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ABSTRACT In this investigation, a tracking control is designed for the angular velocity of the DC/DC
Boost converter–DC motor system. To this end, the dynamics of the power supply, generated through a
renewable energy power source, is considered in both the mathematical model and the designed control.
This latter is proposed by using a two-level hierarchical approach, where the dynamics of the DC/DC Boost
converter and the one associated with the DC motor not only are treated as two independent subsystems, but
also they exploit their differential flatness property. For the DC/DC Boost converter, an alternative first-order
mathematical model is obtained for designing the low-level voltage control. Whereas, the well known second
order mathematical model of the DC motor is used for developing the high-level angular velocity control.
The robustness and performance of the hierarchical tracking control are verified via realistic numerical
simulations and experimental results by using Matlab-Simulink, a prototype of the system, the DS1104
board, and the renewable energy emulator TDK-Lambda G100-17. The results demonstrate and validate the
effectiveness of the proposed approach.

INDEX TERMS DC/DC Boost converter, DC motor, differential flatness, renewable energy, robust control,
solar energy.

I. INTRODUCTION
The DC motor is an electric machine with several applica-
tions [1]. Some of these are at industrial level (pumps, fans,
robotics, automation), civilian (home appliances, ventilation,
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air conditioning), transportation (trains, electric vehicles,
aircraft), and renewable energy (motor-generator pair system,
solar pumps), among others. Related to industry applications,
systems using a DC motor represent, on average, the 60%
of electric consumption [2]. Because of this, the renewable
energy turns out to be an interesting topic when is focused
on feeding a motor. On the other hand, since power
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electronics converters have a high efficiency when converting
electric energy, their application for driving motors feeded
by renewable energy power sources is an excellent choice
[3], [4]. In this sense, relevant published papers related to
the DC/DC power electronics converters connected with DC
motors are [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47],
[48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58],
[59], [60], [61], [62], [63], [64], [65], [66], [67], being
the Buck [5], [6], [7], [8], [9], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46] and
the Boost [47], [48], [49], [50], [51], [52], [53], [54], [55]
topologies the most commonly used.

A. DC/DC BUCK CONVERTER AS A DRIVER FOR A DC
MOTOR
The DC/DC Buck converter is the most utilized topology for
driving both the unidirectional [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], [35], [36], [37], [38], [39] and the bidirectional
[40], [41], [42], [43], [44], [45], [46] angular velocity of a
DC motor.

Related to the unidirectional rotation of the motor shaft,
the mathematical model of the DC/DC Buck converter–DC
motor system was proposed by Lyshevski in [5]. After this,
several control laws have been reported for solving either the
regulation or the tracking tasks. In this regard, the control
algorithms recently published in specialized literature are
commonly designed on the basis of a well known strategy.
For example, a nonlinear control [5], a fuzzy logic controller
along with a linear quadratic regulator [6], fractional order
controls [7], [8], [9], and an affine controller [10], were
based on the well known proportional-integral-derivative
(PID) control. In a different direction, the zero average
dynamics (ZAD) technique [11], [12], [13], [14], sliding
modes with dynamic surface [15], a finite-time disturbance
observer [16], a continuous nonsingular terminal [17], and
three variations of sliding modes [18], are papers where
sliding modes were used as the basis control. On the
other hand, differential flatness proposals [19] and [20],
differential flatness and PI plus sliding modes [21], and
linear PI controllers [22], were designed based on a
hierarchical approach. Whereas, a generalized proportional
integral (GPI) observer control [23], a nonlinear control [24],
a control in successive loops [25], and a robust flatness-
based tracking control [26], were developed by considering
the differential flatness property. Additionally, a neuronal
control [27], neuro-adaptive backstepping controls [28],
[29], and an adaptive neurofuzzy H-infinity control [30],
were proposed by using the neural networks technique.

Other controls for driving the angular velocity of the
DC/DC Buck converter–DC motor system were based
on disturbance rejection controllers with a GPI observer
[31], [32], [33], resonant extended state observers
[34], [35], exact tracking error dynamics passive output
feedback (ETEDPOF) control [36], [37], fault detection by
error-based global analytical redundancy relations [38], and
output feedback discrete-time model predictive control [39].

Related to the bidirectional rotation of the motor shaft,
different topologies of the DC/DC Buck converter have been
introduced. One of these corresponds to the DC/DC Buck
converter–inverter–DC motor, whose mathematical model
was proposed and experimentally validated in [40]. In such
a system, the tracking task was solved through a control
based on the ETEDPOF methodology in [41], via the
proposal of two controls based on differential flatness [42],
and by means of an adaptive backstepping using sliding
modes control [43]. Another designed topology was the
full-bridge Buck inverter–DC motor presented in [44] along
with its mathematical model and corresponding experimental
validation, while a tracking control based on the ETEDPOF
methodology was reported in [45]. Lastly, the bidirectional
tracking task was also solved by driving a DC motor through
a clamped diode multilevel DC/DC Buck converter in [46].

B. DC/DC BOOST CONVERTER AS A DRIVER FOR
A DC MOTOR
Controls for driving the angular velocity of a DC motor
by using a DC/DC Boost converter as the driver, can be
classified depending on the rotation of the motor shaft. This
is, unidirectional rotation [47], [48], [49], [50], [51], [52]
and bidirectional one [53], [54], [55], [56]. Related to
the unidirectional rotation, the literature reported passivity
controls [47], non-linear controls [48], [49], [50], digital
controllers [51], and a current control based on fuzzy
logic [52]. Regarding the bidirectional rotation, a new
topology of the DC/DC Boost converter–DC motor was
proposed and its mathematical model was experimentally
validated in [53]. Also, for this new topology, a passive
control was designed in [54] and a differential flatness-based
robust control was developed in [55]. Whereas, a procedure
based on sum-of-squares optimization was presented in [56].

Other topologies where the trajectory tracking task has
been solved on the DC motor shaft are the Buck-Boost
[57], [58], [59], [60], [61], [62], Sepic [63], [64], Sepic and
Ćuk [65], Ćuk [66], and the Luo topology [67].

C. DISCUSSION OF RELATED WORKS AND
CONTRIBUTION
From the previous state-of-the-art review [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63],
[64], [65], [66], [67], it was observed that the angular
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velocity of the DC motor shaft was driven through different
DC/DC power converters topologies. In this direction,
the corresponding topology is chosen depending on the
application for the DC motor. Thus, the DC/DC Boost
converter turns out to be an excellent choice when renewable
energy power sources are going to be used. This, because
the output of such a topology is equal or greater than the
input voltage [68]. However, papers where the DC/DC Boost
converter has been used as a driver for a DC motor [47],
[48], [49], [50], [51], [52], [53], [54], [55], [56] did not
use a renewable energy power source. On the other hand,
works where a renewable energy power source was indeed
used for the DC/DC power converter–DC motor system were
devoted to the Buck [33], [43], Sepic [63], Sepic and Ćuk [65]
topologies. Nevertheless, the dynamic associated with the
renewable energy power source was neglected for control
purposes.

From the aforementioned, this work presents a two-level
hierarchical robust control that contemplates, for the first
time, the dynamics of the renewable energy power source that
feeds the system with the aim of solving the angular velocity
tracking task in the DC/DC Boost converter–DC motor. The
effectiveness and performance of the control are verified via
realistic numerical simulations and through its experimental
implementation. Both results show the accomplishment of the
control task, i.e., ω → ω∗, even when abrupt variations in
parameters of the system are included.

The remaining of this paper is organized as follows. In Sec-
tion II, generalities of the DC/DC Boost converter–DC motor
system are given. In Section III, the high-level control and the
low-level control are developed and then interconnected for
generating the two-level hierarchical control. Section IV is
devoted to simulation results, whereas Section V presents the
corresponding experimental implementation of the proposed
approach. Finally, Section VI concludes this paper and
describes the future of this research.

II. DC/DC BOOST CONVERTER–DC MOTOR SYSTEM
In this investigation, the DC/DC Boost converter–DC motor
system is considered to be the interconnection of two
independently controlled subsystems, as can be observed in
Fig. 1. On the one hand, the DC/DC Boost converter steps up
the input voltage E(t) depending on the input signal u with
the aim of generating the output voltage υ. Here, an electric
current i flows through the inductance L to be sent right
to the parallel connection between the capacitor C and the
load R in accordance with the operation of transistor Q and
diode D. On the other hand, the angular velocity ω of the DC
motor shaft is driven via the voltage ν. In this subsystem, the
armature current ia flows through the armature load Ra and
the inductor La. The product between the pair constant km
and ia generates the torque of the motor. Since the armature
rotates, an induced voltage is generated and corresponds to
the product of the counter electromotive force ke and the
angular velocityω. The remaining parameters are themoment

of inertia J and the viscous friction coefficient of the motor
shaft b.

FIGURE 1. Subsystems DC/DC Boost converter and DC motor.

A. MATHEMATICAL MODELS OF THE DC/DC BOOST
CONVERTER AND THE DC MOTOR
Themathematical model of the DC/DCBoost converter when
the primary power supply is a renewable energy power source
is given by [69]

L
di
dt

= − (1 − uav) υ + E(t),

C
dυ

dt
= (1 − uav) i−

υ

R
.

(1)

While the mathematical model of the DC motor is given
by [21]

dia
dt

=
1
La

ν −
ke
La

ω −
Ra
La
ia,

dω

dt
= −

b
J

ω +
km
J
ia.

(2)

B. ALTERNATIVE FIRST-ORDER MATHEMATICAL MODEL
FOR THE DC/DC BOOST CONVERTER
Since the dynamics associated with the model (1) is a
non-minimum phase dynamics [70], for control purposes,
this paper will use a reduced model for the DC/DC Boost
converter. Such a model is achieved by approximating the
second order dynamics (1) to a first order one by using an
iterative process [70]. This process exploits the differential
flatness property of (1), whose differential parametrization is

i = −
CE(t)R
2L

+ γ,

υ =

√
2
C
F −

L
C

(
−
CE(t)R
2L

+ γ

)2

,

uav = 1 −
Ėi+ E(t)2

L +
2

R2C
υ2

− F̈(
E(t)
L +

2
RC i

)
υ

,

with

γ =
1
2

√(
RCE(t)
L

)2

+
4
L

(
CRḞ + 2F

)
,

and the flat output is given by

F =
1
2
Li2 +

1
2
Cυ2. (3)
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The iterative equations are found from the first derivative with
respect to time of (3) and by using (1), so that the following
is obtained

Ḟ = E(t)i−
1
R

υ2,

and solving for the current i

i =
Ḟ
E(t)

+
1

E(t)R
υ2. (4)

From relation (4) and the flat output (3), the iterative process
for obtaining the reduced model of (1) gives as a result

ik =
Ḟk
E(t)

+
1

E(t)R
υ2,

Fk+1 =
1
2
Li2k +

1
2
Cυ2,

where k ∈ N. This process generates a static relation between
i and υ. It is worth mentioning that Hernández-Márquez et al.
in [71] demonstrated that only one iteration is required for
achieving a dynamic behavior similar to the one described
by (1). From the first iteration, where F is considered to be
constant, the following relation is obtained

i =
1

E(t)R
υ2. (5)

Through the time derivative of (5), and by using (1), the
following reduced model of first order is obtained for the
DC/DC Boost converter that uses a renewable energy power
source

dυ

dt
=
R2E2(t) [− (1 − uav) υ + E(t)] − RLĖ(t)υ2

2RLE(t)υ
. (6)

III. DESIGN OF THE HIERARCHICAL CONTROL BASED ON
DIFFERENTIAL FLATNESS
The design of the two-level hierarchical control considers
both the DC/DC Boost converter and the DC motor as
independent subsystems, as depicted in Fig. 1. In this
proposal, the low level corresponds to the control of the
DC/DC Boost converter, whereas the high level is associated
with the control of the DC motor.

A. LOW-LEVEL CONTROL
The low-level control is proposed by considering the reduced
model of the DC/DC Boost converter (6). Note that in this
model the input uav can be represented as

uav = 1 +
RLĖ(t)υ + 2RLE(t)υ̇

R2E2(t)
−
E(t)
υ

. (7)

Now, (7) is a convenient representation of the DC/DC Boost
converter, since it will allow to define a suitable control over
the voltage υ. Thus, the robustness of the low-level control
will be reflected directly over the output voltage υ. In this
manner, the two-level hierarchical control will be capable of
compensating variations in this voltage so that the angular
velocity tracking task be solved. Instead, if the dynamics (1)
be used, with flat output F =

1
2

(
Li2 + Cυ2

)
, a direct control

over the voltage υ cannot be designed. After considering
(7), the low-level control for the DC/DC Boost converter is
proposed as follows

uav = 1 +
RLĖ(t)υ + 2RLE(t)η

R2E2(t)
−
E(t)
υ

, (8)

where η is an auxiliary control given by

η = υ̇∗
− κ1

(
υ − υ∗

)
− κ0

∫ t

0

(
υ − υ∗

)
dτ,

being κ0 and κ1 the gains of the control and υ∗ the desired
output voltage of the converter. After equating (7) with (8)
and defining the tracking error as eb = υ − υ∗, the error
dynamics in closed-loop of the DC/DC Boost converter is

ëb + κ1ėb + κ0eb = 0,

whose characteristic polynomial is defined as

Pb(s) = s2 + κ1s+ κ0. (9)

With the aim of achieving that υ → υ∗, the polynomial (9)
is equated with the following Hurwitz polynomial

Pdb = s2 + 2ζbωnbs+ ω2
nb ,

being ζb and ωnb the damping factor and the undamped nat-
ural frequency of the converter in closed-loop, respectively.
Hence, the gains κ0 and κ1 of the low-level control are

κ0 = ω2
nb ,

κ1 = 2ζbωnb .
(10)

Note that the choice of ζb and ωnb for tuning the control will
ensure that eb → 0 and, consequently, that υ → υ∗ be
achieved.

B. HIGH-LEVEL CONTROL
The high-level control, associated with the DC motor,
exploits the differential flatness property of this subsystem.
Such a control, in accordance with [21], is

ν =
JLa
km

δ +

(
bLa
km

+
JRa
km

)
ω̇ +

(
bRa
km

+ ke

)
ω, (11)

where the auxiliary control δ is proposed as

δ = ω̈∗
−α2

(
ω̇−ω̇∗

)
− α1

(
ω − ω∗

)
− α0

∫ t

0

(
ω − ω∗

)
dτ,

where α0, α1, and α2 are the control gains of the high-level
control and ω∗ is the desired angular velocity. Based on [21],
the error dynamics in closed-loop is given by

...
e m + α2ëm + α1ėm + α0em = 0,

with em = ω − ω∗ and whose characteristic polynomial is

Pm(s) = s3 + α2s2 + α1s+ α0.

Similarly to the low-level control, the polynomial Pm(s) is
also equatedwith a Hurwitz onewith the objective of carrying
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out the tracking task. To this end, the Hurwitz polynomial for
controlling the angular velocity ω is

Pdm (s) = (s+ a)
(
s2 + 2ζmωnms+ ω2

nm

)
,

being 0 < a, ζm the damping factor and ωnm the undamped
natural frequency of the DC motor in closed-loop. Thus, the
gains of the high-level control are given as

α0 = aω2
nm ,

α1 = ω2
nm + 2aζmωnm , (12)

α2 = 2ζmωnm + a,

such that, after choosing the parameters a, ζm, and ωnm , the
tracking task in this subsystem is performed, i.e., ω → ω∗.

C. HIERARCHICAL CONTROL
With the intention of achieving that ω → ω∗ through the
high-level and low-level controls ν and uav, respectively,
the interconnection depicted in Fig. 2 must be realized.
The high-level control accomplishes ω → ω∗ through
an appropriate voltage level ν feeding the DC motor. This
voltage is generated by the low-level control when υ → υ∗.

FIGURE 2. Block diagram of the DC/DC Boost converter–DC motor system
in closed-loop.

After considering that the output voltage υ of the DC/DC
Boost converter feeds the DC motor, it can be concluded the
relation between both controls. This is, the desired voltage
profile for the low-level control turns out to be the high-level
control, i.e., υ∗

= ν. Thus, the two-level hierarchical control
is given by

uav =

RLĖ(t)υ+2RLE(t)
[
ν̇−κ1 (υ−ν) − κ0

∫ t
0 (υ−ν) dτ

]
R2E2(t)

−
E(t)
υ

+ 1, (13)

with ν, defined as

ν =
JLa
km

[
ω̈∗

− α2ėm − α1em − α0

∫ t

0
emdτ

]
+

(
bLa
km

+
JRa
km

)
ω̇ +

(
bRa
km

+ ke

)
ω.

IV. SIMULATION RESULTS OF THE
HIERARCHICAL CONTROL
With the intention of verifying the performance of the two-
level hierarchical control, four simulations were performed in
Matlab-Simulink. The simulations consider the emulation of
two renewable energy power sources and also perturbations in
some parameters of the DC/DC Boost converter–DC motor.
The following parameters, associated with the system in
closed-loop, were used

L = 4.94 mH, C = 114.4 µF, R = 64 �,

Ra = 0.965 �, La = 2.22 mH,

km = 120.1 × 10−3 N·m
A , ke = 120.1 × 10−3 V·s

rad ,

J = 118.2 × 10−3 kg·m2, b = 129.6 × 10−3 N·m·s
rad .

Whereas, the desired angular velocity profile ω∗ was
proposed as a Bézier polynomial type given by

ω∗(t) = ωi (ti) + [ωf (tf ) − ωi (ti)]λ(t, ti, tf ), (14)

where ωi = 12 rad
s , ti = 4 s, ωf = 15 rad

s , tf = 7 s, and
λ(t, ti, tf ) is defined as

λ
(
t, ti, tf

)
=



0 t ≤ ti,(
t−ti
tf −ti

)3
×

[
20 − 45

(
t−ti
tf −ti

)
+36

(
t−ti
tf −ti

)2
−10

(
t−ti
tf −ti

)3]
t ∈ (ti, tf ),

1 t ≥ tf .

(15)

The control gains are obtained after substituting the following
values in (10) and (12)

ωnm = 500, ζm = 2.5, a = 0.2,

ωnb = 50, ζb = 2.2.

1) SIMULATION 1: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND TIME-VARYING POWER SUPPLY WITH
PERTURBATIONS IN LOAD R
The first simulation of the DC/DCBoost converter–DCmotor
system in closed-loop is shown in Fig. 3. In this result, the
waveform for the voltage delivered by the power supply was
proposed by Gil-Antonio et al. in [69]. This kind of waveform
is very similar to the one rendered by a renewable energy
power source. In this case, the waveform is defined by the
following function

E(t) = 18 + 0.5504 sin(5t) + 0.5848 sin(10t). (16)

Also, for this simulation, the following abrupt variations in
load R were considered

Rp =


R 0 s ≤ t < 3 s,
200%R 3 s ≤ t < 5 s,
R 5 s ≤ t < 8 s,
60%R 8 s ≤ t < 10 s.

(17)
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FIGURE 3. Dynamic response of the DC/DC Boost converter–DC motor
system in closed-loop with the two-level hierarchical control (13)
considering the time-varying power supply (16) and the load
perturbations in R (17).

2) SIMULATION 2: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND TIME-VARYING POWER SUPPLY WITH
PERTURBATIONS IN C
The second simulation result, depicted in Fig. 4, takes into
account, again, the same function for generating the voltage
waveform delivered by the power supply, i.e., the form
(16). In this case, abrupt variations were introduced into the
capacitor C as follows

Cp =


C 0 s ≤ t < 3 s,
200%C 3 s ≤ t < 5 s,
C 5 s ≤ t < 8 s,
50%C 8 s ≤ t < 10 s.

(18)

FIGURE 4. Dynamic behavior of the DC/DC Boost converter–DC motor
system in closed-loop with the two-level hierarchical control (13)
considering the time-varying power supply (16) and abrupt changes in
capacitor C (18).

3) SIMULATION 3: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND EMULATION OF A SOLAR PANEL AS
THE POWER SUPPLY WITH PERTURBATIONS IN LOAD R
Unlike the first two simulations, the third simulation shown
in Fig. 5 uses a waveform similar to the one generated by a
solar panel with constant irradiance, as those described in [72]
and [73]. The equation describing such a waveform is given
by

E(t) = 21(1 − e−30t ) + 0.5 sin(100t) + 0.001. (19)

For this simulation the perturbations were introduced over the
load R and are described by (17).

FIGURE 5. Dynamic response of the DC/DC Boost converter–DC motor in
closed-loop with the two-level hierarchical control (13) considering a
voltage waveform emerging from solar panels (19) and perturbations in
load R (17).

4) SIMULATION 4: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND EMULATION OF A SOLAR PANEL AS
THE POWER SUPPLY WITH PERTURBATIONS IN C
The fourth simulation, presented in Fig. 6, introduces the
abrupt changes (18) in capacitor C . This result also uses the
power supply generated through (19).

FIGURE 6. Dynamic behavior of the DC/DC Boost converter–DC motor in
closed-loop with the two-level hierarchical control (13) considering a
voltage waveform emerging from solar panels (19) and perturbations
in C (18).

A. DISCUSSION ON THE SIMULATION RESULTS
As can be observed in Figs. 3–6, the tracking task is
appropriately performed, since ω → ω∗; meaning that also
υ → υ∗ even when abrupt changes in parameters of the
system are introduced. It is worth noting, in such results, that
in t = 0 s the desired angular velocity profile is different from
0 rad/s. This is due to the output voltage, υ, of the DC/DC
Boost converter lies in the semi open interval [E(t), ∞).

On the other hand, the influence of abrupt variations in load
R (see Figs. 3 and 5) is greater than the one associated with
the abrupt changes in capacitance C (see Figs. 4 and 6). This,
because the former increases (or decreases) the consumption
of current i; whereas, the latter affects the voltage ripple.

V. EXPERIMENTAL RESULTS OF THE
HIERARCHICAL CONTROL
In this section, the experimental implementation of the two-
level hierarchical control in closed-loop over a platform of
the DC/DC Boost converter–DCmotor system, is carried out.
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In this direction, the experimental testbed is firstly described
and then the obtained results are presented. The experiments
contemplate a time-varying power supply E(t) and the abrupt
variations (17) and (18) for parameters R and C , respectively.

A. EXPERIMENTAL TESTBED OF THE DC/DC BOOST
CONVERTER–DC MOTOR SYSTEM
In the following, the testbed for executing the two-level hier-
archical control implementation is detailed. The experimental
setup along with all the required elements are shown in the
blocks of Fig. 7. These blocks are described next.

• Renewable energy emulation. This block shows the
G100-17 TDK-Lambda power supply that emulates a
renewable energy power source. This power supply is
useful for obtaining several DC voltage waveforms by
programming the required behavior. Also, this device
allows to simulate solar panels. In addition, in this
block the power supply voltage, E(t), is measured via
a Tektronix P5200A voltage probe.

• DC/DC Boost converter–DC motor. Here, the DC/DC
Boost converter–DC motor prototype is depicted. The
electric signals are acquired through a couple of
Tektronix A622 current probes, for measuring i and ia,
a Tektronix P5200A voltage probe, for measuring υ,
and an Omron E6B2-CWZ6C encoder for measuring the
angular position θ . The parameters related to the system
are defined in this block and, for the subsystem DC/DC
Boost converter, are given by

L = 9.94 mH, C = 114.4 µF, R = 64 �.

Whereas, the parameters of the DCmotor, manufactured
by Engel and gearbox GNM 5440-G3.1 with relation
rate 14:1, are [74]

Ra = 0.965 �, La = 2.22 mH,

km = 120.1 × 10−3 N·m
A , ke = 120.1 × 10−3 V·s

rad ,

J = 118.2 × 10−3 kg·m2, b = 129.6 × 10−3 N·m·s
rad .

• Data acquisition board and conditioning circuit.
The interconnection between the DC/DC Boost
converter–DC motor prototype and Matlab-Simulink,
via the DS1104 data acquisition board, is performed
here. As can be observed, the required signals are
treated through a conditioning block (SC) so that the
control u be correctly processed and generated. Note
that a TLP250 optocoupler is used for electric isolation
between the acquisition board and the system.

• Desired trajectory. The desired angular velocity profile
ω∗ is programmed in this block, by using Matlab-
Simulink, and is proposed as

ω∗(t) = ωi (ti) + [ωf (tf ) − ωi (ti)]λ(t, ti, tf ), (20)

where ωi = 12 rad
s , ti = 4 s, ωf = 15 rad

s , tf = 7 s, and
λ(t, ti, tf ) defined in (15).

• Hierarchical control. This block contains the program-
ming of the two-level hierarchical control (13) in

Matlab-Simulink, i.e., the low-level control (8) and the
high-level control (11) with the aim of achieving that
ω → ω∗.

FIGURE 7. Experimental platform of the DC/DC Boost converter–DC
motor system.

B. EXPERIMENTAL RESULTS
The experimental results of the DC/DC Boost converter–DC
motor system in closed-loop are presented here. The
experiments were performed in correspondence with the
simulations of Section IV; thus, four experiments were
executed. In this regard, the first two experiments consider
as the voltage waveform the proposed function reported in
(16) (which emulates a renewable energy power source).
This function is generated through programming the TDK-
Lambda G100-17 power supply. The other two experiments
contemplate, as the power supply, the voltage waveform
(19), corresponding to the waveform delivered by solar
panel Ameresco Solar LLC 50 J − 50 W. This waveform
is generated through the solar panel simulation-module of
the TDK-Lambda G100-17 power supply by introducing the
parameters, given by the manufacturer of the solar panel,
shown in Fig. 8.

FIGURE 8. V − I graphic associated with the emulation of the solar panel
Ameresco Solar LLC 50 J − 50 W, generated through the TDK-Lambda
G100-17 power supply and corresponding to E(t).
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The desired angular velocity profile ω∗ is proposed via the
Bézier polynomial (20), while the gains (10) and (12) of
the two-level hierarchial control (13) are calculated by using
the following values

ωnm = 60, ζm = 6, a = 4,

ωnb = 100, ζb = 50.

1) EXPERIMENT 1: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND TIME-VARYING POWER SUPPLY WITH
PERTURBATIONS IN LOAD R
The first experiment corresponds to simulation 1 and is
depicted in Fig. 9. Here, the waveform implemented for the
power supply is (16). Also, abrupt changes in load R are
introduced and are given by

Rp =


R 0 s ≤ t < 3 s,

200%R 3 s ≤ t < 5 s,

R 5 s ≤ t < 8 s,

60%R 8 s ≤ t < 10 s.

(21)

FIGURE 9. Experiment of the DC/DC Boost converter–DC motor system in
closed-loop with the two-level hierarchical control (13) considering the
waveform (16) for the power supply and perturbations (21) for
load R.

2) EXPERIMENT 2: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND TIME-VARYING POWER SUPPLY WITH
PERTURBATIONS IN CAPACITANCE C
The second experiment, analogue to simulation 2, uses the
time-varying power supply E(t) described by (16). Now,
abrupt variations in capacitance C are considered and are
described by

Cp =


C 0 s ≤ t < 3 s,

200%C 3 s ≤ t < 5 s,

C 5 s ≤ t < 8 s,

50%C 7 s ≤ t < 10 s.

(22)

The experimental results for this experiment are shown in
Fig. 10.

FIGURE 10. Experiment of the DC/DC Boost converter–DC motor system
in closed-loop with the two-level hierarchical control (13) considering the
time-varying waveform (16) for the power supply and perturbations (22)
for capacitance C .

3) EXPERIMENT 3: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND EMULATION OF A SOLAR PANEL AS
THE POWER SUPPLY WITH PERTURBATIONS IN LOAD R
Experiment 3 is the counterpart of simulation 3 and is plotted
in Fig. 11. The power supply corresponds to the emulation of
the solar panel Ameresco Solar LLC 50 J−50W (19) through
the TDK-Lambda G100-17. In addition, the abrupt variations
given by (21) for load R are also taken into account.

FIGURE 11. Experimental behavior of the DC/DC Boost converter–DC
motor system in closed-loop with the two-level hierarchical control (13)
considering the emulation of solar panel Ameresco Solar LLC 50 J − 50 W
(19) as the power supply and perturbations (21) for load R.

4) EXPERIMENT 4: DC/DC BOOST CONVERTER–DC MOTOR
IN CLOSED-LOOP AND EMULATION OF A SOLAR PANEL AS
THE POWER SUPPLY WITH PERTURBATIONS IN
CAPACITANCE C
This last experiment is analogue to simulation 4 and is
depicted in Fig. 12. This experiment considers, similar to the
previous one, the emulation of solar panel Ameresco Solar
LLC 50 J − 50 W (19), as the power supply, through the
TDK-Lambda G100-17. In this case, the abrupt variations in
capacitance C (22) were introduced.

C. DISCUSSION OF THE EXPERIMENTAL RESULTS
The experimental results of the DC/DC Boost converter–DC
motor in closed-loop presented in Figs. 9–12 demonstrated
the effectiveness of the proposed two-level hierarchical
control (13), since was achieved that υ → υ∗ and,
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FIGURE 12. Experimental behavior of the DC/DC Boost converter–DC
motor system in closed-loop with the two-level hierarchical control (13)
considering the emulation of solar panel Ameresco Solar LLC 50 J − 50 W
as the power supply and perturbations (22) for capacitance C .

consequently, ω → ω∗. Regarding the experiments of
Figs. 9 and 10, these were carried out when the waveform
(16), associated with a renewable energy power source, was
used as the power supply. Note that the control objective
ω → ω∗ was accomplished even when natural sinusoids-
alike variations over the waveform E(t) emerged. Related
to the experiments of Figs. 11 and 12, these were obtained
by using the waveform (19) as the power supply, via TDK-
Lambda G100-17, and corresponds to the emulation of solar
panel Ameresco Solar LLC 50 J − 50 W. Here, E(t) slowly
drops when the current i rises. Such a behavior is due to
the solar panel, whose electric relation V − I is plotted in
Fig. 8. However, the average control uav compensates those
variations and, thus, the control objective is again achieved,
i.e., ω → ω∗. Additionally, the robustness of the control (13)
was demonstrated after introducing abrupt variations in some
parameters of the DC/DC Boost converter–DCmotor system.
On the one hand, load perturbations R were considered and
the flowing current i was directly affected, as can be seen in
Figs. 9 and 11. On the other hand, variations in capacitance
C were also contemplated and the voltage ripple was slightly
affected, as shown in Figs. 10 and 12. Nevertheless, and
despite all those changes, the control objective was performed
at each instant of time, i.e., ω → ω∗.

VI. CONCLUSION
This paper presents, for the first time in literature, a robust
hierarchical control that takes into account the dynamics of
a renewable energy power source in its design for solving
the angular velocity trajectory tracking task in the DC/DC
Boost converter–DC motor system. The control considers
two levels, a higher and a lower, each one for independently
control the subsystems that compose the whole system, i.e.,
the DC Boost converter and the DC motor. The low-level
control, associated with the DC/DC Boost converter, exploits
the differential flatness property related to the first order
mathematical model of the converter and uses the dynamics
of the power supply E(t). This control is capable of achieving
that υ → υ∗. Whereas, the high-level control also uses
the differential flatness property but now the one of the DC
motor for performing the angular velocity tracking task, i.e.,

ω → ω∗. Then, both controls were interconnected in
order to work as a whole and, thus, to generate the two-
level hierarchical control. Note that, due to the control
design, any kind of time-varying power supply can be used
without the need of redesigning the control approach. The
effectiveness and performance of the proposed control were
verified through numerical simulations and by implementing
the control on an experimental platform of the system. Abrupt
variations were considered in some parameters of the system
with the aim of verifying the robustness of the two-level
hierarchical control in closed-loop.

Motivated by the obtained results, future work will be
focused on considering abrupt changes in other parameters
of the system so that the robustness of the proposed approach
be verified through simulation and experimental results. Also,
the DC/DC Boost converter–DC motor system along with
the two-level hierarchical control will be implemented on a
mobile robot, where a solar panel will be used as the primary
power supply.
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