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ABSTRACT In pharmacokinetics, the clinical information collected from the patient is often much less
than the complexity of the patient’s internal operations, hence the undetermined inverse problem has
emerged as a challenge to solve it and find multiple possible point sets for considering the many possible
implications of drug kinetics in the patient’s body. This paper suggests two enhanced schemes for the early
cluster Newton method (CNM) to concomitantly explore a great solutions number for the inverse parameter
determination in pharmacokinetics. The first scheme is the application of Tikhonov regularization to deal
with the overdetermined system for hyperplane fitting in the CNM, and the second is an effective iterative
strategy by tuning perturbation-level for the CNM. As a result of Tikhonov’s filtering operation, lower order
singular values than the regularization parameter, that are to blame for the instability of the matrix equation,
are efficiently eliminated.With perturbation-level tuning, following every iteration, as the point cluster (PoC)
gets near the solution manifold (SoM), it is essential to lessen the level of perturbation in the patient’s clinical
measurement data and this is suited for a numerical stabilization. Numerical simulation scenarios of two
schemes have revealed that these suggested schemes can lower the iterations number and computed time,
and PoC move more steadily towards the solutions manifold.

INDEX TERMS Tikhonov regularization, physiologically based pharmacokinetics, pharmacokinetics,
cluster Newton method, inverse problem.

I. INTRODUCTION
In pharmacokinetics, we frequently encounter the problem
of underdetermined inverse, that is, the variables number
is greater than the equations number. This is because the
collected data frequently do not give the complex mechanism
explanation in the human body. Thanks tomathematical mod-
eling, wewould simulate complex activities and gain precious
insight into in vivo pharmacokinetics. In [1] and [2], the
authors proposed to apply the CNM in order to concomitantly
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seek many solutions for an undetermined inverse problem.
Because the proposed CNM uses a least squares approach to
collectively fit the Jacobian, it is more effective than algo-
rithms that calculate many solutions one at a time. The CNM
works by concurrently computing a cluster of solutions. It is
proven that, the CNM is trustworthy, powerful, and efficient
than the Levenberg-Marquardt method. In order to identify
solutions family that best fits the additional requirements,
in [3], the authors suggest a novel algorithm based on the
Beta distribution’s two parameters. As a result, it is possible
to have considerably more control over the range of possible
solutions when using the CNM. Additionally, the authors add
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certain enhancements to the original CNM, such an error
adaptive margin for the target value perturbation and an ana-
lytical Jacobian to the forward issue resolution.

In this work, we suggest two enhanced schemes for the
CNM method. In the physiologically based pharmacokinet-
ics (PBPK) problem, we need to find many points at the
same time, hence the number of function evaluations will
be very large (the CNM requests only one function evalu-
ation/point/iteration). Therefore, in this study, we are inter-
ested in solutions that increase the computational efficiency
for the CNM method through numerical treatment to reduce
the number of iterations. It can be seen that the backslash
operator fits quite well with the hyperplane in Step 2.2 of
the original CNM [1], [2], [3], however, the stability still
needs to be enhanced in view of the fact that (i) Stability
deficiency of the solution with the meaning that param-
eter recognition is a hypothetical inverse problem. Espe-
cially, it can be greatly amplified by modeling error and
measurement noise. By using the regularization approach,
these issues can be solved. More specifically, the data mis-
match minimization problem and the regularization issue
could be considered as parameters of stable identification;
(ii) Thanks to the single values contribution in the matrix
operator, the quadratic filter behaves like the Tikhonov regu-
larization. This filter can efficaciously dismiss singular values
of order lower than those of normal parameters that leads
to instability of matrix equations. For that reason, we pro-
pose to use Tikhonov regularization to handle the overde-
termined system for hyperplane fitting in Step 2.2 in the
early CNM. Tikhonov regularization has been also applied
in many medical optimization problems, such as in B-mode
imaging [4], [5], [6], X-ray imaging [7], [8], [9], ultra-
sound tomography [10], [11], MRI [12], [13], [14]. Besides
a machine-learning based method in geophysics is also pro-
posed to perform the inversion using direct mapping the seis-
mic prestack data to seafloor elastic parameters [15]. To the
best of our knowledge, Tikhonov has been used to solve
inverse problems in many areas, including pharmacokinetics
[16]. However, PBPK using cluster Newton method (CNM)
to search for many solutions simultaneously, Tikhonov’s reg-
ularization has not been considered.

In the early CNM, the PoC tends to inch closer to the SoM
N∗ after each iteration. We must introduce randomly chang-
ing object values of h∗ (the amount of the current perturbation
is 10%) [2] in order to ensure that the least squares issue is
properly stated. Following every iteration, although the PoC
tends to go closer to the SoM N∗, the perturbation level will
stay the same. Keeping this level of perturbation constant can
introduce significant errors, especially as the point cluster is
nearby the SoM. Therefore, we suggest a meaningful iterative
manner in the CNM to determine the inverse parameter in
pharmacokinetics. Following every iteration, as the PoC pro-
ceeds toward the N∗ solution path, and the noise reduction of
h∗ needs to be implemented and this is suitable in numerical
stabilization. Therefore, Stage 1 is divided into two sub-
Stages (e.g., Stage 1 and Stage 2). Substage1 is executed with

FIGURE 1. PBPK’s simple diagram.

the use of a large h∗ disturbance for the first several iterations;
Substage2 is executed with the use of a small h∗ disturbance
for subsequent iterations. With this approach, the simulation
results show that the moving the PoC is more stable, both the
iterations number and the computed time are reduced. This
solution is even better than Tikhonov regularization.

This paper is organized as follows. Section II describes
physiologically based pharmacokinetics (PBPK), including
forward problem: pharmacokinetics model; inverse problem:
identification of model parameters; model problem repre-
sentation. Section III describes early cluster newton method
(CNM) for solving the underdetermined inverse problem.
Section IV present the first proposed approach: Tikhonov reg-
ularization is used to fit a hyperplane for the CNM. Section V
presents the second proposed approach: A CNM effective
iteration procedure. Section VI present numerical experi-
ments and results of two approaches. Finally, Section VII
presents our conclusions. In this work, we have proposed two
contributions, Tikhonov regularization and perturbation-level
tuning, aiming to improve the traditional CNM method by
increasing the convergence speed (i.e., reducing the relative
error residual) and reducing the computational cost.

II. PHYSIOLOGICALLY BASED PHARMACOKINETICS
(PBPK)
The PBPK provides a mathematical modelling method
for predicting the absorption, distribution, metabolism, and
excretion of the CPT-11 drug in human body. It is employed
in pharmaceutical research and medication development,
as well as in the evaluation of the health risks associated with
chemicals. In this section, we present the forward problem
from injecting CPT-11 into the body, then the inverse problem
based on the excretion paths in urine and bile, and finally
present the problem model of the PBPK.
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A. FORWARD PROBLEM OF THE PBPK
In the beginning, through intravenous, the CPT-11 drug
is injected into a person’s body. The drug, denoted as
u1 (t) , . . . , u25 (t), along with its metabolites, which are SN-
38, SN-38G, NPC, and APC, are modeled in each piece
of the body, consisting blood, adipose, GI, liver and NET,
based on the Arikuma’s PBPK model [17]. Any chemical
combination in every section is related via paths, l1, . . . , l55,
that show chemical compound inflow and outflow. Because
the concentration variations are caused by the flow of chem-
ical components, a concentrations system of the 1st order
ordinary differential equation (ODE) indicated by ui (t) can
be constructed as a time’s function, t .
The pathways, depicted in Figure 1 as l1, . . . , l55, have

beenmodeled byArikuma et al. Blood flow,metabolic, excre-
tion, and i.v drip are the four types of routes that are taken
into consideration. Every pathway provides a quantitative
depiction of the drug flow rate. Regarding to these pathways,
60 parameters (typical values) denoted as n1, . . . , n60 are
shown in Table B1-B5 in [17]. This inverse problem purpose
is to evaluate this model’s parameters which are better than
the representative values of clinical observation data listed in
the table.

As u1 (t) , . . . , u25 (t) are the CPT-11 concentrations along
with its metabolics in parts. The concentration variations dui

dt
are by the drug inflow and outflow with pathways. Hence,
an ODE system can be constructed in order to represent for
concentrations, ui (t), as follows:

d
dt
u = h(u, t; n)

Detailed equations are expressed in the next page.
This is the 1st order ODE system, the ODE15s function in

Matlab is used to resolve [20]. After that, u(n1, . . . , n60; t)
can be obtained, they depend on variables, t and n1, . . . , n60.
Therefore, u1 (t) , . . . , u25 (t) could be evaluated.

B. INVERSE PROBLEM: IDENTIFICATION OF MODEL
PARAMETERS
In the inverse problem, with the outcomes of excretion path-
ways in urine as well as bile (h ∈ R10), and a function
of PBPK model (f : R60 → R10), PBPK’s parameters as
enzyme reaction speed, blood flow rate, and tissue volume,
etc. (n ∈ R60) are needed to estimate. The inverse problem
model has been shown as follows:

h = f (n)

When formulated in vector form, it becomes:

[h1, h2, . . . , h10]T

= [u26 (n1, . . . , n60;T ) , . . . , u35 (n1, . . . , n60;T )]T

= [f1 (n1, . . . , n60) , . . . , f10 (n1, . . . , n60)]T

where

f1 (n) = u26 (n;T ) =
∫ T
0 l46 =

∫ T
0 n26.n21.u1 (t) dt

f2 (n) = u27 (n;T ) =
∫ T
0 l47 =

∫ T
0 n27.n22.u2 (t) dt

f3 (n) = u28 (n;T ) =
∫ T
0 l48 =

∫ T
0 n28.n23.u3 (t) dt

f4 (n) = u29 (n;T ) =
∫ T
0 l49 =

∫ T
0 n29.n24.u4 (t) dt

f5 (n) = u30 (n;T ) =
∫ T
0 l50 =

∫ T
0 n30.n25.u5 (t) dt

f6 (n) = u31 (n;T ) =
∫ T
0 l51 =

∫ T
0 (n31.n21)/n11.u16 (t) dt

f7 (n) = u32 (n;T ) =
∫ T
0 l52 =

∫ T
0 (n32.n22)/n12.u17 (t) dt

f8 (n) = u33 (n;T ) =
∫ T
0 l53 =

∫ T
0 (n33.n23)/n13.u18 (t) dt

f9 (n) = u34 (n;T ) =
∫ T
0 l54 =

∫ T
0 (n34.n24)/n14.u19 (t) dt

f10 (n) = u35 (n;T ) =
∫ T
0 l55 =

∫ T
0 (n35.n25)/n15.u20 (t) dt

In this inverse problem, it is characterized as an ordinary
differential equation (ODE) system coefficient determination
issue. The ODE system is used to simulate the transport and
metabolism of the CPT-11 anticancer medication along with
its metabolites. Noting that ui (t) (i = 1, 2, . . . , 25) are all
dependent on ni(i = 1, 2, . . . , 60), and a mapping function
from the ni to the excretion paths hi(i = 1, 2, . . . , 10) may be
found. That is, the connection among parameters (unknown)
and output data (observable) is known with the PBPK model.
When this inverse problem is solved, patient’s multiple feasi-
ble biological states consistent with the clinical observations
can be found.

C. MODEL PROBLEM REPRESENTATION
The PBPK’s model parameter identifying problem is iden-
tified as: Seek points set in N ⊂ R60 near a box N 0, that
satisfies:

h∗
= f (n)

in which
f : N ⊂ R60 → R10 : a mapped function.
h∗

: Patient’s clinical output.

N =

{
n ∈ R60 : ni > 0và

∑58

i=55
ni < 1000

}
N 0

=

{
n ∈ R60 : max

i=1,2,...,60

∣∣∣∣ni − n̂i
n̂ivi

< 1

∣∣∣∣}
The representative values of model parameters are

extracted in the work of Arikuma [17] and these values are
symbolized as n̂i(i = 1, 2, . . . , 60). The kinetic parameter
variability and physiological parameters are chosen accord-
ing to the works [22], [23] (the variation is ±50% for kinetic
parameters, ±30% for physiological parameters, and ±5%
for drug administration parameters). The i.v drip infusion
parameter variability is sized to be compact since it just
influenced by the drip infusion process accuracy.

III. EARLY CLUSTER NEWTON METHOD (CNM)
Because the presented schemes are only relevant to the
CNM’s Stage 1 (the leading stage), hence, just the first stage
of the CNM is discussed in this section:
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d
dt
u1 =

(
n59
n60

+
n51
n1

.u6 (t)+
(n52+n53)

n11
.u16 (t)+

n54
n16

.u21 (t) − n51.u1 (t) − n53.u1 (t) − n52.u1 (t) − n54.u1 (t)

−n26.n21.u1 (t)
)

/n55

d
dt
u2 =

(
n51
n2

.u7 (t)+
(n52+n53)

n12
.u17 (t)+

n54
n17

.u22 (t) − n51.u2 (t) − n53.u2 (t) − n52.u2 (t) − n54.u2 (t)

−n27.n22.u2 (t)
)

/n55

d
dt
u3 =

(
n51
n3

.u8 (t)+
(n52+n53)

n13
+
n54
n18

.u23 (t) − n51.u3 (t) − n53.u3 (t) − n52.u3 (t) − n54.u3 (t) − n28.n23.u3 (t)
)

/n55

d
dt
u4 =

(
n51
n4

.u9 (t)+
(n52+n53)

n14
.u19 (t)+

n54
n19

.u24 (t) − n51.u4 (t) − n53.u4 (t) − n52.u4 (t) − n54.u4 (t)

−n29.n24.u4 (t)
)

/n55

d
dt
u5 =

(
n51
n5

.u10 (t)+
(n52+n53)

n15
.u20 (t)+

n54
n20

.u25 (t) − n51.u5 (t) − n53.u5 (t) − n52.u5 (t) − n54.u5 (t)

−n30.n25.u5 (t)
)

/n55

d
dt
u6 =

(
n51.u1 (t) − l1 =

n51
n1

.u6 (t)
)

/(1000 − n55 − n56 − n57 − n58)

d
dt
u7 =

(
n51.u2 (t) −

n51
n2

.u7 (t)
)

/(1000 − n55 − n56 − n57 − n58)

d
dt
u8 =

(
n51.u3 (t) −

n51
n3

.u8 (t)
)

/(1000 − n55 − n56 − n57 − n58)

d
dt
u9 =

(
n51.u4 (t) −

n51
n4

.u9 (t)
)

/(1000 − n55 − n56 − n57 − n58)

d
dt
u10 =

(
n51.u5 (t) −

n51
n5

.u10 (t)
)

/(1000 − n55 − n56 − n57 − n58)

d
dt
u11 =

(
n52.u1 (t) −

n51
n6

.u11 (t)
)

/n56;
d
dt
u12 =

(
n52.u2 (t) −

n51
n7

.u12 (t)
)

/n56

d
dt
u13 =

(
n52.u3 (t) −

n51
n8

.u13 (t)
)

/n56;
d
dt
u14 =

(
n52.u4 (t) −

n51
n9

.u14 (t)
)

/n56

d
dt
u15 =

(
n52.u5 (t) −

n51
n10

.u15 (t)
)

/n56

d
dt
u16 =

n53.u1 (t)+
n51
n6

.u11 (t) −
(n52+n53)

n11
.u16 (t) −

n41.n46.n57
n36.n11

n21.u16 (t)
+1

−
n44.n49.n57
n39.n11

n21.u16 (t)
+1

−
n43.n48.n57
n38.n11

n21.u16 (t)
+1

−
n31.n21
n11

.u16 (t)

 /n57

d
dt
u17 =

n53.u2 (t)+
n51
n7

.u12 (t)+
n41.n46.n57
n36.n11

n21.u16 (t)
+1

+
n42.n47.n57
n37.n14

n24.u19 (t)
+1

−
(n52+n53)

n12
.u17 (t)

−
n45.n50.n57
n40.n12

n22.u17 (t)
+1

−
n32.n22
n12

.u17 (t)

 /n57

d
dt
u18 =

n53.u3 (t)+
n51
n8

.u13 (t)+
n45.n50.n57
n40.n12

n22.u17 (t)
+1

−
(n52+n53)

n13
.u18 (t) −

n33.n23
n13

.u18 (t)

 /n57

d
dt
u19 =

n53.u4 (t)+
n51
n9

.u14 (t)+
n44.n49.n57
n39.n11

n21.u16 (t)
+1

−
(n52+n53)

n14
.u19 (t) −

n42.n47.n57
n37.n14

n24.u19 (t)
+1

−
n34.n24
n14

.u19 (t)

 /n57

d
dt
u20 =

n53.u5 (t)+
n51
n10

.u15 (t)+
n43.n48.n57
n38.n11

n21.u16 (t)
+1

−
(n52+n53)

n15
.u20 (t) −

n35.n25
n15

.u20 (t)

 /n57

d
dt
u21 =

(
n54.u1 (t) −

n54
n16

.u21 (t)
)

/n58;
d
dt
u22 =

(
n54.u2 (t) −

n54
n17

.u22 (t)
)

/n58

d
dt
u23 =

(
n54.u3 (t) −

n54
n18

.u23 (t)
)

/n58;
d
d??

u24 =

(
n54.u4 (t) −

n54
n19

.u24 (t)
)

/n58

d
dt
u25 =

(
n54.u5 (t) −

n54
n20

.u25 (t)
)

/n58
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1: Set the initial values and starting positions for the
objects.

1-1: Choose starting points at random
{
n(0).j

}l
j=1

in the N0

box. They are preserved in a N(0) matrix of the 60×l size with
each column corresponding to a n.j point in R60.
1-2: To guarantee that step 2-2 is well-posed, generate

randomly disturbed object values
{
h∗
j

}l
j=1

near h∗. The values

of h∗
.j is selected as follows:

max
i=1,2,...,10

∣∣∣∣∣h
∗
ij − h∗

i

h∗
i

∣∣∣∣∣ < η

where η = 0.1 indicating the ifirst stage target accuracy
(±10%). These vectors are collected in a H∗ matrix, with h∗

.j
in column j.

2: For k = 0, 1, 2, . . . , K1
2-1: Deal with each point in N(k) in the forward problem

as follows:

H (k)
= f (N (k))

where the solution of the f function at every column of N(k)

corresponds to each column of H(k).
2-2: Construct a linear approximation of f , it becomes:

f (n) ≈ A(k)n+ h(k)0

via fitting a plane to the axis of H(k). The least squares
approach of an overdetermined linear equations system [18]
can be used to seek the slope matrix A(k) along with the
shifting constant h(k)0 :

min
A(k)∈R10×60,h(k)o ∈R10

∥∥∥H (k)
− (A(k)N (k)

+ H (k)
0 )

∥∥∥
F

here H (k)
0 is a matrix with the size of 10×l whose columns

are all h(k)0 .
2-3: Using a linear approximation, detect the updating

vector s(k).j for all columns of N(k), that is, seek s.j meets:

h∗
.j = A(k)

(
n(k)
.j + s(k).j

)
+ h(k)0 vói j = 1, 2, . . . , l(∗) (1)

Matrix A has a rectangular form in which the number
of columns is larger than that of rows, resulting in a linear
equations system with an underdetermined solution. Hence,
the unique determination of s(k).j that satisfies Equation (∗)
cannot be solved. Of all the obtained solutions of Eq. (∗),
the vector s(k).j is selected with the smallest scaling length.

The vectors
{
s(k).j

}l
j=1

are the solution of an underdetermined

linear equations system that offers the minimum norm, given
as a matrix S(k)

min
S(k)∈R60×l

∥∥∥diag (̂n)−1 S(k)
∥∥∥
F

subjectsto H∗
= (A(k)(N (k)

+ S(k)) + H (k)
0 )

in which, n̂ = (n̂1, n̂2, . . . , n̂60).

2-4: Using updating N(k), seek new points that resemble
the N∗SoM. If needed, the vector length s(k).j is shrinked until

the point, (n(k).j + s(k).j ), is inside the domain of the f function,
as follows:

For j = 1, 2, . . . , l

While (n(k).j + s(k).j ) /∈ X

s(k).j =
1
2
s(k).j

End while

End for

N (k+1)
= N (k)

+ S(k)

End for

To assess the algorithm accuracy, the relative error residual
(RRE) is defined as:

r (k)j (n) = max
i=1,2,...,10

∣∣∣∣∣h
(k)
ij − h∗

i

h∗
i

∣∣∣∣∣ vóih(k).j = f (n(k).j ).

The traditional CNM method can be summarized in the
following six main steps:

1. Choose the starting points at random in box N0.
2. Randomly generate perturbation target values close to

h∗ to confirm that the least squares problem is properly well-
posed.

3. Evaluate the function f for each N(k) point.
4. Build a plane-fitted linear approximation of f.
5. Find an approximate linear update vector s(k).j for each

point.
6. Seek new points that approximate different solutions N∗

with updated N(k).
Our contributions expressed in the traditional CNM

method are as follows: The first proposed solution (Tikhonov
regularization) is applied in step 4 in the traditional CNM;
The second proposed solution (perturbation-level tuning) is
applied in step 2 in the traditional CNM.

IV. THE FIRST PROPOSED APPROACH: TIKHONOV
REGULARIZATION IS USED TO FIT A HYPERPLANE FOR
THE CNM
The second-order regularization (Tikhonov regularization)
adds a regularization parameter and acts as a filter. It can
filter out the oddly small values that cause instability in the
system. The 2nd order regularization is suitable for sparse and
dense data. In the case of using the first-order regularization,
it is suitable for sparse data problems, whereas the number
of point sets in the PBPK problem is huge, so it cannot be
sparse; therefore, the first-order regularization is not suitable
to apply to the problem of dense data points.

Tikhonov regularization overcomes the matrix inversion
numerical instability and then offers lower variance models
of solving minimize ∥y− Ax∥22. This scheme supplements a
positive constant to the ATA diagonals, to make the matrix
nonsingular [19]. Tikhonov regularization has the form as:

VOLUME 11, 2023 30061



L. T. Theu et al.: Tikhonov Regularization and Perturbation-Level Tuning for the CNM in Pharmacokinetics

FIGURE 2. Tikhonov filter function.

minimize F (x) = minimize 1
2 ∥y− Ax∥22 +

λ
2 ∥x∥22

and we have the solution:

↔ x =

(
ATA+ λI

)−1
A
T
y(∗∗)

In the form of SVD, assumed that a real Am×n is full
rank (m ≫ n), A = DWET in which D is orthogonal
to E, D = [d1, . . . ,dm) ∈Rm×m,E = [e1, . . . ,en) ∈Rn×n and
W = diag(w1, . . . ,wn) ∈Rn×n where w1 ≥w2≥ . . . ,wn ≥ 0,
wi is the i-th singular value. From (∗∗), we have the solution:

x =

∑n

i=1
fi

(
dTi y

wi

)
ei

where fi =
w2
i

w2
i +λ

is referred to as a filter function of Tikhonov

regularization.
The regularization parameter, λ, has the following effect of

the filter function: a small value of λ is unaffected in a large

value of wi (λ ≪ wi), i.e. fi =
w2
i

w2
i +λ

≈
w2
i

w2
i

= 1; a large

value of λ can decrease the magnification of 1/wi, because

fi =
w2
i

w2
i +λ

≈
w2
i

λ ≪ 1.

Figure 2 shows Tikhonov filter function. Singular com-
ponents which are small in comparison with λ are filtered
out by Tikhonov regularization while retaining components
that are large. Hence, on the singular values contribution of
the matrix operator, second-order filtering is accomplished
through Tikhonov regularization. The filtering result is to
beneficially eliminate the singular values that are of a lower
order than λ. These values are the cause for the matrix equa-
tion instability.

In short, a positive constant λ is added to every singular
value w2

i of A
TA by Tikhonov regularization. It can be con-

sidered as smoothing. Over smoothing is when we choose λ
that is too high, while undersmoothing is when we choose
λ that is too low. The benefactions of every vector ei to the
solution are reduced as a result of this smoothing. Therefore,
a good selection of λ can offer enough numerical stability to
obtain a good approximate solution.

In [21], Aoki specified that, solving min
A(k)∈R10×60,h(k)o ∈R10∥∥∥H (k)

− (A(k)N (k) + H (k)
0 )

∥∥∥
F

is equivalent to minimize

∥y− Ax∥22. Hence, Tikhonov regularization in the presented
scheme has the form minimize ∥y− Ax∥22 + λ ∥x∥22. In the

form of SVD, the solution is n =

n∑
i=1

fi

(
dTi h
wi

)
ei.

V. THE SECOND PROPOSED APPROACH: A CNM
EFFECTIVE ITERATION PROCEDURE
In this section, an effective CNM iteration approach for iden-
tifying inverse parameters in pharmacokinetics is provided.
After each iteration in the first CNM, the PoC tends to grow
closer to the SoM, N∗. To make sure that the least squares
problem is well-posed, we are required to induce randomly
altered object values of h∗ (the present level of perturbation
is 10%). Although the PoC move closer to the SoM N∗ with
each iteration, the perturbation level remain same.

For the case that the PoC is separated from the N∗ SoM,
the component values in the PoC diverge significantly from
those of the SoM.Hence, a strong enough perturbation level is
required to guarantee the well-posedness in the least squares
issue by providing an essential difference among the compo-
nents in the PoC as well as SoM.

For the case that the PoC is near to the N∗ SoM, the compo-
nent values in the PoC are not considerably different from the
ones in the SoM. Therefore, to guarantee the well-posedness
in the least squares issue, we just need to produce a lower
perturbation level which also presents a notable distinction
between the components in the PoC as well as SoM.

As a result, decreasing the perturbation level of h∗ after
every iteration, when the PoC is adjacent to the SoM N∗,
is necessary and acceptable for numerical stabilization. It sig-
nifies that Stage 1 is split into two halves (i.e., Substage1
and Substage2). For the first few iterations, we use a big
perturbation level of h∗, and for the remainder of the iter-
ations, we use a minor perturbation level of h∗. Numerical
simulation results show that with this proposed scheme, the
PoCmove more stably, the iteration number and computation
time can be saved. This approach is even more superior than
the implementation of Tikhonov regularization.

VI. NUMERICAL EXPERIMENTS AND RESULTS
Numerical simulation parameters of the first suggested
scheme: Sample number Nsamp = 500, total iteration number
Niter = 10, function evaluation accuracy δODE = 10−3,
regularization parameter λ = 10−12, perturbation level 10%.

Numerical simulation parameters of the second suggested
scheme: Sample number Nsamp = 500, total iteration number
Niter = 10, the first Substage’s iteration number N1−iter = 2,
the second Substage’s iteration number N1−iter = 8, function
evaluation accuracy δODE = 10−3, the first stage’s pertur-
bation level 10%, the second stage’s perturbation level 6%.
The computational cost of the iterative algorithm depends on
the number of iterations (Niter) and the number of points in
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TABLE 1. RRE of the early CNM and suggested approaches.

FIGURE 3. The CPT-11 content in blood was predicted utilizing 500 sets of samples obtained by the early CNM, as well as proposed
techniques. The vertical axis expresses concentration of CPT-11 in blood (µmol/L), and horizontal axis expresses time elapsed (minutes).

the cluster of points (Nsamp). Therefore, the computational
cost is denoted by O(Niter×Nsamp). We used the PBPKmodel

code package produced by Arikuma irinotecan and Yasunori
Aoki, specifically as follows: Takeshi Arikuma created the
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FIGURE 4. (a) The calculated total runtime of the original CNM and two proposed approaches and (b) Influence of total runtime on different
numbers of samples obtained by the CNM effective iteration procedure.

Arikuma irinotecan PBPK model in GNU Octave in 2008,
and Yasunori Aoki enhanced it in Matlab in 2011.

In the solution using the Tikhonov filter, the algorithm
will converge faster due to the use of the Tikhonov filter
function. In the noise level turning solution, when the cluster
of points approaches the target, the noise level should also
be reduced for a better target approach and thus increase the
convergence speed. In our problem, we compare the original
CNM algorithm in the finite number of steps through the
relative error residual (RRE).

To get out of the loop, there are two solutions: set a fixed
number of loops or set a target error. The iterative algorithm
will be excited when one of the above two criteria is satisfied.
In our problem, we set a fixed number of iterations of 10;
the algorithm will end after ten iterations. Our objective is
to observe the normalization error and cluster migration after
the first ten iterations between the traditional CNM method
and the proposed solutions. The numerical simulation results
indicate that the two proposed solutions converge quicker
than the standard CNM. In our work, we applied Tikhonov
regularization and perturbation-level tuning with the aim of
improving the traditional CNM method by increasing the
convergence speed (i.e., reducing RRE) and reducing the
computational cost. We have only analyzed RRE reduction
and computation cost.

Table 1 shows the RRE solved by early CNM and the
suggested schemes after Nsum iterations. It is clearly that,
the smallest RRE (RREmin) in Stage 1 that the algorithm
can obtain is 0.11, i.e., 11%. Evidently, seven iterations
are needed in the early CNM for achieving RREmin, while
five iterations are just needed in the proposed approaches.
As a result, at this stage, two iterations can be saved.
That is, 1000 function evaluations can be saved. This is
the cause that the CNM requests evaluation of only one

FIGURE 5. Investigation of normalized error corresponding to different
numbers of samples obtained by the CNM effective iteration procedure.

function/point/iteration, so with 500 points and two itera-
tions, there are 1000 function assessments. As a matter of
fact, multiple feasible solutions need to be found, causing a
great samples number which is greater than 1,000. Conse-
quently, iteration save is noteworthy because it can decrease
the CNM’s computational complexity.

Additionally, for the equal amount of iterations of ten, the
computed time of the suggested strategy is also considerably
lessened, the computed time of the first suggested scheme
and the early CNM are 416.989932 and 461.882349 seconds,
respectively, that is the computed time decreased by 9.76%
after 10 iterations (see Table 1 and Figure 4a). In the fact that,
the suggested schemes require only five iterations (the early
CNM needs seven iterations), the implementation time of the
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FIGURE 6. The CPT-11 content in blood was predicted utilizing 100, 200, 300, and 400 sets of samples obtained by the CNM effective iteration
procedure in the first, second, and third iterations, respectively. The vertical axis expresses concentration of CPT-11 in blood (µmol/L), and
horizontal axis expresses time elapsed (minutes).

suggested schemes decreases much more. With the identical
iteration number, we can explain the reduced computation
time of the first suggested scheme because the Tikhonov
filter function may filter out tiny singular components in
comparison with λ, therefore these values are not included
in the calculation implementation. Meanwhile the early
CNM still computes these values, the computation time will
increase.

Figure 3 depicts the CPT-11 concentration projected find-
ings in blood with the use of 500 parameter sets derived from
the original CNM and suggested schemes. The blue lines
show how drug concentrations change over time. As the drug
is introduced into the body and begins to be metabolized, the
drug’s concentration is rising. The medication concentration
eventually reaches a point when it stops rising and starts to
fall. The red dot represents the maximum drug concentration.
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Based on the observations, the difference between the early
CNM and suggested schemes is not visible after the first
and third repetitions. A significant difference between the
early CNM and suggested schemes could be noticed after the
fifth and seventh iterators, the PoC of the suggested schemes
moved more steadily towards the SoM. Meanwhile, several
samples are still distributed far from the PoC center in the
early CNM. As a result of the Tikhonov regularization’s
nature and a CNM effective iteration procedure, we may be
able to obtain a more stable and sensible solution.

Figure 4 presents the calculated total runtime compar-
ison of the original CNM and two proposed approaches
(Figure 4a) and the influence of total runtime on different
numbers of samples obtained by the CNM effective iteration
procedure (Figure 4b). We see that, as the number of samples
increases from 100 to 500, so does the total runtime. This
is reasonable because with the fixed number of iterations, the
number of function evaluations will increase with the number
of samples, so the function evaluation time will increase.
Figure 5 presents the investigation of normalized error cor-
responding to different numbers of samples (100, 200, 300,
400, and 500) obtained by the CNM effective iteration pro-
cedure approach. As the number of iterations increases, the
normalized error decreases. This is reasonable because during
hyperplane fitting, The collection of points shifts gradually
to the manifold of solutions with the greater number of itera-
tions. And in the case when the number of samples increases,
the normalized error decreases, this is because the larger the
number of points, the easier it is to fit the hyperplane in the
CNM method, and thus the cluster of points will focus and
move more convenient to the manifold of solutions. This is
also observed in Figure 6, especially when the amount of
iterations grows (the fourth iteration from 100 to 400 number
of samples). Some limitations that we need to further improve
are constructing a practical method for determining regular-
ization parameters appropriate for the CNM, determining the
most efficient method for producing h∗ perturbation and the
number of investigated samples need much more to meet
actual problem.

Because the information we clinically gather from liv-
ing patients through treatment is often much less than the
complexity of the inner workings of the patient, the inverse
problem often arises in the area of medicine-mathematics.
The fact that, the inspiration for our attentiveness in the
uncertainty inverse problem was derived from the problem
of determining the parameters of the pharmacokinetic model
for CPT-11, a cancer treatment medication (also known as
Irinotecan). Konagaya offered a work ‘‘virtual patient popu-
lation convergence’’ [24], where the main idea is to estimate
the parameters of a pharmacokineticmodel in thewhole body,
based on observational data clinical patient. The main dis-
tinction of this work with parameter-defined solutions is that,
as opposed to looking for a single set of parameters that fit
the pharmacokineticmodel to reconstruct clinical observation
data, its purpose is to seek many sets of such parameters. The
purpose of identifying these various parameter sets was to

take into account the various potential effects of drug kinetics
in the patient’s body.

VII. CONCLUSION
In this study, based on the early cluster Newton method,
we propose two approaches to enhance the quality of finding
many possible point sets in solving the underdetermined
inverse problem of the physiologically based pharmacoki-
netics. Tikhonov regularization was effectively used to fit a
hyperplane, and an effective CNM iteration approach was
considered to beneficially tune the perturbation level for
warranting the well-posed least squares issue, in the early
CNM for identifying inverse parameters in the field of phar-
macokinetics. Therefore, we may (i) lessen number of itera-
tions; (ii) lessen computing time; and (iii) the PoC progresses
more steadily towards the SoM when using the proposed
approaches. With the proposed approaches, in our numerical
experiments, two iterations (that is 1000 function evaluations)
can be saved and the computed time decreased by 9.76% after
ten iterations in comparison with the early CNM. With the
gained results, we need to further improve some issues such as
(a) develop an effective scheme for calculating regularization
parameter which is suited for the CNM; (b) how to identify
the best percent of generating perturbation of h∗.
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