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ABSTRACT With the growth of the video streaming industry, video retrieval and video alignment are
facing high levels of demand. Several studies have demonstrated the feasibility of these methods for various
problems related to video retrieval and alignment independently, but testing in a unified framework has never
been done. However, in real-world applications, it is also simultaneously necessary not only to find which
video pairs are similar (video retrieval), but also to align the positions of the pairs that are related (video
alignment). In this paper, we present a novel task: simultaneous video retrieval and alignment. As a solution
to this task, a Simultaneous video Retrieval and Alignment framework, abbreviated as SRA, is proposed,
which is a two-stage approach consisting of a foreground proposal stage and a downstream stage to efficiently
process untrimmed videos. Furthermore, two criteria are suggested to support the new task: a metric mAP@J
assessing how highly related videos are ranked and how well relevant positions are assigned in those videos,
and a dataset FIVR+A that includes video-level relationships and hierarchical segment-level annotations.
Finally, we conduct multi-pronged analyses to assess how our approach handles the new task in various
experiments.

INDEX TERMS Computer vision, content based retrieval, information retrieval.

I. INTRODUCTION
Information retrieval can be understood as the task of finding
the best-matched material within a large collection. The his-
tory of information retrieval started with document searches
using keywords and evolved rapidly into searching images
using a query image, then finally to retrieval of a best-
matched video using a query video. Currently, due to the
development of the internet infrastructure, the video stream-
ing industry is in the spotlight. YouTube, one of the largest
video streaming platforms, has more than two billion users
per month who spend more than one billion hours per day
watching videos on the platform [1]. Along with the rapid
growth of the video streaming market, more diverse functions
are required for the task of video retrieval. For example, a user
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may simplywant to find a new video that is most similar to the
one he just watched. Another user may want to find the movie
that contains a short video clip that she saw in an attractive
trailer (video retrieval). Yet another user may want to find and
watch from the exact location at which a short video clip starts
within the entire movie (video alignment).

There have been many studies on the tasks of video
retrieval and alignment relevant to these needs. The
video retrieval, known as Content-Based Video Retrieval
(CBVR) [2], aims to find themost relevant video in a database
given a video query. CBVR started with Near-Duplicate
Video Retrieval (NDVR), which searches for visually identi-
cal videos, especially on a dataset [3]. For instance, a pattern-
based approach [4] and a graph-based approach [5] detect
copied videos from keyframe-level representations. Follow-
ing that, Fine-grained Incident Video Retrieval (FIVR) and
Event Video Retrieval (EVR), which search for videos of
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FIGURE 1. Composition example of an untrimmed video related to a
forest fire: (a) A text-effect scene for the news opening; (b) The process of
a scene transition; (c) A scene in which the announcer provides an
explanation; and (d) A scene showing the forest fire.

the same event captured, and Action Video Retrieval (AVR),
which searches for videos of a human-centric act, are actively
underway on datasets [6], [7], [8]. These studies are divided
into two parts, depending on how similarities between videos
are determined. One of the two parts utilizes frame-level
features for the similarity estimation, such as an approach [9]
for matching in the Fourier domain, an approach [10]
utilizing a frame-to-frame similarity map, and standard
frameworks [11], [12], [13], [14]. The other part utilizes
video-level features that describe a single vector per video,
such as an approach [15] with two fusion variations from pre-
extracted frame-level features and an approach [16] aggregat-
ing frame-level features with self-attention. Video alignment
is also divided into two parts: video localization and video
copy detection, of which the former aims to locate in a
semantically similar relationship and the latter in a visually
similar relationship. Video localization is focused on the
action only, such as an approach [17] to finding boundaries
representing predefined action classes and an approach [8]
based on cross-gated bilinear matching. In contrast, video
copy detection focuses only on the copied scene, such as
approaches [18], [19], [20] employing a temporal Hough
transform, approaches [21], [22] utilizing a matching kernel,
and approaches [23], [24] based on a similarity map.

Even though these many studies have been conducted, the
two tasks are usually handled as independent problems. Video
retrieval usually disregards the issue of video alignment,
so they cannot determine which part of a retrieved video is
similar to the query. Video alignment tends to oversimplify
its task by localizing only reference videos for a given query
video clip. However, it should be considered simultaneously
because it is hard to know when and what functions a user
will need in a real-world situation. Admittedly, it may seem
that certain approaches [4], [5], [9], [13], [23] are already
able to handle retrieval and alignment at the same time, even
if they are insufficient to claim this. Indeed, the approaches
[4], [5], [13], [23] do not take into account the exploration of
videos that are directly related to the video-level topic of a
query, as they only leverage similarities between keyframes,
except for continuous signals in a video (like image retrieval).
For example, if Fig. 1(a) is selected as a keyframe, videos
containing the scene will be returned to the user, even if the
topics are different (i.e., airplane accident, bombing, natural
disaster, etc.). For this reason, they are closer to video copy

FIGURE 2. Comparison of tasks related to video retrieval and alignment.
The proposed method simultaneously conducts retrieval and alignment
and is bidirectional for both the query and database in the alignment
process.

detection and segment-level retrieval. On the other hand,
the approach [9] cannot be considered to be handled simul-
taneously due to its conflicting assumption that alignment
requires a set of videos known as a single event in advance,
whereas retrieval requires distinguishing relations among
videos that contain numerous unknown events.

In addition, tasks handled by other streams [25], [26],
and [27] may seem similar to the proposed task. However, the
task handled by [25] covers only retrieval between different
modalities (especially text and image in this work) and is far
from our task, which cover retrieval and alignment between
two videos at the same time. In addition, the task handled
by [26] differs from our task in that it uses text and deals
only with alignment to find a location related to the query
on a video when given a text query and an untrimmed video.
Finally, although the task handled by [27] considers retrieval
and alignment at the same time, it is fundamentally different
because the input is a pair of text and video. And unlike
our task, which considers alignment in both inputs in a pair,
it considers alignment in only one input.

In this paper, we present a novel task named simultaneous
video retrieval and alignment to resolve the aforementioned
problems for real-world applications. As shown in Fig. 2,
the proposed task is an extended video-to-video retrieval
system that ranks at the video level while aligning at the
segment level. It assumes that the query and database consist
of untrimmed videos, which are the majority of real-world
applications, and determines the degree of alignment in both
directions. In addition, Simultaneous video Retrieval and
Alignment framework (SRA) is proposed as a solution for
the new task. To effectively represent long and untrimmed
videos with multiple contents (for both videos in a database
and query videos), SRA consists of two stages. The first
stage is the foreground proposal, referring to the selection of
only likely meaningful content in an untrimmed video, except
for distracting content that is common anywhere or contains
editing effects. The second stage consists of downstream
tasks, including retrieval and alignment from areas selected
in the previous stage. Furthermore, we propose two criteria to
support the new task covered by SRA: themetric mAP@J and
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the dataset FIVR+A. mAP@J is a new metric that explores
similar relationships among videos while assigning relevant
locations in a video pair based on existing metrics where only
retrieval or alignment is measurable. FIVR+A is a dataset
in which hierarchical annotations at the segment level are
added to a widely known incident-centric dataset [6], replac-
ing existing datasets that cannot handle both retrieval and
alignment efficiently. Finally, multi-pronged analyses of SRA
using these two criteria are presented while also comparing
their outcomes to those of other methods.

In short, our contributions are threefold, as summarized
below:

1) A new task, which is simultaneous video retrieval and
alignment, and a method for completing the task, SRA,
are proposed.

2) Two criteria, the metric mAP@J and the dataset
FIVR+A, are proposed to support the evaluation of the
new task.

3) Multi-pronged analyses via extensive experiments
demonstrate how our approach manages video retrieval
and alignment concurrently or independently.

The rest of the paper is organized as follows: Section II
provides related tasks. Section III introduces the new task,
simultaneous video retrieval and alignment. Also, two cri-
teria for this new task, the metric mAP@J and the dataset
FIVR+A, are described here. Section IV proposes the base-
line, Simultaneous video Retrieval and Alignment frame-
work (SRA) as a solution for the new task. Section V explains
multi-pronged experiments, including benchmarks with other
methods, ablation studies, and analyses. Section VI presents
the conclusion that summarizes the previous contents.

II. RELATED WORK
A. VIDEO RETRIEVAL
Most video-to-video retrieval approaches use either frame-
level features or video-level features when calculating the
degree of video-level similarity. Methods based on frame-
level features encode spatial information by describing each
frame and encode temporal information by exploring the suc-
cessive spatial information. On the other hand, methods based
on video-level features encode spatio-temporal information
using all of the frames in a video at once.

1) FRAME-LEVEL FEATURES
Methods based on frame-level features compare the similari-
ties between features described for each frame in two videos
in sequence and estimate a video-level similarity by aggregat-
ing them. An approach [4] known as Dynamic Programming
(DP) extracts the diagonal pattern from the frame similarity
map to find a near-duplicate area. An approach [5] known as
Temporal Network (TN) detects the longest path in a graph
generated via keypoint frame matching to identify visually
equivalent scenes between the two videos. An approach [9]
known as Circulant Temporal Encoding (CTE) employs the
Fourier transform to encode frame features and compare them

in the frequency domain. An approach [10] known as Video
Similarity Learning (ViSiL) utilizes metric learning based on
a frame-to-frame similarity map. A standard framework [11],
known as Compact Descriptors for Video Analysis (CDVA),
and its variations [12], [13], [14], [28] describe two types of
transformation-resistant keyframe features. In general, these
methods outperform methods based on video-level features.
However, they usually incur a high computational cost with
low retrieval efficiency due to the redundancy between con-
secutive frames. Theoretically, the upper bound of the time
complexity can reach TQ×TR (TQ and TR denote the number
of frames in a query video and a database video, respectively).
A naive way to reduce the time complexity is to sample only
some of the frames throughout. However, this type of strategy
may result in significant performance degradation.

2) VIDEO-LEVEL FEATURES
Methods based on video-level features encode one video
as one feature vector and calculate the video-level similar-
ity by comparing the obtained features. An approach [15]
known as Deep Metric Learning (DML) creates a visual
codebook for intermediate Maximum Activation of Convo-
lutions (iMAC) features [29] and trains a network through
metric learning. An approach known as Temporal Context
Aggregation (TCA) [16] combines frame-level features with
self-attention to learn a single video vector. An approach [30]
known as Hashing Codes (HC) combines and hashes mul-
tiple local and global features to handle the accuracy and
scalability issues. Given that the entire video with multiple
frames is abbreviated into a single feature, these methods
are advantageous for describing the semantic information of
successive connections and have relatively low computational
costs. However, the loss of information increases as the length
of the video increases. For this reason, the difficulty of video
representation increases, resulting in a decrease in retrieval
ability. If the feature representation of these methods is suf-
ficiently improved, video retrieval with high efficiency is
possible.

B. VIDEO ALIGNMENT
The task of video alignment aims to localize areas similar
to a query clip within a given reference collection. The task
is divided into video localization and video copy detection
according to the contents to be found.

1) VIDEO LOCALIZATION
Video localization methods seek locations in the refer-
ence segment that show action similar to a given query.
An approach [17] known as Boundary-Matching Network
(BMN) generates action proposals through a boundary-
matching mechanism and computes their confidence.
An approach [8] known as Video Re-Localization (VReL)
proposes cross-gated bilinear matching to predict four types
of localization states. In these methods, the query is assumed
to be a specific class or a trimmed video that contains only one
action, and unidirectional alignment is conducted in reference
videos containing at least one action related to the query.
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However, this experimental setting is unlike the real-world
situations in which most query videos are given untrimmed
with unrelated pairs. In addition, unlike video copy detection,
these methods focus on the concept of semantic similarity to
find similar action contents.

2) VIDEO COPY DETECTION
Video copy detection methods seek to locate the reference
segment that is in a copy relationship with a segment of
the query. Approaches [18], [19], [20] utilize the Hough
histogram resulting from the Hough transform. An approach
known as Temporal Matching Kernel (TMK) [21] encodes
sequences of frames with periodic kernels. An approach [22]
known as Learning to Align and Match Videos (LAMV)
trains the feature transform coefficients based on TMK.
An approach [23] known as Segment Similarity and Align-
ment Network (SSAN) lines up videos through segment-
level search using keyframes and then generates a similarity
map to detect similarity patterns. An approach [24] known as
Video Similarity and Alignment Learning (VSAL) conducts
a mask-based temporal similarity measurement and a step-
based partial alignment in a similarity map. An approach [31]
known as Binary Temporal Alignment (BTA) leverages local
features to find the left and right borders of a copied segment
and concatenate them. An approach [32] known as Fast Par-
tial Video Copy Detection (FPVCD) employs global features
and a modified TN [5] for efficient video copy detection. Due
to the repeated detection process for each predefined query
segment, these methods operate in a unidirectional manner.
In addition, they rely significantly on visual similarity in their
hunt for identical duplicates.

C. VIDEO DATASETS
Video retrieval datasets contain the query videos and
database with video-level relationships, mainly in con-
sideration of near-duplicate situations and/or events, such
as CC_WEB_VIDEO [3], EVVE [7], and FIVR [6].
Video alignment datasets comprise segment-level correla-
tions within a collection of videos, primarily for copy detec-
tionwith an emphasis on visual similarity, such asVCDB [18]
and FIVR-200k-PVCD [24]. Meanwhile, ActivityNet, reor-
ganized in earlier work [8], was released to deal with
the alignment problem of semantic similarity. In addition,
Kordopatis-Zilos et al. [10] attempt the task of retrieval using
the reorganized ActivityNet [8]. However, this dataset is con-
fined to action classes and consists only of references con-
taining at least one segment without distractors. We present a
dataset to overcome this limitation in Section III-C.

III. A NEW TASK: SIMULTANEOUS VIDEO RETRIEVAL
AND ALIGNMENT
A. PROBLEM FORMULATION
A given query video Q and database video R are defined as
follows:

Q = {qt }
TQ
t=1 ,R = {rt }

TR
t=1 (1)

where qt and rt refer to the t-th frame in the query and
the database video, respectively. TQ and TR denote the total
number of frames in the videos. The sets of segments asso-
ciated with each other between Q and R are denoted as
ψQ

= {(qstart , qend )} and ψR
= {(rstart , rend )}, respectively.

qstart and qend are correspondingly the starting and ending
frames of the segment related to R in Q. Analogously, rstart
and rend are the starting and ending frames of the segment
related to Q in R. The similarity between the pair of videos
is denoted as Scorev. By collecting these components, the
new task F , which performs video retrieval and alignment
simultaneously, is defined as follows:

(Scorev, ψQ, ψR) = F(Q,R) (2)

Existing video retrieval methods use only the similarity
score Scorev to rank videos. Video localization and video
copy detection methods find only the same or similar seg-
ments, which are only equivalent to ψR in the database.
Unlike previous attempts to perform video retrieval or align-
ment, the proposed method handles Scorev, ψQ, and ψR

together.

B. EVALUATION METRIC: mAP@J

mAP@J =
1
NQ

NQ∑
m=1

AP@J(m),

AP@J(m) =

NR∑
n=1

precision(m,n)1recall(m,n)J(m,n)

J(m,n) =
1
2

(
ω
Q
(m,n) + ωR(m,n)

)
ωk(m,n) =

(
ψk
(m,n)

⋂
GT k(m,n)

)
(
ψk
(m,n)

⋃
GT k(m,n)

) , where k ∈ {Q,R} (3)

We introduce a new evaluation metric, the mean average
precision at the Jacccard weight, abbreviated as mAP@J,
which measures the performance of the simultaneous video
retrieval and alignment task. Because previous metrics have
verified ‘‘retrieval’’ and ‘‘alignment’’ individually, measuring
the connection between the two tasks is difficult. Therefore,
both the method and the evaluation metric are not easily clas-
sified as in ‘‘simultaneous retrieval and alignment’’. On the
other hand, the proposed metric considers ‘‘retrieval’’ and
‘‘alignment’’ as a single task. It is formulated in Eq. 3.

Here, mAP@J is a form in which the Jacccard weight J ,
as an alignment weight, is multiplied when calculating the
average precision (AP) for each query based on the retrieval
metric, the mean average precision (mAP). In Eq. 3, NQ
and NR refer correspondingly to the number of videos in the
query (abbreviatedQ) and the database (abbreviatedR). J(m,n)
refers to the Jacccard weight between the n-th video in the
database and the m-th query video, where the database is
sorted w.r.t. the corresponding query video. This is calculated
as the average of ωQ(m,n) and ω

R
(m,n), which determines how

well the locations are aligned in each of the m-th query and
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FIGURE 3. An example of annotation for two related video pairs of FIVR+A. Labeling is done on a segment-by-segment basis. According to their similarity
with the video-level topic, the segments are categorized as N, S, or H. The fading effect between event segments is labeled F.

n-th database video pairs. Additionally, ωk(m,n) (k is Q or R) is

the Jaccard index [33] between the set of predicted aligned
segments ψk

(m,n) and the ground truth segments GT k(m,n) in
each video.

In addition, mAP@J is designed to reduce the effect of
video pairs that contribute significantly due to their high
video-level rank, even when they are not aligned well. Con-
versely, it retains the original contribution by imposing fewer
penalties on well-aligned video pairs, regardless of their
rank. Hence, the proposed metric simultaneously evaluates
retrieval and alignment by inducing a structure in which the
degree of alignment reorganizes the ranking of the video
level.

C. DATASET: FIVR+A
Although some datasets [18], [24], [34] provide segment-
level annotations, they are limited to specific topics (action
or copy detection), and the degree to which something is
related is difficult to determine because it simply appears in
a Boolean form. On the other hand, for a dataset [6] contain-
ing a hierarchical structure at the video level, segment-level
annotation is not provided. A dataset, Fine-grained Incident
Video Retrieval plus Alignment (FIVR+A), is proposed to
deal with the aforementioned issue in conjunction with the
new task. This is based on the FIVR dataset, and segment-
level information is added to indicate where a video-level
topic appears in a video. Because query videos represent each
video-level topic, the segment-level annotation is divided
into four hierarchical conditions corresponding to them as
follows:

• Normal (N) refers to a segment where the temporal span
and camera viewpoint are similar, i.e., frames are similar
in terms of their visual appearance.

• Soft (S) refers to a segment where the temporal span is
similar but the camera viewpoint is different.

• Hard (H) refers to a segment where the temporal span
and camera viewpoint are different, but where it can be
inferred semantically as the same topic.

• Fade in/out (F) refers to a segment where a fading effect
is observed before or after the segments corresponding
to the preceding conditions (N, S, and H).

The closer to N corresponds to a near-duplicated scene
in the copy detection task; the closer to H corresponds to
a semantically deducible scene containing several changes
(e.g., daylighting differences, side views). Furthermore, F,
the location of the fade effect occurring during the shot
conversion process, is provided, which is the first among
video retrieval or alignment datasets as far as we know.
According to these conditions, 9,960 segments are annotated
at FIVR-5K, as shown in Fig. 3. The number of segment pairs
between related videos in the database and query videos is
17,619 for all of the above conditions, 5,871 for NSH only,
3,996 forNS only, and 2,067 forN only. The average percent-
age of each criterion in all videos is as follows: N amounts
to 22.29%, S is 14.72%, H is 11.55%, F is 1.67%, and the
rest equals 49.77%. All annotations are manually performed
and thoroughly reviewed by computer vision experts multiple
times. These annotations can be obtained by emailing the
author.

IV. A BASELINE: SIMULTANEOUS VIDEO RETRIEVAL
AND ALIGNMENT SYSTEM
Because untrimmed videos with various content interwoven
(meaningful or not) are inevitably found in real life as well
as within the task, a method for handling them requires an
additional process of suggesting meaningful candidates to
reduce complexity. To this end, our baseline, Simultaneous
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FIGURE 4. Structure of the proposed framework: (a) represents the foreground proposal stage for processing untrimmed video, and (b) represents the
downstream stage that handles retrieval and alignment at the same time.

video Retrieval and Alignment framework (SRA), uses
two-stages consisting of a foreground proposal stage and a
downstream stage. The foreground proposal stage offers areas
that appear to be in the foreground, and the downstream stage
handles each task within these areas. Consequently, as shown
in Fig. 4, the two-stage approach is designed to search for
related video pairs and find content-related segment pairs.

A. FOREGROUND PROPOSAL STAGE
The purpose of this stage is to localize likely-meaningful
areas in an untrimmed video entangled with multiple con-
tents. In an untrimmed video representing a specific event,
unrelated areas induced by editing effects or distractors are
also included. For example, an area in which only logos
and/or text appear at the introduction of news, as shown in
Fig. 1(a), is far from the content implied by a specific event.
During a fade-in/fade-out sequence upon a change of scene,
as shown in Fig. 1(b), completely different scenes are mixed,
complicating the recognition of one event. Also, because one
event consists of various interactions between objects and
scenes, the content are commonly seen in any video, such as
the ‘‘explanation at the news desk’’ scene in the video related
to ‘‘forest fire’’ shown in Fig. 1(c), interfering with distinctive
representation.

Our approach, which eliminates ambiguous or non-
relevant parts in untrimmed videos and screens likely-
meaningful areas, i.e., the foreground, is inspired by the
temporal action proposal method. Specifically, the key idea of
this stage is to find temporal segments that are either shot tran-
sitions or have low relevance to video-level topics, similar to

an earlier protocol [17]. Given an untrimmed video, snippet-
level features f sni are described from each non-overlapping
snippet of size Tsni via the backbone network. Proposals
are generated through continuous relationships between each
snippet-level feature, and the confidence is computed for
each proposal. At this time, we follow the aforementioned
protocol [17], but confidences are learned to represent the
relevance to a specific event by utilizing pre-defined event-
dependent information in the target dataset rather than focus-
ing solely on the action, as before. Thereafter, the union
of proposals corresponding to the top-Kp of confidence is
assigned as the foreground. The foreground indirectly sup-
ports the downstream stage to produce the retrieval and align-
ment outcomes.

B. DOWNSTREAM STAGE
1) VIDEO-LEVEL FEATURE-BASED RETRIEVAL
Video-level features are popularly used for the task of video
retrieval due to their efficiency and low time complexity,
but they should be able to represent a video effectively even
when the length of the video is long. With the emergence
of self-attention modules, Transformers have been shown
to be successful at describing global context information in
various computer vision tasks, whereas convolutional neural
networks fundamentally fail to capture that information.

Bertasius et al. [35] present a convolution-free approach
to video classification built exclusively on self-attention
over space and time. TimeSformer [35] adapts the stan-
dard transformer architecture for videos by enabling spatio-
temporal features learned directly from a sequence of
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frame-level patches. However, because the network can only
handle pre-defined classes, we redesign the objective to
allow distance learning based on similarities by focusing on
the internal long-term video representation capability of the
model.

In detail, frames as an input are uniformly sampled from an
untrimmed video. The frames are fed into the network, i.e.,
TimeSformer, and video-level intermediate features f inter are
extracted. In this way, intermediate features are calculated for
a triplet (f inter(·) , f inter(+) , f

inter
(−) ) from an anchor, a positive, and a

negative, respectively. Based on the anchor in the triplet, the
positive is a video representing the same event at the video
level, and the negative refers to a video representing the other
event. As indicated in Eq. 4, the network is optimized through
the triplet ranking loss [36] Lv, where simf inter( , ) denotes
the cosine similarity between two features corresponding to
the subscript below, and γ is the margin. Here, simf inter( , )
denotes the similarity; hence, the greater simf inter(·,−) and smaller
simf inter(·,+) both increase the loss. Through the structure of the
network, which has less receptive field restriction along the
time axis, and with event-wise distance learning, the network
can capture a long-term feature representation for an event in
a given video. For the inference process, Scorev is calculated
as the cosine similarity between video-level features from the
query-database pairs.

Lv = max
{
0, simf inter(·,−) − simf inter(·,+) + γ

}
(4)

2) BIDIRECTIONAL SEGMENT-LEVEL ALIGNMENT
Segment-level alignment mainly intends to find where a par-
ticular topic in one video is located within another. Compact
Descriptors for Video Analysis (CDVA) [12], [13], [14] from
the Moving Pictures Experts Group (MPEG) also supports
segment-level alignment, assuming unidirectional matching.
CDVA [11] was adopted as a standard due to the effective pro-
cesses that allow the identification of similar content through
two types of frame-level features extracted without additional
learning. However, unlike previous one-way alignment meth-
ods, as noted in Section I, it should be possible to localize
segments representing a video-level topic in both directions
between untrimmed video pairs.

To solve the bidirectional segment-level alignment prob-
lem, we partially exploit the structure of the standardized
CDVA [13]. First, to avoid the redundancy of frame-level
features, color histogram-based keyframe selection is per-
formed according to CDVA. After selecting non-duplicated
keyframes in the order of time, two types of features, Scal-
able Compressed Fisher Vector (SCFV) and Nested Invari-
ance Pooling (NIP), are extracted for each keyframe. SCFV
is described as accumulating local attributes in a frame
to explore details, and NIP is described as aggregating
global attributes to be robust to image transformations. Then,
through SCFV similarity and color histogram difference
between consecutive keyframes, segments composed of the
same contents are grouped into a single video. When cal-
culating the segment-level alignment between two videos,

segment-level similarities are computed one-by-one between
the videos, andwhether to align is determined by thresholding
those similarities. In this case, the segment-level similarity is
obtained as the maximum value of keyframe-level similar-
ities belonging to them, and the keyframe-level similarities
are determined by the sum of SCFV and NIP similarities.
After that, CDVA determines whether it is aligned or not
only in unidirection and produces a single-segment outcome
by collecting the aligned segments. On the other hand, our
approach employs each individual aligned segment (i.e., ψQ

and ψR) as a result after determining whether it is aligned in
both directions.

C. TRAINING AND INFERENCE
The foreground proposal stage and the video-level feature-
based retrieval of the downstream stage are both optimized in
the manner explained above, and the bidirectional segment-
level alignment of the downstream stage is employed without
extra learning. In inference, the foreground proposal stage is
performed first. The areas, a union of the top-Kp, are allocated
as foregrounds. The foregrounds are then handed down to the
downstream stage, which proceeds in the sequence of align-
ment following retrieval. The retrieval process embeds frames
sampled from foreground areas for videos in the query and the
database to a one-dimensional vector per video via the event-
wise distance-learned network, and the videos in the database
are ranked bymeasuring the similarities to each query. During
the alignment process, the query-database videos are paired
in the order of the relevant ranks, and the segment-level
alignment is performed in the manner explained before by
selecting keyframes from the foregrounds of the two videos
belonging to the pair. This sequence of returning similar
videos using temporal cues and assigning related positions
between them can not only place two directly relevant videos
in a video-level topic into the alignment candidate group
but can also converge on optimal efficiency if the range of
alignment is constrained by the relevant ranks derived from
the retrieval process when considering online.

V. EXPERIMENTS
A. EVALUATION SETUP
1) FIVR
This is an incident-centric dataset [6] containing three
retrieval tasks: Duplicate Scene Video Retrieval (DSVR),
Complementary Scene Video Retrieval (CSVR), and Incident
SceneVideo Retrieval (ISVR), with the importance of seman-
tic information increasing as one progresses from DSVR to
ISVR. Among this family, FIVR-5K is employed for the
retrieval evaluation, which consists of 5,000 videos in the
database and 50 query videos with video-level annotations.
Also, the proposed FIVR+A-5K, a form in which segment-
level annotations between query videos and the database are
added to FIVR-5K, is used for the simultaneous evaluation
of the retrieval and alignment outcomes. In the former case,
how well similar videos are found is assessed via a prominent
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metric called mAP [37], and in the latter case, how well the
locations of related segments, including similar videos, are
also found, is assessed via the proposed metric mAP@J. For
the evaluation of alignment, the N, S, and H conditions are
considered the ground truth segments.

2) ACTIVITYNET
This is an action localization dataset [34] originally consist-
ing of 10,024 training videos, 4,926 validation videos, and
5,044 test videos with annotations containing exact video
segments that correspond to specific actions. Based on the
original dataset, 494 videos from the test videos were reorga-
nized for the evaluation [8]. For the simultaneous evaluation
of two tasks previously not considered, any pair with one
common action label regards that segments representing that
label in the pair are aligned while also defining the pair as
relevant at the video level. Similar to the previous dataset,
mAP and mAP@J are used as the evaluation metrics.

3) VCDB
This is a copy detection dataset [18] consisting of 528 videos
classified into 28 query sets with approximately 9,000 copied
segment pairs. It is evaluated whether a segment visually
similar to a predefined segment of one video is well aligned
within another video. Because most segments are easy to
detect due to relatively simple spatial and temporal trans-
formations, this dataset is considered to address a simplified
video alignment task. To assess the alignment process of the
proposed approach, a segment-level best F1-score [18] is used
as an evaluation metric. For a reasonable comparison with
the same metric, only methods that are identified by paper or
contact as measuring the performance with the best F1-score
via the segment-level precision-recall curve are included in
the benchmark.

B. IMPLEMENTATION DETAILS
1) FIVR
In the foreground proposal stage, the snippet-level feature f sni

is extracted through the backbone, TSP [38]. Tsni denotes
16 frames with two-frame intervals. For training, segment-
level annotations in the database that exclude the queries
used for the test of FIVR+A-5K are utilized and consid-
ered to be known in the real world. This means that only
1,931 of the 5,000 videos in the database are used to discern
the foreground candidates. For the evaluation, foregrounds
are also predicted, including all unseen videos with queries
that are not used for learning. For video-level feature-based
retrieval in the downstream stage, parameters pre-trained
from earlier work [39] are employed without additional fine-
tuning for a reasonable comparison with other approaches.
In addition, as an input to the network, frames from a single
video are selected based on a frame rate of 1/32, and then
32 of them are linearly sampled. If used with the foreground
proposal stage, frames that do not belong to the foreground
are excluded while selecting frames in a video with the same

TABLE 1. A benchmark for the video retrieval task on FIVR-5K and
ActivityNet. * is the reimplemented performance of other methods.

TABLE 2. A benchmark for the video alignment task on VCDB.

frame rate. The remaining frames are then arranged in time-
axis order, and 32 of them are linearly sampled as an input
to the network. For bidirectional segment-level alignment, all
detailed settings follow when the operating point of CDVA is
256 KBps without extra training. If used with the foreground
proposal stage, the color histogram-based keyframe selection
works only for frames that belong to the foreground.

2) ACTIVITYNET
In the foreground proposal stage and the downstream stage,
the structure of the network and settings are identical to those
in FIVR. For bidirectional segment-level alignment of the
downstream stage, no further learning is performed as above.
All others, however, are fine-tuned in the aforementioned
training set [8]. This is identical to the process used in other
approaches, as it guarantees unseen action classes of the test
set, which are not overlaid with those of the training set.

3) VCDB
In this dataset, performances are measured only by the bidi-
rectional segment-level alignment of the downstream stage,
which does not require learning because all video pairs with
segment-level annotations are utilized for evaluation without
a separate training set. All other detailed settings are the same
as above.

VOLUME 11, 2023 28473



W. Jo et al.: Simultaneous Video Retrieval and Alignment

TABLE 3. A benchmark for the new task that simultaneously addresses
video retrieval and alignment on FIVR-5K and ActivityNet. SRA{·} indicates
that other retrieval approaches replace our retrieval approach in the SRA.
It is the reimplemented performance of other approaches for which the
source code was disclosed, and the non-disclosed approaches were
excluded for fairness.

C. COMPARISON WITH OTHER METHODS
1) VIDEO RETRIEVAL
The proposed method, SRA, is evaluated to benchmark the
retrieval performance on the FIVR-5K and the reorganized
ActivityNet. First, the proposedmethod shows the best results
when compared to methods using video-level features on
the two datasets, as indicated in Table 1. This can be seen
as reducing the difficulty of representing a single video as
a feature by sampling frames only in areas that may be
meaningful in an untrimmed video and using the transformer
structures to cover temporally large areas. For these reasons,
when compared to methods using frame-level features, our
method matches the performance of several methods on the
FIVR-5K, even achieving a state-of-the-art outcome on the
ActivityNet. In addition, unlike these frame-level methods,
which calculate multiple features per video, only one is com-
puted in our case. Hence, if the actual search situation is
assumed, it can benefit from the relatively improved cost
efficiency with comparable retrieval capabilities.

2) VIDEO ALIGNMENT
Table 2 describes how well the alignment process of the
proposed method allocates on the VCDB. Although only
one of the bidirectional outcomes is used for a reasonable
evaluation, the proposed method is placed second, suggesting
that the outcomes are well aligned. And, unlike the state-
of-the-art (FPVCD) [32], which requires learning, the pro-
posed method does not require that, so it performs the best
among this type of method. Therefore, this indicates that the
proposed alignment process can efficiently support the entire
SRA framework, which deals with various tasks.

3) VIDEO RETRIEVAL AND ALIGNMENT
We show the first simultaneous video retrieval and alignment
benchmark in Table 3 because this is the first proposed;
SRA{·}, which replaces other retrieval approaches in our
retrieval approach, is intended to show a variety of com-
parative examples. In addition, the performance of CDVA

TABLE 4. Ablations in the ISVR task on FIVR-5K and FIVR+A-5K:
(a) whether the foreground proposal is used, (b) the top-Kp used to select
the foreground, and (c) our multi-segment alignment approach changed
from CDVA.

retrieval, which is based on frame-level features, and CDVA
matching, which generates only one segment as a localization
output, is also included in the benchmark for comparison.
At this time, in order to obtain bidirectional localization
outputs from CDVA, we repeat the experiment by changing
the position of the pair of entered inputs. Overall, because
it is weighted by the alignment approach of SRA, it shows a
similar tendency when only retrieval is evaluated. If a method
for dealing with retrieval is proposed while resolving the
bidirectional alignment in future work, these examples will
be used for comparison.

D. ABLATION STUDIES
1) TOP-Kp

The performance according to top-Kp to determine the fore-
ground is presented in Table 4(a). Because the foreground
consists of a union of top-Kp ordered by confidence in the
proposals, which are assumed to be meaningful areas, the
larger Kp is, the more likely the foreground is to include
scenes in which editing effects occur (e.g., fade in/out) or that
generally appear in any video. Hence, the probability of con-
taining scenes as a distractor increases, which can interfere
with discrimination and cause a drop in the performances.
With these results, we setKp equal to 1, ensuring that themost
reliable foreground is provided in the downstream stage.

2) FOREGROUND
Table 4(b) illustrates numerical benefits gained from the fore-
ground proposal stage for efficiently processing untrimmed
videos. Utilizing the foreground in our framework yields
an improvement of 0.2 in terms of retrieval capability, sug-
gesting that ambiguous or unrelated regions are successfully
eliminated from untrimmed videos as intended.

3) MULTI-SEGMENT
Table 4(c) shows the effect of individual segment alignment
(called multi-segment) in SRA alignment approach, unlike
the existing CDVA framework, which uses per-segment
localization. When adopting the change-previous approach
(not multi-segment), the process is repeated as described in
the benchmark above Section V-C3 to obtain bidirectional
results. The conventional approach resulting in one segment
involves more noise than the proposed approach resulting in
a multi-segment outcome because it forces unaligned regions
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FIGURE 5. t-SNE results for the video-level feature in the ISVR task on the FIVR-5K: (a) and (b) visualized results of video-level feature-based
state-of-the-art methods, DML and TCAc , respectively; (c) visualized result of the video-level feature used by the retrieval approach of our SRA without
the foreground proposal stage; and (d) the result with that stage included.

FIGURE 6. According to the video duration, the retrieval capacities of
methods using video-level features on FIVR-5K. The x-axis represents the
case when dividing the database into five subsets depending on the
percentile of the video duration and using each of them as a database.

in one video to be allocated within the output. For this reason,
our approach exhibits higher performance due to the rela-
tively high Jaccard weight, as it contains less of this type of
noise.

E. ANALYSES
1) LONG-TERM FEATURE REPRESENTATION
In this section, the long-term representation capability of
SRA is analyzed. SRA goes through the foreground pro-
posal stage for processing untrimmed videos that contain
unnecessary contents, thereby aiming for robustness on the
distractor. In addition, video-level features are extracted via
the transformer structure with less receptive field restriction
on the time axis, aiming to boost the long-term representation
for the retrieval.

Fig. 5, which describes the visualization results of the
video-level feature, shows that the proposed approach qual-
itatively achieved those goals. Compared to the two current
state-of-the-art methods, DML and TCAc, SRA employing
only the transformer structure (without the foreground pro-
posal stage) displays comparable representations in Fig. 5(c).
For the intact SRA, which includes the foreground proposal

FIGURE 7. Trade-off between retrieval performance and efficiency during
the ISVR task on the FIVR-5K. The inference time for the query shown on
the x-axis is referenced from earlier work [16].

stage as shown in Fig. 5(d), it reveals remarkable discrimina-
tion compared to the others.

Another experiment shown in Fig. 6 illustrates the ability
to retrieve according to the video duration. In this experiment,
the database in the FIVR-5K is divided into five subsets
according to the percentile of the video duration, and retrieval
performances are measured using each of these subsets as
a database. Unlike DML and TCAc, where a large drop
of approximately 0.1 over the highest performance begins
from the 20% to 40% percentile interval (an average of
57 seconds), SRA shows a similar drop in the 60% to 80%
percentile interval (an average of 137 seconds), in which
longer videos belong. In addition, compared to the perfor-
mance in the 0% to 20% percentile interval (an average of
28 seconds), where the shortest videos belong, the perfor-
mance in the 80% to 100% percentile interval (an average of
223 seconds), where the longest videos belong, falls by about
0.3 in the two other approaches, whereas SRA case shows a
smaller drop of about 0.15.

As a result of the above two experiments, with the proposed
approach, longer videos are effectively handled by the fore-
ground proposal process and convolution-free architecture for
the retrieval task.
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FIGURE 8. Qualitative examples of alignment on FIVR+A-5K.

2) PERFORMANCE VS EFFICIENCY
The trade-off between the performance and efficiency of SRA
is explained in Fig. 7. Compared to TCAc, a video-level
feature-based method, SRA ranks highest with a margin of
0.127 in terms of retrieval performance, although the infer-
ence speed is nearly four times slower. In contrast, compared
the frame-level feature-based methods, the outcome for SRA
is as low as 0.058 compared to that of TCAf , but with a faster
inference speed by about 1.5 times and nearly 60 times faster
than the state-of-the-art method, ViSiLv, although the result
was as low as 0.072. In particular, even when the proposed
approach goes through the bidirectional alignment process,
the speed is eight times faster than that of ViSiLv. These
results imply that the proposed SRA is in the most efficient
position in terms of the trade-off relationship between perfor-
mance and speed.

3) QUALITATIVE EXAMPLES OF ALIGNMENT
Qualitative examples of alignment, included in SRA frame-
work, are described in Fig. 8. As mentioned earlier, the
bidirectional alignment is performed in the query and
database, which consist of untrimmed videos, which sub-
sequently penalizes video-level ranking with the Jaccard
weight. Fig. 8(b), one of the examples, shows the align-
ment outcomes in a query-database pair connected based on
the video-level topic ‘‘Church bombings on Palm Sunday’’.
Because the two videos in the pair contain a lot of content that
is not relevant to the video-level topic, the bidirectional video
alignment is required to determine which parts of the videos
are related. The examples show that the proposed approach
can filter these distractors very finely. Fig. 8(b), another

example, shows the alignment outcomes in a query-database
pair connected based on the video-level topic ‘‘Crashed mili-
tary transport aircraft on the plane’’. In this case, our approach
successfully allocates segments even when a scene represent-
ing the event is filmed at an angle different from that of the
query. However, for a scene captured at a different time and
angle from the query in the red-dotted area, our approach
fails to grasp the semantic relationship. This implies that it is
needed to understand a more semantic relationship in future
studies.

VI. CONCLUSION
In this paper, we present a novel simultaneous video retrieval
and alignment task that retrieves videos relevant to a given
query and aligns related locations at the segment level, as well
as a solution to it. Because previous approaches focused
on either the video-to-video retrieval problem without con-
sidering how to localize long and untrimmed videos with
multiple contents or on the video alignment problem while
oversimplifying without considering the numerous practi-
cally irrelevant videos in the database, their applicability
to real-world situations was inevitably limited. To evaluate
and compare the performances of the proposed solution with
those of other methods on this task, we present a metric and
a dataset with necessary annotations that is now open to the
public. We believe that our work defines the complex real-
world video retrieval problem more practically and presents
a viable solution while also demonstrating outstanding
performance.
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