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ABSTRACT This work explicitly states the design flows of the fractional-order analog filters used by
researchers throughout the literature. Two main flows are studied: the FPAA implementation and the circuit
realization. Partial-fraction expansion representation is used to prepare the approximated fractional-order
response for implementation on FPAA. The generalization of the second-order active RC analog filters based
on opamp from the integer-order domain to the fractional-order domain is presented. The generalization is
studied from both mathematical and circuit realization points of view. It is found that the great benefit of the
fractional-order domain is that it adds more degrees of freedom to the filter design process. Simulation and
experimental results match the expected theoretical analysis.

INDEX TERMS Fractional-order, analog filter, FPAA, circuit realization.

I. INTRODUCTION
Analog filters are one of the most important blocks in design-
ing communications and electronics systems. Developing a
filtering block allows the signal to be processed in many
system stages. Active filters have many advantages over
passive ones, especially when cascading many sections to
acquire higher order filters [1]. In general, the order of the
filter indicates how much one can accurately and smoothly
achieve the required response. For discrete technologies,
many inductor-less active RC filters have been developed in
the literature [2], [3], [4], [5]. Most of these previous works
aimed to achieve high-quality factors or reduce passive and
active sensitivities. The design of the second-order active RC
filters was of special concern to the authors as they could be
cascaded to get higher-order filters without the need to design
a complex higher-order filter as a whole [6]. An inductor
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would require a large chip area, developing inductor-less fil-
ters, i.e., those that incorporate only capacitors and resistors.
became inevitable [1]. Integer-order calculus is a subset of
a more general science called fractional-order calculus [7].
Generalizing any system from the integer-order domain to the
fractional-order domain gives more flexibility and degrees of
freedom in the system design process. This has been a hot
research topic in the last decade, implying many applications
in different fields like digital modelling on FPGA [8], chaotic
systems realization [9] and bio-impedance modelling [10].
The application of the generalization concept of systems to
the fractional-order domain is eligible the integrated circuits
technologies, which led to many works in the literature.
Extensive research on the applications of the fractional-order
analog and chaotic systems for integrated circuits tech-
nologies was conducted in [11] and [12], respectively.
Further recent applications for the fractional-order filters
suitable for integrated circuits technologies were discussed
in [13] and [14].
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Generalizing the analog filters to the fractional-order
domain can be handled on the filter design theory and the
filter circuit realization. Generalization of the filter design
on the circuit realization can be made by substitution of
the integer-order elements with the fractional-order ele-
ments [15], [16], [17], by optimization [18], [19], [20], [21]
or by curve fitting techniques [22], [23]. A new technique
in designing Butterworth filter depending on pole place-
ment in the complex w-plane was presented in [24]. Another
approximation technique for designing a fractional-order
Butterworth filter that depends on the weighted sum of the
integer-order Butterworth transfer function was discussed
in [25]. In [26], tool-based approximation techniques were
utilized to approximate the fractional-order filter transfer
function with two independent orders with a curve fitting pro-
gram and another expansion-based program (namely, Padé
function toolbox). A fractional-order power-law shelving fil-
ter was implemented in [27] using Oustaloup approximation
over Foster-I to realize the fraction-order capacitor. Many
works studied the effect of designing specific filters in the
fractional-order domain. The fractional-order notch filter was
studied with clear realization in [28]. In [29], the design
of both the fractional-order band-pass and notch filters was
studied over different approximation techniques. An electron-
ically adjustable fractional-order filter was introduced in [30].

Another design flow for systems such as the fractional-
order filters includes the implementation of a Field-
programmable Analog Array (i.e., FPAA) [31], [32]. In [33],
a proposed fractional-order PID controller was implemented
on FPAA using two different implementation techniques.
Finally, in [34], a generalized form of a multi-output
fractional-order filter with two independent orders was
implemented on FPAA.

This work aims to study and compare the two design
flows with a design case and introduce a catalog for the
generalized active filters with the explicit transfer function
for each filter family. The integer-order passive elements
used in designing the filters were a subset of a more general
term called the fractional-order elements (i.e., the fractance
element) [35], [36]. The fractance element has the impedance
of the form Z (s) = ksα where it becomes a resistor for
α = 0, an inductor for α = 1, a capacitor for α = −1,
and a frequency-dependent negative resistor (FDNR) for α =

−2 [37]. A fractional-order capacitor is achieved by choosing
−2 < α < 0 while a fractional-order inductor is achieved by
choosing 0 < α < 2 [38].

While the fractance device is still commercially unavail-
able as a complete element and the usage of integer order
analysis tools and methods is more reliable than that of the
fractional order ones, the development of approximation tech-
niques for the Laplacian operator is inevitable [39], [40] for
the real-time realization of the CPE. In the Recent work, [41],
the modelling and circuit realization of the fractional-order
element was summarized, and the passive circuit realization
of the CPE was reviewed in [42]. Analog approximation

FIGURE 1. Analog approximation types [43], [44], [45].

techniques could be categorized [43] as in Fig. 1. [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45].

This paper starts with some mathematical and theoreti-
cal basics for the fractional-order system in Section II and
then goes through the design flow details, starting with the
implementation of the approximated constant-phase element
in Sections V-III. The design case of the filters on FPAA
is then introduced in Section VI. Next, the catalog of the
generalized filters is presented in Section VII and the paper
finishes with the design case using the circuit approach in
SectionVIII.

II. FRACTIONAL-ORDER MATHEMATICAL BACKGROUND
The conventional calculus that describes most engineer-
ing systems, including analog filters, is a subset of
fractional-order calculus. In general, designing systems in
the fractional-order domain gives more degrees of freedom
for the design factors. Assuming a real-time continuous
function f (t), the Reimann-Liouville definition [46] for the
continuous-time fractional-order derivative is as follows:

dα

dtα
≡ Dαf (t) =

1
0(1 − α)

d
dt

∫ t

0
(t − τ )−αf (τ )dτ, (1)

where α is the fractional order and 0 < α < 1. As This
definition is a continuous-time function, it mainly relates to
the fractional-order analog systems applications. It is essen-
tial to understand the tendency of the fractance elements by
applying the Laplace transform on Eqn. 1 by assuming a
zero-time initial condition.

L{0dα
t f (t)} = sαF(S), (2)

which indicates that the fractance device (the fractional-
order element) has an impedance that is proportional to sα .

III. APPROXIMATION OF THE LAPLACIAN OPERATOR
Approximation of the Laplacian operator sα has been an
active research area in recent decades. The approxima-
tion techniques could be based on different criteria, like
transfer-function based, circuit-based, state-space based or
impulse-response based [45]. The most popular transfer
function approximation techniques were continuous fraction
expansion (CFE), Oustaloup, Matsuda and Carlson [43].
Another type of transfer function approximation was based
on the weighted sum of high-pass filter sections. Considering
the circuit-based techniques, the work of Valsa et al. [47]
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TABLE 1. Comparison among different approximation techniques factors
controllability.

was the most significant approximation based on RC network
expressions. Table 1 summarizes the configurable parameters
for different approximation techniques.

A. CONTINUOUS FRACTION EXPANSION (CFE)
APPROXIMATION
Also known as continued fractions, it is an approximation
method used throughout history to approximate polynomials
to rational functions (i.e., ratios of polynomials) [48]. The
mathematical arguments and discussions on the continued
fractions had been studied in the old textbooks as in [49].
In addition, the application of the CFE was associated with
functions that converge much more rapidly than power series
expansion [44]. This approximation method, alongside Carl-
son’s method, is a mathematical approach to approximate
the fractional-order Laplacian operator (sα), which assumes
it is a black box. This, in turn, reflects that both methods
can only control the center frequency of the approximation,
not the range of the frequencies. However, there is only one
advantage of the CFE over Carlson: one can control the order
of the resulting approximation fraction as listed in Table 1.
The continued fractions have the following form:

a0 +
b1

a1 +
b2

a2+
b3

a3+...

, (3)

which could be represented in Pringsheim notation as
follows: [

a0,
bk
ak

]+∞

k=1
. (4)

B. OUSTALOUP’s (CRONE) APPROXIMATION
Oustaloup’s approximation was first introduced as a part of
the toolbox CRONE in [50]. The techniques distribute equal
numbers of poles and zeros around the frequency range of
interest, so the order of the approximation and frequency
limits are controllable. The approximation has the following
form [43]:

sα = C
N∏
m=1

1 + s/ωz,m
1 + s/ωp,m

, (5)

where

ωz,m = ωl

(
ωh

ωl

)(2m−1−α)/2N

, (6)

and

ωp,m = ωl

(
ωh

ωl

)(2m−1+α)/2N

. (7)

It is also worth mentioning that in the Oustaloup approxi-
mation, the order of the approximation beyond 8 (i.e.,N > 8)
does not significantly improve the performance [51].

C. MODIFIED OUSTALOUP APPROXIMATION
In [52], a modified version of oustaloup’s algorithm was
presented to give a better performance across the whole fre-
quency range (ωl, ωh). The modified equation was presented
as follows [53]:

sα =

(
dωh

b

)α (
ds2 + bωhs

d(1 − α)s2 + bωhs+ dα

)
. . .

. . .

N∏
m=−N

1 + s/ωz,m
1 + s/ωp,m

, (8)

where ωz,m and ωp,m are given by Eqns. 6 and 7 respectively.

D. MATSUDA’s APPROXIMATION
Matsuda approximation uses the continued fraction expan-
sion of the single-input single-output fractional-order transfer
functions [43]. The application of Matsuda approximation
requires the distribution of an even number of frequency
points between the frequency limits (i.e., ωl : ωh). This
is because the algorithm gives N/2 number of poles and
zeros [54]. Therefore, the algorithm could be written with
Pringsheim notation as follows [43]:

G(s) =

[
d0(ω0);

s− ωk1

dk (ωk )+

]N
k=1

, (9)

where

d0(ω) = |G(jω)|, (10)

and

dk (ω) =
ω − ωk−1

dk−1(ω) − dk−1(ωk−1)
. (11)

E. VALSA’s APPROXIMATION
In [47], Valsa introduced a circuit approximation technique
for the fractional-order capacitor across a certain frequency
range. The idea is similar to the transfer function approxima-
tions in that it realizes an RC network that distributes poles
and zeros across the frequency range of interest. Two possible
implementations for Valsa’s networks are shown in Fig. 2.
Valsa relied on the required phase variation 1φ across the
frequency range to compute the values of the resistors and
capacitors in the realized network. Given a required phase
variation 1φ, Valsa computes a and b parameters, as shown
in Eqn. 12. The values of the first branch passives are related
to the low-frequency limitωmin by Eqn. 13. The initial branch
value for the series network is shown in Eqn. 14 and for the
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FIGURE 2. Valsa’s approximation networks: (a) series RC network,
(b) parallel RC network.

parallel network in Eqn. 15 where 1 < k ≤ m. The rest of the
branches are calculated by Eqn. 16.

ab =
0.24

1 + 1φ
, (12a)

a = 10α log(ab), (12b)

b = ab/a, (12c)

R1C1 =
1

ωmin
. (13)

Rs =
R1am

1 − a
, (14a)

Cs =
C1(1 − b)

b
, (14b)

Rp =
R1(1 − a)

a
, (15a)

Cp =
C1bm

1 − b
, (15b)

Rk = R1ak−1, (16a)

Ck = C1bk−1, (16b)

IV. APPROXIMATION OF THE FRACTIONAL-ORDER
RATIONAL CONTROLLERS
A. CHAREF’s APPROXIMATION
Charef approximation was introduced in [55] as an approx-
imation technique for the fractional-order controller of the
form [44]:

H (s) =
1

(1 +
s
PT

)α
≈

∏n−1
i=0 (1 + s/zi)∏n
i=0(1 + s/pi)

, (17)

where poles and zeros are defined as:

p0 = pT
√
b, (18)

pi = p0(ab)i, (19)

zi = ap0(ab)i, (20)

where,

a = 10y/10(1−α), (21)

b = 10y/10α, (22)

ab = 10y/10α(1−α), (23)

It was also discussed in [55] that Charef’s approximation
could give a reasonable estimate for sα .

FIGURE 3. Fractional-order systems design flows.

B. Padé APPROXIMATION
Introduced in [56], the Padé method was meant to give an
approximation for rational functions such as the lead/lag
compensator presented in [57] or to be used as a reduction
model as discussed in [58]. The approximation form is given
by:

H (s) = R[m/n] =

( pmqn )s
m

+ ( pm−1
qn

)sm−1
+ . . . + ( p0qn )

sn + ( qn−1
qn

)sn−1 + . . . + ( 1
qn
)

(24)

where pi and qj can be calculated by solving am+n+1 linear
equations as shown in [57].

V. FRACTIONAL-ORDER ANALOG FILTERS DESIGN
FLOWS
Two main flows can design the filters: circuit realization and
FPAA implementation, as depicted in Fig. 3.

A. CASE STUDY FOR THE APPROXIMATION OF THE
LAPLACIAN OPERATOR
The case to be studied implies approximating s1/3 to a fre-
quency range of 1 104Hz. Four transfer function techniques
have been chosen, namely, Oustaloup, Matsuda, Carlson and
Continued Fraction Expansion (CFE), alongside one circuit
approximation, Valsa’s. Table 2 summarizes the MATLAB
plot for the approximated functions. Phase variation 18 at
frequency limits could be estimated as 8.67 % for Oustaloup,
9.3 % for Matsuda, 67.4 % for Carlson, 53.24 % for CFE.

VI. CASE STUDY FOR THE DESIGN OF A LOW-PASS
FRACTIONAL-ORDER FILTER ON FPAA
Considering the generalization of the normalized second-
order Butterworth filter in the following equation:

T (s) =
1

s2 +
√
2s+ 1

, (25)

to the fractional-order domain with one constant-phase ele-
ment with order α. The fractional-order transfer function of
the filter becomes:

T (s) =
1

s1+α +
√
2sα + 1

, (26)
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TABLE 2. Magnitude and phase response for different techniques.

FIGURE 4. Butterworth ideal response: (a) normalized magnitude
response, (b) normalized phase response, (c) scaled magnitude response,
(d) scaled phase response.

which has the normalized response with cutoff frequency
0.071 Hz and phase −30o as shown in Figs. 4a-4b. For more
practical operation, a frequency scale factor of 104 is used to
get the cutoff frequency of 714 Hz, which could be seen in
Figs. 4c-4d.

FIGURE 5. Butterworth approximated response: (a) magnitude responses,
(b) phase responses, (c) magnitude response error, (d) phase response
error.

Applying different approximation techniques to the
fractional-order Laplacian operator α = 0.7 and then substi-
tuting into the transfer function gives the following approxi-
mated response as in Figs. 5a-5b. The error of the magnitude
and phase responses are shown in Figs. 5c-5d.
At this point, the approximated transfer functions can be

broken into a sum of integrators, as shown in Fig. 7 for
realization on FPAA. Using the residue function on MAT-
LAB and getting the appropriate gain and time constants for
integrators, Table 3 summarizes the realized values. First,
AnadigmDesigner software was used to realize the filters on
the FPAA AN231E04 kit, as shown in Fig. 6. Then the stim-
ulus was injected using an NI ELVIS II kit to perform an AC
sweep and get the bode plot for each filter. Finally, figure 8
shows the experimental results plotted using MATLAB.

VII. TRANSFORMATION OF SOME ACTIVE FILTERS TO
THE FRACTIONAL-ORDER DOMAIN
A generalized form of the integer-order version of the filter
should be derived to realize the fractional-order filter cir-
cuits, which is the first step in the design process. As the
orders of the fractional-order capacitor could be of different
values, it has become inevitable to determine the capacitor
that contributes to the quality factor term in the integer-order
version (i.e., the s term in the denominator). After that,
the transfer function will be ready for comparison with the
required transfer function to map the components’ values.
This will be followed by approximating and realizing the
calculated fractional-order capacitor and then composing the
circuit. This section presents the generalization of some of
the well-known alongside some of the forgotten second-order
filter circuits to the fractional-order domain.

A. BACH FAMILY
Figure 9 shows the Bach’s low-pass filter generalized into
fractional order domain with two fractional order capacitors
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TABLE 3. Gain and time constants of realized integrators.

TABLE 4. Fliege transfer functions.

C1 and C2 having α and β respectively. By direct analysis,
the transfer function of the filter becomes:

HLP(s) =

(
1

R1R2CαCβ

)
sα+β +

sβ
R1Cα

+
1

R1R2CαCβ

. (27)

B. RAUCH FILTERS FAMILY
The Rauch filter was presented In [59]. The fractional-order
version of the filter is presented in Fig. 10 and the transfer
function is shown in Eqn. 28.

HLP(s) =

−1
R1R2CαCβ

sα+β + sβ 1
R1Cα

(1 +
R1
R2

+
R1
R3
) +

1
R2R3CαCβ

. (28)

C. FRACTIONAL-ORDER FLIEGE FAMILY
The Fliege filter was presented In [60]. The fractional-order
version of the filter is presented in Fig. 11 and the transfer
function is shown in Table 4.

D. DELIYANNIS FILTERS FAMILY
The Deliyannis filter was presented In [61]. The fractional-
order version of the filter is presented in Fig. 12 and the
transfer function is shown in Table 5.

E. MIKHAEL-BHATTACHARYYA (MB) FILTERS FAMILY
Mikhael and Bhattacharyya presented a filter family In
1975 in [62]. The fractional-order version of the filter is

TABLE 5. Fractional-order Delyannis transfer functions.

TABLE 6. MB transfer functions.

TABLE 7. PMG transfer functions.

presented in Fig. 13, and the transfer function is shown in
Table 6.

F. PADUKONE-MULAWKA-GHAUSI (PMG) FILTERS FAMILY
This filter family was presented in [63]. The fractional-order
version of the filter is presented in Fig. 14 and the transfer
function is shown in Table 7.

29204 VOLUME 11, 2023



A. M. Hassanein et al.: On the Design Flow of the Fractional-Order Analog Filters

FIGURE 6. FPAA realization of the FO filter using approximation: (a) CFE,
(b) Oustaloup, (c) Modified Oustaloup, (d) Matsuda, (e) Charef.

G. BERKA-HERPY FAMILY
The BH filter family is a universal building block family that
was first proposed in 1981 in [64].

FIGURE 7. Partial fraction expansion representation of the approximated
transfer function.

FIGURE 8. Experimental Results: (a) magnitude responses, (b) phase
responses, (c) magnitude response error, (d) phase response error.

FIGURE 9. Bach’s FOLPF circuit schematics.

FIGURE 10. Rauch’s FOLPF circuit schematics.

H. FRACTIONAL-ORDER Soliman72 FILTER
Presented in [65], the fractional-order version of this filter
is presented in Fig. 16 and the transfer function is shown in
Table 9.
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FIGURE 11. Fractional-order Fliege Filters Family: (a) FOLPF, (b) FOHPF,
(c) FOBPF, (d) FONF.

FIGURE 12. Fractional-order Delyannis Filters: (a) FOBPF I, (b) FOBPF II.

FIGURE 13. Fractional-order MB Filters Family: (a) FOLPF, (b) FOHPF,
(c) FOBPF, (d) FONF.

I. FRACTIONAL-ORDER Soliman73 FILTER
Presented in [66], the fractional-order version of this filter
is presented in Fig. 17 and the transfer function is shown in
Table 10.

FIGURE 14. Fractional-order PMG Filters Family: (a) FOLPF, (b) FOHPF,
(c) FOBPF, (d) FONF.

TABLE 8. BH transfer functions.

TABLE 9. Fractional-order Soliman72 filter transfer functions.

TABLE 10. Fractional-order Soliman73 filter transfer functions.

J. FRACTIONAL-ORDER Soliman74 FILTER
Presented in [67], the fractional-order version of this filter
is presented in Fig. 18 and the transfer function is shown in
Table 11.
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FIGURE 15. Fractional-order BH Filters Family: (a) FOLPF, (b) FOHPF,
(c) FOBPF, (d) FONF.

FIGURE 16. Fractional-order Soliman72 Filter Schematics.

K. FRACTIONAL-ORDER Soliman76 FILTER
Presented in [68], the fractional-order version of this filter
is presented in Fig. 19 and the transfer function is shown in
Table 12.

FIGURE 17. Fractional-order Soliman73 Filters Family: (a) APF I, (b) APF II.

TABLE 11. Fractional-order Soliman74 filter transfer functions.

FIGURE 18. Fractional-order Soliman74 filter schematics.

TABLE 12. Fractional-order Soliman76 filter transfer functions.

FIGURE 19. Fractional-order Soliman76 filter schematics.

TABLE 13. Fractional-order Soliman79 filter transfer functions.

L. FRACTIONAL-ORDER Soliman79 FILTER
Presented in [69], the fractional-order version of this filter
is presented in Fig. 20 and the transfer function is shown in
Table 13.
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FIGURE 20. Fractional-order Soliman79 filter schematics.

TABLE 14. Fractional-order Soderstrand filter transfer functions.

FIGURE 21. Fractional-order Soderstrand filter schematics.

TABLE 15. Fractional-order AM transfer functions.

TABLE 16. Fractional-order HS transfer functions.

M. FRACTIONAL-ORDER SODERSTRAND FAMILY
Presented in [70], the fractional-order version of this filter
is presented in Fig. 21 and the transfer function is shown in
Table 14.

N. FRACTIONAL-ORDER AKERBERG-MOSSBERG FAMILY
Presented in [71], the fractional-order version of this filter
is presented in Fig. 22 and the transfer function is shown in
Table 15.

FIGURE 22. Fractional-order AM Filters Family: (a) FOLPF, (b) FOHPF,
(c) FOBPF, (d) FONF.

FIGURE 23. Fractional-order HS Filters Family: (a) FOLPF, (b) FOLPF,
(c) FOHPF, (d) FOBPF.

O. FRACTIONAL-ORDER HAMILTON-SEDRA 1972 (HS I)
Presented in [72], the fractional-order version of this filter
is presented in Fig. 23 and the transfer function is shown in
Table 16.

P. FRACTIONAL-ORDER
BHATTACHARYYA-MIKHAEL-ANTONIOU (BMA)
Presented in [73], the fractional-order version of this filter is
presented in Fig. 24 and the transfer functions with conditions
on the ports are shown in Table 17.
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TABLE 17. Fractional-order BMA family.

FIGURE 24. BMA general building block.

VIII. CASE STUDY FOR THE DESIGN OF A LOW-PASS
FRACTIONAL-ORDER FILTER BY CIRCUIT SCALING
IMPLEMENTATION
Considering the implementation of the transfer function in
Eqn. 26 with the fractional-order Bach’s filter in Fig. 9.
Comparing the required transfer function with that of the
filter in Eqn. 27 and using frequency scaling of 104 and
magnitude scaling of 103, the values of the required passive

TABLE 18. Passive elements values for the circuit scaling design case.

elements are summarized in Table 18 with α = 1 and
β = 0.7. The fractional order capacitor was implemented
using four approximation techniques: CFE, Carlson, Mat-
suda and Oustaloup. The capacitor was then realized using
the FosterI RC network, as shown in Fig. 25a. Values for
resistances and capacitances of the Foster network are sum-
marized in Table 19. Using TL084C Chip as active ele-
ments and using the fractional-order capacitor on NISC PCB,
Fig. 25b shows the setup for the filter experiment on the NI
ELVIS II kit. Figure 26 shows the phase realization errors
for the fractional-order capacitors in the four cases where
ideal, approximation and realizable cases are compared. The
realizable case is plotted using the values Table 19 to account
for the round-off error in computing Foster I, which gives an
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FIGURE 25. Fractional-order filter experiment: (a) Foster I schematics,
(b) Setup.

FIGURE 26. Phase response and phase error for the fractional-order
capacitor realization by: (a) CFE, (b) Matsuda, (c) Oustaloup, (d) Carlson.

intuition for the best realizable CPE. Data was taken from
the NI ELVIS bode analyzer and plotted on MATLAB in
Figs. 27-28.

IX. CASE STUDY FOR THE DESIGN OF A LOW-PASS
FRACTIONAL-ORDER FILTER BY DIRECT CIRCUIT
IMPLEMENTATION
In the direct implementation of a fractional-order order filter,
three critical frequencies are to be evaluated and mapped to
the passive elements to achieve the required performance.
The critical frequencies are the maxima frequency, as shown
in Eqn. 29, the half-power frequency shown in 30, and the
right-phase frequency shown in Eqn. 31 [74].

d
dω

|H (jω)|ωm = 0. (29)

|H (jω)|wm =
1

√
2
|H (jωpassband |. (30)

FIGURE 27. Experimental magnitude response for the filter with the
fractional-order capacitor realized by: (a) CFE, (b) Matsuda, (c) Oustaloup,
(d) Carlson.

FIGURE 28. Experimental phase response for the filter with the
fractional-order capacitor realized by: (a) CFE, (b) Matsuda, (c) Oustaloup,
(d) Carlson.

̸ H (jω)ωrp = ±
π

2
. (31)

The first design step is to factorize the filter’s TF. For
example, Bach’s FOLPFTF in 27 gives the factorized transfer
function in Eqn. 32.

H (s) =
b

sα+β + asβ + b
, (32)

where a and b are the factors to be computed from solving the
critical frequencies equations. The second step is to apply the
three frequency equations to Eqn. 32, which gives the three
implicit nonlinear equations Eqn. 33.

AA′
+ BB′

= 0, (33a)

A2 + B2 = b2, (33b)

A = 0, (33c)

where A, A′, B, and B′ are summarized in Table 20.

29210 VOLUME 11, 2023



A. M. Hassanein et al.: On the Design Flow of the Fractional-Order Analog Filters

TABLE 19. Foster I Rs and Cs values for realization of the fractional-order capacitor.

TABLE 20. Factors of the implicit critical equations.

TABLE 21. Passive elements values for the direct circuit design case.

FIGURE 29. Simulation and experimental magnitude response for the
filter with the fractional-order capacitor realized by: (a) CFE, (b) Matsuda,
(c) Oustaloup, (d) Carlson.

Considering the same realized CPE in Table 19, the set
of the critical equations in 33 could be solved for a half
power frequency of fh = 450Hz with α = 1, β = 0.7, and
Cβ = 2.24µF/s1−β . The calculated values for the rest of the
passive elements are summarized in Table 21.
Figures 29-30 show the magnitude and phase responses

of the simulation results performed on OrCAD and experi-
mental results using ELVIS II kit and the realized CPEs in
Table 21.

FIGURE 30. Simulation and experimental phase response for the filter
with the fractional-order capacitor realized by: (a) CFE, (b) Matsuda,
(c) Oustaloup, (d) Carlson.

X. CONCLUSION
This work summarized the main possible design flows of the
fractional-order filters. These flows can be generalized to the
design of any fractional-order analog system if used with
the correct corresponding target system’s design equations.
The work presents two design methods starting, for both
methods, with creating the targeted fractional-order transfer
function of the desired system.

The first design method is the circuit implementation
which consists of selecting the filter topology. The next step
is comparing the topology’s transfer function with the desired
system to acquire values for the filter’s resistors and capaci-
tors. This is followed by realizing the fractional-order capac-
itors (CPEs) using an appropriate approximation technique
and realization network. The final step is to compose the
circuit and run a simulation and experiment for verification.

The second method is the design of FPAA. This method
consists of choosing an appropriate approximation technique
for the Laplacian operators in the targeted transfer function.
The next step is substituting the Laplacian operator in the
transfer function with the approximated Laplacian operator,
which results in an integer-order transfer function. The final
step is transforming the approximated integer-order transfer
function into a state-space representation such as PFE.
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The performance of the fractional-order filter is highly
dependent on the approximation process of the CPE.
An appropriate reduction technique could reduce the
approximation order of the Laplacian operator. The
fractional-order filters’ design flow using FPAA differs from
the circuit’s. Both flows were presented with a design case.
Giving the entire transfer function of the fractional-order
filters active topologies is essential to highlight the fractional
S domain contributor. So, a short survey was presented on
some generalized analog filter topologies. This work could
be considered a catalog for fractional-order filters and analog
systems designers. Future work will consider mapping more
design specs, like quality and shaping factors, to the critical
frequencies.
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