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ABSTRACT The knowledge graph embedding model aims to use low-dimensional real-valued vectors
to represent the entities and relations in the triples, where operations such as link prediction and triple
classification can be performed based on these representations. However, existing embedding models only
consider the structural embedding of triples, while ignoring the semantic information of triples. This paper
proposes a knowledge graph embedding learning framework combined with triple semantic information
(KGSE). KGSE comprehensively considers the structural embedding and semantic embedding of triples,
where semantic embedding is used as a supplement to improve the quality of embedding. Specifically,
KGSE uses the improved TransD model to obtain the structural embedding of triples, and employs the
deep convolutional neural model combined with an attention mechanism to obtain the semantic embedding
of triples. In addition, a novel energy function is designed to jointly train the above two embeddings.
Experimental results show that the proposed framework improves significantly compared with Trans-based
models and other baseline models in link prediction and triple classification tasks, which verifies the
effectiveness of the proposed framework.

INDEX TERMS Knowledge graph, structure embedding, semantic embedding, link prediction, triple
classification.

I. INTRODUCTION
Knowledge graph (KG) has attracted extensive attention
because of its highly structured knowledge organization [1].
At present, representative knowledge graph bases (e.g.,
DBpedia, Freebase, and NELL) have become the core of
many artificial intelligence applications, such as intelligent
search, question answering, recommendation systems, and
so on [2]. The knowledge stored in KG is in the form of
triples, which makes machines difficult to well utilize this
knowledge. The knowledge graph embedding model aims
to use low-dimensional real-valued vectors to represent the
entities and relations in the triples, where operations such
as link prediction and triple classification can be performed
based on these representations [3], [4], [5], [6], [7].
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Currently, various knowledge graph embedding models
have been proposed based on the symbolic representation
of KGs with triples. Bordes et al. [8] proposed the TransE
model, which embedded entities and relations by constraining
the head entity vector plus the relation vector to be equal
to the tail entity vector. Because of its simplicity and better
performance, TransE has received widespread attention.
However, it is precisely because of the simplicity that the
predictive performance is not satisfactory for situations where
the relation between the head entity and the tail entity is
more complicated [9]. In order to deal with complex relations,
Wang et al. [10] proposed the TransH model, which used two
vectors (i.e., the translation vector and the normal vector) to
represent the relationship. For each triplet in the knowledge
graph, TransH projects the vector corresponding to the head
entity and the tail entity to the hyperplane corresponding to
the relationship along the normal vector, where the projection
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FIGURE 1. Example: semantic information description of triples in
knowledge graph.

vectors meet the constraints of TransE. Since each entity
has a different vector representation on different relationship
hyperplanes, the representation of the entity is more flexible
and differentiated. In this way, TransH can well learn the
embedding representations of entities and relations. Lin et al.
[11] proposed the TransR model, which held that entities
and relations should not be in the same embedding space.
TransR first maps the head entity and the tail entity to the
space where the relation is located, and then establishes
the translation constraints from the head entity to the tail
entity. Due to the matrix multiplication operation, TransR
not only has high complexity but also has a large number
of parameters. Moreover, for any entity, TransR uses the
same mapping matrix, which can not reflect the differences
between entities and the characteristics of entities themselves.
Ji et al. [12] proposed the TransD model, which represented
the mapping matrix of TransR as three vectors. In TransD,
there is a unique mapping matrix corresponding to each
entity.

Although TransE and its variants can effectively learn
embedding representations of entities and relations in the
knowledge graph, they all simply learn the structural features
of triples, while ignoring the rich semantic information of
triples [13], [14]. For a sparse knowledge graph, it is easy to
cause entities with different semantics to have similar embed-
ding vector representations, which makes it difficult to break
through its own performance bottlenecks [15], [16], [17].
For example, for such triples as (Beijing,TheCityOf ,China)
and (Shanghai,TheCityOf ,China), when we use TransE
to obtain the embedding vectors of entities and relations,
we need to satisfy the two constraints of T (Beijing) +
T (TheCityOf ) ≈ T (China) and T (Shanghai) +
T (TheCityOf ) ≈ T (China). Finally, the vectors of T (Beijing)
and T (Shanghai) will tend to be the same after training.
To solve this problem, researchers tried to introduce
more semantic features into the process of knowledge
embedding [18], [19], [20]. Xie et al. [21] proposed the
DKRL model, which used a continuous bag of words and
a convolutional neural network to extract features from
entity description. In addition, DKRL designed an energy
function to integrate the entity description and the structural
features extracted by TransE, thus improving the overall
knowledge embedding performance. TKRL integrates the
rich semantic information of entity types [22], while PtransE
integrates the path information of the head entity to the tail
entity [23]. Various approaches were proposed to improve

the performance of knowledge embedding [24], [25], [26],
[27], [28]. However, these approaches all use the TransE
model to extract the structure embedding representation of
triples, which will introduce the defect of TransE and ignore
the semantic information of triples themselves. Actually,
entities and relations in triples all have corresponding text
descriptions, as shown in Fig. 1. Using more powerful
and expressive model to improve the performance of
structure embedding representation of triples is worth further
exploring [29], [30], [31], [32]. Meanwhile, how to extract
the semantic information of triples more effectively is
challenging [33], [34], [35], [36], [37].

In order to represent and utilize knowledge more effec-
tively, this paper comprehensively considers the extra
semantic information of triples and embeds them into
entities and relations, so as to learn a more complete
knowledge embedding representation. Specifically, this paper
proposes a knowledge graph embedding learning framework
combined with triple semantic information (KGSE), which
comprehensively considers the structural embedding and
semantic embedding of triples. In the proposed KGSE
framework, we use the improved TransD model to obtain
the structural embedding of triples. We use the sentences
containing entities and relations in triples as the auxiliary text
so that we can effectively use the semantic information in the
text to supplement the knowledge graph embedding learning.
We employ the deep convolutional neural (DCN) model
combinedwith an attentionmechanism to obtain the semantic
embedding of triples. Finally, a novel energy function
is designed to jointly train the above two embeddings.
Experimental results on datasets show that the proposed
KGSE framework improves significantly compared with
Trans-based models and other baseline models in link
prediction and triple classification tasks, which verifies the
effectiveness of the proposed framework. The contributions
of this paper are summarized as follows:

• This paper proposes a knowledge graph embedding
learning framework, which comprehensively considers
the structural embedding and semantic embedding
of triples. A mutually reinforcing energy function is
designed to train the above two embeddings.

• This paper designs a more efficient and concise
deep convolutional neural model based on attention
mechanism to obtain the semantic embedding of triples,
which is used as a supplement to improve the quality of
embedding.

• Experimental results show that KGSE improves signif-
icantly compared with Trans-based models and other
baseline models, which verifies the effectiveness of the
proposed framework.

The remainder of this paper is organized as follows.
We first review the related work in Section II and then
describe a detailed description of our method in Section III.
Section IV reports comprehensive experiments and compari-
son results. Finally, conclusions are presented in Section V.
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II. RELATED WORK
This section summarizes the related work of knowledge
graph embedding. We briefly discuss the proposed KGSE
framework and existing methods that are most related to this
work from different perspectives.

A. KNOWLEDGE EMBEDDED LEARNING
The initial knowledge graph is usually symbolic text descrip-
tion data, and we need to vectorize it so that the computer can
use it for various tasks [38], [39], [40]. Knowledge embedded
learning is trying to learn a projection from symbolic space
to low-dimensional vectors, such as TransE and its variants
[41], [42], [43], [44]. For each triple (h, r, t) in the knowledge
graph, the vector ur corresponding to the relation r is regarded
as the translation from the vector uh corresponding to the head
entity to the vector ut corresponding to the tail entity t , which
satisfies the constraint uh+ur ≈ ut . TransE defines the triple
score function as,

fr = |uh + ur − ut |L1/L2 , (1)

where L1/L2 is the L1 norm or L2 norm of |uh + ur − ut |.
In the training process, TransE uses the maximum interval
method to distinguish head entity vector uh, relation vector ur
and tail entity vector ut . Therefore, the optimization objective
function is defined as,

L =
∑

(h,r,t)∈S

∑
(h,r,t)∈S−

max(0, fr (h, r, t)+γ−fr ′ (h
′, r ′, t ′)),

(2)

where γ is the interval between positive and negative triples,
S and S− are the sets of positive and negative triples,
respectively.

The predictive performance of TransE is not satisfactory
for situations where the relation between the head entity
and the tail entity is more complicated. To address this
problem, Wang et al. [10] proposed TransH model, which
used two vectors (i.e., the translation vector lr and the
normal vector wr ) to represent a relation r . For each triple
(h, r, t), TransH projects the vector uh and ut corresponding
to the head entity h and the tail entity t to the hyperplane
corresponding to the relation r along the normal vector
wr , where the projection vectors uh⊥ , ut⊥ and lr meet the
constraints of TransE, i.e., uh⊥ + lr ≈ ut⊥ . Specially,
uh⊥ = uh − wTr uhwr , ut⊥ = ut − wTr utwr . Since
each entity has a different vector representation on different
relation hyperplanes, the representation of the entity is
more flexible and differentiated, which enables TransH to
better learn the embedding representations of entities and
relations.

Lin et al. [11] proposed the TransR model, which held that
entities and relations should not be in the same embedding
space. For each triplet (h, r, t), TransR first maps the head
entity h and the tail entity t to the space where the relation r is
located, and then establishes the translation constraints from
the head entity to the tail entity. Suppose hr is the projection of

head entity h in relation space, tr is the projection of tail entity
in relation space, and Mr is the mapping matrix from entity
space to relation space. The specific mapping process of head
entity and tail entity is as, Uhr = uhMr , Utr = utMr . Due
to the matrix multiplication operation, TransR not only has
high complexity but also has a large number of parameters.
Moreover, TransR uses the same mapping matrix for any
entity, which can not reflect the differences between entities.

Ji et al. [12] proposed the TransDmodel, which represented
the mapping matrix of TransR as three vectors. In TransD,
there is a unique mapping matrix corresponding each entity.
Specially, for each triplet (h, r, t), the mapping matrixMrh of
the head entity h is defined as,

Mrh = rphp + Im×n. (3)

The mapping matrixMrt of tail entity t is defined as,

Mrt = rptp + Im×n, (4)

where rp ∈ Rm is the projection vector of relation r , hp and
tp are the projection vectors of the head entity h and the tail
entity t , and I is the identity matrix.

Although the above models can effectively learn embed-
ding representations of entities and relations in the knowledge
graph, they all simply learn the structural features of triples,
while ignoring the rich semantic information of triples
[45], [46], [47]. In fact, the triples in the knowledge graph
have a corresponding semantic introduction, which is very
helpful for embedding learning. This paper proposes a
knowledge graph embedding learning framework, which
comprehensively considers the structural embedding and
semantic embedding of triples.

B. MULTI-SOURCE INFORMATION INTRODUCTION
At present, most translation-based models focus on using
the structural features of triples in knowledge graphs for
representation learning, while ignoring the rich semantic
information of triples. We can enhance the performance
of knowledge embedding representation by introducing
multi-source information. The introduction of multi-source
information means that we should consider the structure
information of the triple and other semantic information
related to the triple (e.g., entity description information,
entity type, and content information of the text where
the entity is located) when learning knowledge embedding
representation. The researches show that the introduction
of multi-source information can significantly improve the
performance of knowledge embedding [48], [49], [50].

Xie et al. [21] proposed the DKRL model, which
integrated entity description based on TransE to improve
knowledge embedding. Specifically, for entities in triples,
DKRL uses structure-based embedding representation and
entity description-based text representation to learn the
embedding representation of entities in triples at the same
time. The structure-based representation is the entity vector
representation obtained by using the TransE model. This rep-
resentation can effectively capture the structure information
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of the triplet. Entity description-based representation is the
text representation vector obtained by using a continuous
bag of words and a convolutional neural network, which can
effectively capture the semantic information of the entity.

In order to integrate the two representations effectively,
DKRL defines the energy function as follows,

E = Es + Ed , (5)

where Es = |hs + r − ts|, hs and ts are the structure-based
representation vector of head entity and tail entity, respec-
tively. r is the representation vector of relation, and Ed is the
energy function based on entity description, which is defined
as follows,

Ed = Edd + Eds + Esd , (6)

where Edd = |hd+r−td |, Eds = |hd+r−ts|, Esd = |hs+r−
td |, hd and td are the entity description-based representation
vector of head entity and tail entity, respectively.

Although DKRL successfully integrates entity description
information to improve the performance of knowledge
embedding. DKRL uses the TransE model to obtain the
structure representation of knowledge, which also introduces
the shortcoming of the TransE model. Similar to DKRL,
in the process of triple embedding learning, we also use
structure embedding and semantic embedding of triple to
learn the representation of entities and relations in the triple.
Different from DKRL, we use structure-based embedding
and triple context-based embedding. We use the improved
TransD model to obtain the structural embedding of the
triples, and use DCN combined attention mechanism to
obtain the contextual semantic information of the triple.
Meanwhile, it also should be noted that DKRL directly
performs on the structure vector of the entity and the
entity description vector, while our model first maps the
structure vector and the semantic vector to the relation space
before performing related operations. In addition, TKRL [22]
model integrates rich semantic information of entity type,
PtransE [23] integrates path information of head entity to
tail entity. Various approaches are proposed to improve
the performance of knowledge embedding. However, these
approaches all use the TransE model to extract the structure
embedding representation of triples, which will introduce
the defect of TransE and ignore the semantic informa-
tion of triples themselves. Bosselut et al. [51] introduced
COMET model for automatic construction of commonsense
knowledge bases. COMET is a framework for adapting the
weights of language models to learn to produce novel and
diverse commonsense knowledge tuples. Wang et al. [52]
proposed a novel method of jointly embedding knowledge
graphs and a text corpus so that entities and words/phrases
are represented in the same vector space. Wang et al. [27]
presented a text-enhanced knowledge embedding (TEKE)
method for knowledge graph representation learning, which
greatly expands the semantic structure of the knowledge
graph. Rezayi et al. [53] proposed EDGE model to enrich
knowledge graphs and node embeddings by exploiting

auxiliary knowledge sources. In our model, instead of
using entity description or words/phrases, we use semantic
description of whole triplet as additional training text to
improve the embedding quality. This paper proposes a
convolution neural network model combined with attention
mechanism to extract the semantic embedding of triples, and
designs a new energy function to jointly train the model.
Mai et al. [54] developed an entity retrieval system based on
paragraph vectors and knowledge graph embeddings, which
is applied in the bibliography field. Compared with them,
we propose a network model with stronger ability to extract
semantic information, and design a joint energy training
function to better train the model.

Overall, this paper proposes a knowledge graph embedding
representation model, which introduces the context semantic
information of triples to improve the performance of
knowledge embedding. In the process of triple embedding
learning, we also use structure embedding and semantic
embedding of triple to learn the representation of entities and
relations in the triple. We use the improved TransD model to
obtain the structural embedding of the triples, and propose
a DCN model combined attention mechanism to obtain the
contextual semantic information of the triple. Meanwhile,
it also should be noted that other models directly perform on
the structure vector of the entity and the entity description
vector, while our model first maps the structure vector and
the semantic vector to the relation space before performing
related operations. Finally, we design a novel energy function
to make the above vectors influence each other during the
training process, and jointly improve the embedding quality
of the triples [55].

III. THE PROPOSED MODEL
This paper proposes a knowledge graph embedding learning
framework, which comprehensively considers the structural
embedding and semantic embedding of triples. Considering
the complexity and accuracy of the model, the improved
TransD model is used to obtain the structure embedding of
triples, and the entity description embeddingmodel combined
with attention and DCN is used to obtain the semantic vector
of entities [56]. Finally, the above vectors interact with each
other through the loss function in the training to improve the
embedding quality of triples. The framework of the proposed
approach is shown in Fig. 2.

In order to describe the work of this paper more clearly,
several key definitions are given as follows.
Definition 1 (Knowledge Graph): A knowledge graph is

represented as a set of fact triples, KG = {(eh, r , et )}, where
eh, et ∈ E , r ∈ R. E and R are a set of entities and relations,
respectively. TO and TU denote the set of observed triples and
unobserved triples, respectively. Each triple (eh, r, et ) ∈ TO
indicates that there exists a relation r from head entity eh to
tail entity et .
Definition 2 (Structure-Based Embedding): hs and ts are

structure-based embeddings for head and tail entities. They
can be learned by translation-based models like TransD.
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FIGURE 2. Framework of the proposed KGSE.

Definition 3 (Semantic-Based Embedding): hd and td are
the semantic-based embeddings for head and tail entities.
They can be learned from semantic description of triples by
following proposed ACNN model.

A. STRUCTURE-BASED KNOWLEDGE EMBEDDING
We declare that entity space refers to the space where
entity vectors are located, relation space refers to the space
composed of all relation vectors, and semantic description
space refers to the space where semantic description vectors
of triples are located. Mrh and Mrt are the mapping matrices
that map the embedding vectors of the head entity h and
the tail entity t to the relational space, respectively. Mdrh
and Mdrt are the mapping matrices that map the description
vectors of head entity h and tail entity t to the relational
space, respectively. Inspired by TransD, the mapping matrix
is calculated by three different vectors. The definitions of the
above mapping matrices are as follows:

Mrh = rp × hp + I , (7)

Mrt = rp × tp + I , (8)

Mdrh = rp × hdes + I , (9)

Mdrt = rp × tdes + I , (10)

where rp is the mapping vector related to relation r , hp and
tp are the mapping vectors related to the head entity h and
the tail entity t , respectively. hdes and tdes are the mapping
vectors related to description text of the head entity h and the
tail entity t , respectively. I is the identity matrix with diagonal
element 1 and other elements 0.

In particular, the entity mapping process is shown in the
following,

he⊥ = Mrh × hs, (11)

te⊥ = Mrt × ts, (12)

hd⊥ = Mdrh × hd , (13)

td⊥ = Mdrt × td , (14)

where hs and ts are the structure-based knowledge embedding
vectors of the head entity h and the tail entity t , which are
obtained by the improved TransD model. hd and td are the
semantic description-based knowledge embedding vectors of
head entity and tail entity obtained by the proposed ACNN.
The detailed process is shown in next sub-section.

B. SEMANTIC DESCRIPTION-BASED KNOWLEDGE
EMBEDDING
Deep convolution networks (DCN) are known for their
powerful local feature extraction capabilities, which are
achieved by using convolution operations. Although the
local feature extraction ability of DCN is very strong,
it completely ignores the global features. This makes it
difficult to capture the relevance between the long-term
context information and discontinuous words, which further
weakens the representation ability of sentences. In order
to solve this problem and consider the actual application
scenarios, this paper proposes an embedding model com-
bining attention mechanism and DCN (named ACNN) to
obtain semantic description-based knowledge embedding of
triples [56], [57].

After word segmentation and word vector representation,
the head entity description text can be transformed into aword
vector sequence (x1, · · · , xn), where the k-th position is the
entity vector xk corresponding to the description text. The
attention model takes the word vector sequence as the input,
and the weight αi is calculated as follows:

αi =
exp(score(xi, xk ))∑
j6=k exp(score(xk , xj))

, (15)

score(xi, xk ) = vTa tanh(Wa[xi; xk ]), (16)
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where score(xi, xk ) is used to calculate the semantic relevance
of entity vector and other word vectors, which is calculated
by a simple two-layer BP neural network. In this network,Wa
and vTa are the parameters of the first layer and the second
layer, respectively. tanh is used as the activation function.
[a; b] means to concatenate vector a and vector b.

After the weight score is calculated by attention, we can
get the representation vector g of entity description text,

g = xk +
∑
i6=k

αixi. (17)

At the same time, entity description vector sequence
(x1, · · · , xn) is also used as the input of DCN. In order
to facilitate the calculation, we use a convolutional neural
network architecture similar to DKRL. Through the feature
extraction of DCN, the entity description vector f is obtained.
Finally, the representation vector g obtained by attention
model and the representation vector f obtained by DCN are
concatenated and input into BP neural network to obtain the
description embedding representation vector hd of the head
entity h,

hd = Wb[f ; g], (18)

whereWb is the parameter matrix of BP neural network, [f ; g]
means that f and g are concatenated.Similarly, we can obtain
the semantic description-based embedding td of tail entity t
and the semantic description-based embedding rd of relation
r .

After obtaining the structure-based embedding and seman-
tic description-based embedding of triple, we design a novel
energy function to jointly train the above two embeddings.
Finally, knowledge embeddings of head entity, tail entity, and
relation in the triple are learned, respectively. The detailed
process is shown in the next sub-section.

C. ENERGY FUNCTION AND TRAINING PROCESS
In order to better integrate the structural-based and semantic
description-based embedding of triples, we design the
following energy function,

E = Ede + Edd + Eed + Eee + Err , (19)

where Ede = ||hd⊥ + rt − te⊥||, Ede = ||hd⊥ + rt − td⊥||,
Eed = ||he⊥ + rt − td⊥||, Eee = ||he⊥ + rt − te⊥||, and
Err = ||rt − rd ||.
The model uses the negative triple sampling method for

training. Specially, for each positive triple (h, r, t) in the
training set, several negative triples (h′, r, t) or (h, r, t ′) are
constructed by replacing the head entity or the tail entity.
In the process of training, the score of positive triples is as
high as possible, and the score of negative triples is as low as
possible. Therefore, the training objective function is defined
as

L=
∑

(h,r,t)∈S

∑
(h′,r ′,t ′)∈S−

max(0,E(h, r, t)+γ−E(h′, r ′, t ′)),

(20)

where S is the set of all positive triples, S− is the set of
all negative, E(h, r, t) is the scoring function that is used
to measure the distance between h + r and t , and γ is a
hyper-parameter. For the training of objective function, how
to construct negative example triples is a key problem. In the
existing research, there are two ways to sample negative
triples, uniform negative sampling and preferred negative
sampling. Uniform negative sampling refers to replace the
head and tail entities with the same probability. Because
of the complex relations in the knowledge graph, such as
one-to-many, many-to-many, and many-to-one relations, this
sampling method may lead to negative triples that are still
correct. In order to improve this situation, a preferred negative
sampling method is proposed. Specifically, for each relation
r , tph is used to represent the number of tail entities in the
knowledge graph after head entity h is fixed, and hpt is used
to represent the number of head entities in the knowledge
graph after tail entity t is fixed. In preferred negative sampling
method, the head entity is replaced by the probability of
tph/(tph + hpt ), and tail entity is replaced by the probability
of hpt/(tph + hpt ). In short, if there are many kinds of tail
entities in all triples containing r , the head entity is replaced
by probability and vice versa. In this paper, the preferred
negative sampling method is used to construct the negative
triples. The pseudo-code of KGAE in the training phase is
shown in Algorithm 1.

Algorithm 1 Knowledge Graph Embedding Learning Model
Based on Structure and Auxiliary Information
Input: Knowledge Graph G = {(h, r, t)}, text auxiliary
information D = s, entity set E , relation setR, embedding
dimension k .
Initialization.
e← uniform( −6√

d
, 6
√
d
) for each entity e ∈ E .

r ← uniform( −6√
d
, 6
√
d
) for each entity r ∈ R.

w← word2vec(w) for each entity r ∈ R.
Training.
Tbatch← ∅
for each batch Sbatch ∈ G do
for each triple (h, r, t) ∈ Sbatch do
H−← sample ({h′|(h′, r, t) /∈ G})
R−← sample ({r ′|(h, r ′, t) /∈ G})
T−← sample ({t ′|(h, r, t ′) /∈ G})
D← {s|mh,mt ∈ s}
Tbatch← Tbatch ∪ ((h, r, t), (H−,R−,T−),D)

end for
Update embedding by the gradient of Eq. (20).

end for
Output: The embedding representations of entities and
relations in triples.

IV. EXPERIMENTS
In this section, we describe the experiments in detail to verify
the effectiveness of our method. We first describe the data
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TABLE 1. Statistics of different datasets.

sets and experimental setup. Then the performance of the
model is evaluated from two tasks, e.g., link prediction and
triple classification. Finally, we perform ablation experiments
and sensitivity analysis to further test the performance of the
approach.

A. DATASETS AND EXPERIMENTAL SETUP
The knowledge graph data set used in this paper comes from
Freebase. Freebase is a widely used knowledge graph, which
contains dense entities and relations. At the same time, the
triples have rich context information, which is suitable for our
model. We conduct experiments on the following knowledge
graph datasets: (1) FB15k; (2) FB15k-237. FB15k is a subset
extracted from Freebase, in which all entities appear in the
Wikilinks database. FB15k contains 592213 triples, including
14951 entities and 1345 relations. FB15k-237 is a subset of
FB15k, which consists of relations from different domains
like sports, people, locations and films, etc. We remove
47 entities without proper entity description from FB15k, and
also remove all triples related to these entities. It contains
310116 triples, including 14541 entities and 237 relations.
Some detailed statistics are described in Table 1.

This paper uses NYT100 as a text corpus database, which
annotates entities and relations in Freebase. According to
the entity pairs in FB15k and FB15k-237, the sentences
containing these entity pairs are extracted from NYT100 as
training text. For FB15k, 194385 sentences are extracted
from NYT100, and these sentences are labeled according
to the relationship between these entities in the knowl-
edge graph. The annotated sentence covers 47103 triples,
including 6053 entities and 699 relationships. For FB15k-
237, 78978 sentences are extracted from NYT100, and these
sentences are labeled according to the relations between these
entities in the knowledge graph. The annotated sentence
covers 6204 triples, including 3000 entities and 70 relations.
When the description was counted, it is found that each
entity or relation description in triples contains 69 words on
average, and the longest description contained 343 words.

1) BASELINES AND IMPLEMENTATION DETAILS
We compare the proposed algorithm with the follow-
ing methods: TransE1 [8], TransH1 [10], TransR1 [11],
TransD1 [12], DKRL [21], TKRL [22], ConvE,2 GAKE
[38], CTransR,3 PTransE [43], pTransE [52], TEKE [27],
EDGE [53], TransP [58], AMCNN [59], CRAN [60], and

1https://github.com/thunlp/Fast-TransX
2https://github.com/TimDettmers/ConvE
3https://github.com/Mrlyk423/Relation_Extraction

GAATs [61]. For TransE, TransH, TransD and TransR,
we learn a separate embedding matrix using the positive
training entity pairs. Specifically, we select their learning
rates for stochastic gradient descent in {0.001, 0.01, 0.05},
the margin in {0.5, 1, 2, 4}, the dimensions of entity and
relation embedding in {20, 50, 100, 150}. We train TKRL
model with mini-batch stochastic gradient descent. We select
the batch size in {240,1200}, and margin in {0.5,1.0,1.5,2.0}.
The dimensions of entity and relation are set to 100. All
these embeddings are trained for 2000 epoches. For PTransE,
we select the margin in {1,2,4}, the dimension of vectors
in {50,80,100}, and the learning rate for stochastic gradient
descent in {0.1,0.01,0.001}. For other methods, we used
the implementation released by the corresponding authors
with their best-reported hyperparameter settings or the results
presented in their papers. The link prediction task is to predict
the missing head entity or tail entity in a given incomplete
triple. In link prediction, all entities are generally regarded
as potential candidates, and the entity with the smallest
score function is selected as the prediction entity. Because
when the triple is incomplete, there may be more than one
entity that predicts correctly. For example, when the tail
entity is missing and r is a one-to-many relation, there may
be several entities that are correctly predicted. Then, when
evaluating a single triple, we need to remove the other correct
answers and then recalculate the ranking. We use ‘‘fliter’’ to
represent this practice and ‘‘raw’’ to represent the original
practice. Meanwhile, we use ‘‘unif’’ to represent uniform
negative sampling and ‘‘bern’’ to represent preferred negative
sampling.

For evaluation, in the link prediction task, we use mean
reciprocal rank (MRR) and Hits@k (the proportion of ranks
no larger than k, k= 1, 3, 10) as criteria to compare different
algorithms, which are standard metrics for knowledge graph
completion tasks. In the triple classification task, we use
accuracy (ACC) as the evaluation criteria.

B. LINK PREDICTION TASK
We first test the performance of the proposed algorithm on
the link prediction task. In the experiment, the structure
and semantic embedding dimensions of entities and relations
are selected in {50,100,150,200}, the number of samples of
negative triples is selected in {1, 2, 4, 6, 8}, the learning
rate Lr is selected in {0.1,0.01, 0.001}, the global spacing
value γ is selected in {0.5, 1, 1.5, 2}, and the batch-size B
is selected in {200,500,1000}. The optimal hyper-parameters
are determined by the experimental results on the validated
set. After several experiments, the optimal parameters of this
model are as follows: the structural embedding dimension of
entity and relation is 100, the semantic embedding dimension
of entity is 150, the number of negative triples is 6, the
batch size is 500, the global gap γ is 1, and the learning
rate Lr is 0.001. For the comparison algorithm, we select the
parameters in the corresponding paper and the published code
and select the experimental results after 1000 iterations for
comparison. The experimental results are shown in Table 2.
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TABLE 2. Experimental results of link prediction.

It can be seen from Table 2 that the proposed method
achieves the best experimental results, indicating that adding
additional triple semantic description information can indeed
improve the embedding performance of the knowledge graph.
We use DCN combined attention mechanism to obtain the
contextual semantic information of the triple. Meanwhile,
it also should be noted that different from other methods, our
model first maps the structure vector and the structure vector
to the relation space before performing related operations.
Finally, a mutually reinforcing energy function is designed to
train the above two embeddings. From Table 2, we can also
see that when using ‘‘bern’’ preferred negative sampling, the
effect is improved significantly. At the same time, we can also
see that for the same model, ‘‘bern’’ sampling is significantly
better than using ‘‘unif’’ sampling under the MRR and
hits@k evaluation criteria. This shows that ‘‘bern’’ sampling
can construct more reasonable negative triples for training,
which can improve the embedding effect of the model.
In addition, we can also see that the performance of the
proposed method in the ‘‘filter’’ case is better than that of
‘‘raw’’. This is because further filtering of the filter enhances
the effect, indicating that there are many complex relations in
the knowledge graph base, that is, one-to-many, many-to-one
relations.

C. LINK PREDICTION TASKS UNDER DIFFERENT RELATION
TYPES
According to the type of relations, it is divided into four
types, 1-to-1, 1-to-many, many-to-1, many-to-many. For 1-
to-1 relations, the head entity can only correspond to a tail
entity, such as ‘‘spouse’’ relation. For 1-to-many relations, the
head entity can correspond to multiple tail entities, such as
‘‘fatherOf’’ relation. For many-to-1 relations, a tail entity can
correspond to multiple head entities, such as ‘‘nationality’’

relation. For many-to-many relations, multiple head entities
can correspond to multiple tail entities, such as ‘‘friendOf’’
relation. For FB15k, the proportions of 1-to-1, 1-to-many,
many-to-1 and many-to-many are 26.2%, 22.7%, 28.3%,
22.8%.We show the Hits@10 values in predicting head entity
and tail entity under different relation types in Table 3.
It can be seen from Table 3 that the model in this paper

surpasses most other models in predicting the head entity
under many-to-1 and many-to-many relation types, and the
tail entity under 1-to-many relation types. In other scenarios,
the model in this paper can also be close to the best results.
These results show that themodel in this paper has advantages
in complex relation prediction. The learned (entity and
relation) embedding contains more information and is more
discriminative.

D. TRIPLE CLASSIFICATION TASK
The triple classification task is to judge whether the given
triple (h, r, t) is correct, which is essentially a binary
classification task. In this experiment, the parameter selection
is similar to the previous link prediction task. Specifically,
the parameters of the model are set as follows: the structural
embedding dimension of entity and relation is 100, the
semantic embedding dimension of entity is 150, the number
of negative triples is 6, the batch size is 500, the global gap
γ is 1, and the learning rate Lr is 0.001. But the difference is
that the number of negative samples is 1, and the semantic
embedding dimension of entities and relation is 100. The
experimental results are shown in Table 4.
Experimental results show that the accuracy of the

approach proposed in this paper is better than other compar-
ison algorithms on the triple classification task. Specifically,
the proposed method achieves the optimal accuracy of
89.4% and 90.5% when using ‘‘unif’’ sampling method.
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TABLE 3. Entity prediction under different relation mapping types.

When using ‘‘bern’’ sampling method, the proposed method
achieves the optimal accuracy of 92.1% and 93.2%. It can
be concluded that the proposed method can effectively
integrate the semantic information of entity description into
the embedding representation vector of entity to improve
the discriminability of the entity. Hence, in the triple
classification task, the proposed method can accurately judge
whether the given triple is correct or not. In addition, it can
be seen from the table that ‘‘bern’’ sampling can improve the
accuracy of different models in the triple classification task,
which shows that the negative triples obtained by sampling
make the model training more reasonable and effective.

E. ABLATION STUDY
Further, we explore whether the entity and relation vectors
extracted from different embedding models have an impact
on our model. The experimental results using TransE,
TransR, TransD, and TransH are shown in Table 5. Exper-
imental results of Table 5 show that the entity and relation
embedding vectors obtained by TransD are more conducive
to the model in this paper.

We also explore the impact of the combination of
different semantic description embedding methods on the
performance of the model. Here, we first compare the general
deep convolution network (DCN) and attention model, and
then compare different attention-based convolution neural
network models, such as AMCNN and CRAN. AMCNN is
proposed by Liu et al. [59] for text classification. CRAN is
introduced by Du et al. [60], which combines recurrent neural
network and CNN-based attention model. The experimental
results are shown in Table 6. The experimental results show
that the deep convolution network combined with attention
mechanism can better extract the description information

TABLE 4. Experimental results of triple classification.

TABLE 5. Influence of different knowledge embedding methods on the
model.

of triples and integrate it into semantic embedding, so as
to train with triplet structure embedding to learn better
embedding representation. Specifically, the deep convolution
network extracts the local features of semantic description,
and the attention mechanism can integrate the global features
to jointly improve the ability of information extraction.
Although AMCNN and CRAN also have strong information
extraction capabilities, the text semantic description of triples
in the knowledge graph is relatively simple, so they are prone
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TABLE 6. Influence of different semantic description embedding
methods on the model.

FIGURE 3. Sensitivity analysis of the structure embedding dimensions.

FIGURE 4. Sensitivity analysis of the semantic structure embedding
dimensions.

to overfitting. At the same time, it is relatively difficult to
adjust their parameters.

F. SENSITIVITY ANALYSIS
The proposed algorithm contains some important hyper-
parameters, such as the dimension of embeddings, the
number of negative triples and the global spacing value γ .
We conducted experiments to explore the impact of these
parameters on the performance of the proposed model.
In the experiment, we found that the embedding dimensions
of entities and relations in KG have a certain impact
on the performance of the model. Hence, to illustrate
the effect of embedding dimensions on the performance
of the model, we conduct the hyper-parameter experiments
on the FB15k-237 dataset. The results are shown in Fig. 3
and Fig. 4.

FIGURE 5. Sensitivity analysis of the global spacing value γ .

TABLE 7. Impact of the number of negative triples on the performance of
the model.

As can be seen from Fig. 3 and Fig. 4, when the
dimension is low, the performance is generally low, because
the embedding carries less information. With the increase
of dimension, the performance of the proposed approach
improves rapidly. This is because as the dimension increases,
more information is obtained. When the dimension continues
to rise, the results tend to stabilize in a certain range. Some-
times it even causes performance degradation because some
redundant information is included in the learned embedding
representation. For our experiments, the dimension of the
entity and relation embedding vector is set to 100, and the
dimension of the semantic description embedding vector is
set to 150.

We conducted experiments on FB15k-237 dataset to
test the impact of the number of negative triples on the
performance of the model. The experimental results are
shown in Table 7, where bold indicates the optimal model
performance. From Table 7, we can see that when the number
of negative samples is six, the model can get the best learning
performance. Therefore, the number of negative triples was
set to six in our experiments.

We conducted experiments on FB15K and FB15k-237
datasets to test the impact of the global spacing value γ on
the performance of the model. In order to present the learning
effect more conveniently, we use hits@10 as the performance
evaluation criterion. The experimental results are shown in
Fig. 5. From Fig. 5, we can see that when the global spacing
value γ is set to 1, the model can get the best learning
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performance. Therefore, the global spacing value γ was set
to 1 in our experiments.

V. CONCLUSION
The existing knowledge graph models ignore the semantic
information of triples in the process of learning triples embed-
ding. This paper proposed a knowledge graph embedding
model based on auxiliary information, which comprehen-
sively considers the semantic information of triples and
integrates it into the representation of embedding vectors. The
proposed model uses the improved TransD model to obtain
the structural embedding of knowledge graph triples and uses
the ACNN entity description embedding model to obtain
the triple’s semantic vector. By designing a novel energy
function, the above vectors affect and promote each other
in training. Finally, the comprehensive embedding represen-
tations of entities and relations are learned. Experimental
results on knowledge data sets show that the proposed model
significantly improves the embedding learning performance
of triples. In the future, we will consider more auxiliary
information, such as image information.
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