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ABSTRACT Given Natural Language (NL) text descriptions, NL-based vehicle retrieval aims to extract
target vehicles from a multi-view multi-camera traffic video pool. Solutions to the problem have been
challenged by not only inherent distinctions between textual and visual domains, but also by the complexities
of the high-dimensionality of visual data, the diverse range of textual descriptions, a major lack of high-
volume datasets in this relatively new field, alongside prominently large domain gaps between training
and test sets. To deal with these issues, existing approaches have advocated computationally expensive
models to separately extract the subspaces of language and vision before blending them into the same
shared representation space. Through our proposed Domain Adaptive Knowledge-based Retrieval System
(DAKRS), we show that by taking advantage of multi-modal information in a pretrained model, we can
better focus on training robust representations in the shared space of limited labels, rather than on robust
extraction of uni-modal representations that comes with increased computational burdens. Our contributions
are threefold: (i) An efficient extension of Contrastive Language-Image Pre-training (CLIP)’s transfer
learning into a baseline text-to-image multi-modular vehicle retrieval framework; (ii) A data enhancement
method to create pseudo-vehicle tracks from the traffic video pool by leveraging the robustness of baseline
retrieval model combined with background subtraction; and (iii) A Semi-Supervised Domain Adaptation
(SSDA) scheme to engineer pseudo-labels for adapting model parameters to the target domain. Experimental
results are benchmarked on Cityflow-NL to obtain 63.20% MRR with 150.0 M of parameters, illustrating
our competitive effectiveness and efficiency against state-of-the-arts, without ensembling.

INDEX TERMS Contrastive representation learning, text-to-image retrieval, vehicle retrieval,
semi-supervised learning, domain adaptation, background subtraction.

I. INTRODUCTION
Vehicle retrieval, which refers to extracting target vehicles
in multiple traffic videos recorded from different views and
cameras via a visual or textual input query, is essential
in developing Intelligent Traffic Systems (ITS) in smart
cities. Most existing vehicle retrieval systems are built
using image-to-image matching solutions from the vehicle
Re-Identification (ReID) task, which aims to use an image
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query to retrieve the target vehicle from a pool of vehicle
images. Recently, with the rise of many large language mod-
els with promising results, image-text retrieval has become
more prominent. In particular, being able to query a specific
vehicle of interest from a pool of large databases using only
intuitive, natural language descriptions is a powerful capa-
bility, as it is not only cost-effective but also alleviates the
problems in many data-intensive applications where query
with image modality is not available.

However, NL-text vehicle retrieval is a very challenging
task due to inherent semantic gaps between the features of
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FIGURE 1. (a) Multi-view, (b) Multi-camera properties in CityFlow-NL
where the multi-camera multi-view properties of the dataset, the
intra-class variations (i.e. vehicles and scenes) are drastically enlarged
and cause domain bias.

images and texts, along with each domain’s distinctive data
properties. On the language side, the corresponding textual
descriptions of each target vehicle track (tracking video of
the target vehicle) in the query set can be very diverse in
terms of linguistic style but might be grammatically poor,
semantically generic, unclear, or even convey conflicting
information. These data samples have been known to add
noise to the training and assessment of a retrieval model.
On the vision side, cars with distinct identities may exhibit
little inter-class differences and major intra-class variations
due to changes in perspectives and visual resolutions. They
often have the same static qualities (e.g., color and type)
or dynamic properties (e.g., motion patterns), making cross-
modal matching more challenging. Furthermore, because the
field is relatively new, there is a lack of high-volume datasets
that comprehensively include video descriptions for vehi-
cle tracks and synonymous textual descriptions of vehicle
queries. Notably, the CityFlow-NL dataset [1] is one of the
first publicly available datasets in the field. Still, the small
amount of annotated language-vehicle pairings being sup-
plied in the training set is limited in terms of how much it
can address the domain gap from the test sets. Furthermore,
as shown in FIGURE 1. due to the multi-camera multi-view
properties of the dataset, the intra-class variations are dras-
tically enlarged and cause domain bias that leads to smaller
inter-class differences between vehicles in the same scenario.

To our knowledge, existing methods [2], [3], [4] have
dealt with the aforementioned issues under the following
limitations,
• Existing approaches mainly focus on exploiting spe-
cialized knowledge from single-modal pre-training
(i.e., using the pre-trained vision encoder or the lan-
guage encoder) before blending them to facilitate multi-
modal learning. In particular, by leveraging the robust
performances of model-driven approaches, they sepa-
rately pre-trained the vision/language knowledge using
different specialized models, then transfer-learn the

embeddings towards the same embedding subspace.
By neglecting the multi-modal corresponding informa-
tion, models can be good at the visual or textual tasks but
would require significant efforts and data to adapt to the
generalized theme of multi-modal learning. As a con-
sequence, it typically leads to correspondingly higher
computational expenses and more data.

• In addition to real-world scenarios, the existing
approaches of text-to-vehicle retrieval have yet actively
addressed the distribution gap (termed as domain shift,
or subpopulation shift) between the data used for train-
ing the model (source domain) and the test data (target
domain), especially in the setting of limited data. Despite
of the fact that recent studies on Domain Adaptation
(Self-Supervised, Semi-Supervised, etc.) have proposed
various strategies formodels to adapt and overcome poor
generalization with data of different distributions, the
lack of utilization of those techniques has resulted in
performance limitations as models overfit to the training
domain.

In this research, we aim to simultaneously address the
inherent problems of NL-based vehicle retrieval and alleviate
the issues of existing approaches. Intuitively, we believe that
it is possible to take advantage of multi-modal information
and generalization capabilities of a pretrained model, so that
we can instead focus on training robust representations in the
shared space of limited labels, rather than on bridging uni-
modal representations from scratch which apparently have
entailed intensive computational costs and training burdens.
Our proposed domain adaptive knowledge retrieval system
shall be described in three aspects, all of which also corre-
spond to our scientific contributions:

1) In order to work with limited data without unnecessar-
ily increasing computational complexities, we propose
an extension of the CLIP [5], a large neural network
study on unlabeled vision-language multi-modular pre-
training. By adopting CLIP, we could circumvent the
shortage of labelled data and better attain the full poten-
tial of network learning when large-scale labelled data
are not available.

2) To alleviate the issues of limited high-quality labels,
we propose a data enhancement method that gener-
ates augmented data. In fact, by visually extracting
unlabelled vehicle tracks from the traffic video data
with background subtraction, and textually presenting
a simplified version for text descriptions, we introduce
the method to expand the data pool and address the
linguistic ambiguity residing in the language query set.

3) To address the domain gap between the training and
testing sets and to further amplify the retrieval perfor-
mance of the baseline model, we propose SSDA to deal
with problems from the domain shift by adapting the
knowledge of the test set through the pseudo-labels.
Our SSDA approach for retrieval combines a small
number of labelled samples from the target domain
with the remaining unlabelled target data, significantly
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different from current works focusing on supervised
training settings.

A preliminary version of this work has been published as
a technical paper [6]. In this work, we focus on more scien-
tific aspects and key modifications in the data enhancement
method to further support the SSDA training method, which
allows us to enhance model performance in retrieval results
significantly. From experimental results on the CityFlow-NL
dataset, our proposed method has been validated to achieve
competitive results while having less computational cost than
any state-of-the-art methods without using any ensemble and
post-processing methods.

II. RELATED WORKS
A. NATURAL LANGUAGE-BASED VEHICLE-BASED
VIDEO RETRIEVAL
In recent years, natural language-based video retrieval tasks
have garnered significant interest. Early research focuses on
extracting representative features from video and text data
to establish a link between text and video. To encode the
language, these efforts employ a textual feature extractor
such as ERNIE [7], Word2Vec [8], or LSTM [9], and a
powerful vision network such as ViT [10] to extract visual
features. CLIP4Clip [11] investigates a method to transfer
the knowledge of the vision-language pre-training model to
video-language retrieval problems. Come Recently, large-
scale pre-trained vision-language models have shown excel-
lent performance in video retrieval tasks. CLIPBERT [12]
uses sparse sampling to make end-to-end learning for video
language challenges inexpensive. In addition, [13] proposes
a novel framework that employs multiple queries as inputs to
provide more accurate results, as opposed to combining the
similarity outputs of multiple queries from the previous single
query-trainedmodels. In contrast to the typical video retrieval
job, the vehicle retrieval task is primarily an instance-level
retrieval problem requiring a model to comprehend traffic
scenes and vehicle properties better. To accelerate research in
the field, the 5th and 6th AI City Challenge [14], [15] hosted
by NVIDIA has specifically organised the natural language-
based vehicle retrieval challenge to encourage text-to-image
vehicle retrieval systems development to advance research in
the field.

In the 5th NVIDIA AI City Challenge, the majority of
teams [2], [16], [17], [18], [19], [20] chose to extract sentence
embeddings of the queries, whereas two teams [21], [22] pro-
cessed the NL queries using conventional NLP techniques.
For cross-modality learning, certain teams [2], [20] used
ReID models with the adoption of vision models pre-trained
on visual ReID data and language models pre-trained on the
given queries from the dataset. The motion of vehicles is an
integral component of the NL descriptions. Consequently,
a number of teams [2], [18], [22] have developed spe-
cific methods for measuring and representing vehicle motion
patterns.

As for the 6th NVIDIA AI City Challenge, all partici-
pating teams utilised InfoNCE losses [23] to train for the

text-to-image retrieval task. In addition, to represent the
NL descriptions, most teams used some pre-trained phrase
embedding models, such as BERT [24], to represent the
NL descriptions. Using an NL parser, the [4] team obtained
tracked vehicles’ color, kind, and movement. In addition
to the ReID-based strategy, these attributes were employed
to post-process the retrieval results. Consequently, several
groups [3], [25], [26] utilised the global motion image pro-
vided by Bai et al. [2] to generate a vehicle motion stream.
The [3] team developed an enhanced motion image utilising
the inter-frame IoU of the tracked targets.

However, among the state-of-the-art solutions, every team
mostly focused on combining separate pre-training vision
and language models while neglecting the research on using
vision-language pre-training models. In tackling that gap,
our preliminary version leveraged CLIP vision-language pre-
training model, proposed an SSDA training process and per-
formed motion analysis and post-processing with the pruning
of retrieval results.

B. VEHICLE RETRIEVAL DATASETS
The vehicle retrieval task is derived from Vehicle ReID,
an important task in computer vision that matches vehicle
images taken from different cameras and viewpoints to a
unique vehicle identity. Over the years, various vehicle ReID
datasets have been created and used as the benchmark for
evaluating and improving vehicle ReID models. Some of
the most notable datasets are VeRi-776 [27], a large-scale
dataset that contains over 50,000 images of 776 vehicles
captured by 20 cameras from various viewpoints and weather
conditions; VehicleID [28] dataset consisting of 2211,567
images of 26,328 vehicles; CompCar [29] dataset is designed
for fine-grained car recognition and contains 136,726 images
of 1,716 car models; CityFlow [30] dataset is among the
most massive vehicle re-id datasets. There are 666 vehicle
identifiers labelled with bounding boxes. Realistically, each
image is captured from 40 cameras with 36,935 training
images of 333 vehicles and 19,342 testing images of other
333 vehicles.

Despite the enlargement and constant development in
image-to-image vehicle datasets, text-to-image vehicle
datasets still lack large-scale quality realistic datasets. Thus,
a benchmark proposed by NVIDIA AI City Challenge called
CityFlow-NL is the first publicly available dataset intended
to allow study at the intersection of multi-object tracking,
retrieval by natural language specification, and temporal
localisation of occurrences. The benchmark is drawn from
CityFlow, a public benchmark that has been the focal point
of several previous NVIDIA AI City Challenge workshop
challenges centred on Multi-Target Multi-Camera (MTMC)
tracking and ReID.

C. VISION-LANGUAGE PRE-TRAINING
Vision-Language pre-training has made significant strides
recently and obtained outstanding results on various
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FIGURE 2. The overall framework of DAKRS for vehicle retrieval through natural language descriptions includes the data enhancement method. Given a
Traffic Video Database, we want to match vehicle data to the corresponding textual data as a Vehicle Track Database. For enlarging the training dataset,
the Traffic Video Database is used in our Data Enhancement Method, whose pseudo-data, pseudo-labels, and pre-processed texts are used to train the
Retrieval Model that leverages the multi-modal capabilities of CLIP.

multi-modal downstream tasks. Several ways were developed
using semantic supervision from large-scale image data to
learn visual representations from textual representations.
MIL-NCE [31] primarily investigated utilizing noisy, large-
scale Howto100M [32] instructional films to learn a superior
video encoder in an end-to-end fashion. SimVLM [33] low-
ered the complexity of training by utilizing large-scale weak
supervision and adopting a single prefix language modelling
objective end-to-end method. CLIP, a recent method, has
demonstrated remarkable success matching two modalities’
representations in the embedding space by utilizing internet-
collected large-scale image and text pairs. CLIP implemented
contrastive learning with high-capacity language models and
visual feature encoders to identify appealing visual concepts
for zero-shot picture categorization.

Inspired by recent encouraging results of transferrirng the
knowledge of CLIP models to downstream tasks, such as
video captioning, video-text retrieval, and image synthesis,
we propose to exploit the generalization capabilities of the
CLIP approach to extend it to a robust and efficient baseline
in NL-based vehicle retrieval.

III. THE METHODOLOGY
In this section, we introduce our proposed domain adaptive
knowledge-based retrieval system in FIGURE 2. which lever-
ages and extends themulti-modal capabilities of CLIP to refer
to vehicle retrieval in the format of texts and videos. Further-
more, to address the gap between source and target domains,
we discuss our proposed data enhancement method and our
SSDA strategy, where augmented data and pseudo-labels

are generated from raw videos to adapt model parameters
towards the target domain.

A. PROBLEM FORMULATION OF THE TEXT-TO-TRACK
VEHICLE RETRIEVAL
Given a set of n traffic video clips V = {v1, v2, . . . , vn} and a
corresponding NL-text query database Q = {q1, q2, . . . , qn},
we seek to learn a function s(vi, qj) such that qj ={
q1j , q

2
j , . . . , q

m
j

}
is the set of m synonymous text descrip-

tions, and each clip vi is annotated with the bound-
ing box coordinates of the tracked-vehicle as B(vi) ={
b1, b2, . . . , b|vi|

}
over the video length |vi|. In particular,

suppose that each set of NL-description comprises 3 descrip-
tions corresponding to each vehicle track vi. The main objec-
tive of this problem is to successfully retrieve video vi from
V based on qj =

{
q1j , q

2
j , q

3
j

}
from Q. Thus, a solution of

interest needs to focus on maximizing the similarity s(vi, qj)
between vi and it is corresponding qj while simultaneously
minimizing the similarity of s(vi, qk ) with vi against all other
queries in Q, qk ̸= qj.
Furthermore, with two domains of interest: the source

domain set and target domain set, we denote the source
domain set as Ds = {(V ,Q)}, where V refers to the
source domain’s vehicle track database and Q is referred
to as their hand-labelled labels. Thus, the target domain
set is similarly denoted as Dt =

{(
V ′,Q′

)}
where V ′ ={

v′1, v
′

2, . . . , v
′
p

}
is target domain vehicle track database, and

Q′ =
{
q′1, q

′

2, . . . , q
′
p

}
is the corresponding, unseen query set

of the target domain that needs to be matched pair-wise with
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FIGURE 3. Our baseline retrieval model leverages CLIP that includes visual and textual feature extractors, which respectively are Transformer as the
Vision Encoder and Text Transformer as the Text Encoder. Textual Descriptions are encoded to textual vectors via the Text Encoder, and vehicle scene
(Global Image) along with its close-up appearance (Local Image) are encoded to visual vectors by the Vision Encoder. Via hybrid space learning of both
latent space and concept space learning, text and image representations mutally adapt to each other’s variations in the shared domain, thereby creating
generalizable embeddings for text-image retrieval task.

elements in V ′. Hence, by learning the similarity function
sθ (·) parameterized by θ on Ds, we seek to maximize the
general objective,

S =
n∑
i=1

M
(
i, argmax

j

[
sθ (v′i, q

′
j)
])

M(i, j) =

{
1 if i = j
0 if otherwise

(1)

where ideally, and without seeing Q′,

B. THE PROPOSED DOMAIN-ADAPTIVE TEXT-TO-VEHICLE
RETRIEVAL FRAMEWORK
Parallel with related works in the field [2], [16], [21],
in FIGURE 3. we constructed a framework that leverages
the multi-modal ‘‘zero-shot’’ representation capabilities of a
pre-trained network, such that by having pre-trained it with
an abundantly available source of supervision of unfiltered,
highly varied, and highly noisy data (the internet), there
would be less need to scale its parameterization size. Further-
more, choosing a suitable backbone as the feature extractor
is vital for obtaining robust embeddings since they contain
abstract features that are disentangled from varying degrees

of inessential variations, making themmore generalizable for
text-image retrieval tasks.

With critical insights into leveraging NL-text and images
as flexible prediction spaces to enable generalization and
transfer, we propose an architecture that extends the CLIP
model for the text-to-vehicle retrieval problem, thanks to its
extensive knowledge in constructing strong representations
for visual-textual feature extraction tasks. CLIP uses pre-
trained models Vision Transformer as the Image Encoder
fi(·), and a Text Transformer [34] as the Text Encoder ft (·).
We show our proposed extensions in FIGURE 3. with a dual-
stream visual branch and a single-stream textual branch for
each set of 3 textual inputs.

1) DUAL STREAM
We utilize a dual-stream processing component to align the
multi-granularity information from text descriptions. Our
insights are to construct a visual representation to enhance
the knowledge the model can capture in each vehicle track
regarding global and local visual views.

As defined, each vehicle track is represented by a video
clip vi and its corresponding set of bounding box coordinates
B(vi). Hence, each vehicle track has its set of global and local
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images corresponding to the global view of the video clip and
the cropped view of the vehicle in that video clip. We further
denote the jth global image in vi as I

j
g ∈ RH×W×3, which is

the original frame, and the local image I jl ∈ RH×W×3 that is
cropped on a global image by a bounding box bj and resized
to the original frame size. Both inputs are then simultaneously
encoded via a shared-weight image encoder fi(·) in a parallel
fashion to obtain:

hjg = fi(I
j
g)

hjl = fi(I
j
l) (2)

where hjg ∈ RB×512, hjl ∈ RB×512 are global and local feature
embeddings, respectively. Note that B is the batch size,H and
W are the height and width of the image.
Finally, for the tracked-vehicle representation of vi,

we combine both local and global views across the sampled
jth frames to obtain the visual representation as,

hv = E
[
hjv

]
hjv =

[
hjg||h

j
l

]
(3)

where hjv ∈ RB×1024 and channel-wise concatenation opera-
tion is defined as ||, This way, we learn the vehicles’ expected
motion poses and appearances to match themwith directional
trajectory and appearance-wise textual descriptions over the
video clip.

2) SEMANTIC EXTRACTION OF TEXT REPRESENTATION
Due to poor textual quality in grammar and spelling between
sentences in each description set, text-processing steps are
performed to ensure consistency across different description
sets. We identify each misspelt word and calculate the Lev-
enshtein distance to replace it with the corresponding correct
word in the prepared dictionary where the distance between
twowords is the smallest. After that, we use the SRL tool [35]
to extract verbs and perform text stemming that converts
verbs into their base form.

Nevertheless, regarding variations of style and context in
NL descriptions, we propose to disentangle the factors of
variations of m synonymous descriptions in terms of style,
while context differences are still taken into account by direct
learning of each representation with respect to the visual
description. By previously denoting a query description for
vi as qi in Q, we randomly sample one sentence among m
synonymous sentences as an example and encode it with a
text encoder to obtain the textual representation as,

ht = E
[
hjt

]
(4)

where hjt = ft(q
j
i) ∈ RB×1024 is text feature embedding. Note

that B is the batch size.

3) PROJECTION HEADS
Inspired by [36], we then feed text and image representation
respectively into each separated projection heads gv(·) and

gt(·), with the intention of mapping each embedding from
its domain space into a shared latent space where contrastive
learning is applied. Visual feature vector zv and textual fea-
ture vector zt can be represented as:

zv = gv (hv) =W(2)σ
(
BN

(
W(1)hv

))
zt = gt (ht) =W(2)σ

(
LN

(
W(1)ht

))
(5)

where the projection head is a small Multi-Layer Perceptron
(MLP) with one fully-connected (FC) layer that contains
W(1) andW(2) as the parameter of the fully-connected on each
side, respectively, the MLP is using a non-linear activation
function σ ReLU and a Normalization Layer with Batch
Normalization (BN) for visual representation and Layer Nor-
malization (LN) for text representation. An additional image
projection head is leveraged as the concatenation features
between dual-stream visual feature vectors for the concept
space learning task in section III-B4.b. All the vectors are then
normalized to be unit vectors. Additionally, a special projec-
tion head, also known as classification head gc(·), is employed
to map visual and textual feature vectors into a classification
space where each pair of visual and textual feature vectors
corresponds to a vehicle track id.

4) MULTI-MODAL DOMAIN-ADAPTIVE LEARNING
Given a batch B pairs of video vehicle track vi and text
query qi, we want to learn representations of vi that adapt
to variations in qi and vice versa. In particular, there are
B × B possible sample pairs, so our main objective is to
maximize the similarity between vehicle track vi and text
query qj in the source domain Ds. We use cosine similarity
as the parameterized measurement:

sθ
(
vi, qj

)
=

z(i)v · z
(j)
t∥∥∥z(i)v ∥∥∥ ∥∥∥z(j)t ∥∥∥ (6)

where · denotes the dot product operation, and
∥∥∥z(i)v ∥∥∥, ∥∥∥z(j)t ∥∥∥

denote the L2 norm of the feature vectors.

a: LATENT SPACE LEARNING
As the visual feature vector zv and textual feature vector zt
are projected into a common latent space, an appropriate
similarity function shall pull relevant video-sentence pairs
close together and irrelevant pairs far apart in the latent space.
Thus, we adopt the infoNCELoss due to its ability to alleviate
the model to learn multi-modal embedding space by jointly
training visual and text embedding to maximize the similarity
between B positive pairs and minimize B× (B− 1) opposing
pairs simultaneously. The loss consists of two parts: Image-
to-Text and Text-to-Image.
• Image-to-Text Loss:

Lv−→q = −
1
B

B∑
i

log
exp (sθ (vi, qi))∑B
j=1 exp

(
sθ

(
vi, qj

)) (7)
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• Text-to-Image Loss:

Lq−→v = −
1
B

B∑
i

log
exp (sθ (vi, qi))∑B
j=1 exp

(
sθ

(
vj, qi

)) (8)

Finally, the InfoNCE Loss is formulated as follows:

LInfoNCE = Lv−→q + Lq−→v (9)

b: CONCEPT SPACE LEARNING
Aside from classifying each pair based on similarity, lever-
aging concept features such as vehicle id, where each id is
unique, is crucial since learning at the instance level ensures
local feature alignment. Hence, concept space learning can be
naturally expressed as a multi-class classification task. Thus,
we project visual feature vector zv and textual feature vector
zt into a shared-weight classification head gc(·) to obtain:

x = gc (z) =W(2)σ
(
BN

(
W(1)z

))
(10)

where x is the final linear classifier and z represents both
zv and zt. The final linear classifier is then used to calculate
categorical cross-entropy loss as follows:

Lconcept = −
1
C

C∑
i

log
exp (xi)∑C
j=1 exp

(
xj

) (11)

with C denoting the number of vehicle tracks as each vehicle
track is a unique id. Then, the final loss is formulated as:

Lfinal = LInfoNCE + Lconcept (12)

C. THE PROPOSED DATA ENHANCEMENT METHOD
To actively alleviate the issues of limited high-quality labels
in the source domain Ds, we introduce the data enhancement
method that further generates augmented data and pseudo-
labels on the target domain Dt by visually extracting unla-
belled vehicle tracks from the traffic video data, and textually
presenting a standardized version for text descriptions to
address the linguistic ambiguity residing in the language
query set on bothDs andDt . All of this serves as a way to fully
exploit the vast amount of unlabeled data since the training
set only reflects a small number of vehicle tracks inside each
video. Therefore, we propose two new components: Pseudo-
label Generating and Augmented-data Generating, to com-
plement the shortage of datasets in the source domain and
gradually bridge the discrepancy between the two domains.

a: VEHICLE TEXT GRAMMAR
As mentioned in section III-B2, due to the vast diversity
in each description, creating pseudo-labels near that content
level required many resources and effort. Hence, we denote
the original text format as toriginal and we propose a stan-
dardized text grammar for vehicle retrieval and formulated
as follows:

tstandardized = ac + at + am + ar (13)

where:
• ac denotes the attribute vehicle’s color as Red, Blue,
Yellow, Black, etc.

• at denotes the attribute vehicle’s type as Car (generic),
Sedan, SUV, Truck, or Large Truck, etc.

• am denotes the attribute vehicle’s motion as Straight
Ahead, Turn Left, Turn Right, Turn Around, etc.

• ar denotes the attribute vehicle’s other surrounding
information, such as ‘‘Behind a Red Sedan’’, etc.

This format enforces each description into the same con-
tent level and benefits the proposed pseudo-label technique.
The SRL tool extracts verbs from the sentence and helps iden-
tify vehicle color and type alongwith any relative descriptions
on sub-target in the query. In particular, each vehicle track
corresponds with m synonymous text descriptions and can
cause variation in the color and type of vehicle track. Thus,
we select the most prevalent vehicle color and type based on
the number of instances that appear statistically the most and
replace it for all descriptions in each query.

b: AUGMENTED-DATA GENERATION
Due to the relatively new field, limitations from the lack of
a large-scale dataset are concerning. We propose an augmen-
tation strategy based on data observation to tackle that issue
when working with existing datasets. As seen in the global
image of FIGURE 3. the target of interest is only one vehicle
in the scene, while there can be other separately moving
vehicles in the scene.

Hence, given a vehicle track database V , whether from
the source or the target domain, we propose to use Back-
ground Subtraction [37] to extract all separately moving
vehicle coordinates, then we employ Vehicle Tracking on
the vehicles based on their speed and momentum such as
in [38]. By doing so, we can obtain an augmented vehicle
database Va

=
{
va1, v

a
2, . . . , v

a
b

}
, with b as a chosen number

of vehicles. The algorithm is shown in Algorithm 1.

c: PSEUDO-LABEL GENERATION
In a setting where labelled data on the target domain is
unavailable, such as for the augmented set Va and the tar-
get set V ′, Unsupervised Domain Adaptation (UDA) is a
common approach where pseudo-labels on the target domain
are generated to refine the model which aims at trans-
ferring knowledge from a strong label source domain to
unlabeled target domain. Lin et al. [39] propose utilizing the
characteristic to facilitate the transmission of information
and eliminate the pseudo-label noise. Zhang et al. [40] and
Yang et al. [41] provide an asymmetric co-teaching frame-
work in which two distinct modules create pseudo-label for
each other. However, a commonly used strategy for gener-
ating pseudo-labels in UDA (e.g. Feature clustering on the
target domain) is prone to significant errors in this problem
with limited data since the domain gap between textual and
visual features is significant. Thus, we introduce a simple
but effective pseudo-label strategy where information from
the source domain and knowledge of the baseline model
is leveraged by Vehicle Attribute Recognition to create
pseudo-label for target domain.

In particular, for a given vehicle track vi, we fine-tuned
CLIP’s Vision Transformer to develop classification models
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Algorithm 1 Augmented-Data Generation
1: M← Background Subtraction (BGS) Model
2: T← Vehicle Tracking Model
3: Va

← {} ▷ Dictionary for Augmented Data
4: procedure Augment(V)
5: i← 1
6: while i ̸= |V| do ▷ Background Initialization
7: M.update(Ii) ▷ Background Update
8: i← i+ 1
9: end while

10:

11: i← 1
12: while i ̸= |V| do ▷ Data Generation
13: O←M.subtract(Ii) ▷ BGS to Vehicles
14: for o in O do ▷ For each Vehicle Object
15: v← T.track(o)
16: if v.id not in V a then
17: Va

= [ ]
18: end if
19:

20: Va [v.id] .append({Ii, o}) ▷ Augment
21:

22: end for
23: i← i+ 1
24: end while
25: end procedure

for vehicle color πc and vehicle type πt based on the training
dataset. This is meant to use CLIP’s general learning on data
from the large-scale vision-language datasets and specific
attributes of the vehicle retrieval domain. Finally, different
from our previous version using various heuristics to calculate
the vehicle’s trajectory and extract the vehicle’s direction,
which leads to many errors due to different views in cam-
eras. Thus, in this version, to further enhance the accuracy
in generating pseudo-label, we leverage the training videos
and corresponding text queries to train an addition classifier
to predict the vehicle’s motion direction as πd . Finally, the
pseudo-labelling, also known as the textual query with the
format tstandardized , can be defined as the concatenation of:

q̂i = πc(vi) || πt (vi) || πd (vi) (14)

Through this approach, we can produce pseudo-labels for
any vehicle track attribute based on three attribute classifi-
cation modules: color, type, and movement. For color and
type classifications, we discovered that the baseline model
could retrieve the vehicle track that closely matches the text
descriptions with the same vehicle color and type.

D. SEMI-SUPERVISED DOMAIN ADAPTATION (SSDA)
Due to the limited data with strong labels, training the model
using only the samples in the source domain can easily lead
to overfitting because of the domain gap between the source
and target domains. In place of strong labels, we propose
to additionally fine-tunne the general multi-modal model

(i.e. our CLIP-extended framework) with pseudo-label gen-
erated by specialized classification models on the target
domain. By doing so, our model is guided with information
about the subpopulation shift of data in the test domain, and
thus adapt its parameters for increased accuracy.

• General multi-modal model: to extract generalizable
representations, our CLIP-extended framework is capa-
ble of mixing the visual and textual subspaces to obtain
generalizable results via Vision Transformer and the
Text Transformer. To mix with the Text Transformer,
the Vision Transformer needs to encapsulate visual-
linguistic context into its embeddings.

• Specialized classification models: By teaching the
Vision Transformer to perform a narrow set of visual
concepts for classification, it can be good at one specific
task of generating our classifications of interest, thereby
generating strong pseudo-label that are approximately
close to the ground truths.

The limitation of training data is a settingwhere knowledge
bias from learning on the source domain can be alleviated by
the pseudo-labels on the target domain. After learning, it is
possible to align source-trained model parameters towards
the target domain’s data distribution. Intuitively, our insight
is that the pseudo-label generated by specialized models shall
provide labels closer to the ground truth than a general multi-
modal model. Hence we could obtain higher accuracy while
tolerating certain degrees of label errors.

In particular, suppose Q̂
′
=

{
q̂′1, q̂

′

2, . . . , q̂
′
p

}
are the

pseudo-label query set generated for the target vehicle set V ′,
we employ the text representation extractor ft(·) on Q̂

′
and

by Equation (12) such that the embeddings, similarities and
losses are generated as if the set Q̂

′
comprises of the strong

corresponding labels for V ′.

IV. EXPERIMENTS
A. DATASET
CityFlow-NL Dataset: The CityFlow-NL benchmark
includes 666 target vehicles in 3598 single-view vehicle
tracks captured by 46 calibrated cameras with 5 different
scenarios and 6784 distinct NL descriptions. At least three
crowdsourcing employees supplied NL descriptions for each
target to capture better true differences and ambiguities
expected in real-world application domains. The NL descrip-
tions include details about the vehicle’s color, movement,
traffic scene, and relationships with other vehicles. The
dataset is originally built upon the CityFlow benchmark,
which contains 3.58 hours (215.03 minutes) of footage from
46 cameras spanning 16 intersections in a mid-sized US
metropolis with a distance of 4 km between the two furthest
existing benchmarks.

B. EVALUATION METRICS
The Vehicle Retrieval by NL descriptions task is evalu-
ated using standard metrics for retrieval tasks. The Mean
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TABLE 1. Comparison between the preliminary work and DAKRS.

Reciprocal Rank (MRR) is used and formulated as follows:

MRR =
1
|Q|

|Q|∑
i=1

1
ranki

, (15)

where ranki refers to the rank position of the right track for the
ith text description, andQ is the set of text queries. In addition,
Recall@5 and Recall@10 are also evaluated.

C. IMPLEMENTATION DETAILS
1) BASELINE TRAINING STAGE
We choose CLIP’s ViT-B/32 and Text Transfomer as as the
backbone of the image encoder and the text encoder, respec-
tively. The size of embedding visual and textual vectors’
dimensions are 512 and 1024, respectively. All the training
images are resized to 224 × 224 as the input for the visual
encoder. We train the model with 180 epochs, with the size of
each mini-batch set to 64. During both training stages, we use
AdamW [42] as the optimizer with the initial learning rate
set to 1e−2 and decay 1e−1 every 30 epochs for better con-
vergence. We train 2 variations of the baseline models with
different text formats, where Type 1 is (original format) and
Type 2 is (standardized format) respectively, to evaluate the
effectiveness of each text format.

2) SSDA TRAINING STAGE
All the training settings are the same as the baseline model.
We then fine-tune the baseline model for 90 epochs with the
pseudo-label generated from section III-C All experiments
are conducted with Pytorch 1.13 on 1 GPU NVIDIA Quadro
RTX 6000.

3) INFERENCE STAGE
During the inference stage, we use the text format similar
to the format in which the model is trained/fine-tuned to
maximize each text format’s retrieval performance.

4) CLASSIFICATION MODELS
All the training settings are the same as the baseline model,
except the batch size is changed to 128. Each classification
model is fine-tuned from the baseline retrieval model vision
branch without using the global images as inputs. We train
each model for 210 epochs and use it to automatically gen-
erate type, color and direction for each vehicle track by
inference through all frames of each track and then choose
the class with the highest occurrence.

D. EXPERIMENTAL RESULTS
1) QUANTITATIVE RESULTS
As shown in FIGURE 4. we plot the variation in the perfor-
mance of DAKRS between the Baseline retrieval model and

FIGURE 4. Training performance of the Baseline and SSDA retrieval model
on CityFlow-NL.

TABLE 2. Summary of datasets for training on CityFlow-NL where ‘‘Data
Enhancement Method’’ refers to ‘‘DEM’’ and ‘‘w/’’ refers to ‘‘with.’’

TABLE 3. Performance (MRR) comparisons of retrieval model’s results
between state-of-the-art methods on CityFlow-NL. * In MRR column,
Red(1) is for the best MRR, Blue(2) is for the second best MRR.
* In Parameters column, Red(1) is for the smallest parameters, Blue(2) is
for the second smallest parameters.

SSDA retrieval model on the CityFlow-NL dataset during
2 training stages, and in TABLE 2. we show the amount
of training data used for the baseline retrieval model and
SSDA retrieval model. Then, we compare the results of
the proposed model with other existing methods on the
CityFlow-NL dataset. Finally, we thoroughly compare the
performance of each stage of our proposed DAKRS retrieval
system with other methods participating in the challenge,
including state-of-the-art solutions on CityFlow-NL dataset
such as Baidu-SYSU [4],Megvii [3], HCMUS-UDayton [43],
BUPT-ChinaMobile [25], Terminus-CQUPT [26].
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FIGURE 5. Qualitative results on our baseline retrieval model. Despite having lower accuracy, the baseline model produces several reasonable
matches. Green vehicle images indicate the true top-1 images match the text descriptions, where the baseline retrieval model achieves top-1
results.

FIGURE 6. Qualitative results for SSDA training stage. These are example cases where the baseline’s embeddings are not reasonably close, but
after SSDA the embeddings are closer to the ground truth. (Upper Figure) Red vehicle images indicate the false top-1 images match with the text
descriptions, where the baseline retrieval model achieves low ranking. Green vehicle images indicate the true top-1 images match with the text
descriptions, after using SSDA our retrieval model produces top-1. (Lower Figure) Green icons indicate the target embedding pairs, other colors
denote unmatched predicted embeddings. The circle icon refers to image embedding, and the diamond icon refers to text embedding.

The experimental results on CityFlow-NL of baseline
retrieval models and whole retrieval systems are detailed in
TABLE 3. and TABLE 4., respectively. TABLE 3. shows

that our method achieves the second-best results with 33.44%
on MRR metrics while requiring the least computational
cost where the DAKRS baseline model’s parameters are half
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TABLE 4. Overall framework performance (MRR) comparisons with
other methods on CityFlow-NL. * In each column, Red(1) is for the best
MRR, Blue(2) is for the second best MRR. † Methods that have not
published papers and disclosed their methods to validate their result
with NVIDIA, whose MRR results are taken from the public leaderboard
available at https://eval.aicitychallenge.org/aicity2022.

compared to the top-1 team Baidu-SYSU model’s parame-
ters, while the MRR is less than 3.47%. Moreover, our pro-
posed baseline achieves better MRR than the top-3 solution
from the Megvii team with a difference of 1.06%MRRwhile
requiring significantly fewer computational costs, which are
less than half the parameters required byMegvii’s model. Our
proposed baseline model shows a promising balance between
effectiveness and efficiency compared to other approaches,
where the model can achieve robust retrieval results while
maintaining the least computational costs.

In TABLE 4. we report the performance of DAKRS
retrieval results on the CityFlow-NL benchmark compared
to other approaches in NVIDIA AI City Challenge 2022.
Our retrieval system obtains 63.20% MRR using only a
single two-stage retrieval model without any further post-
processing methods on retrieval results or ensemble methods
with multiple models. Compared with other methods, our
Domain-Adaptive Knowledge Retrieval System (DAKRS)
achieves the second-best performance in MRR metrics with
a small gap of 2.86%MRR compared to the top-1 team while
maintaining notable results compared to other teams where
our result is 15.47% and 27.09% higher than [3] and [43],
respectively. Interestingly, our proposed system improves up
to 15.47% MRR compared to our preliminary version.

2) QUALITATIVE RESULTS
We visualize the ranking of retrieval results as the qualita-
tive results where the difference in the performance of the
baseline model and after SSDA is shown in FIGURE 5. and
FIGURE 6. respectively. Although three descriptions contain
different fine-grained level information about the vehicle in
each query, the proposed method can still find the right

matches with the highest similarity to achieve top-1 in the
ranking. Furthermore, all the top-5 tracks are relevant to the
query descriptions and, without proper observations, may
be indistinguishable even to humans. Thus, validating the
effectiveness of the proposed baseline model.

In FIGURE 6., we visualize retrieval cases in which the
baseline model ranks remarkably wrong in the target video,
which is placed at a very low ranking.We can observe that the
top-3 results retrieved from the baseline model are identical
to the vehicle’s appearance query descriptions. The difference
between the target and top-3 vehicles is dynamic attributes
such as trajectories. However, with different camera view-
points, this information is hard to distinguish and can lead to
confusion even for humans. Also, we notice that the baseline
model ranks vehicles with scenarios that appear in the train
set higher than unseen scenarios which causes domain bias
between seen and unseen scenarios and leads to poor perfor-
mance in cases where target vehicles are in unseen scenarios.
Thus to tackle these problems, the SSDA approach is allevi-
ated. To get an intuitive view of how SSDAworks, we use the
t-SNE algorithm to transform the multi-modal representation
into a pair of 2-dimension feature points.We provide the visu-
alization of the embeddings space of those unseen scenarios
cases between baseline models and after SSDA, where we
visualize the target pair and top-4 result image embeddings
for comparison. In the baseline model, the distance between
the text embedding and image embedding of the target vehicle
is very far apart, while top-4 image embeddings are very
close, which verifies the domain bias problem of the baseline
model. But, after the SSDA stage, the target vehicle pair of
embeddings are pulled closer to each other and push other
image embeddings far away from text embeddings. We can
infer that the SSDA approach helps create a pseudo-data point
that acts as an intermediary to pull the target pair closer to
each other and simultaneously moves the text embedding far
away from thewrong image embeddings. Therefore, illustrate
the effectiveness of the SSDA in resolving domain bias and
model confusion due to ambiguous information.

Finally, as illustrated by FIGURE 7. we observe that
the embeddings appear clustered into large clusters in the
baseline retrieval model’s representation embedding space.
This shows that the difference between inter-class embed-
dings is quite small, where a text embedding can be sur-
rounded by multiple image embeddings with similar static
properties (e.g., color and type) and mostly appear in the
same scenario. This leads to a mismatch in the retrieval
process and drastically decreases the MRR score. While in
SSDA retrieval model’s embedding space, we can see that
each cluster contains fewer embeddings while the distance
between each cluster is farther and more sparse than the one
in the baseline. Hence, it suggested that SSDA resolve the
domain bias problems with large intra-class variation and
small inter-class differences by creating pseudo-embedding
near the real embedding and pulling each true pair closer
while pushing the false pair away, reducing the false pair with
high similarity during the matching embeddings process.
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FIGURE 7. Embedding representation space between the Baseline and
SSDA retrieval model on CityFlow-NL. We can qualitatively observe the
density and sparsity between NL-Track matches. Circle icons denote visual
embeddings, and diamond icons denote textual embeddings.

FIGURE 8. Training performance of the baseline retrieval model using
CLIP and different pre-trained models as backbones on CityFlow-NL.

TABLE 5. Experiments to verify the robustness of CLIP when using as the
backbone to extract text-image features on CityFlow-NL compared to
other backbones.

E. ABLATION STUDY
To validate the effectiveness of each component in DAKRS
and find an optimal structure, we conduct extensive experi-
ments on the CityFlow-NL dataset to obtain TABLE 5. and
TABLE 6.

1) THE VALIDATION OF CLIP
In TABLE 5. we conduct several experiments on our baseline
model by replacing CLIP with different textual and visual
feature extractors to validate the robustness and effectiveness
of CLIP. Through thorough observations, the results show
that CLIP outperforms the experiments conducted by three
other backbones combinations in terms of effectiveness and
efficiency, with the convergence time faster than other back-
bones as in FIGURE 8. illustrated. In detail, for visual feature
extractors, we experiment on threemodels with two Efficient-
Net [44] variants B0, B2 and Resnext50 [45]. As for textual
feature extractors, we tested on three variants of BERT mod-
els, namely BERT [24], ROBERTA [46] and DEBERTA [47].

TABLE 6. Experiments to verify ‘‘Concept Space Learning’’ refers to ‘‘CSL’’
and ‘‘Semi-Supervised Domain Adaptation’’ refers to ‘‘SSDA’’ effectiveness
on CityFlow-NL. ‘‘w/o’’ refers to ‘‘without’’, ‘‘w/’’ refers to ‘‘with.’’

When experimenting with EfficientNetB2 and ROBERTA
we observe that the model converged at epoch 270th with
24.65% MRR, smaller than CLIP 8.93%, while the model’s
parameters are more than double CLIP’s. For EfficientNetB0
and BERT, the model converged much slower than CLIP at
epoch 330th while the number of parameters is smaller than
CLIP with nearly 3 M params, but the performance is signif-
icantly less than with a 7.28% MRR difference. Finally, with
Resnext50 and DEBERTA, the model converged at epoch
510th however the performance is notably lower compared
to CLIP with a 17.86% MRR difference while the number
of parameters is more than half of CLIP. This implies the
robustness of CLIP in constructing strong representations for
textual-visual tasks, and further supports the idea of multi-
modal robust embeddings that are disentangled from varying
degrees of inessential variations.

2) THE EFFECTIVENESS OF SSDA

In our two-stage retrieval where the second stage uses SSDA
to resolve the domain gaps and align the distributions between
the train set (source domain) and test set (target domain).
However, to tackle the ambiguity of the queries, we propose
a standardized version of the queries for creating pseudo-
labels for the Domain Adaptation approach. We thoroughly
validate the performance of standardized text formats with
the baseline model and SSDA approach on the CityFlow-NL
dataset. From TABLE 6. we can observe that standardized
text formats lead to a decrease of 3.44% in MRR, 7.07%
in Recall@5 and 2.17% in Recall@10. However, using the
SSDA approach on the baseline with standard text format
achieves higher results than the original text format and
brings a difference of 7.99% in MRR, 11.96% in Recall@5
and 9.78% in Recall@10. This indicates that standardized
text format confuses the baseline model in discriminating
different text-image pairs due to the omission of unique infor-
mation about the vehicle in each text description and making
some descriptions nearly identical. However, the increase
in performance after the SSDA approach shows that due
to pseudo-label of the SSDA approach in standardized text
format and the inconsistency between the new and original
format can lead to a decline in performance. Thus, main-
taining the similarity of data between the two training stages
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is crucial for the performance of the SSDA strategy. Fur-
thermore, the SSDA results between our preliminary version
and current works have a difference of 15.47% in MRR,
13.05% in Recall@5, and 13.05% in Recall@10 validate our
improvement of the data enhancement method and further
emphasize the essence of data quality and data-driven prop-
erties of our SSDA approach.

3) THE EFFECTIVENESS OF CSL
Our two-stage retrieval model consists of two objective
learning functions: Latent space learning, also referred to
as contrastive learning, as a common approach to retrieval
tasks, and Concept Space Learning or CSL, which enforces
the model to learn at the instance level for local feature
alignment. We separately validate the effectiveness of CSL
on the CityFlow-NL dataset in TABLE 6. We have the fol-
lowing observations: CSL brings an improvement of 5.37%
and 1.73% in MRR, 5.98% and 0.54% in Recall@5, 8.15%
and 7.07% in Recall@10 with baseline model on two dif-
ferent text formats which are original text format and stan-
dardized text format, respectively. This demonstrates the
effectiveness of leveraging local feature information and
indicates that instance-level information can boost the perfor-
mance of contrastive learning in discriminating different text-
image pairs.

V. CONCLUSION AND FUTURE WORK
In this work, we have looked at the usage of multi-modal
pre-trained models in the vehicle retrieval task through text
descriptions and further enhance the retrieval performance
of a single retrieval model without any further ensemble or
post-processing method through a simple but effective SSDA
method using the generated pseudo-data and pseudo-label
from our proposed data enhancement method. Undoubtedly,
our proposed CLIP-driven retrieval model shows the effec-
tiveness of the CityFlow-NL dataset with the second-best
result while requiring the least amount of computational
cost compared to the top-1 performing team’s. In addi-
tion, to ensure the retrieval model performance can achieve
the state-of-the-art result without any further ensemble or
post-processing, the SSDA approach shows its capability
in minimising the domain shift in representation space
between the training and testing sets. And with the sup-
port of the data enhancement method, the SSDA approach
has shown its exceptional capability in adapting knowl-
edge using pseudo-label and pseudo-data after only a little
fine-tuning.

Due to the lack of data for in-depth domain generaliza-
tion research in this area, we are more inclined to improve
our approach in terms of domain adaptation for text-image
retrieval tasks. We observe that the representation embedding
space of the retrieval model drastically changes after the
SSDA fine-tuning, with the distance between embeddings of
the image-text true pair being pulled closer while pushing
the embeddings of the false pair far away despite having the
identical attributes and contexts. In particular, our next goals

are to fully leverage the method’s capability with meta-data
constraints (e.g. traffic scenario, vehicular appearance, etc.)
with the hope of reducing the impact of noisy pseudo-data,
and we also aim to make the adaptation approach fully self-
supervised with self-structured textual data.
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