how CHG allocates cache blocks

exclusively to generate hit events of the target cache level.
We assume CHG targets the hit counter of the L2 cache,
thus the cache blocks need to be evicted from the L1 cache.
We explain the two different set associativity configurations
between L1 and L2 caches. Figure 5a depicts the behavior
of CHG when the set associativity of L2 is higher than
L1. We assume the associativity of L1 and L2 is 4 and
8 respectively and caches are inclusive. In this example, CHG
prepares 5 data blocks that can fill the same cache set of L1.
When the block 5 is allocated, one of the occupied cache
blocks (block 1) is evicted from L1. Then this evicted block
is found in L2 only when CHG accesses block 1. Note that
CHG can prepare more blocks to allocate more evicted blocks
only in L2 in order to create cache hits more efficiently.
If the associativity of L1 is higher than L2, CHG prepares
the multiple data block sets assigned to different sets of L2
as shown in Figure 5b. In this figure, the blocks colored
differently (blue, yellow, and red colored) are allocated to
different sets in L2. If CHG allocates red-colored block 3 in
L1, blue-colored block 1 is evicted from L1 thus it is found
in L2 only.

CHG’s mechanism for allocating cache blocks and gener-
ating cache hits can be tweaked for various cache configura-
tions. We describe the required approaches for CHG by cache
configurations as follows.

1) CACHE INDEXING
Some processors compute the indexes of L1 caches using
virtual addresses in order to reduce the access latency of L1.
Since CHG exploits the cache blocks allocated to the same
cache set, CHG needs to figure out the address mapping
rule if L1 caches are virtually indexed. In this case, we can
get the address mapping information from the page map file
(/proc/self/pagemap for Linux OS). If an operating system
utilizes a huge page, all caches are physically indexed thus
CHG can compute the indexes of data blocks using physical
addresses.

2) CACHE REPLACEMENT POLICY
CHG canmakemore blocks evicted from the high-level cache
consecutively to allocate more blocks in the target cache.
If the higher-level cache employs the deterministic cache
replacement policies such as lease-recently used (LRU) or

48106 VOLUME 11, 2023

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

TABLE 2. Cache configurations of Intel i7-10700.

first-in-first-out (FIFO), CHG can easily control the number
of evicted cache blocks since cache blocks can be evicted in
the order or allocation. On the other hand, CHG cannot figure
out how many blocks will be evicted from the higher-level
cache if a random replacement policy is employed. Since
the evicted cache line is selected randomly, CHG cannot
disclose which blocks are evicted and found in the target
cache exclusively. In this case, CHG prepares a larger data
set that will be allocated to the same cache set in the higher-
level cache. By accessing more data elements allocated to the
same cache line, CHG can make more blocks evicted from
the higher-level cache, thus, it can increase cache hit rates of
the target cache.

3) EXCLUSIVE CACHE
In Figure 5 that depicts the mechanism of CHG, we assume
caches employ inclusive cache policy. However, if exclu-
sive caches are employed, the evicted block from the
higher-level cache is newly allocated to the target cache only.
Since the main purpose of CHG is allocating the cache blocks
in the target cache exclusively, CHG works in the same way
even in the exclusive caches.

VI. EVALUATION
A. EXPERIMENT SETUP
In order to evaluate the Vizard attack scenario, we implement
CHG in the Flush+Reload attack to make the CHG proce-
dure work within the attack window. We evaluate the Vizard
attack scenario on the testbed that equips Intel i7-10700 CPU
(16-threads/8-cores running at 2.9 GHz) with 32GB DDR4
main memory. The testbed system runs Ubuntu 20.04.4 OS
with Linux kernel 5.15.0-46. Table 2 summarizes the cache
configurations of the Intel i7-10700 CPU.

Asmentioned in Section III, most profiling-based detectors
utilize high L2 and L3 cache miss rates to detect cache
side-channel attacks. Thus in the Vizard attack, CHG is
designed to create counterbalancing cache hit events in L2
and L3 caches. In order to measure the performance counters
changed by the Vizard attack, we design the performance
counter collector that reads the performance counters of the
target process. The collector reads the performance counters
of L2 hits/misses and LLC hits/misses every 10 ms.

The Vizard attack is designed as described in Section V.
The CHG procedures of the Vizard attack generate cache
hits in L2 and LLC. Note that the Vizard attack needs to
generate more cache hits to make the L2 and LLC miss rates
of the attack lower. In order to create more cache hit events
in L2 and LLC to make L2/LLC miss rates lower, the Vizard

FIGURE 6. Key recovery rate of the Flush+Reload attack w.r.t. L2/LLC miss
rate manipulated by the Vizard.

attack requires a larger attack window, which will decrease
the attack success rates as we investigated in Section V-B.

B. ATTACK SUCCESS RATE BY VIZARD’s
COUNTERBALANCE
As described in Section IV, the Vizard can manipulate the
performance counters for cache hierarchy to camouflage high
L2/LLC miss rates by cache side-channel attacks. Figure 6
represents the L2 and LLC miss rates manipulated by the
Vizard attack and the target key recovery rates by the
Flush+Reload attack on RSA encryption. We set the target
key recovery rate for this Vizard attack design as 80%. Note
that we can set the Vizard’s attack window size as large as
13000 cycles to guarantee 80% of the key recovery rate as
explained in Section V-B. In the figure, the x-axis and the
y-axis represent the L2 miss rate and LLC miss rate, respec-
tively; thus, the (x, y) coordinates of a point on the graph
represent the L2/LLC miss rates manipulated by the Vizard.
In the figure, the green-colored area represents the points that
can achieve higher than 80% of the key recovery rate, and the
orange-colored area means the recovery rate is less than 80%.
Point A exhibits the L2/LLCmiss rates (99.9%, 99.9%) by the
original Flush+Reload attack. By applying the Vizard attack
scenario, the L2/LLCmiss rates can be decreased to the point
equivalent to the average L2/LLC miss rates of SPEC2017
benchmarks (point B, 21.6% and 20.0%). Note that theVizard
can create more hit events to decrease L2/LLC miss rates
under 10% (point C); however, it requires a larger attack win-
dow (larger than 13000 cycles) that the recovery rate becomes
lower than the target success rate. Our evaluation reveals that
the Vizard can exploit the available attack window for the
exemplar attack scenario (i.e. the Flush+Reload attack on
RSA) to create many counterbalancing cache events to hide
the unique cache performance behaviors of the attack process.

VOLUME 11, 2023 48107

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

FIGURE 7. Heatmap for L2/LLC miss rates of SPEC2017 benchmarks
(sampled every 10 ms).

The main purpose of the Vizard is to camouflage the
unique cache performance behaviors of cache side-channel
attacks by making the cache miss rates of the attack pro-
cess similar to the cache performance levels of ordinary
applications. In order to analyze the cache miss rates of
normal applications, we measure the heatmap for L2/LLC
miss rates of SPEC2017 applications as shown in Figure 7.
We collect the benchmarks’ L2/LLC miss rates every 10 ms
on the testbed machine. Each rectangular region on the
coordinate is partitioned by 1% of L2/LLC miss rates,
respectively. The density of the red color on each region rep-
resents the number of samples. Thus, dense-colored regions
represent that the corresponding L2/LLC miss rates are
frequently observed in SPEC2017 applications. The black
line on the coordinate represents the boundary of the 80%
of key recovery rates by the Vizard attack (please see
Figure 6).
As shown in Figure 7, we can observe that most samples

of SPEC2017 benchmarks exhibit relatively low L2/LLC
miss rates compared to cache side-channel attacks. More
than 70% (2,314,444 out of total 3,242,094 samples) of the
SPEC2017 samples exhibit L2 and LLC miss rates, both
lower than 50%. The average L2 and LLC miss rates of
SPEC2017 applications are 21.6% and 20.0%, respectively.
30.7% (994,154 samples) of the total SPEC2017 samples are
included in both under-50% of L2/LLC miss rates region
and the green-colored region of Figure 6. Our observation
exhibits that the Vizard attack can efficiently perform cache
side-channel attacks without sacrificing the attack success
rate (i.e. the key recovery rate higher than 80%) even if
the Vizard manipulates the L2/LLC miss rates of an attack
process to make the miss rates similar to SPEC2017 appli-
cations. Profiling-based detectors may lower the threshold
levels of L2/LLCmisses to snipe at theVizard attack, and then
the detectors will incorrectly catch normal processes since
the Vizard attack also exhibits low L2/LLC miss rates like
ordinary applications.

FIGURE 8. Key recovery rate by attack window size for a Prime+Probe
attack.

C. EXPLORING PRIME+PROBE ATTACKS
Even though we evaluate the effectiveness of a Vizard attack
scenario by using Flush+Reload attacks, the Vizard attack can
be applied to other types of cache side-channel attacks. In this
subsection, we evaluate the Vizard attack scenario com-
bined with Prime+Probe attacks. Note that Prime+Probe-type
attacks usually exhibit lower attack success rates compared to
the Flush+Reload attacks since the Prime+Probe attacks can
be designed without exploiting the privileged cache manip-
ulation instructions such as clflush of x86 ISA. While we
intensively describe the Vizard attack scenario applied to
the Flush+Reload attacks in Section V, we briefly explain
how to implement the Vizard attack combined with the
Prime+Probe attacks on the RSA encryption using the design
policy described in Section IV. We define the Vizard attack
combined with Flush+Reload and Prime+Probe attacks as
Vizard+FR and Vizard+PP, respectively.

1) ATTACK WINDOW SIZE
Vizard+PP can utilize smaller attack windows compared
to Vizard+FR due to the native attack mechanism of the
Prime+Probe attack. Note that the Prime+Probe attack
takes more cycles priming target cache blocks, unlike the
Flush+Reload attack, which requires one instruction per
cache block to make cache blocks evicted from the target
cache level. Namely, the Prime+Probe attack needs to load
entire blocks in a target cache set to prepare cache blocks
effectively. Considering modern processors configure LLC’s
set associativity as 12 to 16, the Prime+Probe attack requires
much more instructions for priming one cache set, equiv-
alent to removing one cache block for the Flush+Reload
attack. Hence, Vizard+PP can exploit the smaller attack win-
dows for generating counterbalancing cache events since the
Prime+Probe attack takesmuchmore cycles during the prepa-
ration step of the attack process.

Figure 8 exhibits the key recovery rates of the Prime+Probe
attacks on the RSA encryption with respect to attack win-
dow sizes. Since the target victim application is the same,
we define the Vizard attack window between the prepara-
tion and the scanning steps of the Prime+Probe attack as

48108 VOLUME 11, 2023

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

FIGURE 9. Key recovery rate of the Prime+Probe w.r.t. L2 miss rate
manipulated by the Vizard.

described in Section V-A. Note that the Prime+Probe attack
exhibits a wide range of key recovery rates (65%–100%)
even if no additional delay cycles are added. It is because
the Prime+Probe attack can be intervened by other processes
more easily compared to the Flush+Reload attack. We can
observe meaningful changes in the attack success rates when
the attack window size is set as around 9300 cycles, which
means Vizard+PP can create cache events within 9300 cycles
of the attack window.

2) GENERATING CACHE EVENTS
Unlike the Flush+Reload attack, the scanning step of the
Prime+Probe attack exhibits low cache miss rates in the
target cache level and high cache miss rates in the higher-
level caches. For instance, if the Prime+Probe attack primes
the cache blocks in LLC (i.e. typically L3 cache), the attack
process needs to probe the primed cache blocks in LLC
during the scanning step. Thus, the cache requests generated
by the Prime+Probe result in high miss rates in L1 and L2
caches to access LLC. Since normal applications also exhibit
low miss rates in LLC, profiling-based detectors monitor the
high miss rates in L1 or L2 to detect Prime+Probe attacks.
Hence Vizard+PP evaluated in this paper counterbalances the
L2 miss rates to hide the high cache miss rates caused by the
Prime+Probe attacks.

Figure 9 shows the key recovery rates by the Prime+Probe
attacks on the RSA encryption when Vizard+PP manipulates
the L2 cache miss rates. In order to lower the L2 cache
miss rates provoked by the Prime+Probe attacks, Vizard+PP
generates cache hit events in L2. We regard 65% of the
recovery rate as the marginal success rate of Vizard+PP
since the Prime+Probe attacks exhibit 65%–100% of the
key recovery rate without any delays between preparation
and scanning steps. Our evaluation reveals that Vizard+PP
can reduce the L2 miss rate of the Prime+Probe attack
to 22.7% without sacrificing the key recovery rate. Con-
sidering the average L2 miss rate of SPEC2017 applica-
tions is 21.6%, our study exhibits that the Vizard attack
scenario can also be applied to the Prime+Probe-type
cache side-channel attacks to conceal the attack processes
effectively.

D. BYPASSING PROFILING-BASED DETECTORS
We evaluate whether the Vizard attack can evade the detection
mechanisms of profiling-based detectors. We study the per-
formance of HexPADS and RT-Sniper against Vizard attacks
and normal cache side-channel attacks (i.e. Flush+Reload
and Prime+Probe attacks) as exhibited in Table 3. We con-
figure the target cache miss rates of Vizard+FR as 10% for
L2 cache and LLC respectively. We configure the target L2
miss rate of Vizard+PP as 30%. As described in Section III,
HexPADS and RT-Sniper rely on the cache performance
counters to detect cache side-channel attacks. The original
version of HexPADS is configured to use 70% of cache miss
rates as the threshold level for detecting suspicious cache
behaviors [29]. HexPADS detects a certain process as a cache
side-channel attack if the average cache miss rates of the
process exceed the configured threshold level during one
second of the sampling period. We change the HexPADS
threshold lower than the original level to make HexPADS
detect the security attacks that exhibit lower cache miss rates.
RT-Sniper employs a cumulative sum algorithm for L2 and
LLC miss rates to detect suspicious processes [30]. We con-
figure RT-Sniper to collect cache performance counters at
every 10 ms. We measure the correct detection performance
(i.e. true-positive rate) of the profiling-based detectors by
testing the Vizard attacks and the normal cache side-channel
attack. We repeatedly run the attacks and the detectors on
separate cores 1000 times to measure the number of detected
cases. We also test the false-positive rate of the detectors
using SPEC2017 benchmarks. In this evaluation, we test 46
SPEC2017 applications and count the number of applications
detected as security attacks by the profiling-based detectors.

As shown in the table, Vizard attacks can effectively bypass
the profiling-based detectors by manipulating the L2/LLC
miss rates of the attack process. Note that RT-Sniper and
HexPADS cannot detect Vizard+FR at all. Only RT-sniper
detects Vizard+FR as a security attack once out of 1000 tries.
Vizard+PP can also hide the Prime+Probe attacks effec-
tively, thus the original version of HexPADS cannot detect
Vizard+PP at all. RT-Sniper catches Vizard+PP 116 times
out of 1000 tries, however 11.6% of the detection rate is
extremely low. On the other hand, the detectors can always
catch Flush+Reload and Prime+Probe attacks successfully.
We also measure the false-positive rates by the detectors
using SPEC2017 benchmarks. We set the threshold levels
of HexPADS as 70%, 50%, and 30%. Note that HexPADS
can detect the cache side-channel attacks with low threshold
levels more effectively, however the false-positive rate can
also be increased. Our evaluation exhibits that 36 out of 46
SPEC2017 applications are detected as security attacks by
HexPADS when the threshold level is set as 30% of the LLC
miss rate. However, Vizard+PP is not detected by HexPADS
even though the threshold level is extremely low. Our evalu-
ation exhibits HexPADS can catch Vizard+PP if HexPADS
sets the 30% of cache miss rates as a threshold level for
detecting security attacks. However, this is not a viable option

VOLUME 11, 2023 48109

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

TABLE 3. Detection performance by modified HexPADS and RT-Sniper.

since HexPADS exhibits extremely high false-positive rates if
the threshold level is configured as lower than 50%.

Even though we study only HexPADS and RT-Sniper to
evaluate the effectiveness of the Vizard attack in this work,
we can say Vizard can effectively evade other detection
approaches that rely on performance counters. As shown
in Figure 6, Vizard attacks can make L2/LLC miss rates
lower than the average miss rates of SPEC2017 benchmarks.
That means the profiling-based detectors cannot identify
the Vizard attacks among normal processes by monitoring
cachemiss rates.Machine learning-based detectors may track
the specific performance counter values to detect security
attacks. However, the attackers that employ the Vizard attack
scenario can randomly select the target miss rates in run-time
within the allowable attack window ranges. Thus, the Vizard
attacks cannot be identified by tracking the specific cache
performance behaviors.

VII. RELATED WORK AND DISCUSSION
A. EVASIVE ATTACKS
Researchers have explored several attack mechanisms that
can bypass the existing security attack detectors. Li et al.
presented a modified Spectre attack, called Evasive Spectre,
which can bypass the signature-based detectors that rely on
specific performance footprints (e.g. LLC references/misses
and retired branches/misses) of Spectre attacks [32], [36].
Evasive Spectre executes additional branch and cache access
instructions to hide the specific performance features of
Spectre-like attacks. The authors also proposed a delaying
mechanism that can dilute the performance counters created
by Spectre attacks. Pashrashid et al. introduced modified
Spectre attacks to test the performance of their proposed
detector [34]. In order to reveal the limitations of ML-based
detectors, the authors presented the modified Spectre attack
that contains a part of normal application codes and the
expanded Spectre attack that delays the branch mistraining
step by inserting NOP instructions. Whereas those researches
present evasive attack mechanisms that can be applied to
transient execution attacks, Vizard represents the attack
approaches based on the general cache side-channel attacks
to bypass profiling-based detectors.

Khasawneh et al. presented attackers can reverse-engineer
existing hardware malware detectors to evade the catches
from the detectors [33]. The authors mentioned that attackers
could randomly insert specific instructions into existing

malware codes in order to perturb instruction counts and
architectural event data exploited by detectors. They stated
the general approaches that can bypass hardware malware
detectors. Jiang et al. presented an attack approach that can
bypass anomaly-based detectors [35]. The authors proposed
an attack approach that partitions original attack processes
into many smaller parts and slows down the attack execu-
tions in order to minimize the performance influences from
security attacks. In this paper, we present an evasive attack
that creates counterbalancing events within available attack
windows to evade profiling-based detectors.

B. UTILIZING OTHER PERFORMANCE EVENTS
In this work, we propose the Vizard attack scenario that can
bypass profiling-based security attack detectors. We apply
the Vizard attack mechanism to popular cache side-channel
attacks (i.e. Flush+Reload and Prime+Probe attacks) on RSA
encryption applications. Since the profiling-based detectors
exploit cache performance counters (i.e. cache misses) to
detect cache side-channel attacks, Vizard generates cache
hits to compensate for many cache misses generated by the
security attacks. Even though we explore the Vizard attack
by taking the cache-side channel attacks, the proposed Vizard
attack scenario can also be applied to other types of security
attacks. For instance, researchers presented several attack
detection solutions that exploit branch-related or TLB-related
events [36], [37], [38], [39], [40], [41]. Note that such detec-
tors target security attacks that exhibit specific performance
behaviors regarding branch predictors or TLBs. Based on the
attack scenario described in Section IV, the Vizard attack
scenario can be applied to different types of security attacks if
attainable attackwindows are available in the security attacks.
For example, Vizard can be designed to generatemany branch
hits if a target detector monitors branch prediction misses to
catch security attacks.

VIII. CONCLUSION
In this paper, we explore the limitations of profiling-based
detectors by presenting the Vizard attack scenario that
can hide cache side-channel attacks’ particular cache per-
formance behaviors. We reveal that most profiling-based
detectors targeting popular cache side-channel attacks rely on
performance counters that attack processes can also manip-
ulate. In order to design the Vizard attack scenario, we first
analyze cache side-channel attacks to identify available attack

48110 VOLUME 11, 2023

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

windows, which are usually found between the preparation
and the scanning steps of the cache side-channel attacks. Then
we evaluate the allowable sizes of the attack windows that
can guarantee high attack success rates. Finally, Vizard runs
a cache events generator to manipulate cache performance
counters within the pre-defined attack windows. In order
to evaluate the effectiveness of the Vizard attack scenario,
we implement the Vizard attack on the Flush+Reload and
Prime+Probe, targeting an RSA encryption. Our evaluation
reveals that the Vizard can effectively manipulate the cache
performance counters of the attack process while maintain-
ing attack success rates. Our experiments also exhibit that
Vizard can bypass the profiling-based detectors. Our work
represents that more than profiling-based detectors will be
required for security attacks that can manipulate performance
counters.

REFERENCES
[1] Y. Yarom and K. Falkner, ‘‘FLUSH+RELOAD: A high resolution, low

noise, L3 cache side-channel attack,’’ in Proc. 23rd USENIX Secur. Symp.
(USENIX Secur.), 2014, pp. 719–732.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, ‘‘Last-level cache
side-channel attacks are practical,’’ in Proc. IEEE Symp. Secur. Privacy,
May 2015, pp. 605–622.

[3] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, ‘‘Flush+Flush: A
fast and stealthy cache attack,’’ in Proc. Int. Conf. Detection Intrusions
Malware, Vulnerability Assessment, 2016, pp. 279–299.

[4] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, ‘‘ARMaged-
don: Cache attacks onmobile devices,’’ inProc. 25th USENIX Secur. Symp.
(USENIX Secur.), 2016, pp. 549–564.

[5] S. Briongos, P. Malogón, J. Moya, and T. Eisenbarth,
‘‘RELOAD+REFRESH: Abusing cache replacement policies to perform
stealthy cache attacks,’’ in Proc. 29th USENIX Secur. Symp. (USENIX
Secur.), 2020, pp. 1967–1984.

[6] D. Gullasch, E. Bangerter, and S. Krenn, ‘‘Cache games—Bringing access-
based cache attacks on AES to practice,’’ in Proc. IEEE Symp. Secur.
Privacy, May 2011, pp. 490–505.

[7] H. Cho, P. Zhang, D. Kim, J. Park, C. Lee, Z. Zhao, A. Doupé, and G. Ahn,
‘‘Prime+count: Novel cross-world covert channels on arm trustzone,’’ in
Proc. 34th Annu. Comput. Secur. Appl. Conf., 2018, pp. 441–452.

[8] Z. Kou, W. He, S. Sinha, and W. Zhang, ‘‘Load-step: A precise trustzone
execution control framework for exploring new side-channel attacks like
flush+evict,’’ in Proc. 58th ACM/IEEE Design Automat. Conf. (DAC),
Dec. 2021, pp. 979–984.

[9] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and
J. Torrellas, ‘‘Attack directories, not caches: Side channel attacks in a non-
inclusive world,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2019,
pp. 888–904.

[10] L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev,
‘‘Non-monopolizable caches: Low-complexity mitigation of cache side
channel attacks,’’ ACM Trans. Archit. Code Optim. (TACO), vol. 8, no. 4,
pp. 1–21, Jan. 2012.

[11] Z. Wang and R. B. Lee, ‘‘New cache designs for thwarting software
cache-based side channel attacks,’’ in Proc. 34th Annu. Int. Symp. Comput.
Archit., Jun. 2007, pp. 494–505.

[12] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and
S. Mangard, ‘‘ScatterCache: Thwarting cache attacks via cache set ran-
domization,’’ in Proc. 28th USENIX Secur. Symp. (USENIX Secur.), 2019,
pp. 675–692.

[13] M. K. Qureshi, ‘‘CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,’’ in Proc. 51st Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), Oct. 2018, pp. 775–787.

[14] (2022). Affected Processors: Guidance for Security Issues on Intel
Processors. Intel. Accessed: Dec. 19, 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/topic-technology/
software-security-guidance/processors-affected-consolidated-product-
cpu-model.html

[15] (2016). Introduction to Cache Allocation Technology in the Intel Xeon Pro-
cessor E5 V4 Family. Intel. Accessed: Dec. 19, 2022. [Online]. Available:
https://www.intel.com/content/www/us/en/developer/articles/technical/
introduction-to-cache-allocation-technology.html

[16] T. Kim, M. Peinado, and G. Mainar-Ruiz, ‘‘STEALTHMEM: System-
level protection against cache-based side channel attacks in the
cloud,’’ in Proc. 21st USENIX Secur. Symp. (USENIX Secur.), 2012,
pp. 189–204.

[17] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and
R. B. Lee, ‘‘CATalyst: Defeating last-level cache side channel attacks in
cloud computing,’’ inProc. IEEE Int. Symp. High Perform. Comput. Archit.
(HPCA), Mar. 2016, pp. 406–418.

[18] J. Shi, X. Song, H. Chen, and B. Zang, ‘‘Limiting cache-based side-channel
in multi-tenant cloud using dynamic page coloring,’’ in Proc. IEEE/IFIP
41st Int. Conf. Dependable Syst. Netw. Workshops (DSN-W), Jun. 2011,
pp. 194–199.

[19] Y. Ye, R. West, Z. Cheng, and Y. Li, ‘‘COLORIS: A dynamic cache
partitioning system using page coloring,’’ in Proc. 23rd Int. Conf. Parallel
Archit. Compilation (PACT), 2014, pp. 381–392.

[20] M. Payer, ‘‘HexPADS: A platform to detect ‘stealth’ attacks,’’ in Proc. Int.
Symp. Eng. Secure Softw. Syst., 2016, pp. 138–154.

[21] M. Song, J. Lee, T. Suh, and G. Koo, ‘‘RT-sniper: A low-overhead defense
mechanism pinpointing cache side-channel attacks,’’ Electronics, vol. 10,
no. 22, p. 2748, Nov. 2021.

[22] J. Depoix and P. Altmeyer, ‘‘Detecting spectre attacks by identifying cache
side-channel attacks using machine learning,’’ in Proc. 4th Wiesbaden
Workshop Adv. Microkernel Oper. Syst. (WAMOS). Wiesbaden, Germany:
RheinMain Univ. of Applies Sciences (HSRM), Jul. 2018, pp. 75–85.

[23] B. Zheng, J. Gu, J. Wang, and C. Weng, ‘‘CBA-detector: A self-feedback
detector against cache-based attacks,’’ IEEE Trans. Dependable Secure
Comput., vol. 19, no. 5, pp. 3231–3243, Sep. 2022.

[24] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, ‘‘SpyDetector: An approach
for detecting side-channel attacks at runtime,’’ Int. J. Inf. Secur., vol. 18,
no. 4, pp. 393–422, Aug. 2019.

[25] M. Mushtaq, J. Bricq, M. K. Bhatti, A. Akram, V. Lapotre,
G. Gogniat, and P. Benoit, ‘‘WHISPER: A tool for run-time detection of
side-channel attacks,’’ IEEE Access, vol. 8, pp. 83871–83900, 2020.

[26] S. Briongos, G. Irazoqui, P. Malagón, and T. Eisenbarth, ‘‘CacheShield:
Detecting cache attacks through self-observation,’’ in Proc. 8th ACMConf.
Data Appl. Secur. Privacy, 2018, pp. 224–235.

[27] T. Zhang, Y. Zhang, and R. B. Lee, ‘‘CloudRadar: A real-time side-channel
attack detection system in clouds,’’ in Proc. Int. Symp. Res. Attacks,
Intrusions, Defenses, 2016, pp. 118–140.

[28] D. M. Gordon, ‘‘A survey of fast exponentiation methods,’’ J. Algorithms,
vol. 27, no. 1, pp. 129–146, Apr. 1998.

[29] HexPADS, a Host-Based, Performance-Counter-Based Attack Detection
System. Accessed: Nov. 16, 2022. [Online]. Available: https://github.
com/HexHive/HexPADS

[30] RT-Sniper PoC Program. Accessed: Nov. 16, 2022. [Online]. Available:
https://github.com/takeangle/RT-Sniper

[31] Mastik: A Micro-Architectural Side-Channel Toolkit. Accessed:
Nov. 16, 2022. [Online]. Available: https://github.com/0xADE1A1DE/
Mastik

[32] C. Li and J.-L. Gaudiot, ‘‘Challenges in detecting an ‘evasive spectre,’’’
IEEE Comput. Archit. Lett., vol. 19, no. 1, pp. 18–21, Jan./Jun. 2020.

[33] K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu, ‘‘RHMD:
Evasion-resilient hardware malware detectors,’’ in Proc. 50th Annu.
IEEE/ACM Int. Symp. Microarchitecture, Oct. 2017, pp. 315–327.

[34] A. Pashrashid, A. Hajiabadi, and T. E. Carlson, ‘‘Fast, robust and accurate
detection of cache-based spectre attack phases,’’ in Proc. 41st IEEE/ACM
Int. Conf. Comput.-Aided Design, Oct. 2022, pp. 1–9.

[35] J. Jiang, C. Soriente, and G. Karame, ‘‘On the challenges of detecting side-
channel attacks in SGX,’’ in Proc. 25th Int. Symp. Res. Attacks, Intrusions
Defenses, Oct. 2022, pp. 86–98.

[36] C. Li and J. Gaudiot, ‘‘Detecting spectre attacks using hardware perfor-
mance counters,’’ IEEE Trans. Comput., vol. 71, no. 6, pp. 1320–1331,
Jun. 2022.

[37] B. Ali Ahmad, ‘‘Real time detection of spectre and meltdown attacks using
machine learning,’’ 2020, arXiv:2006.01442.

[38] M. Alam, S. Bhattacharya, and D. Mukhopadhyay, ‘‘Victims can be sav-
iors: A machine learning–based detection for micro-architectural side-
channel attacks,’’ ACM J. Emerg. Technol. Comput. Syst., vol. 17, no. 2,
pp. 1–31, 2021.

VOLUME 11, 2023 48111

M. Song et al.: Vizard: Passing Over Profiling-Based Detection by Manipulating Performance Counters

[39] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud,
‘‘Cache-based side-channel attacks detection through Intel cache moni-
toring technology and hardware performance counters,’’ in Proc. 3rd Int.
Conf. Fog Mobile Edge Comput. (FMEC), Apr. 2018, pp. 7–12.

[40] Z. Tong, Z. Zhu, Z. Wang, L. Wang, Y. Zhang, and Y. Liu, ‘‘Cache side-
channel attacks detection based on machine learning,’’ in Proc. IEEE 19th
Int. Conf. Trust, Secur. Privacy Comput. Commun. (TrustCom), Dec. 2020,
pp. 919–926.

[41] A. Tang, S. Sethumadhavan, and S. J. Stolfo, ‘‘Unsupervised anomaly-
based malware detection using hardware features,’’ in Proc. Int. Workshop
Recent Adv. Intrusion Detection, 2014, pp. 109–129.

[42] S.M. P. Dinakarrao, S. Amberkar, S. Bhat, A. Dhavlle, H. Sayadi, A. Sasan,
H. Homayoun, and S. Rafatirad, ‘‘Adversarial attack on microarchitectural
events basedmalware detectors,’’ inProc. 56th Annu. Design Autom. Conf.,
Jun. 2019, pp. 1–6.

MINKYU SONG (Member, IEEE) received the
B.S. degree in computer science and engineer-
ing from the Ulsan National Institute of Science
and Technology (UNIST), Ulsan, South Korea,
in 2017. He is currently pursuing the M.S. degree
with the Department of Computer Science and
Engineering, Korea University. His research inter-
ests include computer system architecture, com-
puter security, and secure computing.

TAEWEON SUH (Member, IEEE) received the
B.S. degree in electrical engineering from Korea
University, Seoul, South Korea, in 1993, the
M.S. degree in electronics engineering from Seoul
National University, in 1995, and the Ph.D. degree
in electrical and computer engineering from the
Georgia Institute of Technology, Atlanta, GA,
USA, in 2006. He is currently a Professor with the
Department of Computer Science and Engineer-
ing, Korea University.

GUNJAE KOO (Member, IEEE) received the
B.S. and M.S. degrees in electrical and computer
engineering from Seoul National University, in
2001 and 2003, respectively, and the Ph.D. degree
in electrical engineering from the University of
Southern California, in 2018. He is currently an
Assistant Professor with the Department of Com-
puter Science and Engineering, Korea University.
Prior to joining Korea University, he was an Assis-
tant Professor with Hongik University. He is a

Senior Research Engineer with LG Electronics and a Research Intern with
Intel. His research interests include computer system architecture and span
parallel processor architecture, storage and memory systems, accelerators,
and secure processor architecture.

48112 VOLUME 11, 2023

