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ABSTRACT This study investigates the attitude tracking problem for rigid spacecraft under model and
environmental uncertainties. Two different control laws are separately developed and combined. First,
based on a nominal attitude dynamic model assuming no uncertainty, the first controller is developed that
exactly tracks a prespecified attitude reference trajectory with minimized control cost. The designer can
generate this reference to prescribe desired performance specifications such as the maximum convergence
time and overshoot. Next, an uncertain attitude dynamic system is considered, and the second controller
is designed and added so that the controlled system can successfully track the predesigned reference
trajectory with a user-specified tolerance even subject to uncertainty whose bounds are unknown. Compared
to existing adaptive control schemes, the proposed approach possesses a very simple structure with a
small number of control parameters and is not computationally intensive, making it more attractive for
practical implementation. The proposed control laws generate smooth control signals and any information
about the uncertainty bound is not needed in its design. Simulation results are provided to demonstrate the
practical feasibility of the proposed approach, where reorientation/slew maneuvers of a large spacecraft are
considered. The effects of limitations on the control torques are also investigated to show the effectiveness
of the control methodology developed herein.

INDEX TERMS Attitude control, fundamental equation of constrained motion, Lyapunov stability, sliding
mode control, uncertainty.

I. INTRODUCTION
Over the past few decades, the attitude tracking problem for
rigid spacecraft has been the center of attention due to its
broad applications to space missions such as Earth imaging,
surveillance, spacecraft rendezvous and docking, on-orbit
servicing, and space debris removal. However, it is still a
challenging problem because the coupling between the atti-
tude kinematics and dynamics is highly nonlinear and model
and environmental uncertainties always exist [1]. To over-
come these challenges, a large number of robust control
methods have been explored, including proportional-integral-
derivative control [2], [3], [4], backstepping control [5], [6],
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H∞ control [7], [8], and adaptive fuzzy control [9], [10], [11],
to list a few. Despite their efficacy, the forementioned robust
control methodologies possess complicated structures with
numerous control functions and parameters to be adequately
chosen. Keeping a simple control structure in a closed form is
critical in reliably controlling the attitude motion of a space-
craft which usually has limited computing power. In addition,
in [2], [3], [4], [5], [6], [7], [8], [9], [10], and [11], no consid-
eration was given to optimality to minimize control cost.

Sliding mode control (SMC) [12], [13], [14], [15] is
favored over the other robust control methods due to its com-
putational simplicity, fast response, easy implementation, and
invariance properties. However, conventional SMC suffers
from the so-called chattering effect caused by high-frequency
switching control action. This drawback is partially alleviated
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by employing a boundary layer [16], which yields a loss of
control accuracy. Moreover, conventional SMC requires the
estimation of the upper bound on the uncertainty because the
gain should be designed greater than this bound to success-
fully suppress uncertainty effects. The upper bound is usually
estimated in a conservative manner for higher robustness,
which leads to higher gain and greater chattering ampli-
tude [17]. This is the reason the concept of adaptive SMC
has been introduced, where the control gain is dynamically
updated as the uncertainty varies with time. In [18] and [19],
gain adaptation laws were devised so that the gain keeps
increasing until the sliding mode is achieved. However, these
laws do not allow the gain to decrease, sometimes yielding
an overestimated gain and excessive chattering especially
when the initial guess for the gain is selected to be too large.
This drawback was remedied in [20] and [21] in which two
gain update laws were proposed. The first law increases the
gain until the sliding variable reaches a small domain around
the origin. When the sliding variable is confined within this
domain, the gain starts to decrease and keeps decreasing by
the second law. Hence, the gain rate can be both positive
and negative, so gain overestimation is avoided. However, the
gain rate can be discontinuous at the boundary of the domain,
sometimes yielding nonsmooth control signals which are
not desirable. This drawback was overcome by dynamic
gain adaptation where continuous gain adaptation laws are
designed for smooth control action and applied to spacecraft
formation keeping [22] and formation reconfiguration [23].
However, the controllers developed in [22] and [23] achieved
only asymptotical stability and the tracking errors become
bounded by a desired small domain as time goes to infinity.
In practice, finite-time boundedness is more desirable that
guarantees fast convergence of the errors and high-precision
performance.

The most noticeable feature of SMC is that once the
controlled system reaches the sliding surface, it is com-
pletely independent of the original dynamics and robust to
the parameter variations and external disturbances [14], [15].
Nonetheless, during the reaching phase, the controlled sys-
tem can be destabilized by the uncertainties and distur-
bances [24]. In the recent years, several methods including
integral SMC [25], [26] were suggested to eliminate the
reaching phase by adding a nonlinear term in the sliding
surface design so that robustness is guaranteed from the
beginning [17], [19], [27]. However, they did not pay atten-
tion to achieving prescribed performance in the transient and
steady-state phases such as convergence time, overshoot, and
control effort. It is crucial in spacecraft attitude maneuvers
to achieve swift and smooth attitude change from any initial
attitude while minimizing the expenditure of control effort.
In brief, there has been little research in the existing liter-
ature that guarantees prespecified performance, possesses a
simple structure with a small number of tuning parameters,
optimally achieves finite-time boundedness of the controlled
system, and generates smooth control signals in the presence
of uncertainties and disturbances whose bounds are unknown.

Motivated by this discussion, in this paper a simple, adap-
tive smooth SMC approach is developed for precision atti-
tude control of spacecraft in the face of model/parametric
uncertainties and external disturbances whose bounds are
not known a priori. Two different control laws are sepa-
rately developed and combined. The first controller assumes
a nominal attitude dynamics model without uncertainties or
disturbances. An alternative formulation [28] in terms of the
quaternion parameters will be used to describe the attitude
dynamics. Unlike conventional attitude motion formulation
that uses a pair of the quaternion and the angular velocity,
this formulation employs a pair of the quaternion and its
time derivative. Then, a nominal reference trajectory for each
quaternion parameter to track will be designed to achieve a
desired, prescribed performance in terms of maximum con-
vergence time and overshoot, and an exact real-time con-
troller will be obtained in a closed form with the use of
the fundamental equation of constrained motion [29]. This
controller considers the tracking requirements as equality
constraints and provides the exact optimal control law that
minimizes the control cost at each instant of time. For the sec-
ond controller, based on the notion of SMC, an adaptive com-
pensating control law will be designed for on-orbit attitude
tracking for the uncertain system to mitigate any uncertainty
effects not considered in the first step. In [30], the robust
attitude tracking problem was tackled using the formulation
and approach given in [28] and [29], but it was assumed
that the upper bound on the uncertainty is a priori known.
On the contrary, the proposed controller will automatically
update its gain and a priori knowledge of the uncertainty
bound is not required. Also, the generated control signals
will be smooth and the controlled quaternion parameters
will successfully track the nominal trajectory designed in
the first step. By defining a tracking error as the difference
between the actual quaternion trajectory and the nominal tra-
jectory, the sliding variable always starts with zero and there-
fore the reaching phase is removed. This greatly simplifies the
controller design and significantly enhances the stability and
robustness of the controlled system throughout the controlled
motion. Although the tracking error is not exactly regulated to
be zero, it will be bounded by a small tolerance in finite time
and the user can always impose an allowed maximum error
bound on tracking performance. It will also be shown that
compared to existing adaptive control schemes, the proposed
control laws possess a very simple structure with a small
number of control parameters. The main contributions of this
study can be summarized as follows:

• Unlike the robust control methodologies shown
in [5], [6], [7], [8], [22], [23], and [30], in this paper
finite-time smooth adaptive control laws are proposed
for precision attitude control. The tracking errors are
bounded by a user-specified small ball in finite time
from any initial condition under model uncertainties and
disturbances whose bounds are unknown.

• The size of the error ball can be directly prespecified by
the user.
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• Desired transient performance such as overshoot and
convergence rate is guaranteed to achieve swift and
smooth attitude change from any initial attitude.

• Compared to the existing adaptive control strate-
gies [5], [6], [7], [8], [9], [10], [11], [12], [13], the
proposed controller possesses a simple structure with
known functions and a minimum number of adaptive
tuning parameters, which is of vital importance in atti-
tude control of a real-world spacecraft with limited
computing power. The effect of each control parame-
ter on the control performance is also provided. It is
shown that the proposed control law can lead to adaptive
proportional-derivative (PD) control or proportional-
integral-derivative (PID) control as a special case.

• Different from the works [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], the control methodology in
this paper considers optimality in its design. Without
uncertainties or disturbances, the proposed control laws
will be optimal and minimize the control cost at each
instant of time. When uncertainties or disturbances are
present, the second control law will precisely eliminate
their effects and the controlled system will behave as the
nominal system for which the first control law enables
the exact tracking of the nominal trajectory with the
minimized control cost.

This paper is organized as follows. In Section II the
description of constrained dynamic systems is reviewed,
which serves as a prelude to Section III. In Section III the
equation of attitude motion will be introduced in terms of
quaternion parameters and their derivatives, based on which
the subsequent control laws will be developed. Section IV
deals with the design of the nominal reference trajectory
for the quaternions to track by considering prescribed per-
formance. The first controller will also be designed using
the fundamental equation of constrained motion assuming
a nominal system with no uncertainties. In Section V, the
second compensating controller is developed to track the
nominal trajectory designed in Section IV, assuming parame-
ter uncertainties and environmental disturbances. In addition,
the gain adaptation law will be proposed and the finite-time
boundedness of the controlled system will be proven via Lya-
punov’s direct method. A brief explanation about the effect of
control parameters on the performance will also be provided.
SectionVI provides numerical simulations to demonstrate the
ease and accuracy of the combined control laws developed in
Sections IV and V, and the performance is compared with the
one obtained using an existing method. The effect of satura-
tion on the control torques is also simulated and discussed to
show the effectiveness of the proposed methodology. Finally,
Section VII concludes this paper.

II. CONSTRAINED DYNAMIC SYSTEMS
This section reviews an approach to describe the motion of
constrained dynamical systems. Any attitude requirements on
the spacecraft will be viewed as constraints on the dynamic
system, and an explicit equation of motion will be introduced

to satisfy these requirements. The equation of motion will
be used to derive a new form of the attitude dynamics and
to obtain exact control torques for a nominal system without
uncertainties or disturbances.

Without any constraints, the equation of motion of a
dynamic system is usually given, using the Lagrange equa-
tion, by

M (q, t) q̈ = Q (q, q̇, t) , (1)

or

q̈ (t) = M−1 (q, t)Q (q, q̇, t) ≜ a (t) , (2)

where q (t) =
[
q1 (t) q2 (t) · · · qn (t)

]T
∈ Rn is the gen-

eralized coordinate vector, t is time, M (q, t) ∈ Rn×n is the
positive-definite mass matrix, Q (q, q̇, t) ∈ Rn is a ‘given’
force vector, and a (t) ∈ Rn is the unconstrained acceleration
vector. The superscript ‘‘T ’’ denotes the transpose of a vector
or a matrix.

The system given by (1) or (2) is now subjected to p
constraints of the form

ϕj (q, q̇, t) = 0, j = 1, 2, · · · , p. (3)

If we differentiate (3) once (for nonholonomic constraints)
or twice (for holonomic constraints) with respect to time, the
following constraint equation is obtained:

A (q, q̇, t) q̈ (t) = b (q, q̇, t) , (4)

where A (q, q̇, t) ∈ Rp×n and b (q, q̇, t) ∈ Rp. From here
on, the arguments of the various quantities will be suppressed
for brevity unless required for clarity. The presence of the
constraints in (4) forces the equation of motion to have the
form of

Mq̈ = Q+ Qc, (5)

where Qc ∈ Rn is the vector of constraint forces by which
the constraint equation (4) is satisfied. It is known that the
constraint forces can always be written as [29]

Qc = −ATλ, (6)

where A is the matrix shown in (4) and λ ∈ Rp is the vector
of Lagrange multipliers. Then, (4) and (5) can be expressed
in a compact form as[

M AT

A 0

] [
q̈
λ

]
=

[
Q
b

]
. (7)

The coefficient matrix in (7) is symmetric and invertible if the
matrix A has a full rank so that[

q̈
λ

]
=

[
M AT

A 0

]−1 [Q
b

]
=

[
Sqq Sqλ
Sλq Sλλ

] [
Q
b

]
, (8)
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where the elements of the inverse of the 2 by 2 block matrix
is given by [31]

Sqq =

(
I − M−1AT

(
AM−1AT

)−1
A
)
M−1,

Sqλ = STλq = M−1AT
(
AM−1AT

)−1
,

Sλλ = −

(
AM−1AT

)−1
. (9)

Hence, the vectors of the accelerations and Lagrange multi-
pliers can be explicitly computed as[

q̈
λ

]
=

[
a+ M−1AT

(
AM−1AT

)−1
(b− Aa)

−
(
AM−1AT

)−1
(b− Aa)

]
, (10)

where a = M−1Q is used. From (10), the constraint force is
explicitly obtained as

Qc = AT
(
AM−1AT

)−1
(b− Aa) . (11)

If the matrix A is rank-deficient, i.e., all the constraints are
not independent of each other, the coefficient matrix in (7)
is not invertible, and more than one solution

[
q̈T λT

]T may
exist. The solution can be uniquely determined if it is chosen
to minimize the cost J = (q̈− a)T W (q̈− a) at each instant
of time, where W > 0 is a weight matrix. It is shown in [32]
that the optimal solution q̈ minimizing the cost J is uniquely
given by

q̈ = a+ M−1W−1MAT
(
AM−1W−1MAT

)+

(b− Aa) ,

(12)

where the superscript ‘‘+’’ denotes the Moore-Penrose gen-
eralized inverse. If the weight matrix is chosen as W = M
to match Gauss’ principle [33], the equation of motion for a
constrained dynamic system is simply given by

q̈ = a+ M−1AT
(
AM−1AT

)+

(b− Aa) . (13)

Equation (13) is called the fundamental equation of con-
strained motion (FECM) and it is always valid whether the
matrix A has a full rank or not. Accordingly, the constraint
force is obtained as

Qc = AT
(
AM−1AT

)+

(b− Aa) . (14)

Note that (10) and (11) are special cases of (13) and (14).
In this paper, (13) and (14) will be used to compute the
exact control torques to achieve pointing requirements with
no uncertainties. Attitude requirements will be viewed as
constraints and so the terms requirements and constraints
will be interchangeably used. Accordingly, the constraint
force/torque explicitly given in (14) will be used to obtain
the control force/torque for the nominal system (with no
uncertainties), in order to satisfy the constraints of the form of
(4). It should be noted that the control force/torque given by
(14) is the optimal solution that minimizes the control cost
J = (q̈− a)T M (q̈− a) = QTcM

−1Qc at each instant of
time.

III. SPACECRAFT ATTITUDE DYNAMICS
Spacecraft attitude dynamics can be described in terms of
quaternion parameters to avoid the singularity issue. In [28],
a new method to derive the attitude dynamics with the use of
the FECM was proposed, which is employed in this paper.
Assuming no uncertainties, the attitude equation of motion is
given by [28]

q̈ = −
1
2
ET1 J

−1 [ω̃] Jω − N (q̇) q+ M−1
q Γc, (15)

where q = [q0, q1, q2, q3]T =

[
q0, q̃T

]T
=[

cos
(
θ
/
2
)
, êT sin

(
θ
/
2
)]T

is the quaternion vector of the

spacecraft, ê ∈ R3 is a unit vector defined relative to an
inertial coordinate frame, θ is the rotation angle about the
unit vector ê, ω =

[
ωx , ωy, ωz

]T is the angular velocity
vector of the spacecraft along its body-fixed coordinate
frame,

[
ω̃
]
is the skew-symmetric matrix multiplication, J =

diag
{
Jx , Jy, Jz

}
> 0 is the nominal moment of inertia matrix

of the spacecraft, N (q̇) = q̇20 + q̇21 + q̇22 + q̇23, and

E1 =

−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 . (16)

Furthermore, Mq = 4ET ĴE > 0 is a 4 by 4 nominal mass
matrix where Ĵ = diag {J0, J} = diag

{
J0, Jx , Jy, Jz

}
> 0 is

a 4 by 4 augmented inertia matrix with an arbitrary positive
number J0, and

E =

[
qT

E1

]
=


q0 q1 q2 q3

−q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

 , (17)

which is orthogonal, i.e., E−1
= ET . The vector Γc in (15) is

the 4 by 1 generalized quaternion torque and is related to the
3 by 1 physically applied torque about the body axis, Qc =[
Qc,x ,Qc,y,Qc,z

]T , through the relation

Qc =
1
2
E1Γc. (18)

It is noted that the time derivative of the quaternion vector q̇
is related with the angular velocity as

{ω} = 2Eq̇, (19)

where {ω} =
[
0, ωT

]T
=
[
0, ωx , ωy, ωz

]T is the 4 by 1
augmented angular velocity vector. Unlike conventional for-
mulation using the 7-order pair (q, ω), this paper will utilize
the 8-order pair (q, q̇) that will ease the sliding surface design
and subsequent controller design. One can easily switch from
one to the other through the use of (19).

In the next section, by ignoring any uncertainties or distur-
bances, an exact control torqueQc (t) will be obtained for the
nominal system for which the equation of motion is fully and
exactly known.
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IV. EXACT CONTROL FOR NOMINAL SYSTEM WITH NO
UNCERTAINTIES
In this paper, two different control methods will be explored
that force the spacecraft to follow the desired attitude tra-
jectory by effectively suppressing the effect of uncertain-
ties or disturbances. The first controller is developed in this
section in which a nominal system is considered assuming
no uncertainties and an exact control torque is explicitly
obtained using the FECM. The attitude tracking requirements
are viewed as constraints on the nominal system that can be
expressed in the form of (4).

The equation of motion for the nominal system is given by
(15) and we rewrite it as.

q̈ = a+ M−1
q Γc, (20)

where a = − (1/2)ET1 J
−1
[
ω̃
]
Jω − N (q̇) q. Now, the

controlled state vector q (t) is required to follow a desired
quaternion vector qd (t) to satisfy attitude requirements by
the application of the control torque Qc (t), or equivalently,
Γc (t). Let us assume that the desired quaternion vector is
given by

qd (t) =
[
qd,0 (t) qd,1 (t) qd,2 (t) qd,3 (t)

]T
, (21)

where qd,i (t) , i = 0, 1, 2, 3 is a desired quaternion function.
Now the constraint equation is written as

q0 (t) − qd,0 (t)
q1 (t) − qd,1 (t)
q2 (t) − qd,2 (t)
q3 (t) − qd,3 (t)

 =


0
0
0
0

 . (22)

The constraint equation (22) must be satisfied at all times
along with the quaternion norm constraint given by q20+q21+

q22 + q23 = 1 or

q0q̈0 + q1q̈1 + q2q̈2 + q3q̈3 = −q̇20 − q̇21 − q̇22 − q̇23. (23)

In a general situation attitude control is initiated from a differ-
ent quaternion vector, yielding initial errors in (22). Hence,
let us consider the following modified constraint equation
obtained by Baumgarte’s stabilization technique [34]:

8̈ (t) + α8̇ (t) + β8 (t) = 0, (24)

where 8 (t) =
[
q1 − qd,1 q2 − qd,2 q3 − qd,3

]T is a 3 by
1 vector, and α and β are positive constants that determine the
behavior of the second-order damped system. For example,
the designer can select the values for α and β to prescribe the
maximum convergence time of the controlled system with no
overshoot. Then, it is guaranteed that as time progresses, the
constraint vector8 (t)will asymptotically decay to zero from
any initial conditions with a prespecified convergence time
and with no overshoot. The remaining quaternion element
q0 (t) will be determined to satisfy the constraint (23). The
combined constraint equations (23) and (24) can now be

written in a matrix form as
q0 q1 q2 q3
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

A


q̈0
q̈1
q̈2
q̈3


︸ ︷︷ ︸

q̈

=


−q̇20 − q̇21 − q̇22 − q̇23

q̈d,1 − α
(
q̇1 − q̇d,1

)
− β

(
q1 − qd,1

)
q̈d,2 − α

(
q̇2 − q̇d,2

)
− β

(
q2 − qd,2

)
q̈d,3 − α

(
q̇3 − q̇d,3

)
− β

(
q3 − qd,3

)


︸ ︷︷ ︸
b

, (25)

which is of the form of (4). Finally, the 4 by 1 generalized
control torque is obtained as

Γc = AT
(
AM−1

q AT
)+

(b− Aa) , (26)

where Mq = 4ET ĴE, a = − (1/2)ET1 J
−1
[
ω̃
]
Jω − N (q̇) q,

and A and b are given in (25). Note that the matrix A
becomes singular when q0 = 0 and so the regular inverse(
AM−1

q AT
)−1

cannot be used. The 3 by 1 physically applied
torque Qc is explicitly obtained as

Qc =
1
2
E1Γc =

1
2
E1AT

(
AM−1

q AT
)+

(b− Aa) . (27)

Since (27) is obtained by assuming no uncertainties, an addi-
tional control torque should be added to compensate for their
effects, which will be developed in the next section.
Remark 1: When there is no uncertainty in the system, the

control torque Qc given in (27) will force the quaternion
parameters to exactly follow the constrained trajectory given
in (25) while minimizing the control cost J = QTcM

−1
q Qc at

each instant of time.

V. ROBUST ADAPTIVE CONTROL FOR ACTUAL,
UNCERTAIN SYSTEM
The nominal system assumes a perfect model for attitude
dynamics with no uncertainties/disturbances. In real-life
applications, this assumption does not hold, and the nominal
control torque (27) will no longer make the requirement
q (t) = qd (t) satisfied. Hence, to successfully follow the
desired quaternion trajectory in the presence of uncertain-
ties/disturbances, we need to add an additional control torque
vectorQr (t) = (1/2)E1Γr (t) so that the equation of motion
of the actual, uncertain system becomes

q̈ = −
1
2
ET1 J̃

−1 [ω̃] J̃ω − N (q̇) q+ M̃−1
q (Γc + Γr + δ) ,

(28)

where J̃ and M̃q are the unknown, actual moment of inertia
and mass matrices, respectively, the term δ (t) contains all the
external disturbances or perturbations, and the solution q (t)
will then successfully follow qd (t)with a proper design of the
compensating controllerΓr . For low-Earth satellites or space-
craft, the vector δ (t) is mainly caused by solar array deploy-
ment, aerodynamic torque, magnetic torque, solar radiation
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torque, and gravity-gradient torque, and it is known that these
disturbance values are bounded [35], [36].

The aim of this section is to design a robust controller
Γr such that the controlled quaternion vector q (t) success-
fully follows the nominal trajectory qn (t) generated as the
solution to (20) satisfying the constraint equation (25) even
in the presence of uncertainties or disturbances; the nominal
quaternion vector qn (t) should not be confused with qd (t),
the desired quaternion vector, given by (21), satisfying (22)
where α = β = 0. Any nonzero initial errors will yield
qn (t) ̸= qd (t) at the initial time. However, if we define a
4 by 1 error vector as

e (t) ≜ q (t) − qn (t) , (29)

the initial error vector e (0) is zero because the nominal trajec-
tory always starts from the current state. The error definition
(29) will greatly ease the design of a sliding surface and
remove the reaching phase so that robustness is guaranteed
from the beginning.

The compensating controller Γr (t) or Qr (t) will be
designed by generalizing the concept of sliding mode control
(SMC). Unlike conventional SMC that suffers from chat-
tering caused by discontinuous control signals [14], [15],
the proposed method will produce continuous control action.
More specifically, the designed controller will nudge the
sliding variables so that their norm always lies within a
prespecified small ‘ball’ around the nominal trajectory qn (t).
Also, exact information about the uncertainty bound is not
necessary because the control law is adjusted in an adaptive
manner. For the sake of brevity, let us consider the linear
sliding surface (another nonlinear sliding surface can be used
depending on the application):

s (t) ≜ ė (t) + λe (t) , (30)

where s (t) =
[
s0 (t) s1 (t) s2 (t) s3 (t)

]T and e (t) =[
e0 (t) e1 (t) e2 (t) e3 (t)

]T is the error vector defined in
(29). Also, λ is a positive constant to be selected by the
user that determines the control accuracy. In general, a larger
λ yields a smaller tracking error, as shall be shown later.
It should be noted that s (0) = 0, meaning that the sliding
mode starts from the initial time and the system’s trajectory
always starts on the sliding surface. The time derivative of
(30) yields

ṡ = ë+ λė

=
(
q̈− q̈n

)
+ λ

(
q̇− q̇n

)
= −

1
2
ET1 J̃

−1 [ω̃] J̃ω − N (q̇) q+ M̃−1
q (Γc + Γr + δ)

− q̈n + λ
(
q̇− q̇n

)
. (31)

If the actual mass matrix is decomposed into M̃q = Mq+δM
whereMq is the nominal (known) mass matrix and δM is the

unknown part, then the following is satisfied [37]:

M̃−1
q = M−1

q − M−1
q

(
I + δM · M−1

q

)−1
δM · M−1

q

= M−1
q + 1M , (32)

where 1M is unknown. Then, (31) becomes

ṡ = 1 + M−1
q Γr , (33)

where

1 = −
1
2
ET1 J̃

−1 [ω̃] J̃ω − N (q̇) q− q̈n + λ
(
q̇− q̇n

)
+ M−1

q (Γc + δ) + 1M (Γc + Γr + δ) (34)

is uncertain. In this paper, it is assumed that during the control
time interval (or maneuver time) t ∈ [0, tf ] the uncertain 4 by
1 vector 1 (t) is bounded by

∥1 (t)∥ < 1̄, (35)

where ∥·∥ is the infinity norm of a vector and 1̄ is an unknown
positive constant. This assumption is valid because the distur-
bance term δ (t) is bounded, the control time interval is finite,
the magnitude of any control torques is physically limited,
and the designed control law will guarantee the finite-time
boundedness of the closed-loop system, as shall be shown
shortly.

Let us consider the following compensating control law:

Γr (t) = − |K (t)|Mq

(
s (t)
ε

)ρ

, (36)

where(
s (t)
ε

)ρ

=

[ (
s0(t)

ε

)ρ ( s1(t)
ε

)ρ ( s2(t)
ε

)ρ ( s3(t)
ε

)ρ ]T
,

(37)

ρ is a positive odd integer (ρ = 1, 3, 5, · · · ) and ε is a
user-specified (small) positive constant. It is noted that mass
matrixMq is the nominal one, which is known. Although the
form of the control law (36) is similar to the one proposed
in [30], it was assumed in [30] that the upper bound on the
uncertainty is a priori known and so a constant gain was used.
On the contrary, in this paper the control gainK (t) is updated
by the following adaptation rule:

K̇ (t) =

 0, if ∥s (t)∥ ≤ γ ε

µ ∥s (t)∥
(∥∥∥∥ s (t)ε

∥∥∥∥− κ

)
, otherwise

(38)

where 0 < γ, κ < 1 are constants and µ is a positive
constant that regulates the rate of the gain change. The initial
condition is chosen to satisfy 0 < K (0) ≤ 0̄γ −ρ , where 0̄

is the control acceleration limit that shall be given in (39).
It is noted that when the infinity norm of the sliding variable
vector ∥s (t)∥ is greater than the threshold ε, the controller
increases the gain, i.e., K̇ (t) > 0.
Remark 2: The first controller given in (27) is automat-

ically determined once we select A and b to satisfy a pre-
scribed performance. In designing the second controller
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given in (36), six parameters (λ, ε, ρ, γ , µ, κ) are to be
selected. The influence of each parameter on the performance
is as follows:

1) The two parameters λ, ε in (30) and (36) determine
control accuracy so that the sliding variable and the
tracking error in the steady-state are bounded by ∥s∥ ≤

ε and ∥e∥ ≤ ε/λ, respectively, as shall be proven
in Theorem 2. If ε is selected too small, numerical
instability may occur in discrete-time implementation
unless the sampling period is sufficiently small. This
is because the sliding variable needs to be sufficiently
frequently controlled to be smaller than ε under uncer-
tainties/disturbances that may be fast varying.

2) The parameter ρ in (36) describes the sensitivity of
the variation in the sliding variable on the control
input. Because of the term (s/ε)ρ , a larger ρ yields a
greater control torque Γr when ∥s∥ > ε, but a smaller
torque when ∥s∥ < ε (compared to a smaller ρ). For
example, when ∥s∥ > ε holds, a larger ρ enables faster
convergence of the sliding variable and the error to the
region ∥s∥ < ε, but the resulting steady-state error
would be larger than the case with a smaller ρ. In most
cases, it is sufficient to choose ρ = 1 or 3.

3) The parameter γ in (38) determines when to stop the
gain update. When ∥s∥ ≤ γ ε, the gain is not updated
any more and maintains the value K (ti), where ti is the
instant at which the condition ∥s (t)∥ ≤ γ ε starts to
hold. A larger γ yields a static gain more often.

4) The parameter µ in (38) regulates the rate of change in
the gain. A largerµ enables a rapid gain change but an
excessive µ may yield instability of the controlled sys-
tem. The control law with too small µ cannot catch up
with the variation of the uncertainty and so robustness
may be lost. A rule of thumb for µ is to set it between
0.1 and 1.0.

5) The parameter κ in (38) determines when to increase
or decrease the gain. It is obvious from (38) that when
∥s/ε∥ > κ , K increases, otherwise, it decreases. A
smaller κ makes the gain increase more easily. A suf-
ficiently small κ will continuously increase the gain
until the condition ∥s∥ ≤ γ ε is met and the gain
gets saturated at a high value, yielding a smaller error
compared to when a larger κ is selected.

Remark 3: If the linear sliding surface (30) is used and
ρ = 1 is selected in (36), then the controller (36) becomes a
simple PD controller with the adaptive gain so that

Γr (t) = −
|K (t)|

ε
Mq [ė (t) + λe (t)] , (39)

where K (t) is updated by (38). If an integral term is added to
the sliding surface, the controller becomes an adaptive PID
controller. In this sense, the proposed gain adaptation rule
can provide a simple method for PD/PID gain tuning.

Now we propose two theorems. The first theorem states
that the gain has an upper bound if the magnitude of the con-
trol torque is limited (because any physical actuators cannot

generate infinite torques). The second theorem guarantees
the finite-time boundedness of the uncertain attitude dynamic
system controlled by the robust adaptive control algorithm
proposed in (36) and (38).
Theorem 1: Assume that the magnitude of the control

acceleration is limited such that∥∥∥M−1
q (t) Γr (t)

∥∥∥ ≤ 0̄, (40)

where 0̄ is a known positive constant. Then, the magnitude of
the gain always has an upper bound such that

|K (t)| ≤ 0̄γ −ρ . (41)

Proof: From (36), we have

∥∥∥M−1
q Γr (t)

∥∥∥ = |K (t)|
∥∥∥∥ s (t)ε

∥∥∥∥ρ

. (42)

First, consider the case when γ ε < ∥s (t)∥ is satisfied. Then,
γ ρ < ∥s (t) /ε∥ρ holds, and so

γ ρ
|K | ≤ |K |

∥∥∥ s
ε

∥∥∥ρ

. (43)

From (40), (42), and (43), γ ρ |K | ≤ 0̄ is derived and so (41)
is proven.

Next, let us consider the case when ∥s (t)∥ ≤ γ ε. In this
case, K̇ = 0 and the gain K maintains the value K (ti), where
ti is the instant when the condition ∥s (t)∥ ≤ γ ε starts to hold.
Since |K (t)| ≤ 0̄γ −ρ is always satisfied when ∥s (t)∥ > γε,
|K (ti)| should also be less than or equal to 0̄γ −ρ . Hence,
for both cases (41) is always satisfied and Theorem 1 is
proven. ■
Theorem 2: Assume that the control acceleration has an

upper limit 0̄ as given in (40). Then, for the uncertain attitude
dynamic system (28), the controller designed as in (36) with
the gain adaptation law (38) will cause the sliding variable
vector defined in (30) to be bounded by ∥s (t)∥ ≤ ε in finite
time from any state. Also, the tracking error will be confined
in the region ∥e (t)∥ ≤ ε/λ.
Proof: Let us define the following Lyapunov function:

V (t) =
1
2
s (t)T s (t) +

1
2µ̃

(K (t) − ϒ)2 , (44)

where 0 < µ̃ ≤ µ (1 − κ) /2 is a constant and ϒ is a
constant satisfying ϒ > max

(
0̄γ −ρ, 41̄

)
. First, consider

the case when ∥s (t)∥ > ε holds. If we can show that
V̇ < −3V 1/2, 3 > 0 being constant for ∥s (t)∥ > ε,
then finite-time convergence to the domain ∥s (t)∥ ≤ ε is
guaranteed, where the convergence time is estimated as tF ≤

2V 1/2 (t0) /3 with t0 being the instant at which ∥s (t)∥ > ε

starts to hold [38], [39].
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From Theorem 1, |K (t)| ≤ 0̄γ −ρ < ϒ holds and the
differentiation of (44) with respect to time yields

V̇ = sT ṡ+
1
µ̃

(K − ϒ) K̇

= sT
(
1 + M−1

q Γr

)
+

1
µ̃

(K − ϒ) K̇

= sT
(
1 − |K |

( s
ε

)ρ)
+

1
µ̃

(K − ϒ) K̇

< 4 ∥s∥ 1̄ − |K | sT
( s
ε

)ρ

+
1
µ̃

(K − ϒ) K̇ , (45)

where the last inequality is derived because

sT1 < ∥s0∥ 1̄ + ∥s1∥ 1̄ + ∥s2∥ 1̄ + ∥s3∥ 1̄ ≤ 4 ∥s∥ 1̄.

(46)

Since sT (s/ε)ρ ≥ ∥s∥ ∥s/ε∥ρ > ∥s∥ andK (t) < ϒ , we have

V̇ < 4 ∥s∥ 1̄ − |K | ∥s∥ +
1
µ̃

(K − ϒ) K̇

= ∥s∥
(
41̄ − |K |

)
+

1
µ̃

(K − ϒ) K̇ + ∥s∥ ϒ − ∥s∥ ϒ

= ∥s∥
(
41̄ − ϒ

)
+

1
µ̃

(K − ϒ) K̇ − ∥s∥ (|K | − ϒ)

≤ −∥s∥ 3s − (ϒ − K )

(
− ∥s∥ +

1
µ̃
K̇
)

, (47)

where 3sϒ − 41̄ > 0 and ϒ > |K | ≥ K are used. One can
rewrite the last line of (47) as

V̇ < −3s ∥s∥ − (ϒ − K )

(
− ∥s∥ +

1
µ̃
K̇
)

+ ε (ϒ − K ) − ε (ϒ − K )

= −3s ∥s∥ − (ϒ − K )

(
− ∥s∥ +

1
µ̃
K̇ − ε

)
︸ ︷︷ ︸

ξ

−ε (ϒ − K )

= −3s
√
2 ·

∥s∥
√
2

− ε
√
2µ̃ ·

ϒ − K√
2µ̃

− ξ

≤ −
√
2min

{
3s, ε

√
µ̃
}(

∥s∥
√
2

+
ϒ − K√

2µ̃

)
− ξ

≤ −3 · V 1/2
− ξ, (48)

where 3 =
√
2min

{
3s, ε

√
µ̃
}

> 0. If ξ is made positive or
equal to zero by properly selecting the parameter µ̃, then we
guarantee V̇ < −3·V 1/2

−ξ ≤ −3·V 1/2 and the finite-time
convergence to the region ∥s (t)∥ ≤ ε is proven.

Since ϒ −K > 0, the condition ξ ≥ 0 yields K̇/µ̃−∥s∥−

ε ≥ 0 or

µ̃ ≤
K̇

∥s∥ + ε
= µ

∥s∥
(∥∥ s

ε

∥∥− κ
)

∥s∥ + ε︸ ︷︷ ︸
8

, (49)

where (38) was used. Since we consider the region where
∥s (t)∥ > ε holds, we have

8 > µ
∥s∥ (1 − κ)

∥s∥ + ε
>

µ (1 − κ)

2
. (50)

Since 0 < µ̃ ≤ µ (1 − κ) /2, (49) is satisfied and so we
obtain V̇ < −3 · V 1/2

− ξ ≤ −3 · V 1/2. In brief, if ∥s∥
is outside the compact set �ε =

{
s ∈ R4

: ∥s∥ ≤ ε
}
, then

V̇ < −3 · V 1/2 and a decreasing value of V will eventually
drive ∥s∥ into the set �ε in finite time tF ≤ 2V 1/2 (t0) /3.
Hence, the set �ε is attractive and ∥s∥ is bounded thanks to
Lyapunov stability theory [38], [39].

Next, when ∥s (t)∥ ≤ ε holds, the sign of V̇ is indefi-
nite and it is possible for ∥s (t)∥ to become greater than ε.
However, as soon as ∥s (t)∥ > ε holds, V̇ < −3 · V 1/2 is
satisfied and ∥s (t)∥will again be bounded by ε in finite time,
as previously shown.

Hence, by applying the control law (36) with the gain
adaptation rule (38), ∥s (t)∥ will be bounded by ∥s (t)∥ ≤ ε

in finite time from any state. Finally, while the condition
∥s (t)∥ ≤ ε is satisfied, it can be readily shown [39] that the
error is bounded by ∥e (t)∥ ≤ ε/λ, where s (t) and e (t) are
related to each other by (30). This completes the proof. ■
In summary, the controller design procedure is given as

follows:
Step 1. Assuming no uncertainty and disturbance, create

a desired quaternion vector qd (t) so that the prescribed per-
formance is satisfied. Find the corresponding matrix A and
vector b in the form of (25).

Step 2. Design the first controller Qc for the nominal
system using (27). This controller minimizes the control cost
J = QTcM

−1
q Qc when there is no uncertainty.

Step 3. Now, model uncertainty and external disturbance
are considered. Select appropriate parameters λ, ε, ρ, γ , µ,
and κ by referring to the discussion in Remark 2. Choose the
initial gain so that 0 < K (0) ≤ 0̄γ −ρ .

Step 4. Design the second controller Qr = (1/2)E1Γr ,
where Γr is given in (36) with the gain adaption law (38).
This controller eliminates the effects of uncertainties and
disturbances so that the controlled system behaves as the
nominal system described by (20) with no uncertainty and
disturbance.

VI. SIMULATION RESULTS
To verify their robustness and accuracy, the two control meth-
ods proposed in the previous sections are applied to a rest-
to-rest slew maneuver. The simulations are carried out in the
MATLAB/Simulink environment and a fixed time-step ode4
Runge-Kutta integrator with the sampling period of 0.01 s is
used.

Consider a Hubble Space Telescope-like spacecraft
whose mass is 13,000 kg. Its nominal moment of iner-
tia is given by J = diag

[
35997 86852 93913

] (
kg · m2

)
and a 10% uncertainty is considered so that its actual
moment of inertia is given by Ĵ = J + 0.1J =

diag [39596.795537.2103304.3]
(
kg · m2

)
which is unknown

to us. It is assumed that the external disturbances are mainly
induced by the solar array along the y-axis [35] so that δ̂ (t) =

[00.2 sin (2π (0.12) t) + 0.2 sin (2π (0.66) t)0]T (N · m) and
a 4 by 1 vector δ (t) that is shown in (28) is obtained as
δ (t) = 2ET1 δ̂ (t). The initial values for the quaternion and
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FIGURE 1. Time history of quaternions of the controlled system (Red:
reference, Blue: controlled).

angular velocity are chosen similar to the ones used in [40]:

q (0) =
[
0.3153 0.4646 0.1928 0.8047

]T
,

ω (0) =
[
0 0 0

]T
(rad/s) . (51)

Then, the initial value for the quaternion derivative is found
by (19) as q̇ (0) = (1/2)ET (0) {ω (0)} =

[
0 0 0 0

]T . The
desired quaternion and angular velocity are selected as

qd (t) =
[
1 0 0 0

]T
,

ωd (t) =
[
0 0 0

]T
(rad/s) , (52)

and so the desired maneuver angle is 2.5 rad. For the nominal
trajectory qn (t) to be tracked, α = 0.13 and β = α2/4 =

0.004225 are carefully chosen to satisfy the desired output
performance: 1. critical damping is achieved with no over-
shoot; and 2. the quaternion parameters q1, q2, and q3 should
converge to less than 0.01 within 100 sec. Although a rest-
to-rest slew maneuver is considered in this example, it equiv-
alently becomes a time-varying attitude tracking problem in
which the reference command is given by (25). As for the
robust controller, the following parameters are chosen:

λ = 5, ε = 0.01, ρ = 1,

γ = 0.001, µ = 1, κ = 0.5,K (0) = 0.1. (53)

First, we assume an unconstrained case where there is
no limit on control torques applied or the maximum torque
that the actuator can apply is sufficiently large. Figure 1
shows the time history of the quaternion parameters. The red
dashed line denotes the nominal reference trajectory and the
blue solid line represents the controlled one. It is seen that
the spacecraft quaternions converge to less than 0.01 within
100 sec as required and successfully approach the desired
values specified by (52). Figure 2 plots the time history of
the corresponding Euler angles (roll-pitch-yaw), all of which
converge to zero. In Figure 3, the time history of the tracking

FIGURE 2. Time history of Euler angles (roll-pitch-yaw).

FIGURE 3. Quaternion tracking errors between the controlled and
nominal quaternion trajectories.

error (29) is depicted that indicates the discrepancy between
the controlled and nominal trajectories. After 250 seconds,
the upper bound on the quaternion errors are of the order of
10−8 although external disturbances caused by the solar array
and 10% inertia uncertainty are induced. This error bound
is much smaller than the one expected by Theorem 2, i.e.,
ε/λ = 0.002. The time history of the angular velocity in
each axis is shown in Figure 4. The steady-state error is found
of the order of 10−7. Figure 5 shows the nominal control
torques (Qc (t), red line), the robust control torques (Qr (t),
green line), and the total control torques (Qc (t) + Qr (t),
blue line) for each axis. It is seen that the magnitude of the
nominal control torques are relatively larger than the one of
the robust control torques that are needed to suppress the
effects of the uncertainty. Figure 6 plots the time history of
the sliding variables, showing that its infinity norm is well
bounded by ε. The time history of the adaptive gain K (t) is
also provided in Figure 7. While the condition ∥s∥ ≤ ε is sat-
isfied, K (t) keeps decreasing as indicated by Theorem 1 and
maintains constant once ∥s∥ becomes less than γ ε = 10−5.
The control performances shown in Figures 1-7 indicate that
the proposed control law can successfully perform large angle
slew maneuvers.
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FIGURE 4. Time history of the angular velocity of the controlled system.

FIGURE 5. Time history of nominal control torques (Qc ), robust control
torques (Qr ), and total control torques (Qc + Qr ).

TABLE 1. Comparison of controllers.

The simulation results obtained using the proposed method
are compared with the ones of [5] under the same condition.
The controller proposed in [5] utilized the backstepping con-
trol method with a nonlinear tracking function and the gains
were selected based on a redesigned Lyapunov function.
However, the upper bound on the uncertainties should be
known in advance to guarantee the stability of the controlled
system. The control parameters are reselected to yield the
same performance: no overshoot and the maximum conver-
gence time of 100 sec.

The simulation results of [5] are provided in Figures 8-10.
Compared with the existing method proposed in [5], the

FIGURE 6. Time history of sliding variables.

FIGURE 7. Time history of adaptive gain.

FIGURE 8. Time history of quaternions when the controller proposed in
[5] is used (Blue) and when the controller in this paper is used (Red).

robust control methodology developed in this paper provides
better performance. The quaternion parameters converge to
the desired values in similar settling times (but with a little
larger rise times), but the steady-state errors are smaller and
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FIGURE 9. Time history of angular velocity when the controller in [5] is
used (Blue) and when the controller in this paper is used (Red).

FIGURE 10. Time history of control torques when the controller in [5] is
used (Blue) and the controller in this paper is used (Red).

the required control torques are also much smaller. Table 1
lists the peak control torque, as well as the control torque,
angular velocity norm, and quaternion norm at 300 sec
for both controllers. The peak control torque generated by
the proposed control method is 2291.74 (N·m) while the
existing controller requires 49668.00 (N·m). The values of∥∥Qc + Qr

∥∥
2, ∥ω∥2, and

∥∥∥[ q1 q2 q3 ]T∥∥∥
2
at 300 sec also

reveal smaller steady-state errors and control cost when using
the proposed controller.

Finally, let us investigate the performance of the robust
control laws proposed in the current paper in the presence of
limitations imposed on the magnitude of the control torques.
It is assumed that the magnitude of the total control torque
Q = Qc + Qr is now saturated at 1600 N · m in each axis.
From Figure 5 it is expected that the control torques would
be saturated at the beginning in the z-direction. Figure 11
shows the time history of the nominal control torques (Qc),
the robust control torques (Qr ), and the total control torques
(Qc + Qr ) for each axis. As expected, the control torque in
the z-direction gets saturated for the first 5 seconds. Although
each of the control torques Qc and Qr may exceed the limit
(1600 N ·m), their sum - the actual control command applied
to the actuator - is always bounded by this limit. In Figure 12
the time history of the quaternion parameters is provided.

FIGURE 11. Time history of nominal control torques (Qc ), robust control
torques (Qr ), and total control torques (Qc+ Qr ) when control torques
are saturated at 1600 N•m.

TABLE 2. Comparison of controllers.

Even in the presence of control torque saturation, the quater-
nions are successfully controlled to follow the nominal ref-
erence trajectory. Figure 13 depicts the time history of the
corresponding Euler angles (roll-pitch-yaw). They converge
to zero as desired. In Figure 14, the time history of the
tracking errors is plotted. Compared with Figure 3 where
the control input is not constrained, the maximum errors are
larger due to the saturation, but the steady-state errors are a
little smaller. The same behavior can be seen in Figures 15
and 16 where the time history of the angular velocity and the
sliding variable is presented, respectively. One can observe
that the angular velocity and the sliding variable have larger
values in the reaching phase than the ones in Figures 4 and 6
due to the control input saturation, but the steady-state errors
are a little smaller. The control gain plotted in Figure 17
explains the reason. In Figure 7 the gain keeps decreasing
because the condition ∥s/ε∥ − κ < 0 is always satisfied
throughout the simulation and gets stabilized to 0.09983 once
the condition ∥s∥ ≤ γ ε is met (see (38)). On the contrary,
in Figure 17 the gain keeps increasing because in the reaching
phase ∥s/ε∥−κ > 0 and so K̇ > 0 holds. Once the condition
∥s∥ ≤ γ ε is satisfied, the gain gets stabilized at 0.1509.
According to (36), a larger |K | is equivalent to a smaller ε, and
so the higher gain in the constrained case causes the smaller
steady-state errors.

The performance obtained using the proposed controller
in the presence of control torque saturation is compared with
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FIGURE 12. Time history of quaternion parameters when control torques
are saturated at 1600 N•m (Red: reference, Blue: controlled).

FIGURE 13. Time history of Euler angles (roll-pitch-yaw) when control
torques are saturated at 1600 N•m.

FIGURE 14. Quaternion tracking errors between the controlled and
nominal trajectories when control torques are saturated at 1600 N•m.

one obtained using the method shown in [5]. The simulation
results are presented in Figures 18-20. Again, the robust
control methodology proposed in this paper yields better

FIGURE 15. Time history of the angular velocity of the controlled system
when control torques are saturated at 1600 N•m.

FIGURE 16. Time history of sliding variables when control torques are
saturated at 1600 N•m.

FIGURE 17. Time history of adaptive gain when control torques are
saturated at 1600 N•m.

performance for the constrained case. Having similar settling
times, the current methodology produces smaller steady-state
errors and requires smaller control torques. Table 2 lists
the magnitude of the peak control torque and the torque,
angular velocity, and quaternion norm at the final time after
completing the slew maneuver. It is clearly seen that using
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FIGURE 18. Time history of quaternions when the controller proposed in
[5] is used (Blue) and when the controller in this paper is used (Red),
where control torques are saturated at 1600 N•m for both cases.

FIGURE 19. Time history of angular velocity when the controller in [5] is
used (Blue) and when the controller in this paper is used (Red), where
control torques are saturated at 1600 N•m for both cases.

FIGURE 20. Time history of control torques when the controller in [5] is
used (Blue) and the controller in this paper is used (Red), where control
torques are saturated at 1600 N•m for both cases.

the proposed controller, one can obtain smaller steady-state
errors in the angular velocity and quaternion parameters using
smaller control torques.

VII. CONCLUSION
This paper proposed two control laws for spacecraft attitude
tracking in the presence of model and environmental uncer-
tainties. Once a reference quaternion trajectory is prescribed
to satisfy a desired output performance, the first controller
assumes a nominal dynamic system with no uncertainties
and computes exact optimal control torques to follow the
reference trajectory. The solution was obtained with the
extended use of the FECM by viewing the attitude track-
ing requirements as equality constraint and it minimizes the
control effort at each instant of time. The second control
law assumes an actual, uncertain system to produce smooth
control signals that suppress any uncertainty effects. The gain
is automatically updated according to the variation of the
system uncertainty and any information about the uncertainty
bound is not required. As a result, the sliding variables (and
the tracking errors) are bounded in finite time within a small
ball whose size can be selected by the designer. The proposed
control laws have a simple structure and require a small
number of control parameters to be tuned, compared to the
existing adaptive control approaches. The effect of each con-
trol parameter on the control performance was also discussed.
A rest-to-rest slew maneuver was numerically simulated to
show the robustness and simplicity of the combination of
the two control laws proposed in this paper. It was found
that the quaternion parameters and angular velocity were
successfully controlled to achieve the desired attitude track-
ing even if the moment of inertia uncertainty and external
disturbances were present. The performance of the proposed
control methodology was also compared with the existing
one, which shows that higher control accuracy and smaller
control cost were attained when employing the proposed
methodology. The effect of saturation on the control torques
was also simulated and discussed. It was shown that the
precision attitude tracking in the presence of uncertainties and
disturbances could still be achieved in spite of control torque
saturation. Also, even with control saturation, the proposed
robust control methodology yielded better performance than
the existing method. Although it was demonstrated that the
norm of the controlled sliding variables was always bounded
by ε, it was found in a conservative manner because the
simulation results revealed that the actual bound might be
much smaller. Hence, finding an exact bound on the norm of
the sliding variables is one of our future works. Additionally,
the proposed control strategy will be extended to include fault
tolerance in its design in the future and its performancewill be
compared with that of the state-of-the-art achievements such
as fault-tolerant adaptive fuzzy control.
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