
Received 9 February 2023, accepted 16 March 2023, date of publication 21 March 2023, date of current version 28 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3260069

Trace-Driven Scaling of Microservice Applications
VAHID MIRZAEBRAHIM MOSTOFI1, EVAN KRUL1,
DIWAKAR KRISHNAMURTHY 1, (Member, IEEE),
AND MARTIN ARLITT 2, (Senior Member, IEEE)
1Department of Electrical and Software Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
2Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada

Corresponding author: Diwakar Krishnamurthy (dkrishna@ucalgary.ca)

This work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

ABSTRACT The containerized microservices architecture is being increasingly used to build complex
applications. To minimize operating costs, service providers typically rely on an auto-scaler to ‘‘right size’’
their infrastructure amid fluctuating workloads. The agile nature of microservice development and deploy-
ment requires an auto-scaler that does not require significant effort to derive resource allocation decisions.
In this paper, we investigate reducing auto-scaler development effort along a number of dimensions. First,
we focus on a technique that does not require an expert to develop a model, e.g., a queuing model or
machine learning model, of the system and tweak the model as the underlying microservice application
changes. Second, we explore ways to limit the number of workload patterns that need to be considered. Third,
we study techniques to reduce the number of resource allocation scenarios that one has to explore before
deploying the auto-scaler. To address these goals, we first analyze the workload of 24,000 real microservice
applications and find that a small number of workload patterns dominate for any given application. These
results suggest that auto-scaler design can be driven by this small subset of popular workload patterns
thereby limiting effort. To limit the number of resource allocation scenarios explored, we develop a novel
heuristic optimization technique called MOAT, which outperforms Bayesian Optimization often used for
such exercises. We combine insights obtained from real microservice workloads and MOAT to realize an
auto-scaler called TRIM that requires no system modeling. For each popular workload pattern identified for
an application, TRIM uses MOAT to pre-compute a near minimal resource allocation that satisfies end user
response time targets. These resource allocations are then used at runtime when appropriate. We validate
our approach using a variety of analytical, on-premise, and public cloud systems. From our results, TRIM
in consort with MOAT significantly improves the performance of the industry-standard HPA auto-scaler by
achieving up to 92% fewer response time violations and up to 34% lower costs compared to using HPA in
isolation.

INDEX TERMS Auto-scalers, containers, microservice architecture, resource allocation, software perfor-
mance.

I. INTRODUCTION
Microservice architectures are being increasingly used to
build complex enterprise applications. With such an architec-
ture, an application is developed as a collection of lightweight
and loosely coupled services that interact with one another.
Often, a microservice is packaged using containerization
technology [1]. There are several reasons for the increased

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Lyu.

use of microservice architectures. For example, designing a
complex application service by breaking it down into simple
microservices can enable Continuous Integration-Continuous
Delivery (CI-CD). The CI-CD paradigm places emphasis on
simplifying application development, maintenance, and oper-
ation while enabling agile and frequent roll outs of changes.
In a survey done by Shahin et al. [2], 53.7% of participants
mentioned that the applications they had some role in the
development of were in a deployable state one or more times
per day.

29360
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6098-4801
https://orcid.org/0000-0001-6167-2255

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

Many microservice applications are customer-facing and
hence have stringent performance requirements. Specifically,
these applications are expected to satisfy predefined response
time targets for requests submitted by their end users. These
response time targets are usually included as part of Service
Level Agreements (SLAs) operators of an application ser-
vice have with end users of that service. Customer-facing
services often experience workload fluctuations [3]. Hence,
a microservice application needs to use scaling techniques to
handle such fluctuations. Scaling techniques ensure enough
resources are allocated to an application so that SLA targets
continue to be met in spite of workload fluctuations. The
survey by Salah et al. [4] mentions the ability to simplify
scaling as a key reason for the adoption of the microservice
architecture.

Modern enterprise applications often use auto-scaling to
ensure performance requirements are satisfied continuously.
Auto-scaling is a technique where the resources, e.g., CPU
and memory, allocated to an application are changed at run-
time so that the application continues to satisfy its SLA objec-
tives. Two key requirements in auto-scaler design are SLA
Awareness, i.e., the ability to satisfy pre-defined response
time targets, and efficiency, i.e., allocating just the right
amount of resources to achieve these targets in a cost-efficient
manner. While not allocating enough resources can lead
to response time violations, over-provisioning leads to cost
overruns for the service operator. We term the module within
the auto-scaler that performs this operation as the resource
allocation module.

Microservice applications impose a third unique require-
ment of CD compatibility, i.e., the ability to support agile
and frequent software releases. The auto-scaler design should
be consistent with this requirement. Specifically, CD com-
patibility can be assessed along several dimensions based on
the effort needed to develop and maintain the auto-scaler.
First, many existing approaches require an expert to develop
a model, e.g., a queuing model or machine learning (ML)
model, of the system and many organizations may not have
access to such experts or may wish to avoid the costs or
delays that hiring a consultant to provide such expertise might
entail. In addition to requiring an expert, model development
typically involves significant effort. For example, MLmodels
may require feature engineering and hyper-parameter tun-
ing initially. Some of these tasks need to be repeated when
the underlying microservice application changes, e.g., when
existing microservices undergo extensive modifications or
additional types of requests and microservices are introduced
to support new features [5], [6]. Second, to be accurate,
models in general need to be validated or trained against
a large number of workload scenarios. Third, the modeling
exercise should also consider a large number of resource
allocation scenarios to be effective. With these two consider-
ations, adapting the model in response to application changes
can incur a prohibitively large effort and cost.

Although there have been many studies on develop-
ing auto-scalers for microservice applications [7], [8], [9],

[10], [11], these existing techniques do not satisfy the three
requirements of SLA awareness, resource efficiency, and
CD compatibility simultaneously. In particular, many exist-
ing techniques require model-building and the concomi-
tant extensive exploration of workload patterns and resource
allocation scenarios, which can hinder agile deployment.
To address this issue, we explore a CD compatible approach
that does not require systemmodeling, relies on only a limited
number of workload patterns, and reduces the number of
resource allocations that need to be explored prior to auto-
scaler deployment. We also design the approach such that it
is SLA-aware and resource efficient.

Specifically, we consider the following research questions:

• RQ1 - Do real-world microservice workloads have prop-
erties that can reduce the number of workload patterns
that one needs to consider while devising an auto-scaler?

• RQ2 - How can knowledge of an application’s service
architecture and bottlenecks be exploited to limit the
number of resource allocations explored while identi-
fying a cost-effective resource allocation, prior to auto-
scaler deployment?

• RQ3 - How does an auto-scaler that exploits the answers
to RQ1 andRQ2 performwhen compared to an industry-
standard, CD-compatible auto-scaler?

The three novel contributions that underpin our effort are
described as follows. First, we analyze workloads of over
24, 000 real-world microservice applications [12] to discover
a novel insight that enables the design of a CD-compatible
auto-scaler. Specifically, we find that a small number of
workload patterns occur repeatedly, i.e., workloads exhibit
skewed popularity (RQ1). Furthermore, popular workloads
observed during a time period also tend to be popular in the
subsequent time period, i.e., workload patterns exhibit good
temporal locality (RQ1). This result suggests that auto-scaler
design can be driven by this small set of popular workload
patterns for CD compatibility.

Second, we develop a novel resource allocation module
called the Microservices Application Tuner (MOAT). MOAT
limits the number of resource allocation scenarios explored
by quickly identifying an efficient resource allocation for any
given workload in the set of popular workload patterns. The
technique employs an iterative performance testing approach
during a profiling phase. It accepts as inputs the workload and
response time targets for various classes of requests supported
by the application. It first generates initial resource alloca-
tions, e.g., CPU shares, for individual microservices. MOAT
refines the resource allocation incrementally by monitoring
service response times and resource usage during this test
and by exploiting knowledge of the application’s service
architecture. A new performance test is then launched with
the refined allocation. The process of refining and testing
allocations is continued iteratively until all response time
targets are met. A key feature of this algorithm is that it
determines resource allocations without resorting to a large

VOLUME 11, 2023 29361

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

number of performance tests thereby speeding up the tuning
process and enabling CD compatibility.

Third, we build a trace-driven microservices auto-scaler
(that we call TRIM) that leverages the above two contribu-
tions to simultaneously realize SLA awareness, efficiency,
and CD compatibility. TRIM does not require model develop-
ment. It considers the popular workload patterns observed at
a system during a time period, e.g., a day, and pre-computes
resource allocations for this small set of patterns in the pro-
filing phase by using MOAT. The popularity skew ensures
that the profiling phase is short thereby supporting the agility
demanded by CD. At runtime the auto-scaler measures the
workload expected at any given time instant. If the measured
workload closely matches one of the workloads explored
during the profiling phase, the corresponding resource allo-
cation is applied to the system. Otherwise, the auto-scaler
falls back on a default rule-based algorithm used currently by
practitioners [13]. The most frequent patterns can be updated
periodically, e.g., once per day, and the process repeated to
track subtle workload changes over time.

A comprehensive evaluation that considers real-world,
analytical, on-premise, and public cloud systems shows that
our approach outperforms existing baseline techniques. For
example, considering the busiest of the 24, 000 applications
in the Azure function traces [12], the top 5 workload pat-
terns in a day account for 78% of the observations that
day (RQ1). These patterns capture 75% of the patterns the
next day suggesting good promise for our approach (RQ1).
Furthermore, MOAT promotes CD compatibility by signifi-
cantly cutting down the number of resource allocation sce-
narios explored compared to a Bayesian Optimization (BO)
approach, commonly used for similar exercises. Specifically,
on a public cloud testbed, MOAT requires 4.8 times fewer
iterations than BO to converge to a near optimal resource
allocation (RQ2). Furthermore, MOAT identifies more effi-
cient, i.e., cost-effective, allocations. For the same cloud
system, MOAT’s resource allocations reduced operational
cost by 48% compared to those identified by BO (RQ2).
Next, we evaluate TRIM by considering a representative
application from the Azure function traces and emulating its
workload over a 24 hour period on an on-premise system.
MOAT quickly pre-computes the resource allocations for the
top 10 patterns during a 13 minute profiling phase. When we
only employ the industry-standard and CD compatible HPA
auto-scheduler [13], we notice significant SLA violations and
excessive resource usage. By leveraging the pre-computed
resource allocations fromMOAT, TRIM is able to reduce both
SLA violations and resource usage compared to HPA. Con-
sidering all experiments done on this system, TRIM reduces
SLA violations and resource usage by up to 92% and 34%,
respectively (RQ3).

We have previously published a preliminary version of
MOAT’s resource allocation algorithm (named ‘‘the basic
algorithm’’ in this paper) [14]. This paper enhances the algo-
rithm and leverages the enhancement in the design of TRIM.
The workload analysis driving the design of TRIM is also a

significant addition to this paper. Parts of this paper can be
found in an expanded form in the masters thesis document of
the first author [15].

The rest of the paper is organized as follows. Sec. II
discusses related work. We present our workload analysis to
motivate the design of TRIM in Sec. III. Sec. IV outlines the
design of TRIM. Sec. V describes the MOAT resource allo-
cation module. Evaluation and results of MOAT and TRIM
are presented in Sec. VI and Sec. VII, respectively. Sec. VIII
concludes the paper.

II. RELATED WORK
The surveys done by Qu et al. [16] and Singh et al. [17]
provide comprehensive discussions on existing auto-scaling
research. Auto-scaling techniques can be broadly grouped
into Rule-Based, Profiling Based, Analytical Modeling Based
andMLBased approaches.We now provide a brief discussion
of these approaches.

Many public cloud providers [18] and open source con-
tainer orchestrating tools [1] provide simple, static, rule-
based solutions [13], [18] for scaling microservices. A rule
specifies the allocation or removal of resources based on
whether a chosen performance metric, e.g., CPU utiliza-
tion, exceeds a static threshold or not. These techniques are
CD-compatible since they do not require a lengthy profil-
ing phase where a large number of workload patterns and
resource allocation scenarios are explored and are convenient
to use. However, setting the appropriate thresholds can be
challenging. Improper selections can cause response time
target violations or resource over-allocation [19], [20]. Exten-
sions of these techniques use dynamic thresholds [21], [22]
and fuzzy rules [16], [23], [24]. However, these techniques in
general require complex tuning to ensure simultaneous SLA
awareness and resource allocation efficiency.

Profiling based approaches collect experimental data from
a target system to infer resource allocation decisions that can
be applied when that system is deployed [17]. Many tech-
niques conduct the profiling phase offline, prior to deploying
the system [25], [26], [27], [28]. While these techniques can
be designed to be SLA aware and efficient, the profiling
experiments need to be repeated every time the application is
updated. Since microservice applications tend to get updated
frequently, care must be exercised to limit profiling exper-
iments so that the technique is CD compatible. However,
achieving a balance between profiling effort and resource
estimation accuracy is challenging and is still an open prob-
lem. Other approaches rely on profiling data collected after a
system has been deployed [29], [30]. Since it is undesirable
to degrade the performance of a system, particularly for an
extended period of time, only a limited number of experi-
ments can be executed. Consequently, these techniques are
less likely to identify optimal resource allocation decisions
compared to the offline techniques.

Analytical modeling approaches [9], [31] build a mathe-
matical model of a target system that can be solved using

29362 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

queuing theory. They use a model to predict a system’s per-
formance under any given workload with different resource
allocations. These predictions are used to arrive at an opti-
mal resource allocation. A key challenge with this approach
is the need for an expert to construct an accurate queuing
model. An additional challenge is that the model has to be
validated against a large number of workload patterns and
resource allocation scenarios to ensure accuracy. Further-
more, the model has to be updated whenever the system
changes [17], which impacts agile software roll outs and
hence CD compatibility. Some studies address model build-
ing complexity by representing similar services using a single
type of model [32]. Others simplify the modeling by building
models for each microservice in an application instead of
one complex model that captures the combined impact of all
microservices [33], [34]. However, such an approach requires
response time targets defined for the whole application to be
decomposed into targets for each microservice, which can be
a complex task [7].

Several studies leverage ML models to drive auto-scaling
decisions. The learning process can be performed before or
after deployment. Reinforcement Learning (RL) based tech-
niques allow a system to learn how to react in a specific
environment to maximize predefined rewards. RL models are
trained while the system faces changing workloads. Gains
and rewards are defined such that the system is nudged to find
efficient solutions that meet SLA targets [35]. Regression
based techniques [36], [37], [38] concentrate on learning
the pattern between various system and workload variables
to predict an appropriate number of resources. The trained
model can be used for many purposes, such as running
simulations or optimization. Both RL and regression based
approaches require expertise to build and tune a model. Fur-
thermore, they generally require extensive training data, e.g.,
workload patterns and resource allocations, to be effective.
For example, RL models need time to converge, and an
auto-scaler based on such models reacts poorly while the
models are in the learning stage [16]. Furthermore, the mod-
els need to be tuned again with every application update.
For example, these models might lose their accuracy if a
microservice update has resulted in a significant change in
the service’s performance behaviour or if a completely new
service has been introduced into the application. These rea-
sons motivate our current effort of exploring an alternative
technique that does not require model building, that can
be effective with data from a limited number of workload
patterns, and that does not need to explore a large number
of resource allocation scenarios.

Commercial cloud and container orchestration sys-
tems support reactive auto-scaling approaches, e.g., the
HPA auto-scaler [13] offered by Kubernetes. In contrast,
Chameleon [34] and ASFM [11] are proactive auto-scaling
approaches. These approaches train an ML model to predict
the rate of arrival of requests to the system at a future time
instant. The auto-scaler then proactively applies resource

allocation for the predicted rate. Since training such work-
load prediction models with high accuracy is not trivial,
we explore an alternative technique that leverages other
characteristics such as workload popularity.

Table 1 compares prior works presented in this section that
focus explicitly onmicroservice applications.We also include
TRIM as the last line of the table. Most papers in the table did
not publish their auto-scaler source code. While Taherizadeh
and Stankovski [21] share their source code, their auto-scaler
requires a specific platform called SWITCH [39] that makes
using it as a baseline difficult. The other project that offers
source code is FIRM. However, the auto-scaler requires a
specific generation of processors [7] we do not have access
to thereby making comparison impossible.

From the table, many of the approaches require a
pre-deployment profiling phase. As discussed previously, the
profiling needs to be repeated whenever an application is
updated thereby necessitating new approaches that do not
require significant profiling effort. Similarly, as discussed
previously, approaches requiring queuing model develop-
ment and ML model training need modeling experts, exten-
sive evaluation of workload patterns and resource allocation
scenarios, and model re-tuning due to updates. As shown in
the table, two of the three rule-based techniques do not suffer
from this limitation. However, these techniques are not SLA
aware since they do not explicitly consider SLA targets. Such
approaches are prone to SLA violations or resource over-
provisioning.

TRIM addresses these limitations. It does not require
model building, which requires expertise that might be diffi-
cult to access in many organizations. It exploits workload pat-
terns observed in real world microservice workloads to limit
the number of workload patterns that need to be evaluated.
Furthermore, TRIM employs the MOAT resource allocation
module to identify an efficient resource allocation using
fewer iterations than the BO-based baseline considered in
existing work. These features make TRIM SLA-aware, effi-
cient, and CD-compatible. To promote repeatable research
and future empirical comparisons of auto-scaling approaches,
we have open-sourced TRIM and MOAT [40].

From Table 1, the PEMA [28] auto-scaler is similar to our
approach in that it is SLA aware and requires no systemmod-
eling. However, unlike TRIM that supports allocation of mul-
tiple resources and considers popularity of workload patterns,
PEMA focuses only on CPU provisioning and relies on a trial
and error allocation approach. Furthermore, while the source
code of PEMA has been published, there are no instructions
to deploy and execute the system. The only other auto-scaler
that does not require system modeling and is open-source
(with documentation) is the industry-standard HPA auto-
scaler implemented within the Kubernetes container orches-
tration system [1]. Given our emphasis on CD-compatible
techniques that obviate the need for model building andmain-
tenance, we select HPA as the baseline to evaluate TRIM’s
performance.

VOLUME 11, 2023 29363

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

TABLE 1. Comparison of different microservice auto-scalers.

III. WORKLOAD ANALYSIS
In this section, the publicly available dataset of Azure Func-
tion Traces [12] is introduced and analyzed. This dataset
contains information about invocations of serverless func-
tions that are building units of microservice applications. The
objective is to determine whether there are patterns in the
workload that can be leveraged to realize a CD compatible
auto-scaler that requires only a short profiling phase.

A. DATASET OVERVIEW AND PRELIMINARY ANALYSIS
The dataset used in this research is from microservice appli-
cations built using serverless functions and deployed on the
Microsoft Azure public cloud. An application is built as a
collection of functions supplied by an owner, i.e., a sub-
scriber, of the platform. Functions are invoked by various
triggers. The triggers are grouped into seven classes, namely
HTTP, Event, Queue, Timer, Orchestration, Storage, and
Others [12]. HTTP requests are the most common method
for invoking functions. Functions that are invoked based on
Timer triggers are similar to cron jobs, i.e., they have a
predefined frequency in their invocations.

The dataset captures about 24, 000 applications cumula-
tively supporting more than 70, 000 functions. It covers a
two week period from July 15, 2019 to July 28, 2019. Each
day is divided into 1-minute intervals. The number of times
each function is invoked in each of these 1-minute intervals is
recorded alongwith information on the application and owner
associated with that function.

More than 12 billion invocations are recorded in the dataset
spanning all days and all applications. 54% of applications
only have a single function while 95% of applications have
10 functions or less. Very few applications use a lot of func-
tions. For example, only 0.04% of applications used more
than 100 functions and only 4 applications used more than
1, 000 functions during the two-week period [12]. Also, only

a small subset of applications are popular. Specifically, 99.6%
of all invocations are directed to only 18% of applications.

Our analysis shows that in general applications from this
dataset are likely to benefit from auto-scaling. Figure 1 and 2
characterizes the request rate, i.e., the rate at which functions
belonging to an application are invoked, for three randomly
selected applications. For each application, Figure 1 plots
hourly request rates normalized to the peak hourly rate for
a two-week period. To consider a finer timescale, Figure 2
also plots the request rate over a minute for the first three
hours of the dataset normalized by the peak over that period.
It can be observed that all three applications encounter work-
load fluctuations at both long and short timescales. Allo-
cating resources to handle the peak request rate will result
in over-allocation and cost overruns for other request rates.
Provisioning based on low request rates, in contrast, will lead
to SLA violations. Thus, the resource allocation should be
modulated at runtime by an auto-scaler based on theworkload
pattern.

B. ANALYSIS OF POPULARITY OF WORKLOAD PATTERNS
We now analyze whether an application’s workload is domi-
nated by a few popular workload patterns. Employing perfor-
mance analysis terminology, each function in an application
represents a class of request. The performance of an appli-
cation is affected both by the request rate and the workload
mix, i.e., the proportions of different request classes. We use
a metric called workload intensity that captures both these
aspects. Workload intensity of an application is defined as
a vector where each entry corresponds to the number of
requests belonging to a specific request class, i.e., number
of invocations of a specific application function. We identify
frequently observed ranges of workload intensities during a
given day.We then analyze the fraction of intensities observed
in the subsequent day that fall into these popular ranges.

29364 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

FIGURE 1. Two weeks, invocations per hour for three applications.

FIGURE 2. First hours of 07/15, invocations per minute for three
applications.

As discussed previously, a higher fraction simplifies the
design of a CD compatible auto-scaler. Sec. III-B1 formal-
izes our analysis procedure. The results of the analysis are
presented in Sec. III-B2.

1) FORMULATION OF ANALYSIS
The intensity of workloads an application faces can be ana-
lyzed at different timescales. We consider a time period
Tj to characterize workload intensities. Within this interval,
we characterize workload intensities at finer, equal-sized
intervals. The ith such interval within Tj is denoted as Ti,j.
The workload intensity for an application over the period Ti,j

is represented as
−→
Wi,j. It is a vector with length equal to the

number of request classes in that application. Each element
of the vector presents the number of requests in that fixed
interval for one of the request classes. Specifically, for an
application with C request classes,

−→
Wi,j is a C dimensional

vector (|
−→
Wi,j| = C).

−→
Wi,j = (w1

i,j,w
2
i,j,,w

C
i,j) and each w

c
i,j

is the number of invocations of the cth request class during
Ti,j. Each application might face various workload intensities
at the sub-intervals Ti,j within Tj. The set of all workload
intensities observed over Tj is represented asWj.

We define intensity range to group similar workload
intensities together. An intensity range is a bin in the C
dimensional histogram of all {

−→
Wi,j∀i ∈Wj}. As with a single

dimensional histogram, several strategies can be used to find
the bin size. We use the well-known Freedman–Diaconis
rule [44] to find the bin size. This leads to a set of C dimen-
sional bins, denoted as Bj, extracted from Wj. The nth bin
in Bj is denoted as bn,j. An intensity range can encompass
various workload intensities. A workload intensity

−→
Wi,j falls

into an intensity range if and only if Eq. 1 holds. The equation
specifies that the number of requests belonging to any given
request class must be within the lower and upper bounds for
that class as defined by the bin.

lcn,j ≤ w
c
i,j < hcn,j∀c = 1, 2, . . .C (1)

We now define the popularity of intensity ranges. Each
intensity range bn,j has a corresponding frequency fn,j indi-
cating how many of the {

−→
Wi,j∀i ∈ Wj} vectors fall into bin

bn,j. We define the Topcountj as the top count bins in Bj with
the highest fn,j values. To quantify the combined popularity
of a set of bins, we define a metric called coverage. Coverage
represents the percentage of the total number of observed
workload intensities that fall into a specified set of intensity
ranges. Eq. 2 shows how the coverage of a set of popular
intensity ranges (Z) on the interval j is calculated. In this
calculation,

−→
Wi,j ∈ b is evaluated using Eq. 1 by considering

the lower and upper bounds for each dimension, i.e., the lc

and hc values, respectively. A large value of coverage(j,Z)
indicates that the Z bins capture most of the workload inten-
sities observed during the time period Tj.

We also characterize how the popularity of intensity ranges
in a time period Tj changes during the subsequent time period
Tj+1. Specifically, we calculate the intensity ranges Bj based
on the workload intensities Wj observed during Tj. We can
then calculate coverage(j+1,Z), i.e., the fraction of workload
intensities observed in Tj+1 that are captured by the subset
Z of popular ranges in the previous time period Tj. Gain-
ing such information about future workload intensities can
be exploited for better resource allocations during the auto-
scaling process.

coverage(j,Z) =
|{
−→
Wi,j∀i ∈Wj|∃b ∈ Z :

−→
Wi,j ∈ b}|

|{
−→
Wi,j∀i ∈Wj}|

× 100

(2)

VOLUME 11, 2023 29365

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

2) ANALYSIS RESULTS
We apply the process defined previously on each application.
We consider Tj as 24 hours. Since the workload intensities
are provided in 1-minute bins, we consider Ti,j as 1-minute
intervals. Since the dataset contains data from 14 consecutive
days, there are 13 pairs of consecutive days. In each pair
of days, we use the first day to find the Topcountj popular
ranges and compute the coverage of these ranges for both
the same day and the next day. Consider a scenario where
Top5j has high coverage for the next day. This indicates that an
auto-scaler can profile the system for just the top 5 workloads
and use the resource allocations inferred for these workloads
to drive the scaling over the next 24 hours.

Since the results of this analysis are used for designing an
auto-scaler for microservice applications, we filter out some
applications and functions. The filtering rules we use are as
follows:

• Functions that are invoked using a Timer trigger are
ignored. The predefined behaviour of invocation pat-
terns of these functions is in contrast with the unpre-
dictable workload of microservice applications. These
functions may not benefit from auto-scaling as resources
can be assigned to them based on the timing of invoca-
tions.

• On each pair of consecutive days, applications that do
not use the same set of functions are not considered in
this analysis. The process defined in the previous section
needs the same functions, i.e., request classes, in both Tj
and Tj+1. In the 13 pairs of consecutive days, on average
82% of the applications have the same set of functions
and hence 18% of applications are filtered out.

We run the process on the subset of applications that are
invoked at least once per minute on average, i.e., we exclude
applications with very light workloads. We remove these
applications since they are not likely to benefit from auto-
scaling. We call the retained subset popular applications.
There are 2, 130 popular applications. The average number
of functions hosted per popular application is 2.7.

Table 2 shows the coverage values for the applications
considered. The first column shows different count values in
Topcountj indicating the number of popular intensity ranges
considered when computing the coverage. The second col-
umn represents the coverage of the Topcountj on the Tj, i.e.,
coverage of the top intensity ranges on the same day. The val-
ues in this column are computed using coverage(j,Topcountj)
based on Eq. 2. The last column is the coverage of Topcountj
on the Tj+1, computed using coverage(j+ 1,Topcountj+1).
The average number of unique workload intensity ranges

observed for any given application is about 10100. The aver-
age is skewed by certain applications having more than
1, 000 functions thereby resulting in extremely large number
of histogram bins. Considering the median to avoid this skew,
the median numbers of unique intensity ranges is 165.0 for
the applications considered. From Table 2, by considering
only the most popular intensity range of all unique ranges

TABLE 2. Coverage on the same day and the next day.

it is possible to achieve 51% coverage on the next day.
Considering the top 5 ranges, one can obtain a coverage of
75% for the subsequent day. As the tables shows, having
more intensity ranges increases the coverage. However, the
rate at which coverage increases diminishes as the number of
intensity ranges is increased. We find similar results when we
expand the analysis to include the less popular applications in
the dataset.

Summarizing, our results show that workload intensity
ranges have a very skewed popularity distribution. Specifi-
cally, a small number of workload intensity ranges encompass
a large fraction of workload intensities observed in a day.
Furthermore, these popular workloads exhibit good tempo-
ral locality since they are likely to occur frequently in the
subsequent day as well. This behaviour of applications can
be exploited to design an auto-scaler that can perform a
similar analysis and find the frequent intensity ranges.We can
quickly find optimal or near-optimal resource allocations for
these popular intensity ranges during a profiling phase. The
auto-scaler can apply these allocations at runtime on the sub-
sequent day whenever the system faces a workload intensity
similar to one of the workload intensities in the popular set.
Since the profiling phase has to only investigate the popular
intensity ranges, the profiling time is small thereby making
the auto-scaler CD compatible. We describe the design of an
auto-scaler that embodies these principles in the next section.

We note that the performance of a function might change
depending on the parameters passed to it. Since the traces
do not include parameters, we are not able to characterize
the distributions of parameter values. While profiling the
popular intensity ranges, care must be exercised to ensure
that the distributions of function parameter values used during
profiling matches those observed in the real deployment.

IV. TRIM: TRACE DRIVEN AUTO-SCALER
A. OVERVIEW
The key idea that TRIM exploits is that future workload
behaviours are expected to be similar to recent behaviours.
To act on this idea, TRIM exploits workload trace data from
a recent time period. Fig. 3 shows the high level architecture
of TRIM. TRIM collects workload trace data from a deployed
system through end point monitoring. During a profiling
phase conducted in a sandbox environment, it analyzes the

29366 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

traces using the methodology proposed in Sec. III to iden-
tify the most frequent workload intensity ranges. For each
of these ranges, it uses a resource allocation module called
MOAT that we developed. MOAT computes resource alloca-
tions to individual microservices such that operator specified
response time targets for request classes are satisfied. The
resource allocation plans computed by MOAT are stored in
a repository for use in auto-scaling.

During the subsequent time period, TRIM reuses the
resource allocation plans computed using the workload inten-
sity ranges of the previous time period to perform auto-
scaling. TRIM measures the workload intensity at any given
time instant using end point monitoring. It uses this informa-
tion to perform reactive auto-scaling. Specifically, it checks
whether the current workload intensity falls into any of the
ranges present in the resource allocation repository. If there
is a match, TRIM looks up the corresponding resource allo-
cations for the individual microservices. It then applies these
resource allocations to the system. If there is no match, TRIM
falls back on a default, rule-based auto-scaling algorithm.

The design of TRIM is flexible to accommodate changes.
For example, although we have implemented reactive auto-
scaling, the design can permit proactive auto-scaling as well.
This only requires a workload prediction engine [11] that
can predict in advance the workload intensity the system
is likely to encounter at a future time instant. Furthermore,
resource allocation engines other than MOAT can be accom-
modated. It is also straightforward to specify different default
auto-scaling algorithms to handle workloads not captured by
the popular intensity ranges. TRIM allows the operator to
specify the period over which workload analysis is performed
to identify the popular workload intensities. It also employs
best practices [13] to prevent issues such as auto-scaler oscil-
lation and to control other aspects of auto-scaler behaviour.
Since the profiling phase explores only a handful of work-
loads, it can be repeated quickly whenever the system is
updated, making it well-suited for microservice applications.

B. DESIGN
TRIM has two primary states. The first profiling state can
happen under two scenarios. In scenario 1, the system has
reached the end of Tj, e.g., end of a day assuming the work-
load is analyzed over a day. Scenario 2 happens when the
system is updated. Since both scenarios are handled concep-
tually similarly, we only describe scenario 1. The profiling
state is depicted by the dashed box in Fig. 3. In this step,
TRIM finds a new set of popular workload intensity ranges
Topcountj based onWj using the process introduced in Sec. III
to analyze workload traces collected from the system (step
P1). Each element of Topcountj is an intensity range bn,j that
specifies the range for each request class c in the application
as defined by the lower bound lcn,j and the upper bound hcn,j.
Then, Topcountj is passed to the MOAT module (step P2).
By running performance tests on a sandbox environment,
MOAT obtains resource allocations for each intensity range

FIGURE 3. Overall approach of TRIM.

and stores them as An,j∀bn,j ∈ Topcountj in a resource alloca-
tions repository (step P3). As a result, each bn,j ∈ Topcountj
has a corresponding resource allocation denoted by An,j that
specifies resource allocation for each microservice when the
application is facing a workload intensity that falls in bn,j.
TRIM uses An,j for scaling the application during Tj+1.
The second state represents TRIM scaling the current

deployment of the system. This is shown outside the dashed
box in Fig. 3. Inputs for this state are outputs of the profiling
phase. An additional input I represents the time in seconds
between TRIM’s successive measurements of the system.
It specifies how frequently auto-scaling is attempted. Assume
the system is in the beginning of Tj+1. The incoming work-
load intensity at instant i

−−−→
Wi,j+1 is measured (step 1). TRIM

checks if it falls into one of bn,j ∈ Topcountj calculated in
state 1 (step 2). Then, TRIM updates the resource allocations
based on pre-computed values for this range using the cor-
responding resource allocation An,j (step 3). If the current
workload does not fit into any of the ranges, TRIM scales the
system based on a simple rule-based approach (step 3). In this
work, we use the industry-standard HPA auto-scaler [13] as
the default.

MOAT is in charge of deciding about the amount of
resources allocated to each microservice for each intensity
range (An,j∀bn,j ∈ Topcountj). MOAT needs to consider
request class response time targets specified by the operator
while performing resource allocation. Another feature this
module needs to satisfy is to offer quick resource allocation
estimates to enable use within CI-CD pipelines. Techniques
that require long model training or manual hyperparame-
ter tuning are inconsistent with this requirement. Further-
more, the resource allocations discovered by MOAT need
to be efficient, i.e., MOAT should allocate just the right
amount of resources to each microservice. In the next section,
we describe how MOAT addresses these requirements.

V. MOAT: RESOURCE ALLOCATION MODULE
A. OVERVIEW
MOAT uses a sandbox performance testing environment con-
taining the application to be deployed. It considers as input a

VOLUME 11, 2023 29367

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

popular workload intensity range that has been identified by
TRIM through trace analysis. It also takes as input operator
specified response time targets for individual request classes.
MOAT employs an iterative performance testing approach to
quickly infer cost-effective microservice container resource
allocations that satisfy these response time targets. MOAT
first generates initial resource allocations, e.g., CPU shares,
for individual microservices and launches a performance
test. It then refines the resource allocation incrementally by
monitoring service response times and resource usage during
this test and by exploiting knowledge of the application’s
service architecture. MOAT determines resource allocations
without resorting to a large number of performance tests
thereby speeding up the tuning process. It employs heuristics
to reduce over-allocation of resources leading to efficient
allocations. As described in Sec. IV, TRIM invokes MOAT
for each popular workload intensity range and uses the result-
ing resource allocations at runtime.

B. DESIGN
Figure 4 depicts the overall design of MOAT. It also shows
the steps involved in each iteration. MOAT deploys the appli-
cation on an on-premise or cloud platform attached to the
sandbox environment (step 1) and starts the Load Generator
(step 2). While the performance test runs, the Data Aggrega-
tor gathers different measurements (step 3). The Aggregated
Data is passed on to a Tuning Agent (step 4). The Tuning
Agent uses this information to estimate new resource allo-
cations for each microservice. These configurations are then
stored in the Resource Allocation Database (step 5). The
Orchestrator Connector deploys the application using this
configuration to initiate another iteration (step 6). The itera-
tions continue until a configuration that achieves all response
time targets is identified or an operator-specified upper limit
on the number of iterations is reached. We next describe the
individual components of MOAT.

1) ORCHESTRATOR CONNECTOR
This module is responsible for starting a new deployment and
altering the existing deployment for subsequent iterations.
It is designed to work with both Docker Swarm and Kuber-
netes [1] container orchestration systems. It is also possible
to add support for other container orchestration systems.

2) LOAD GENERATOR
This module provides the ability to emulate the desired work-
load intensity on the system. It also manages the details of the
load test such as the request class mix and a warm-up period.
It executes on a dedicated physical machine.

3) DATA AGGREGATORS
There are different types of raw measurements that MOAT
can exploit. Each of these measurements might be available
through various sources as microservice applications can be
deployed differently with a wide range of available tools.

FIGURE 4. Overall design of MOAT.

MOAT focuses on commonly available data sources that are
usually available from cloud providers or are possible to
record by ready-to-use tools. The data from these sources
sometimes need additional parsing and cleaning, which is
also done by the Data Aggregator.

4) TUNING AGENT
This module uses the aggregated data that is passed to it and
the algorithm that is chosen to suggest a resource allocation
for the next iteration. In this research, we have developed two
tuning algorithms, which we describe in Section V-C.

5) RESOURCE ALLOCATION DATABASE
The tuned resource allocations are stored in a database for
further use by TRIM. TRIM can query this database to choose
an appropriate resource allocation for the incoming workload
at runtime.

We have designed MOAT to be modular and easily adapt-
able by others. The source code has been made public [40].
The implementation can be used to tune any microservice
application with the appropriate configuration file to control
MOAT. Our design allows the integration of a load genera-
tor customized for any given application. Furthermore, any
module that accepts the sequence of service calls, i.e., list of
microservices involved to satisfy each request class, request
class response time percentile targets, and mean resource uti-
lization as input and generates container resource allocations
as output can be integrated as the Tuning Agent. We next
describe our two different implementations of the tuning
algorithm.

29368 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

C. TUNING ALGORITHMS
This section is organized as follows. Sec. V-C1 formulates the
tuning problem. Sec. V-C2 explains the details of the basic
version of our algorithm. We identify shortcomings of this
algorithm and address them in an enhanced version, which is
described in Sec. V-C3.

1) FORMULATING THE TUNING PROBLEM
Performance tuning can be formulated as an optimization
problem. MOAT determines resource allocations for a spe-
cific workload intensity

−→
W . However, the trace analysis pro-

cess described in Sec. III that is leveraged by TRIM yields
popular workload intensity ranges. Hence, each workload
intensity range needs to be first converted to a workload
intensity for use by MOAT. We take an approach of using
the heaviest workload intensity in a given range as a repre-
sentative of that range. Assuming bn,j is the intensity range
that needs to be configured by MOAT, the heaviest workload
intensity can be constructed as

−→
W = (h1n,j, h

2
n,j,, h

C
n,j),

where hcn,j is the upper bound of invocation count for request
class c as defined in Sec. III. None of the workload intensities
in bn,j can impose heavier stress on the system than this
choice. Hence, a resource allocation that satisfies response
time targets for this choice will automatically satisfy the
targets for all intensities in the range.

Our tuning approach can accommodate multiple types of
resources. However, we focus on CPU for two main reasons.
First, all the on-premise and public cloud microservice appli-
cations we consider are CPU intensive. Second, focusing only
on CPU simplifies the discussions of the problem formulation
and the tuning algorithms. To establish the generalizability
of the approach, we have explored in Appendix A an imple-
mentation of MOAT that considers both CPU and memory
resource types.

We consider an application with K microservices, each
packaged in its own container. The application supports C
distinct request classes. Each request class c has an associated
response time target RTc. This target is typically defined as
a percentile, e.g., 95th percentile, of response time values
observed while servicing the workload

−→
W . Each request class

c invokes a sequence of microservices Sc to get its response.
Thus, each service k in this sequence incurs a CPU demand.
The amount of CPU resources, i.e., CPU shares, allocated to
microservice k is denoted as αk and A = {αk : ∀k ∈ K } is
resource allocation for all microservices.

The tuning problem translates to determining theminimum
CPU shares allocated to each service such that all response
time targets are met. Specifically, Eq. 3 minimizes the cumu-
lative CPU shares allocated to the application and hence the
cost of operating the application on the cloud. Eq. 4 stipulates
that just enough resources need to be allocated such that
the request class’s response time Rc is less than or equal
to the corresponding target RTc for all c ∈ C . Eq. 5 shows
that the response time Rc is a function of the workload and
the K CPU share values captured byA. Eq. 6 incorporates an

optional constraint that places an upper bound αmax on the
total CPU shares available to the application. While many
approaches can be used to solve this optimization problem,
we need to focus on methods that can identify solutions
quickly to support CD practices and to reduce the cost of
renting the resources needed for the tuning.

min
∑
k∈K

αk (3)

s.t. Rc ≤ RTc ∀ c ∈ C (4)

s.t. Rc = fc(W ,A) ∀ c ∈ C (5)

s.t.
∑
k∈K

αk < αmax (6)

2) BASIC TUNING ALGORITHM
We developed the basic tuning algorithm presented in this
section as preliminary work [14]. We summarize it here
to aid explanations of our subsequent enhancements to the
algorithm. The key idea of the basic tuning algorithm is to
incrementally alleviate the resource bottlenecks experienced
by each request class that does not meet its response time tar-
get. For each request class c that violates its target, we identify
the service in its service sequence Sc that is utilized the most.
Additional CPU shares are allocated to the services identified
in this manner and the effect of these updated allocations
is measured iteratively through further performance tests.
An iterative approach allows the algorithm to closely track
how bottlenecks shift across services so that allocations can
be tailored accordingly.

Algorithm 1 describes the basic approach in detail. The
algorithm takes as input 1, which specifies the incremental
amount of CPU shares to be added to each microservice when
it is detected to be the bottleneck, i.e., has the highest CPU
utilization, for a request class. It also takes as input an initial
configuration, i.e., initial CPU shares, for all microservices
(represented as αstartk ∀k ∈ K) and Sc, the service sequence.
As outlined previously, the algorithm refines these initial
shares iteratively using performance tests by continuously
tracking bottlenecks. When all response time targets are met,
the algorithm breaks out of the loop and reports the last
employed CPU shares as the output.

In the main loop of Algorithm 1 at line 2, different
approaches can be taken to deploy a configuration. One
option is to allocate all resources assigned to each microser-
vice to a single container. Another option is to split the
resources between multiple container instances. With both
approaches, the amount of CPU shares allocated to microser-
vice k is equal to αk .

We now focus on the factors affecting the time taken for
the tuning process. The time spent by Algorithm 1 generating
the CPU shares is negligible compared to the time taken to
deploy the application and conduct the performance test. This
motivates the need to cut down on the number of performance
tests by reducing the number of iterations. Using a small
1 value allows the algorithm to track bottleneck shifts in a

VOLUME 11, 2023 29369

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

fine-grained manner. This leads to more efficiency in terms
of the total CPU shares allocated to services. However, this
may require a large number of iterations. On the other hand,
a larger 1 value leads to finding the final configuration faster
but often leads to over-provisioning. Similar to the problem of
choosing the learning rate in stochastic gradient descent [45],
finding the perfect 1 value may be challenging. The other
issue with Algorithm 1 is that a single microservice might be
involved in different request classes and be the bottleneck for
all of them. If we add 1 CPU shares for each request class
to this microservice (line 12 of Algorithm 1), we might end
up over-provisioning this service. We next refine the basic
algorithm to address these issues thereby achieving both fast
convergence and efficient allocations.

Algorithm 1 Basic Algorithm
Result: A (αk ∀k ∈ K)
Input: initial CPUshares(αstartk ∀k ∈K), 1, Sc ∀c∈C

1 while True do
2 Deploy the system with the current configuration
3 Run the performance test and gather:
4 - CPU utilization of all services
5 - Response times of all request classes (Rc)
6 if Rc ≤ RTc ∀c ∈ C then
7 break
8 end
9 for c ∈ C do
10 if Rc > RTc then
11 bottleneck ← bottleneck of Sc
12 add 1 CPU shares to bottleneck
13 end
14 end
15 end

3) ENHANCED TUNING ALGORITHM
The enhanced algorithm simultaneously achieves fast conver-
gence and efficiency by adaptively changing the incremental
CPU share1. It initially employs a large value of1 to quickly
obtain a valid but over-provisioned solution. It then embarks
on a pruning phase where allocations to selected services
are reduced to offset the over-provisioning. As described
shortly, several heuristics are used to drive this selection.
Inspired by binary search, the 1 during the pruning phase,
i.e., the reduction in CPU share, is progressively halved.
If the pruning process causes response time targets to be
violated again, the algorithm heals itself through additional
allocations using the reduced 1 value. The use of smaller
1 values during pruning and healing prevents instability,
which can delay convergence. The use of adaptive 1 allows
the enhanced algorithm to reap the efficiency of employ-
ing the basic algorithm with a small 1 while also achiev-
ing the quick convergence of using the basic algorithm with a
large 1.

Algorithm 2 Enhanced Algorithm
Result: A (αk ∀k ∈ K)
Input: initial CPUshares(αstartk ∀k ∈

K), 1, 1max , Sc ∀c ∈ C
1 for c ∈ C do
2 1c← 1

3 end
4 while True do
5 Deploy the system with the current configuration
6 Run the performance test and gather:
7 - CPU utilization of all services
8 - Response times of all request classes (Rc)
9 if Rc < RTc ∀c ∈ C then
10 pruneStageFlag ← True
11 end
12 for c ∈ C do
13 if Rc > RTc then
14 bottleneck ← bottleneck of Sc
15 add 1c CPU shares to bottleneck
16 end
17 end
18 if pruneStageFlag then
19 Kprune ← choosePruningMicroservice()
20 1c ← 1c/2
21 reduce 1c CPU shares from Kprune
22 end
23 for k ∈ K do
24 don′t allow αk to increase more than 1max in
25 a single iteration
26 end
27 if stopCondition() then
28 return best tried configuration and break
29 end
30 end

Algorithm 2 explains our enhanced approach. The main
inputs for the algorithm are A the initial CPU shares
αstartk ∀k ∈ K , the service sequence Sc for each request class
c as well as 1 and 1max , which is the largest permissible
increase in CPU share in a single iteration for any given
service. Services that handle request classes whose response
times are much lower than targets need more pruning than
others. Accordingly, 1 has to be adapted for individual
request classes. Consequently, the algorithm employs request
class specific 1c values, all initialized to 1 (line 2).

Lines 23-26 address the basic algorithm’s tendency to allo-
cate too many resources to a service that is a bottleneck for
multiple request classes. Specifically, the additional shares
allocated to any given service in a single iteration is limited
to 1max .

With the exception of enforcing 1max , the algorithm ini-
tially uses the basic approach until it realizes a configuration
where all targets are met. It then enters the pruning phase by
setting the pruneStageFlag to True (line 10). From this point,

29370 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

we prune resource allocations at the end of every iteration
(lines 18-22). If response time targets are violated due to the
pruning in the previous iteration, more resources are allocated
to the appropriate bottleneck services in the usual manner
albeit with the updated 1c values (lines 12-17).
Through empirical observations, we identify several

heuristics to select a candidate service Kc to prune for request
class c. We validate the effectiveness of these heuristics in
Sec. VI. These heuristics are as follows:

1) The candidate service should be the least utilized ser-
vice in at least one service sequence in the set of C
possible service sequences.

2) The candidate service should not be the most utilized
service, i.e., the bottleneck, in any of the C service
sequences. The reason both conditions 1 and 2 need to
be checked is because one service might be the least
utilized in one service sequence and the most utilized
in another service sequence.

3) The service should not be involved in the service
sequence of any request class whose response time is
very close to the corresponding target. The closeness of
a request class c to its target is specified as a percentage
ϵ of RTc (omitted from Algorithm 2 for clarity). Ser-
vices whose response times deviate beyond this bound
are considered for pruning in this heuristic.

The algorithm calls stopCondition() to check if more iter-
ations are needed. It stops and returns the previously encoun-
tered configuration with the least cumulative CPU shares
if any of the following conditions are met. The stopping
conditions are as follows:1

1) The number of iterations in the pruning stage passes the
number of iterations before the pruning stage started.

2) The algorithm wants to evaluate a configuration that
has been tried previously.

3) The sum of 1c values falls below a pre-defined thresh-
old (1stop) indicating that the pruning has become too
fine-grained to yield further improvements.

4) The cumulative CPU share budget has been reached.
5) Number of iterations reaches the operator-specified

upper limit.
We now analyze of the time complexity of the enhanced

algorithm. Considering the inputs of I , C , and K , the time
complexity of the enhanced algorithm isO(I (C+K log (K)).
The logarithmic term occurs due to the binary search tech-
nique used while adding resources. The linear and logarith-
mic terms are known given the inputs. However, we can only
evaluate the value of the number of iterations I with heuristic
analysis. Results that will be presented in subsequent sec-
tions covering a range of systems shows that the number of
iterations needed by the algorithm is much lower than that
needed by a state of the art search technique. Thus, the linear
and logarithmic terms in combination with our empirically
observed small values of I attest to the quickness of MOAT
as a tuning technique.

1These are not shown in Algorithm 2 for the sake of clarity.

VI. EVALUATION OF MOAT
A. EVALUATION SETUP
We evaluate MOAT on analytical and experimental systems.
The analytical systems helps ascertain how close the solutions
of MOAT are to the optimal solutions. The on-premise sys-
tem allows us to evaluate MOAT with realistic microservice
applications. The public cloud system helps us generalize the
applicability of MOAT to other cloud platforms.

The internal parameters 1stop and ϵ of the enhanced algo-
rithm are set to 0.2 and 90, respectively. Also, 1max in
the enhanced algorithm is equal to 1 in all experiments.
When using Algorithm 1 and Algorithm 2, we split αk
equally betweenmultiple container instances. If microservice
k started the process with the initial configuration αstartk ,
then the number of instances created based on αk is ⌈

αk
αstartk
⌉.

This approach ensures that each service is scaled by merely
adding more instances. It does not require the resource allo-
cation of existing instances in the tuning process to be mod-
ified. The values of αstartk are specified for each experiment
separately.

We compare our approach with an existingMulti Objective
Bayesian Optimizer solver [46]. In the rest of this section, this
approach is referred as BO (Bayesian Optimizer). We config-
ure the BO solver to minimize the total CPU shares while
ensuring all response time targets are met. The BO solver
launches a sequence of performance tests in an attempt to esti-
mate the optimal CPU shares. It uses the measured response
times from tests to guide its search in the tuning space.
We set the internal parameters of the solver to their default
values.

1) ANALYTICAL SYSTEMS
A key objective of this study is to evaluate how MOAT’s
resource allocations compare to optimal resource allocations.
To achieve this objective, we require a system whose perfor-
mance behaviour can be expressed using closed form analyt-
ical expressions. Such a system would allow us to determine
the optimal resource allocations using analytic optimiza-
tion solvers. Consequently, we consider analytical systems
whose behaviour can be captured using product form open
QNMs [47]. Each service k is represented as a single server
queue. The CPU service demand placed by request-class c
on service k when the service is allocated a CPU share αk =

1.0 is denoted byDc,k . The service demand decreases linearly
with an increase in CPU share. The workload intensity W is
represented as a vector of the mean rate of arrivals for each
request class with λc denoting the arrival rate in requests per
second (rps) for request-class c. Given these assumptions,
Eq. 7 and Eq. 8 can be used to calculate the mean utilization
and mean response time of request classes, respectively. Eq. 7
and 8 can be used with Eq. 3, 4, and 6 to define a non-linear
optimization problem.

Uk =
∑
c∈C

λcDc,k
αk

∀k ∈ K (7)

VOLUME 11, 2023 29371

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

TABLE 3. Properties of randomly generated systems.

Rc =
∑
k∈K

Dc,k
αk

1− Uk
∀c ∈ C (8)

We conduct an extensive validation study using randomly
generated microservice systems with different numbers of
request classes and services with randomly generated work-
load intensities. Since Eq. 8 estimates mean response times,
we consider mean response time targets for these systems.
We ensure that the generated systems are stable, i.e., uti-
lizations do not exceed 1.0. To achieve stability, we first
randomly generate utilization (between 0.0 and 1.0), demand,
and arrival rate values. The demands and arrival rates are then
scaled to ensure Eq. 7 holds. We additionally constrain the
minimum αk value to 1.0 in experiments with this system to
avoid negative response times. The systems generated in this
manner are both stable as well as random. We set αstartk =

1.0∀k ∈ K in this experiment.
Table 3 provides details on the 300 random systems we

consider. We use the same response time target T for all
request classes in any given system. We use AMPL [48] and
CONOPT [49], [50] solvers to obtain the solution for the
optimization problem corresponding to each randomly gener-
ated system. This solution is then compared with the iterative
solutions identified by the basic and enhanced algorithms. For
our algorithms, we also keep track of the number of iterations
needed to obtain the final solutions.

2) EXPERIMENTAL SYSTEMS
We expand the validation to include an on-premise sys-
tem and a public cloud system. We note that the profiling
environment used by MOAT must match the environment
where the microservices application will be deployed. Hence,
we conduct separate sets of profiling experiments for both
the on-premise and public cloud systems. We also note that a
dedicated profiling environment is not needed. The profiling
environment can be leased when needed and released when
the profiling is done.

In the on-premise system, the host machine has Ubuntu
16.04.6 LT as the operating system. It has an Intel(R)Xeon(R)
CPUE5645@2.140GHzwith 24 cores and 64GBofmemory.
The Docker version on the host machine is 16.03.5. For
generating loads, K6 v0.26.2 [51] is used. It is installed on a
different machine with similar characteristics but on the same
network. The load generator machine and the host machine
have a dedicated 1 Gigabit/sec connection between them. All

FIGURE 5. Bookstore with 3 request classes. Login is green, Edit-Book is
red, Get-Book is blue.

the microservice applications are developed using Node.js
v13.7.0. We note that we do not explore core affinity, i.e.,
pinning containers to specific cores, in our experiments to
prevent under utilization of cores. However, MOAT could
also be used to configure systems where pinning is employed.

To evaluate our approach on a public cloud platform,
we conduct a larger scale experiment on AWS Fargate. AWS
Fargate supports on-demand use of containers. Customers
are charged based on the amount of resources (CPU shares
and memory) used per minute by their containers. AWS
Fargate allows customers to provision container resources in
a fine-grained manner, e.g., 0.25 CPU shares. This feature
can be exploited by tools such as MOAT. We use Amazon
Elastic Kubernetes Service (EKS) as the container orchestra-
tion framework. Kubernetes manages the containers and uses
AWS Fargate to instantiate containers when needed.

We consider the Bookstore microservice application devel-
oped by us as shown in Fig. 5. This application models an
online store that supports managing and selling an inventory
of books. It contains three microservices and supports three
request types. Response time targets are defined based on
the 95th percentile of response times. All request classes
have the same threshold of 250ms. We consider four distinct
workload intensities with the same request class mix but
different request arrival rates, λ = 75, 100, 125, 150 requests
per second. The chosen arrival rates allowed us to observe
the behaviour of MOAT from low to high load conditions.
Furthermore, the value of αstartk is set to 1.0.

Each performance test has a 15 s warmup period. Post
warmup, each test is run long enough to ensure that the
95th percentile of response time for any request class is
contained within its 90% confidence interval. With this cri-
terion, we needed to run the Bookstore tests for 1 minute.
We consider response time and utilization metrics only from
the post warmup period.

B. RESULTS
1) ANALYTICAL SYSTEMS
Fig. 6 shows for the basic algorithm the number of iter-
ations for convergence and the percentage of CPU share
over-allocation with respect to the AMPL solver’s theoretical
solution. Specifically, we plot the mean values of these met-
rics achieved over the 300 systems we evaluate. Regardless
of the 1 settings, the basic algorithm’s solution is always
less efficient than the optimal AMPL solution. However, with

29372 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

FIGURE 6. Performance of the basic algorithm.

low 1 values, the basic algorithm identifies near-minimal
solutions. For example, it only over-allocates CPU shares by
approximately 15% when 1 = 0.5. As expected, the number
of iterations dropswith increasing1 but the solutions become
less efficient.

The enhanced algorithm significantly outperforms the
basic algorithm by quickly identifying solutions that are
closer to the optimal solutions obtained from AMPL.
Table 4 shows the mean number of iterations and mean
over-allocation based on all 300 systems. The lowest values
of over-allocation and number of iterations are indicated in
bold. The enhanced algorithm outperforms the basic variants
with1 = 0.5, 1.0, and 2.0 with respect to both the number of
iterations and over-allocation. The basic algorithm converges
quicker with1 = 4.0 but provisionsmore than twice the CPU
shares as that of the enhanced algorithm. The enhanced algo-
rithm’s solution on average provisions 13.5%more resources
than the optimal AMPL solution. However, it has better
real-world applicability since it only relies on commonly
available measurements from performance tests and does not
require mathematical system models. The behaviour of the
basic and enhanced algorithms are similar for the experimen-
tal systems we explore, Hence, we do not present the results
pertaining to the basic algorithm.

We next perform an external comparison of the enhanced
algorithm with BO. We configure BO with five initial iter-
ations for it to obtain a random sample of the tuning space.
After the initial iterations, to make the comparison fair to BO,
we configure BO to execute for the same number of iterations
as the enhanced algorithm with 1 = 4.0. For 140 out of
300 systems, BO is unable to find any feasible solutions. For
the other 160 systems, BO is unable to find a more efficient
solution than the enhanced algorithm. On average, BO sug-
gests 75% more CPU shares than the enhanced algorithm.

BO only uses response times as feedback to its objective
function. Consequently, it requires a long time to identify effi-
cient allocations. With time and cost constraints, it typically
cannot identify feasible solutions or identifies inefficient
solutions. BO-based techniques are hence not appropriate for
CI-CD and public cloud environments. In contrast, MOAT
exploits knowledge of the application’s architecture and com-
monly available resource utilization metrics to identify effi-
cient allocations quickly.

TABLE 4. Basic vs Enhanced.

TABLE 5. Enhanced Algorithm vs. BO, Bookstore.

2) EXPERIMENTAL SYSTEMS
Table 5 compares the enhanced algorithm with tuning using
the BO solver for the four workload intensities of the Book-
store application. The enhanced algorithm outperforms BO
for the on-premise experimental systems as well. After the
initial five sampling iterations, we configure BO to explore
the tuning space for as many additional iterations as the
total number of iterations taken by the enhanced algorithm to
converge. This scenario is referred to as BO 1× in the table.
From the table, BO 1× is only able to find a feasible solution
for W1. The same behaviour is observed when we double
the number of iterations (BO 2×). For W1, BO suggests
three times the total CPU share estimated by the enhanced
algorithm. BO finds feasible CPU share values for W2 and
W3 after 14 and 17 iterations, respectively. The total CPU
shares identified by BO for W2 and W3 exceed those of the
enhanced algorithm by 16.7% and 35.0%, respectively. For
W4, BO is unable to identify feasible solutions even after
25 iterations. Thus, BO is typically unable to find feasi-
ble solutions even when it iterates more than the enhanced
algorithm.

Results from the AWS public cloud Bookstore deployment
show similar trends.We limit ourselves to a single experiment
to keep costs down. We set λ = 170 for this experiment.
Each load test lasted 90 sec and the 95th percentile of response
times for this duration is compared against the threshold for
each request class. We set αstartk = 0.5∀k ∈ K in our
experiments. Table 6 compares the MOAT’s enhanced algo-
rithm with BO. From the table, MOAT requires 4.8 times less
iterations than BO. With the pricing scheme of Fargate and
EKS, the cost incurred in renting resources for conducting
the load tests in the tuning process is 15 times less with
MOAT.

Furthermore, as shown in Table 6, the configuration dis-
covered by MOAT is more cost-efficient than the optimal
solution identified by BO. Considering a 24-hour time period,
it costs 43% less to operate the service using the configura-
tion identified by MOAT. Cost savings from MOAT can be
considerable for organizations that deploy a large number of
microservice applications on public cloud platforms such as
AWS.

VOLUME 11, 2023 29373

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

TABLE 6. MOAT vs BO on AWS.

VII. EVALUATION OF TRIM
A. EXPERIMENT SETUP
The experiments in this section use the same on-premise
infrastructure described in Sec. VI. We use the Bookstore
application for this study. The application is hosted on a
separate system than the one executing TRIM and the load
generator.

1) TESTBED
Our objective is to evaluate TRIM’s auto-scaling performance
when the system faces workload fluctuations. To emulate
such a workload, we select from the Azure dataset a work-
load for a representative application that encounters workload
fluctuations.2 The application supports the same number of
request classes as the Bookstore application. We subject the
Bookstore application to the workload faced by the selected
Azure application on July 16, i.e., the second day in the
dataset. We then deploy different auto-scalers to handle this
24 hour workload. The workload intensities recorded in
the trace do not stress our on-premise system significantly.
Hence, to observe auto-scaling behaviour, we multiply each
1-minute workload intensity vector, i.e., request class invoca-
tion counts, by 120. Fig. 7 shows a four-hour snapshot of the
scaled workload the Bookstore application faces during a sin-
gle day. The vertical, gray shadowed strips show the intervals
that are covered with one of the Top5 workload intensities
extracted from the previous day, i.e., July 15. TRIM exploits
the popular intensity ranges observed in the July 15 workload
to drive auto-scaling for the July 16 workload.

2) BASELINE AUTO-SCALER
In these experiments, TRIM is paired with HPA [13] as the
default auto-scaler when TRIM encounters a workload inten-
sity not contained by Topcount . Furthermore, HPA is used as
a standalone baseline to evaluate the impact of using TRIM.
HPA depends on a parameter desiredMetricValue that speci-
fies how the number of instances should be changed. In this
evaluation, we consider mean CPU utilization as the metric
value for HPA. HPA periodically re-evaluates the number of
container instances of a microservice to keep the mean CPU
utilization close to a target specified by desiredMetricValue.
For example, by setting the desiredMetricValue to 50%, HPA
tries to change the number of instances to keep the mean
CPU utilization as close as possible to 50%. Choosing a
lower value as the desiredMetricValue leads to allocating
more resources, resulting in a higher cost of deployment.

2HashApp value in dataset: cd05d7b4445349ee645ea29058
6fd28c0c675a155eb1522485535c5c0329a908.

TABLE 7. MOAT’s enhanced algorithm parameters.

However, it reduces the chance of violating response time
targets. We use a value of 30% to emulate a scenario where a
system operator tries to preempt SLA violations through over
allocation. A value of 50% is selected to observe a regime that
is more relaxed with respect to SLA violations.

3) MOAT PARAMETERS
We run multiple experiments with various parameters to
investigate the performance of TRIM. All configurations that
are found byMOAT to be used by TRIM exploit the enhanced
algorithm with parameters listed in Table 7. With these val-
ues, MOAT’s resource allocation for any given microservice
consists of one or multiple container instances with each
instance having a 0.5 CPU share. To facilitate comparison,
HPA also scales horizontally using containers with 0.5 CPU
shares.

4) EXPERIMENTS
To understand the benefit of using TRIM, we first run HPA
with desiredMetricValue = 50% for the 24-hour workload
period. This experiment scenario is called HPA-50. Then,
we run experiments using the top three, five, and tenworkload
intensity ranges from the previous day, i.e., Top3, Top5,
and Top10. In all TRIM runs, in case the measured current
workload does not fit into any of the top intensity ranges,
we use HPA with desiredMetricValue = 50% as the default
auto-scaler. These scenarios are called Top3 + HPA-50,
Top5+HPA-50, andTop10+HPA-50. We repeat this process
once more using HPA with desiredMetricValue = 30%
yielding the scenarios HPA-30, Top3 + HPA-30, Top5 +
HPA-30, and Top10 + HPA-30. We note that the time
taken by TRIM to identify popular workload patterns is
negligible.

5) OSCILLATION MITIGATION
Scaling decisions are made every s s. To prevent the oscil-
lation of instances, i.e., adding and removing instances too
frequently, we use the same technique implemented by the
Kubernetes orchestrator [13]. With this technique, a moving
window of the last m s where m > s is considered. The
auto-scaler records the number of container instances sug-
gested for any given microservice every s s. However, it uses
the maximum of these values recorded over the lastm s as the
actual scaling decision for that service. This strategy reduces
oscillations by discouraging premature scale-in operations,
which reduce resource allocations. In our experiments, we use
s = 20 s and m = 120 s.

29374 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

FIGURE 7. 4 hour snapshot of Bookstore workload during the 24 hour test.

6) MEASUREMENTS
In all experiments and scenarios, we monitor total number
of instances and the number of SLA, i.e., response time,
violations. Since each container instance used for scaling
the system has 0.5 CPU shares, we use the total number of
instances in the application to compare the efficiency of the
various techniques. We track the number of instances used by
the application every s = 20 s. We report the mean of these
numbers over the 24-hour experiment period.

SLAs are defined based on 95th percentile of response
times recorded over the past 1 minute. The threshold for the
Login, Get-Book, and Edit-Book request classes are 250 ms,
25 ms, and 25 ms, respectively. We count the number of
times each request class has violated the response time tar-
get and represent the total as SLA violations. We note that
TRIM allows an operator to specify the granularity of the
timescale over which response time targets are measured.
Our experiments reflect a scenario where an operator seeks
to enforce targets over a very fine timescale of 1 minute.
However, TRIM allows coarser timescales, e.g., 5 minutes,
to be specified as well.

B. RESULTS
First, we report the time taken by MOAT to estimate
the resource allocations for the top 10 workload intensi-
ties. MOAT required 34 iterations for these 10 workloads.
On average, each iteration consumes 129 s. Hence, determin-
ing the resource allocations for the top 10 workloads takes
73 minutes if done sequentially. However, the evaluation of
each workload can be done independently in parallel. Thus,
in this scenario the total time needed by MOAT equals the
time to handle the workload intensity that consumes the
most iterations. Considering parallelization, MOAT took less
than 13 minutes to estimate the resource allocations. This
establishes the feasibility of using our approach within CI-
CD pipelines. We note that the profiling step is offline and
hence does not disrupt the normal operation of a system.
We also note that the time consumed by MOAT is negligible

and almost the entire time comprises the time required to
execute the underlying performance tests.

Figure 8 compares using only HPA with using TRIM. The
figure shows the number of SLA violations, mean number
of instances, and mean CPU utilization per instance for HPA
in isolation as well as when TRIM is paired with HPA-50
and HPA-30. The coverages obtained with Top3, Top5, and
Top10 are 33%, 62%, and 83%, respectively. Post experiment
analysis shows that the Top3+HPA-30 auto scaler used HPA
only 74% of the time. The use of HPA decreases with better
coverage. For example, Top5+HPA-30 and Top10+HPA-30
use HPA 44% and 22% of the time, respectively. This pattern
is also seen when TRIM is paired with HPA-50.

From Figure 8, using only HPA-50 results in many SLA
violations suggesting that a target of 50% CPU utilization
is too high to preempt SLA violations. From the figure,
reducing the threshold to 30% reduces SLA violations at
the cost of increased resource allocation. However, there are
still a significant number of SLA violations. This reinforces
the difficulty in using static resource utilization thresholds to
manage SLA targets.

In all cases depicted in Figure 8, TRIM significantly
decreases both the number of SLA violations and total
replica count. Specifically, TRIM uses lesser instances and
leads to increased per-instance CPU utilization thereby using
resources more efficiently. Furthermore, expanding the num-
ber of popular intensity ranges leads to further reductions in
SLA violations. For example, by considering only the top
3 ranges having a 33% coverage, the total number of con-
tainer instances, i.e., cost of deployment, decreases by 10.5%
and SLA violations decrease by 53%with HPA-50. When we
increase the coverage to 62% by adding two more ranges, the
cost reduces by about 22% and SLA violations decrease by
63%.Using the top 10 ranges reduces cost and SLAviolations
by 20% and 84%, respectively. The results for HPA-30 also
shows similar patterns. Our results show that TRIM can
achieve fewer SLA violations than merely using HPA while
requiring fewer instances and having better utilization of the
service’s resources. Considering all experiments, TRIM can

VOLUME 11, 2023 29375

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

FIGURE 8. HPA vs. TRIM.

reduce costs and SLA violations by up to 34% and 92%,
respectively.

We now provide a more detailed analysis of the results
by comparing HPA-50 with and without TRIM. In most of
the intervals where TRIM finds a match, one can observe
that the allocated resources are fewer with TRIM due to the
optimization performed by MOAT. However, there are some
regions where TRIM allocates more resources than HPA-
50. These represents regions where MOAT ensures that there
are enough resources to prevent SLA violations but HPA-
50 does not. Overall, TRIM uses fewer resources than using
HPA-50 in isolation. While using TRIM, all of the observed
SLA violations are found in a subset of the regions where
TRIM did not find a match and HPA-50 takes over. These
SLA violations occur due to under-provisioning of resources.
This further confirms that SLA violations can be further
reduced by merely expanding the number of popular ranges
considered by TRIM.

Finally, we analyze the small number of cases where the
system experiences an SLA violation with TRIM. As men-
tioned previously, the violations happen when TRIM falls
back on HPA. Depending on the experiment, the extent of
violations under TRIM are comparable or lower than that
of HPA. For example, HPA-30 has a mean violation of
2% over the response time target. While Top3 + HPA-30
resulted in an identical 2% violation over the target, Top5 +
HPA-30 resulted in a slightly higher violation of 3%.Top10+
HPA-30’s violations are measured to be under 1%. Similar
results are observed for HPA-50. As noted previously, TRIM
results in significantly lower SLA violations than merely
using HPA. Thus, combined with its comparable or lower
extent of SLA violations, TRIM comprehensively outper-
forms HPA.

VIII. CONCLUSION AND FUTURE WORK
Microservice applications often encounter time-varying
workloads and hence can benefit from auto-scaling. In addi-
tion to being SLA-aware and efficient, a microservice auto-
scaler should be CD-compatible, i.e., obviate the need for
modeling as well as the need to characterize system per-
formance under a large number of workload patterns and
resource allocations. Currently there is a lack of auto-scaling
solutions that address the three key requirements of SLA
awareness, efficiency, and CD compatibility simultaneously.
We develop an auto-scaler called TRIM that addresses this
gap.

TRIM exploits a novel insight we derived from analyzing
the workloads of more than 24, 000 real-world microservice
applications. Over time these workloads are dominated by a
small number of popular intensity ranges and these intensity
ranges continue to be popular over the subsequent period.
Using a novel resource allocation module called MOAT
that we developed, TRIM quickly pre-computes SLA aware
and efficient resource allocations for these popular workload
ranges and uses these at runtime to perform auto-scaling.

Extensive evaluation using analytical, in-house, and pub-
lic cloud systems demonstrates the effectiveness of our
approach. Specifically, using the analytical systems, we show
that the resource allocations obtained by MOAT are very
close to theoretical minimum allocations obtained analyt-
ically. Furthermore, MOAT outperforms a BO technique
in identifying efficient resource allocations and reducing
profiling effort. We also show that TRIM in consort with
MOAT can significantly improve the performance of the
industry-standard HPA auto-scaler. Specifically, by expend-
ing very little profiling effort our approach is able to reduce
costs and SLA violations by up to 34% and 92%, respectively.

29376 VOLUME 11, 2023

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

TABLE 8. Tuning cores and memory.

The TRIM technique is agnostic to the specific traces used
to drive the resource allocation since the basic idea is to use
data observed over a current time period to infer resource
allocations for the next period. As we show in the paper, this
approach seems very promising. We will study other traces
as they become available to confirm whether our findings
regarding popularity of workload intensity ranges generalize
to other microservice systems.

TRIM assumes that the sandbox used to estimate resource
allocations during the profiling is similar to the deployment
environment. It is possible for this assumption to be violated.
For example, a cloud subscriber may change resource alloca-
tion policies, e.g., choose to over-subscribe a resource among
multiple applications more aggressively. In such a scenario,
the pre-computed scaling strategies obtained byMOATmight
become sub-optimal. A thorough empirical examination of
the sensitivity of our approach to such phenomena is deferred
to future work. We also defer to future work validation with
larger scale microservice applications.

Focusing on our existing TRIM implementation, we will
explore improved techniques to handle scenarios where the
measured intensity does not match any of the popular intensi-
ties characterized by TRIM. Furthermore, we will explore the
use of the MOAT algorithms within evolutionary approaches.

Future work will look at adapting ML-based techniques
to handle the agile nature of microservice deployments. This
will require effort on two fronts. First, reference implemen-
tations of ML-based techniques will need to be developed to
foster repeatable research in this area. Second, experimental
studies need to be designed using these reference implemen-
tations. For example, such studies can explore the robustness
of a Q-learning function learnt by RL to application changes,

e.g., updates to microservices and addition of new microser-
vices and request classes.

APPENDIX A
TUNING MULTIPLE RESOURCES
We now demonstrate how MOAT can be used to tune mul-
tiple resources simultaneously. Specifically, we extend the
enhanced algorithm to consider both the cores and memory
allocated to a microservice. To better delineate CPU and
memory bottlenecks, we use the Pressure Stall Information
(PSI) tool [52] supported by Linux (kernel 5.2+, cgroup
v2). The PSI of a resource is the percentage of time a task
is blocked while waiting on the resource over a time win-
dow. PSI values are supported for CPU, memory, and I/O
resources [52]. For example, a measured CPU PSI of 50%
indicates that half of the tasks were blocked waiting on CPU
over a timewindow. SinceDocker and, by association, Kuber-
netes rely on cgroups to manage resources, we can measure
the PSI metrics of a container or pod resource over a window
of time. PSI can offer better insights on bottlenecks than rely-
ing on resource utilization alone. For example, high memory
utilizations may not always indicate a memory bottleneck.
In contrast, a high PSI value for memory indicates significant
contention, which can adversely impact service performance.

MOAT incorporates PSI values as follows. As detailed
in Sec. V, it identifies the service resources used by a
request class violating its response time target. It then selects
the resource with the highest PSI value. This resource is
increased to alleviate the bottleneck. In the pruning phase,
the service resource with the smallest PSI value is selected
for pruning.

VOLUME 11, 2023 29377

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

We present an experiment using the Bookstore applica-
tion on our on-premise system to show how MOAT drives
resource allocations when the bottleneck type shifts during
the tuning process. We sample PSI values over 10 second
intervals. For this experiment, we consider vertical scaling
with each service hosted on its own dedicated replica. For
any given service’s container, MOAT computes the number
of cores and memory to achieve response time targets for
request classes. We configure the enhanced algorithm with
1cpu = 2 and 1mem = 2 GB. All other settings are identical
to the ones used in Sec. VI.

Table 8 shows the iterations of MOAT’s enhanced algo-
rithm for this experiment. It takes 6 iterations for MOAT to
converge on a solution that satisfies response time targets
for all request classes. The table depicts how MOAT uses
PSI values to identify candidate services and resource type,
i.e., core or memory, for additional allocations. For example,
after iteration 1, 2 request classes violate their response time
targets. Furthermore, the memory of the ‘‘books’’ service has
the highest PSI value and both the violating request classes
use this service. Accordingly, MOAT allocates 2 × 1mem
additional memory to that service. This additional memory
alleviates the bottleneck, as observed by the very lowmemory
PSI value for the books service in iteration 2. In iteration 2,
the CPU PSI value of books is the highest and hence MOAT
targets additional core allocations to that service. Eventually,
all resources of all services have very low PSI values (indi-
cated by a ‘-’ in the bottleneck type column of the table) and
all response time targets are satisfied in iteration 6. We note
that MOAT never enters the pruning phase in this experiment
since all the request class response times are very close to
their corresponding targets.

REFERENCES
[1] Production-Grade Container Orchestration. Accessed: Aug. 8, 2021.

[Online]. Available: https://kubernetes.io/
[2] M. Shahin, M. A. Babar, M. Zahedi, and L. Zhu, ‘‘Beyond continu-

ous delivery: An empirical investigation of continuous deployment chal-
lenges,’’ in Proc. ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas.
(ESEM), Nov. 2017, pp. 111–120.

[3] M. Hajjat, P. N. Shankaranarayanan, D. Maltz, S. Rao, and
K. Sripanidkulchai, ‘‘Dealer: Application-aware request splitting for
interactive cloud applications,’’ in Proc. 8th Int. Conf. Emerg. Netw. Exp.
Technol., Dec. 2012, pp. 157–168.

[4] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi,
‘‘The evolution of distributed systems towards microservices architec-
ture,’’ in Proc. 11th Int. Conf. Internet Technol. Secured Trans. (ICITST),
Dec. 2016, pp. 318–325.

[5] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, ‘‘Hidden tech-
nical debt in machine learning systems,’’ in Proc. 28th Int. Conf. Neural
Inf. Process. Syst. (NIPS), vol. 2. Cambridge, MA, USA: MIT Press, 2015,
pp. 2503–2511.

[6] A. Tsymbal, ‘‘The problem of concept drift: Definitions and related work,’’
Comput. Sci. Dept., Trinity College Dublin, vol. 106, no. 2, p. 58, 2004.

[7] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and R. K. Iyer, ‘‘FIRM:
An intelligent fine-grained resource management framework for SLO-
oriented microservices,’’ in Proc. 14th USENIX Symp. Oper. Syst. Design
Implement. (OSDI), 2020, pp. 805–825.

[8] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand, and J. Wilkes, ‘‘Autopilot:
Workload autoscaling at Google,’’ in Proc. 15th Eur. Conf. Comput. Syst.,
Apr. 2020, pp. 1–16.

[9] A. U. Gias, G. Casale, and M.Woodside, ‘‘ATOM:Model-driven autoscal-
ing for microservices,’’ inProc. IEEE 39th Int. Conf. Distrib. Comput. Syst.
(ICDCS), Jul. 2019, pp. 1994–2004.

[10] G. Yu, P. Chen, and Z. Zheng, ‘‘Microscaler: Automatic scaling for
microservices with an online learning approach,’’ in Proc. IEEE Int. Conf.
Web Services (ICWS), Jul. 2019, pp. 68–75.

[11] I. Prachitmutita, W. Aittinonmongkol, N. Pojjanasuksakul, M. Supat-
tatham, and P. Padungweang, ‘‘Auto-scaling microservices on IaaS under
SLAwith cost-effective framework,’’ in Proc. 10th Int. Conf. Adv. Comput.
Intell. (ICACI), Mar. 2018, pp. 583–588.

[12] M. Shahrad, R. Fonseca, I. Goiri, G. Chaudhry, P. Batum, J. Cooke,
E. Laureano, C. Tresness, M. Russinovich, and R. Bianchini, ‘‘Serverless
in the wild: Characterizing and optimizing the serverless workload at a
large cloud provider,’’ in Proc. USENIX Annu. Tech. Conf. (USENIX ATC),
2020, pp. 205–218.

[13] HPA. Accessed: May 1, 2021. [Online]. Available: https://kubernetes.
io/docs/tasks/run-application/horizontal-pod-autoscale/

[14] V. M. Mostofi, D. Krishnamurthy, and M. Arlitt, ‘‘Fast and efficient
performance tuning of microservices,’’ in Proc. IEEE 14th Int. Conf. Cloud
Comput. (CLOUD), Sep. 2021, pp. 1–6.

[15] V. M. Mostofi. (2021). Auto-Scaling Containerized Microservice Applica-
tions. [Online]. Available: https://prism.ucalgary.ca/handle/1880/113888

[16] C. Qu, R. N. Calheiros, and R. Buyya, ‘‘Auto-scaling web applications
in clouds: A taxonomy and survey,’’ ACM Comput. Surv., vol. 51, no. 4,
pp. 1–33, Jul. 2018, doi: 10.1145/3148149.

[17] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, ‘‘Research on auto-scaling of
web applications in cloud: Survey, trends and future directions,’’ Scalable
Comput., Pract. Exp., vol. 20, no. 2, pp. 399–432, May 2019.

[18] Amazon Auto Scaling Service. Accessed: Aug. 13, 2021. [Online]. Avail-
able: http://aws.amazon.com/autoscaling/

[19] S. A. Javadi and A. Gandhi, ‘‘User-centric interference-aware load balanc-
ing for cloud-deployed applications,’’ IEEE Trans. Cloud Comput., vol. 10,
no. 1, pp. 736–748, Jan. 2022.

[20] J. Mukherjee and D. Krishnamurthy, ‘‘PRIMA: Subscriber-driven interfer-
ence mitigation for cloud services,’’ IEEE Trans. Netw. Service Manage.,
vol. 17, no. 2, pp. 958–971, Jun. 2020.

[21] S. Taherizadeh andV. Stankovski, ‘‘Dynamicmulti-level auto-scaling rules
for containerized applications,’’ Comput. J., vol. 62, no. 2, pp. 174–197,
Feb. 2019.

[22] W.-H. Liao, S.-C. Kuai, and Y.-R. Leau, ‘‘Auto-scaling strategy for
Amazon web services in cloud computing,’’ in Proc. IEEE Int. Conf. Smart
City/SocialCom/SustainCom (SmartCity), Dec. 2015, pp. 1059–1064.

[23] S. Frey, C. Lüthje, C. Reich, and N. Clarke, ‘‘Cloud QoS scaling by fuzzy
logic,’’ in Proc. IEEE Int. Conf. Cloud Eng., Mar. 2014, pp. 343–348.

[24] P. Jamshidi, C. Pahl, and N. C. Mendonça, ‘‘Managing uncertainty in
autonomic cloud elasticity controllers,’’ IEEECloud Comput., vol. 3, no. 3,
pp. 50–60, May 2016.

[25] H. Fernandez, G. Pierre, and T. Kielmann, ‘‘Autoscaling web applications
in heterogeneous cloud infrastructures,’’ in Proc. IEEE Int. Conf. Cloud
Eng., Mar. 2014, pp. 195–204.

[26] C. Qu, R. N. Calheiros, and R. Buyya, ‘‘A reliable and cost-efficient auto-
scaling system for web applications using heterogeneous spot instances,’’
J. Netw. Comput. Appl., vol. 65, pp. 167–180, Apr. 2016.

[27] N. Grozev and R. Buyya, ‘‘Multi-cloud provisioning and load distribution
for three-tier applications,’’ ACM Trans. Auto. Adapt. Syst., vol. 9, no. 3,
pp. 1–21, Oct. 2014.

[28] M. R. Hossen, M. A. Islam, and K. Ahmed, ‘‘Practical efficient
microservice autoscaling with QoS assurance,’’ in Proc. 31st Int.
Symp. High-Perform. Parallel Distrib. Comput. New York, NY, USA:
Association for Computing Machinery, Jun. 2022, pp. 240–252, doi:
10.1145/3502181.3531460.

[29] F. Lombardi, A. Muti, L. Aniello, R. Baldoni, S. Bonomi, and L. Querzoni,
‘‘Pascal: An architecture for proactive auto-scaling of distributed ser-
vices,’’ Future Gener. Comput. Syst., vol. 98, pp. 342–361, Sep. 2019.

[30] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung, ‘‘Towards an auto-
nomic auto-scaling prediction system for cloud resource provisioning,’’ in
Proc. IEEE/ACM 10th Int. Symp. Softw. Eng. Adapt. Self-Manage. Syst.,
May 2015, pp. 35–45.

[31] T. Vondra and J. Šedivý, ‘‘Cloud autoscaling simulation based on queue-
ing network model,’’ Simul. Model. Pract. Theory, vol. 70, pp. 83–100,
Jan. 2017.

29378 VOLUME 11, 2023

http://dx.doi.org/10.1145/3148149
http://dx.doi.org/10.1145/3502181.3531460

V. M. Mostofi et al.: Trace-Driven Scaling of Microservice Applications

[32] R. Han, M. M. Ghanem, L. Guo, Y. Guo, and M. Osmond, ‘‘Enabling
cost-aware and adaptive elasticity of multi-tier cloud applications,’’ Future
Gener. Comput. Syst., vol. 32, pp. 82–98, Mar. 2014.

[33] F. Rossi, V. Cardellini, and F. L. Presti, ‘‘Hierarchical scaling of microser-
vices in kubernetes,’’ in Proc. IEEE Int. Conf. Autonomic Comput. Self-
Organizing Syst. (ACSOS), Aug. 2020, pp. 28–37.

[34] A. Bauer, V. Lesch, L. Versluis, A. Ilyushkin, N. Herbst, and S. Kounev,
‘‘Chamulteon: Coordinated auto-scaling of micro-services,’’ in Proc. IEEE
39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jul. 2019, pp. 2015–2025.

[35] A. A. Khaleq and I. Ra, ‘‘Intelligent autoscaling of microservices in the
cloud for real-time applications,’’ IEEE Access, vol. 9, pp. 35464–35476,
2021.

[36] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao, ‘‘Energy-
aware server provisioning and load dispatching for connection-intensive
internet services,’’ in Proc. NSDI, vol. 8, 2008, pp. 337–350.

[37] M. Abdullah, W. Iqbal, A. Erradi, and F. Bukhari, ‘‘Learning predictive
autoscaling policies for cloud-hosted microservices using trace-driven
modeling,’’ in Proc. CloudCom, Dec. 2019, pp. 119–126.

[38] G. Yu, P. Chen, and Z. Zheng, ‘‘Microscaler: Cost-effective scaling for
microservice applications in the cloud with an online learning approach,’’
IEEE Trans. Cloud Comput., vol. 10, no. 2, pp. 1100–1116, Apr. 2022.

[39] SWITCH Project. Accessed: Aug. 2, 2021. [Online]. Available:
http://www.switchproject.eu/

[40] TRIM, MOAT. Accessed: Aug. 10, 2021. [Online]. Available: https://
github.com/vahidmostofi/acfg

[41] B. Liu, R. Buyya, and A. N. Toosi, ‘‘A fuzzy-based auto-scaler for
web applications in cloud computing environments,’’ in Proc. Int. Conf.
Service-Oriented Comput. Springer, 2018, pp. 797–811.

[42] H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh, A. Tizghadam,
and A. Leon-Garcia, ‘‘Elascale: Autoscaling and monitoring as a service,’’
2017, arXiv:1711.03204.

[43] M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, and D. Carrera, ‘‘Burst-aware
predictive autoscaling for containerized microservices,’’ IEEE Trans. Serv.
Comput., vol. 15, no. 3, pp. 1448–1460, May 2022.

[44] D. Freedman and P. Diaconis, ‘‘On the histogram as a density estimator: L2
theory,’’ Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete,
vol. 57, no. 4, pp. 453–476, 1981.

[45] M. D. Zeiler, ‘‘ADADELTA: An adaptive learning rate method,’’ 2012,
arXiv:1212.5701.

[46] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. D. S. Coelho, and
V. C. Mariani, ‘‘MOBOpt—Multi-objective Bayesian optimization,’’
SoftwareX, vol. 12, Jul. 2020, Art. no. 100520. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352711020300911

[47] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik,Quantitative
System Performance: Computer System Analysis Using Queueing Network
Models. Upper Saddle River, NJ, USA: Prentice-Hall, 1984.

[48] R. Fourer, D.M. Gay, and B.W. Kernighan, ‘‘AMPL: Amodeling language
for mathematical programming,’’ Tech. Rep., 2003.

[49] A. Drud, ‘‘CONOPT: A GRG code for large sparse dynamic nonlinear
optimization problems,’’ Math. Program., vol. 31, no. 2, pp. 153–191,
Jun. 1985.

[50] A. S. Drud, ‘‘CONOPT—A large-scale GRG code,’’ ORSA J. Comput.,
vol. 6, no. 2, pp. 207–216, May 1994.

[51] K6 Load Generator. Accessed: Dec. 11, 2020. [Online]. Available:
https://k6.io/

[52] J. Weiner. (Apr. 2018). PSI—Pressure Stall Information—The Linux
Kernel Documentation. [Online]. Available: https://www.kernel.org/doc/
html/latest/accounting/psi.html

VAHID MIRZAEBRAHIM MOSTOFI received
the M.Sc. degree from the University of Calgary.
His research interest includes performance eval-
uation, with an emphasis on microservices-based
architectures.

EVAN KRUL received the B.Sc. degree (Hons.)
in software engineering from the University of
Calgary, in 2022. He is currently pursuing the
M.Phil. degree in computer science with the Uni-
versity of New South Wales, Sydney, Australia.
He received an internship from the University of
Calgary.

DIWAKAR KRISHNAMURTHY (Member, IEEE)
is currently a Professor with the University of
Calgary. He is involved in research projects
related to cloud computing, big data analytics, and
extended reality. His research interest includes the
performance evaluation of software systems.

MARTIN ARLITT (Senior Member, IEEE) is
currently a Principal Research Scientist and a
Research Team Manager with OpenText. He is an
Adjunct Assistant Professor with the University
of Calgary. His 100 research papers have been
cited more than 13,700 times (according to Google
Scholar; H-index= 45). He has 49 granted patents
and more pending. His general research interests
include workload characterization of computer
servers, performance evaluation of distributed

computer systems, and analyzing network traffic to improve IT security. He is
an ACM Distinguished Scientist.

VOLUME 11, 2023 29379

