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ABSTRACT The use of deep learning techniques in detecting anomalies in time series data has been
an active area of research with a long history of development and a variety of approaches. In particular,
reconstruction-based unsupervised anomaly detection methods have gained popularity due to their intuitive
assumptions and low computational requirements. However, these methods are often susceptible to outliers
and do not effectively model anomalies, leading to suboptimal results. This paper presents a novel approach
for unsupervised anomaly detection, called the Cooperative Network Time Series (CNTS) approach. The
CNTS system consists of two components: a detector and a reconstructor. The detector is responsible for
directly detecting anomalies, while the reconstructor provides reconstruction information to the detector
and updates its learning based on anomalous information received from the detector. The central aspect of
CNTS is a multi-objective optimization problem, which is solved through a cooperative solution strategy.
Experiments on three real-world datasets demonstrate the state-of-the-art performance of CNTS and confirm
the effectiveness of the detector and reconstructor. The source code for this study is publicly available on
GitHub (https://github.com/BomBooooo/CNTS/tree/main).

INDEX TERMS Deep learning, time series, anomaly detection, reconstruction, cooperative network.

I. INTRODUCTION
The field of anomaly detection has a rich history dating back
to the 1960s [1], with an increasing number of applications in
areas such as fraud detection [2] and intrusion detection [3].
The proliferation of data has further expanded the scope of
anomaly detection. The presence of anomalies in Internet of
Things (IoT) data poses significant security risks, hindering
the development of the IoT [4]. Deep Learning, a potent
machine learning technique, has recently garnered significant
attention from researchers and demonstrated its superiority in
anomaly detection [5].

The problem of anomalies is very common in real life,
but it is difficult to obtain high-quality labeled data [6].
Therefore, there is an urgent need for unsupervised anomaly
detection methods. Deep learning approaches for anomaly
detection can broadly be classified into three categories [5]:
(i) Feature extraction: the objective is to use deep learning to
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reduce high-dimensional and/or non-linearly separable data
into low-dimensional feature representations for downstream
anomaly detection [7]. (ii) Learning feature representations
of normality: these methods integrate feature learning with
anomaly assessment, unlike the previous category, which sep-
arates the two processes. Examples include autoencoders [8],
GANs [9], predictability modeling [10], and self-supervised
classification [11]. (iii) End-to-end anomaly score learn-
ing: the goal is to learn scalar anomaly scores in a direct
manner without relying on existing anomaly metrics. The
neural network in this approach learns to identify outliers
directly [12]. The first two methods of anomaly detection
are predominantly utilized in unsupervised tasks, whereas
the third method is more commonly employed in supervised
tasks, as it necessitates the availability of anomalous labels.

The first category of methods involves a separation of tasks
and models, while the third category requires labeled abnor-
mal data. As a result, the most commonly used method for
unsupervised anomaly detection currently belongs to the sec-
ond category, i.e., reconstruction-based methods [13]. These
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methods operate by inputting time series data and calculating
its reconstruction error, which is then used as an anomaly
score to determine the abnormality of the data. Once the
anomaly score has been obtained, a suitable threshold is
selected to identify anomalies [14]. The underlying assump-
tion of this method is that deep networks can effectively learn
low-dimensional features of the data and normalize outliers
by reconstruction.

Although these methods have demonstrated good perfor-
mance, they suffer from two key limitations. Firstly, they
do not provide any special treatment for outliers, which can
negatively impact the results of the model since they are
present throughout the training process. Secondly, the goal of
the network is reconstructing the data, rather than detecting
anomalies, resulting in suboptimal performance [5].

In this paper, we present a cooperative network for time
series (CNTS) to address the aforementioned limitations of
existing reconstruction-based methods. The CNTS consists
of two deep learning networks, a reconstructor (R) and a
detector (D). R is responsible for reconstructing the original
data and providing abnormal labels by calculating reconstruc-
tion error, whileD trains based on these labels and returns the
results to R for weight adjustment. Through this cooperative
training process, D and R work together to improve learning
performance. The CNTS reduces the impact of outliers by
screening and selecting appropriate data during training, and
enhances anomaly detection performance by separating the
tasks of data reconstruction and anomaly detection into sep-
arate networks. The CNTS solves a multiobjective program-
ming problem and is based on the FEDFormer network [15].
The main contributions of this work can be summarized as
follows:

• Reconstruction: a novel reconstruction network,
based on anomalyweights, is proposed in this work. This
reconstruction network has the ability to adapt its own
training loss to the abnormal conditions, thus enhancing
its ability to distinguish between abnormal and normal
samples after reconstruction.

• Detection: we present a direct training method for
unsupervised anomaly detection, which involves sepa-
rating the tasks of reconstruction and anomaly detection.
This approach prevents suboptimal results that may arise
from poor feature extraction.

• Cooperation Network: A new cooperative train-
ing mode for the network is proposed in this work.
The network consists of two parts: the reconstructor (R)
that learns the characteristics of normal samples and
the detector (D) that detects anomalies. R and D work
together and enhance each other’s performance. Both
are part of each other’s loss function in this cooperative
training mode.

• Experiment: Experiments were conducted on three
databases, totaling 128 real-world data, and the results
showed that the detection performance of D surpasses
that of nine baseline methods in terms of accuracy, F1
value, and AUC. Additionally, the ability to distinguish

between normal and abnormal samples was further
improved by the reconstructed data of R.

II. PROBLEM FORMULATION
Given a period of univariate time series data X =

{x1, x2, . . . , xN}, with xt ∈ R1, where N is the length of data.
The abnormal labels are denoted as Y = {y1, y2, . . . , yN },
where

yt =

{
1 if xt is abnormal,
0 else.

(1)

Therefore, the problem of anomaly detection can be
described as follows: given a time series data X =

x1, x2, . . . , xN, the aim is to train the model to minimize the
following objective function:

min
θM
L(M(X, θM),Y). (2)

where L represents the loss function and M(·, θM) repre-
sents the model M with parameter θM. Since this paper
mainly discusses the problem of unsupervised anomaly
detection, Y does not exist in the training set and only exists
in the testing set, which is the same as the usual unsupervised
anomaly detection settings.

III. RELATED WORKS
The objective of reconstruction-based anomaly detection
models is to learn an optimized model that accurately recon-
structs normal data instances while failing to reconstruct
anomalies effectively [13]. The use of reconstruction mod-
els for anomaly detection is based on the assumption that
the reconstructed data can differentiate normal data from
abnormal data. The objective function of these models can
be formulated as follows:

min
θM

n∑
i=1

[(1 − yi)L(xi,M(xi, θM)) − yiL(xi,M(xi, θM))]

(3)

The effectiveness of the reconstruction model in detecting
anomalies depends on its ability to produce a small recon-
struction error for normal values and a large reconstruction
error for abnormal values. This will result in a relatively low
value for formula (3). On the other hand, formula (2) has an
advantage over formula (3) as it models anomalies directly,
whereas formula (3) relies on the hope that the reconstruction
error can differentiate between normal and abnormal values.

In practical modeling, the labels for anomalies are always
unknown, and the objective function is formulated as Equa-
tion (4). Equation (4) simplifies the second term in Equa-
tion (3). Despite the fact that outliers represent only a small
fraction of the original data, Equation (4) remains effective.

min
θM

1
n

n∑
i=1

||xi −M(xi, θM)||2 (4)

There are already several models that are based on these
concepts. For instance, the Deep Autoencoding Gaussian
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Mixture Model (DAGMM) [16] is an unsupervised anomaly
detection method that combines an autoencoder with a Gaus-
sian mixture model. The autoencoder is used to compress and
reconstruct the data, and the reconstruction error is fed into
the Gaussian mixture model. The entire model is trained end-
to-end.MAD-GAN [17] is a model that employs a Generative
Adversarial Network (GAN) architecture for training, and
uses both the reconstruction loss and the discriminative loss
as anomaly scores in the testing phase. The Unsupervised
Anomaly Detection (USAD) [18] method introduces another
decoder based on the traditional autoencoder, and trains the
model unsupervised through adversarial learning. The recon-
struction errors from the two decoders play a crucial role
in the training process. MTAD-GAT [19] optimizes both
the forecast-based model and the reconstruction-based model
and achieves a better representation of the time series by com-
bining single-timestamp forecasting and the reconstruction of
the entire time series. CAE-M [20] simultaneously optimizes
two networks, the characterization network, and the memory
network, where the characterization network is based on the
reconstruction loss.

Methods such as these can partially alleviate the impact
of outliers because normal values typically constitute the
majority of the data. However, it is not feasible to use the same
weights for all data, as outliers can affect the training process.
Additionally, the lack of direct training for anomalies in the
objective function can result in suboptimal outcomes.

The inspiration for the cooperative approach in this paper
mainly comes from the adversarial process in GANs [21].
As is well-known, the original GAN was primarily used
for training generative models, and various modifications
have since been developed. In GANs, the generator and dis-
criminator engage in a game and eventually reach a Nash
equilibrium. The patterns generated by the generator in the
equilibrium state are sufficiently similar to real patterns to
confuse the discriminator. This paper introduces a Coop-
erative Network for Time Series (CNTS), which also con-
tains two networks: a reconstructor (R) and a detector (D).
However, the relationship between the two networks is not
adversarial, but cooperative. R and D work together towards
similar objectives, ultimately achieving their individual goals.
Specifically, R’s goal is to reconstruct normal samples and
distinguish them from abnormal samples, while D’s goal is
to detect abnormalities. There is a degree of overlap between
the two goals, allowing for mutual reinforcement.

IV. COOPERATIVE NETWORK FOR TIME SERIES
An anomaly is a singular or a series of observations that
significantly deviate from the general distribution of the data.
The set of anomalies constitutes a small portion of the data
set [22]. Therefore, anomaly detection can be viewed as the
identification of values that do not conform to the known data
distribution. To address this challenge, we propose a deep
learning network that integrates reconstruction and detec-
tion. Reconstruction aims to reconstruct values that closely
match the known data distribution, while detection focuses on

identifying values that do not align with the fitted data distri-
bution. These two tasks are both distinct and interrelated.

A. DIFFERENCE
There are two main differences between the objectives of the
reconstructor (R) and the detector (D). Firstly, R aims to fit
the known data distribution, whereas D aims to identify val-
ues that deviate from the normal data distribution. Secondly,
the output information differs: R provides reconstructions,
while D provides anomaly scores.

B. SIMILARITY
Despite the differences in their objectives, R and D share
similarities in their input forms, and the output information
can be used to some extent to judge the degree of abnormality.

The mutual utilization of information between two entities,
D and R, has several advantages. Firstly, the reconstruction
error of R can be used as a labeling mechanism for D during
its training process. Secondly, D can provide information to
R regarding anomalies, thereby reducing the influence of
potential outliers on R’s training. This separation of the task
of anomaly detection from data reconstruction allows CNTS
to be modeled as a multi-objective programming problem.
The objective function can be formulated as follows:

min
θD,θR

n∑
i=1

LD(D(xi, θD),LR(xi,R(xi, θR)))

min
θD,θR

n∑
i=1

(1 − ŷi(xi, θD))LR(xi,R(xi, θR))


s.t. ŷt (xi, θD) =

{
1 if D(xi, θD) > Topk%(D(X, θD)),
0 else.

(5)

where D(·, θD) is the D with parameters θD, R(·, θR) is the
R with parameters θR, LD and LR denote the loss of D and
R respectively, and ŷt (·, θD) is a category label, if the value
of D(xi, θD) accounts for the top k% of all D(X, θD), then
ŷt (xi, θD) equals to 1, otherwise it equals to 0. Through this
label, the data with a large abnormal score is screened out
during the training process, thereby reducing the impact of
outliers on the reconstruction model.

The overall structure of CNTS is shown in Figure 1. It con-
sists of two parts, the reconstructor and the detector. After
the data W is input, two outputs can be obtained, namely
the reconstructed data Wr and the abnormal score Score.
In order to improve the ability of CNTS on reconstruction and
detection tasks, it is necessary to make theR andD cooperate.
During the training process, while the numerical value of the
abnormal reconstruction error may not necessarily increase,
it should increase relative to the reconstruction error of the
normal points. At the same time, D is continually improving.
The improvement ofD is achieved by using the reconstruction
error provided by R as a criterion for detecting anomalies.
As D becomes more robust, the anomaly detection is passed
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FIGURE 1. Structure of CNTS. The black dotted line indicates the
cooperative information transfer during training.

back to R, which results in a clearer distinction between nor-
mal and anomalous reconstructions. The following sections
describe a highly effective cooperative learning strategy for
optimizing both objectives simultaneously.

C. BASIC MODEL
In this study, both the anomaly detector and the reconstructor
are based on the FEDFormer [15] network structure. The
FEDFormer architecture integrates the Transformer model
with the seasonal-trend decomposition method, leading to
improved performance for long-term time series forecasting.
This approach leverages the fact that many time series data
can be represented sparsely in well-known bases and aug-
ments the Transformer with a frequency-based approach. The
FEDFormer method has been shown to produce a reduction
in prediction error of 14.8% for multivariate and 22.6% for
univariate time series, compared to state-of-the-art methods,
while being more computationally efficient than standard
Transformers. As such, the FEDFormer structure serves as
the foundation of the CNTS model in this paper.

D. RECONSTRUCTOR
Figure 2 depicts the training process of R. It is assumed that
the detector, trained by the method outlined in the previous
section, has the capability to detect outliers. The input data
pass through D to obtain the abnormal scores, and then are
processed by R to generate the reconstructed result. Prior to
computing the loss between the input data and the recon-
structed data, it is necessary to exclude from the data the val-
ues with high abnormal scores, as identified by the detector.
The loss is then calculated by combining the input data and
reconstructed data, and this guides the training of R. During
the training of R, the parameters of D are held constant.
To mitigate the impact of outliers on the reconstruction

process, R employs a strategy of excluding from consider-
ation the top 10% of values with the highest abnormal scores,
as determined by D. This reduces the effect of outliers on the
calculation of the loss, which is used to guide the training of
R. The objective function of R is to minimize this calculated

loss between the input and reconstructed data.

Wr(W, θR) = R(W, θR) (6)

θ∗
R = argmin

θR
LM (Ws, Wrs (W, θR)) (7)

where R(·, θR) is the R with parameters θR, Wr represents
reconstructed data, LM (·, ·) is the mean squared error (MSE)
loss function, θR is the parameter ofR,Ws andWrs represent
the selectedW andWr .

E. DETECTOR
The specific training process of D is shown in Figure 3.
In the training of deep learning, before the data is input
into the model, it needs to be split into subsequences using
a sliding window of length l, denoted as W, where W =

{w1,w2, . . . ,wn}, and wi = {xi, xi+1, . . . , xi+l−1}.
In the training of D, it is assumed that data with larger

reconstruction errors are more likely to be anomalies. The
data entered into the model follows two paths. The first path
involves inputting the data into R to obtain the reconstructed
window Wr and calculating the reconstruction error er. The
second path involves inputting the data into D to obtain
the abnormal score Score. Before the two paths converge to
calculate the loss, the outputs of both parts are compared,
and the top k windows with the highest reconstruction errors
are selected as anomalies for training the model. During the
training of D, the parameters of R remain fixed.
The er can be calculated as

er(W, θR) = LM (Wr(W, θR), W) (8)

The abnormal score Score is calculated by

Score(W, θD) = D(W, θD). (9)

To avoid the training collapse that can result from class
imbalance, only the Score values corresponding to the largest
20% of points are selected as training points. The objective
function can be expressed as follows:

θ∗
D = argmin

θD
LC (Softmax(ers (W, θR)),

Softmax(Scores(W, θD))) (10)

where LC is CrossEntropy loss, and ers and Scores represent
selected er and Score, respectively.

F. ALGORITHM
This subsection provides the pseudocode for the complete
CNTS algorithm, referred to as Algorithm 1. In the algorithm,
where MSE(X1,X2) = (X1 − X2)2, the term ‘‘epoch’’
represents the number of iterations of the entire algorithm.
‘‘R_epochs’’ and ‘‘D_epochs’’ denote the number of itera-
tions of R and D, respectively, in each loop of the algorithm.
During the training of one model, the parameters of the other
model remain fixed.
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FIGURE 2. Train phase of R. During the training of R, the parameters of D are fixed.

FIGURE 3. Train phase of D. During the training of D, the parameters of R are fixed.

V. EXPERIMENTS
A. MODELS
As the outstanding performance of FEDformer [15] in time
series forecasting tasks demonstrates its suitability for time
series data, this paper selects it as the network architecture
forD andR. This study compares nine deep learningmethods
and presents them as follows:

• MERLIN [23]: an algorithm that can efficiently and
exactly find discords of all lengths in massive time series
archives.

• LSTM-NDT [24]: a long short-term memory network
that effectively solves the problem of unsupervised
anomaly detection.

• OmniAnomaly [25]: a stochastic recurrent neural net-
work for multivariate time series anomaly detection that
works well robustly for various devices.

• MSCRED [26]: a model that formulates the anomaly
detection and diagnosis problem as three underlying
tasks, i.e., anomaly detection, root cause identifica-
tion, and anomaly severity (duration) interpretation and
addresses these issues jointly

• MAD-GAN [17]: a framework considers the entire vari-
able set concurrently to capture the latent interactions
amongst the variables.

• USAD [18]: a multivariate time series anomaly detec-
tion model based on an autoencoder architecture whose
learning is inspired by GANs.

• MTAD-GAT [19]: a self-supervised framework for mul-
tivariate time-series anomaly detection

• CAE-M [20]: a unsupervised deep learning based
anomaly detection approach for multi-sensor time series
data with two main subnetworks: characterization net-
work and memory network.

• GDN [27]: a structure learning approach with graph
neural networks, additionally using attention weights to
provide explainability for the detected anomalies.

B. DATASETS
The final model comparison in this study utilizes the follow-
ing two datasets:

• NAB [28]: This dataset consists of labeled real-world
and artificial time series, including metrics from AWS
servers metrics, online ad click-through rates, real-time
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Algorithm 1 Algorithm of CNTS
Require: The input data W; Initialize the model R with

parameters θR; Initialize the model D with parameters
θD; Train epoch of CNTS epochs; Train epoch of R
R_epochs; Train epoch of D D_epochs;

Ensure: The trainedmodelsR andDwith parameters θ∗
R and

θ∗
D, respectively.;

1: for e in epochs:
2: # Train phase of R.
3: for r_e in R_epochs:
4: Wr = R(W, θR);
5: Wrs andWs are selected byWr andW,

respectively;
6: LR = MSE(Wrs ,Ws);
7: Update parameters of R to minimize the loss LR;
8: end for
9: # Train phase of D.

10: for d_e in D_epochs:
11: er = MSE(W,R(W, θR));
12: Score = D(W, θD);
13: Scores and ers are selected by Score and er,

respectively;
14: LD = CrossEntropy(Softmax(Scores),

Softmax(ers ));
15: Update parameters of D to minimize the loss LD;
16: end for
17: end for

traffic data, and a collection of Twitter mentions from
large public companies.

• NASA-SMAP and NASA-MSL [29]: These datasets
consist of real spacecraft telemetry data from the
Soil Moisture Active Passive (SMAP) satellite and the
Curiosity rover (MSL), respectively.

For the purposes of this study, only the first dimension
representing continuous data is retained, while the remaining
dimensions for binary data are omitted. In the experiments,
the data is divided into a training set and a test set. The
training set is used for model training and does not include
abnormal labels, while the test set contains abnormal labels
for comparison of results. Data without anomalies in the
test set is removed. Finally, the effective data information
is obtained, as shown in Table 1. The header of Table 1
indicates the name of the datasets, the number of points in the
training set, the number of points in the test set, the number of
abnormal points in the test set, and the abnormal proportion.

TABLE 1. Information of datasets.

C. DETECTION
In the experiments, anomaly detection is performed on all
data separately, and the average value of each dataset is finally
calculated. During the test phase, the data is fed into D to
obtain the anomaly scores and the anomaly labels are used
to calculate performance metrics. However, due to the over-
estimation of the anomaly detection model by the anomaly
adjustment strategy [30], the detection results reported in
many previous studies are no longer credible [31]. Hence, this
paper eliminates the anomaly adjustment strategy and utilizes
a unified detection metric to compare different methods. This
metric calculates the result by combining all the test data,
instead of adjusting for anomalies. A point with an anomaly
score greater than a selected threshold δ is considered an
anomaly. The output anomaly result Sδ

= {sδ1, s
δ
2, . . . , s

δ
N }

is the following formula

sδi =

{
1 if Score(xi) > δ,

0 else.
(11)

where Score(xi) is the anomaly score of xi. After labeling, the
accuracy, precision, recall, and F1 score for the evaluation are
computed as follows:

acc =
TP+ TN

TP+ FP+ FN + TN
(12)

precision =
TP

TP+ FP
(13)

recall =
TP

TP+ FN
(14)

F1 =
2 · precision · recall
precision+ recall

(15)

where TN, TP, FP, and FN denote the number of true neg-
atives, true positives, false positives and false negatives,
respectively.

There are numerous ways to choose the threshold
[32], [33]. In this paper, the focus is on evaluating the model’s
ability to distinguish between abnormal and normal data,
therefore, the threshold that maximizes the F1 score of the
model results is selected.

δ∗
= argmax

δ
F1(Y,Sδ) (16)

where F1(Y,Sδ) is F1 score betweenY and Sδ . The accuracy
(ACC), F1 value and area under the curve (AUC) of receiver
operating characteristic (ROC) of the detection results are
shown in the table 2.

The results of the comparison between different detection
methods are depicted in Table 2, with the optimal result high-
lighted in bold. It is evident that the CNTS outperforms the
other methods on all three datasets after removing the influ-
ence of the abnormal adjustment. This confirms the previous
finding that the abnormal adjustment tends to overestimate
the performance of the model [31], [34]. The table shows that
the CNTS has greatly improved, resulting in the best results
in terms of ACC, F1, and AUC. Compared to the baseline
method, there has been an improvement of 15%, 17%, and
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TABLE 2. Comparison of detection results.

6% respectively in these indicators. Additionally, it has been
demonstrated that the use of FEDformer alone, as an unsuper-
vised anomaly detection model based on reconstruction, can
still produce good results for some indicators. This indicates
a degree of correlation across different time series data tasks.

D. RECONSTRUCTION
The obtained reconstructed results form R and the original
data are used to calculate themetrics. The reconstruction error
er = {e1, e2, . . . , eN }.The reconstruction error of normal and
abnormal values will be used to measure the quality of the
reconstructed model. It is calculated as follows:

MSEn =

∑N
i=0 ei ∗ (1 − yi)∑N
i=0(1 − yi)

MSEa =

∑N
i=0 ei ∗ yi∑N
i=0 yi

(17)

where MSEn and MSEa represent the MSE errors of normal
and abnormal, respectively.

Figure 4 presents a comparison of the reconstruction effec-
tiveness between a single reconstruction network (R) and
CNTS. The length of each bar in the histogram represents
the proportionality of the models, not the actual values, with
R being equal to 1. The numerical value for each model’s
index is indicated on the top of each bar. The histogram fur-
ther quantifies the capability of the models in distinguishing
between normal and anomalous data points. This value can
be calculated using the formula provided.

Dis =
MSEa −MSEn

MSEn
(18)

The histogram in Figure 4 clearly illustrates the superiority
of CNTS over the baseline model in terms of discrimina-
tive power. As can be observed from the figure, the Dis
value of CNTS is higher than that of the baseline model
across all datasets, with a margin of approximately three
times higher on the NASA-MSL data. This result further
emphasizes the detrimental impact of outliers on the training
process of reconstruction models, reducing their sensitivity to
anomalies.

FIGURE 4. Comparisons of reconstruction effects.

E. COOPERATION
Figure 5 displays the training process for six data points from
three different databases. The x-axis in Figure 5 represents
the number of alternating training rounds, while the left and
right y-axes represent the reconstruction loss for normal data
points and the F1 value of the detector, respectively.

As the training progresses, the reconstruction loss of CNTS
for normal values continually decreases, thereby exposing
outliers to an increasingly higher reconstruction error. As a
result, the detection component of CNTS continuously learns
from this reconstruction error to enhance its ability to detect
anomalies.

By combining these results, it can be observed that CNTS
outperforms the baseline method after one stage of training in
some data sets, while in others it may require several stages of
training to gradually surpass the baseline method. Regardless
of the starting point, as the training phase advances, the
performance of CNTS’s detector and reconstructor continues
to improve. This demonstrates that there is a cooperative
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FIGURE 5. Metric changes of cooperative training. The solid lines represent the results of CNTS, and the dashed lines represent the results of
single D or R.

FIGURE 6. Metric changes of cooperative training. The red line represents the reconstruction error, with triangles and dots representing the
reconstruction errors of outliers and normal values, respectively. The histograms depict the Dis of the model at different stages of training.

relationship between the detector and reconstructor during
the training process, resulting in superior performance com-
pared to training them individually.

Figure 6 illustrates the variations in various indicators dur-
ing the training process of CNTS’s R as the stage advances.
The red line represents the reconstruction error, with triangles
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and dots representing the reconstruction errors of outliers and
normal values, respectively. The histograms depict the Dis of
the model at different stages of training.

The line graph reveals that the reconstruction errors of
normal values consistently decrease, demonstrating that the
model is learning effectively. However, the reconstruction
errors of outliers are more fluctuating. The histograms pro-
vide another perspective, showing that R has the ability to
differentiate between outliers and normal values. Although
there may have been some fluctuations in earlier stages,
the overall trend indicates that the Dis is increasing, which
implies that the discriminative ability of R improves as the
number of model training increases.

VI. CONCLUSION
In this paper, we propose a novel cooperation-based unsu-
pervised anomaly detection method for time series data,
referred to as CNTS. This method is based on reconstruc-
tion loss and aims to address the limitations of existing
reconstruction-based unsupervised anomaly detection meth-
ods by mitigating the impact of outliers on reconstruction
performance. CNTS integrates a separate network dedicated
to learning the anomaly detection task. The experimental
results demonstrate that CNTS effectively helps the recon-
struction model to distinguish between normal and abnormal
time series data.

There are three aspects that can be further studied in the
CNTS. One area of focus could be the selection of the basic
model, such as FEDformer. Currently, it is not specifically
designed for anomaly detection or reconstruction, and it may
be beneficial to investigate the use of a dedicated network
for these tasks. Additionally, in order to reduce the time
complexity of CNTS, which results from its dual-network
structure, one could alleviate it by incorporating a more effi-
cient approach, such as missing value imputation, prediction,
or classification, into a unified framework for processing
time series data. Finally, further experimentation is useful
to determine the optimal proportion of data to be selected
or removed during the data selection process performed by
detectors and reconstructors.
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