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ABSTRACT The Analytical Triangular Decoupling Internal Model Control (ATDIMC) technique for 2 ×

2 systems is generalized to n×n systems (n ≥ 2) with delays and right-half-plane (RHP) transmission zeros.
The formulation is done by first creating a triangular closed-loop transfer function matrix corresponding to
the achievement of the triangular decoupling objective of restraining inverse-response and control-loop-
interaction characteristics to a single plant output. Subsequently, the corresponding multivariable internal
model controller is calculated, with transfer-function approximations made using an optimization algorithm
that minimizes the Integral Time-Weighted Absolute Error (ITAE) of the difference between the step
responses of the original and reduced expressions. It is shown that n ATDIMC designs emerge that achieve
the shifting of inverse responses and interactions to a least-desired output, with delays retained for all outputs
and asymptotic tracking of setpoints achieved for all n outputs of each design. To mitigate the possible effect
of severe interaction on the least-desired output, a modification of this formulation is performed to spread
inverse-response behavior to a second output, while minimizing the interaction of that output with the initial
least-desired output. Simulation results for selected 3× 3 and 4× 4 systems show the effectiveness of these
propositions.

INDEX TERMS Triangular decoupling, multivariable systems, multi-input, multi-output systems, square
systems, open-loop-stable systems, nonminimum-phase systems, RHP transmission zeros, internal model
control, input delays, model simplification.

I. INTRODUCTION
Internal Model Control (IMC) explicitly includes the
mathematical model of an open-loop-stable plant in the con-
trol structure for the plant, hence the name. Originally for-
mulated for open-loop-stable, Single-Input, Single-Output
(SISO) dynamical systems, the IMC configuration com-
bines cascade, parallel and feedback connections in a single
configuration to achieve such desired characteristics as
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design simplicity, closed-loop stability guarantee, null
steady-state-offset guarantee and transparency of robust
design [1], [2], [3]. The IMC structure contains a parallel
combination of the plant and its model, with the con-
troller being the exact inverse (for minimum-phase systems)
or approximate inverse (for nonminimum-phase systems)
of the model of the controlled system. Extended formu-
lations of, or modifications of the SISO IMC concept
have been made and applied to several control situations,
including PID control [3], [4], control of unstable sys-
tems [3], [5], [6], control of nonlinear systems [7], [8], control
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of square multivariable systems [3], [9] and decentralized
control [3], [10].

In respect of the extension of SISO IMC to square
nonminimum-phaseMultiple-Input,Multiple-Output (MIMO)
systems without delays, the model of the plant is first fac-
torized into the ‘‘good’’ factor without RHP transmission
zeros and ‘‘bad’’ factor with RHP transmission zeros, with
the ‘‘good’’ factor subsequently inverted and augmented with
a filter matrix for properness. There are theoretically infinite
possibilities of factorization results for a nonminimum-phase
transfer function matrix, and this implies that a closed-
loop transfer function matrix must be directly or indirectly
specified for a particular factorization process before a cor-
responding factorization can be done. Different choices of
the closed-loop transfer function matrix have led to a variety
of outcomes in respect of degrees of allowed control-loop
interactions and inverse responses, leading to such outcomes
as dynamic decoupling, triangular decoupling and optimal
spread of inverse responses and control-loop interactions
[2], [3], [9].

The extension of SISO IMC to square MIMO systems
with delays has not been straightforward because the zero
polynomial of a square transfer function matrix with delays is
irrational, complicating the process of inversion of thematrix.
However, with the specification of a diagonal closed-loop
transfer function matrix and the determination of the internal
model controller that approximately yields such a matrix,
it has been shown that Internal Model Control that achieves
dynamic decoupling can be developed for square MIMO
systems with delays, hence the emergence of ‘‘Decoupling
Internal Model Control’’ (DIMC) [11], [12], [13], [14], [15].
For square MIMO systems with delays and without RHP
transmission zeros, the process of design of controllers
using DIMC involves approximate transfer function matrix
inversion, with appropriate elements of the resulting con-
troller matrix approximated to rational transfer functions
with delays [11], [12], [14]. Because of the intuitive appeal
of dynamic decoupling [16], many multivariable control
formulations have been developed over the years using
the dynamic decoupling concept, with IMC either used
directly or together with such concepts such as Simplified
Decoupling and Inverted Decoupling achieve control using
an IMC structure or a conventional feedback structure (
[15], [17], [18], [19], [20], [21], [22], [23], [24]).

For systems with delays and RHP transmission zeros,
transfer function matrix inversion leads to instability. To actu-
alize DIMC for such systems without introducing instability,
the desired diagonal closed-loop transfer function matrix is
utilized using a procedure similar to that of the aforemen-
tioned dynamic-decoupling-basedMIMO IMC for delay-free
nonminimum-phase (NMP) systems [11], [14]. The all-pass
form of the elements of the diagonal of this matrix ensures
that the RHP poles of the approximately inverted matrix of
the plant can be removed, yielding a closed-loop stability
guarantee, but with the inevitable spread of inverse responses
to all outputs [11], [14], [25].

While dynamic-decoupling-based IMC achieves setpoint-
tracking and disturbance-rejection objectives, it has been
shown in [25] and [26] that a triangular-decoupling-based
formulation offers the possibility of achieving a better overall
performance-index value than a dynamic-decoupling-based
formulation for a delay-free system with RHP transmission
zeros. It has also been shown in [25] and [26] that in compar-
ison to dynamic decoupling, better results can be produced
using triangular decoupling for nonminimum-phase systems
with strong control-loop interactions and in situations where
there are control objectives that prioritize the performance of
some outputs over others. The main motivation of this study
is therefore provided by the possibility of the extension of the
aforementioned advantages to MIMO IMC design for square
MIMO systems with delays and RHP transmission zeros.

Over the last five decades, several authors have pro-
vided solutions to different formulations of the triangular
decoupling problem using a variety of methods of analysis
and design. By using desired upper-triangular and lower-
triangular closed-loop transfer function matrices, the tri-
angular decoupling problem was solved in [25] and [26]
for delay-free multivariable systems with RHP transmis-
sion zeros such that inverse responses and interactions are
shifted to a single, least-desired output. In [27], a geomet-
ric formulation was used to achieve state-feedback-based
triangular decoupling for multivariable systems. By modi-
fying Silverman’s inversion algorithm and using it for the
triangular decoupling problem as formulated in state space,
it was shown in [28] that the existence of state feedback
laws for triangular decoupling was equivalent to conditions
for invertibility. In [29], an algebraic technique was used
to determine conditions for existence of solution to trian-
gular decoupling problem, with a proposed pole-placement-
based controller design method providing the solution to
the triangular decoupling problem. In [30], the regular con-
trollability distributions were used in achieving triangu-
lar decoupling in nonlinear multivariable systems. Robust
input-output triangular decouplers were developed in [31] for
linear multivariable systems with nonlinear uncertain struc-
tures. Realizable proportional state feedback was utilized
in [32] for triangular decoupling of multivariable systems
with delays. The argument was made in [33] of the equiv-
alence of the triangular-diagonal-dominance and coprime
factorization-based conditions for existence of solution to the
triangular decoupling problem. The canonical decomposition
technique of a right invertible system was used in [34] to
obtain solutions to the triangular decoupling problem, with
explicit solutions obtained using the pole assignment tech-
nique. In [35], static feedback was used to solve the triangular
decoupling problem by establishing necessary and sufficient
conditions for triangular decoupling numerically and then
using an algorithm to develop triangularly decouplable par-
titions. Necessary and sufficient conditions for solvability
of the so-called ‘‘Triangular-Decoupling-with-Disturbance-
Rejection (TDDR) problem’’ were derived in [36] for neutral
time-delay systems, with the problem subsequently solved
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using controllers without delays. TheDIMC technique of [14]
was modified in [37] to achieve triangular decoupling for
2×2 systemswith delays and single RHP zeros, leading to the
creation of the ‘‘Analytical Triangular Decoupling Internal
Model Control’’ (ATDIMC) strategy.

Of the above formulations, the techniques of [25] and [26]
were presented in the Laplace domain and therefore offer
the simplest and most direct procedure for using transfer
function matrices to extend the triangular decoupling IMC
concept to squareMIMO systemswith delays and RHP zeros,
while explicitly addressing the matter of shifting of both
inverse responses and control-loop interactions to a single
output. While the DIMC technique of [14] was modified
into ATDIMC to achieve triangular decoupling in [37] for
2 × 2 systems with delays and RHP zeros, it can be argued
that ATDIMC is also equivalently the result of a reformula-
tion of delay-free triangular-decoupling-based IMC in [25]
to achieve triangular decoupling for 2 × 2 systems with
delays and RHP zeros. The formulation of [37] stands as
the only one to date that tackles the triangular decoupling
problem for square multivariable systems with delays and
RHP zeros using the IMC structure. Since it was successfully
shown in [37] for 2× 2 systems that the nominal and robust-
ness characteristics of at least one of the ATDIMC designs
for each considered system were better than those obtained
using DIMC, a motivation is provided for generalizing the
ATDIMC technique of [37] to n × n systems with delays
and RHP transmission zeros (n > 2). If the generalization is
successful, ATDIMC can be presented as a better technique
of achieving control objectives than the existing DIMC for
square multivariable systems with delays and RHP zeros.

In this study, the ATDIMC concept in [37] was extended
to n × n systems with delays and single RHP transmission
zeros. The closed-loop transfer function matrix correspond-
ing to the shifting of the inverse response and control-loop
interaction characteristics to the nth output is first developed,
and the corresponding internal model controller is computed,
with provisions made to ensure that closed-loop stability is
guaranteed. Subsequently, the closed-loop transfer function
matrix corresponding to the shift of the inverse responses and
control-loop interactions to the ith output (i < n) was also
developed, and the corresponding controller was developed.
Both formulations yield n ATDIMC designs for an n × n
system. Because of the possibility of severe interaction added
to the least-desired output, a modified ATDIMC formulation
was performed to remove the interaction effect of an output
yk on the least-desired output yw, w ̸= k , with an inverse
response placed on yk . Simulation results, including those
from designs on the model of a practical 3× 3 Depropanizer
in [13], show the effectiveness of the propositions.

The remainder of this paper is organized as follows. Sec-
tion II-A provides the mathematical preliminaries that define
the closed-loop transfer function matrix of a continuous-time
square stable multivariable system within the IMC configura-
tion under the assumption of a perfect plant-model match and
in the absence of disturbances. Section II-B defines triangular

FIGURE 1. Block diagram of internal model control for square MIMO
systems.

transfer function matrices, including those that are techni-
cally not triangular matrices but can emerge as triangular
matrices if the variables that are related by such matrices
are rearranged. Sections III-A and III-B develop the internal
model controller equations within the ATDIMC framework
that restrict inverse response and control-loop interaction
characteristics to the nth and ith outputs respectively (i < n).
Sections III-C and III-D develop internal model controller
equationswithin themodifiedATDIMC framework thatmod-
ify the designs of Sections III-A and III-B such that inverse
responses are restricted to two outputs, and interaction con-
tributions to the respective least-desired outputs are reduced
by one. Section IV provides the technique for minimization
of the Integral Time-Weighted Absolute Error (ITAE) of the
difference between the original and reduced transfer function
expressions as a technique for the reduction of the elements of
the internal model controllers developed in Section III. Sec-
tion V discusses the analysis of the designed controllers for
robust stability and performance using µ-analysis. The simu-
lation results are presented and discussed in Section VI, and
conclusions are presented in Section VII. The Appendices
Section gives details of the proofs of Propositions 1 and 2
(of Sections III-A and III-C respectively) and the designed
controllers of Section VI, while the cited publications are
listed in the References Section.

II. MATHEMATICAL PRELIMINARIES
A. THE MIMO IMC CONFIGURATION
Figure 1 shows a block diagram of IMC for an n × n
system. The sub-systems G,Gm, and C are n × n transfer
function matrices representing the plant, the model of the
plant and the controller respectively. The vectors R,U,D and
Y are the Laplace transforms of the n-sized vectors of the
command signal, plant input, output disturbance and plant
output respectively. The transform of the feedback signal is
equal to the disturbance transformD if there is a perfect plant-
model match.

Both R and D in Figure 1 are assumed to be transforms of
vectors of positive unit step and negative unit step functions
respectively. Mathematically, if µ(t) is a unit step function
such that

µ (t) =
0, t < 0
1, t ≥ 0

}
(1)

then R and D can be written as
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R (s) =
[
µ

(
t − tr,1

)
µ

(
t − tr,2

)
. . . µ

(
t − tr,n

) ]T
(2)

D (s) =
[
− µ

(
t − td,1

)
−µ

(
t − td,2

)
. . . −µ (t − tn)

]T
(3)

where tr,i(i = 1, 2, . . . , n) is a constant and is chosen to
allow the evaluation of the amount of interaction that the
setpoint tracking in the ith loop has with all other n − 1
loops, and td,j(j = 1, 2, . . . , n) is also a constant and is
chosen to allow the evaluation of the amount of interaction
that the disturbance rejection in the jth loop has with all other
n− 1 loops.

Using multiple system reduction techniques for multivari-
able systems [16], the closed-loop transfer function matrix
can be written as

Y (s) = GC (I + [G− Gm]C)−1R

+ {I − GmC} (I + [G− Gm]C)−1D. (4)

As stated in [37], without loss of generality, if a per-
fect plant-model match and the absence of disturbance are
assumed, Eq. (4) becomes

Y (s) = G(s)C(s)R(s) (5)

such that the closed-loop transfer function relating the plant
output transform Y (s) to the command signal transform R(s)
becomes

H (s) = G(s)C(s). (6)

By implication,

C(s) = G−1(s)H (s). (7)

If H (s) is formulated as a triangular matrix achieving
triangular decoupling, then, with the inverse of G(s) approx-
imately computed, the corresponding internal model con-
troller C(s) can be found using Eq. (7), with H (s) pre-set to
ensure that the RHP poles ofG−1(s) can be removed, thereby
guaranteeing closed-loop stability. In addition, because the
foregoing has all the features of the IMC configuration, there
will be null steady-state offset and transparency of robust
design through the tuning and detuning steps that perform
trade-offs between performance and robustness.

B. TRIANGULAR TRANSFER FUNCTION MATRICES
Based on the definitions of upper and lower triangular matri-
ces in [38], if an n× n matrix is defined by

A =


A11 A12 . . . A1n
A21 A22 . . . A2n
...

...
. . .

...

An1 An2 . . . Ann

 (8)

then A is upper-triangular if the diagonal elements
Aii (i = 1, 2, . . . , n) and at least one of the ele-
ments above the diagonal (A12,A13, . . . ,A1n,A23,A24, . . . ,
A2n,A34, . . . ,A3n, . . . ,An−2,n−1,An−2,n and An−1,n) are

non-zero while every other element of the matrix is zero.
On the other hand, A is lower-triangular if the diagonal
elements and at least one of the elements below the diag-
onal (A21,A31,A32,A41,A42,A43, . . . ,An−2,1,An−2,2, . . . ,

An−2,n−3,An1, An2, . . . ,An,n−2 and An,n−1) are non-zero
while every other element of the matrix is zero.
For example, the matrices A1 and A2 in Eqs. (9) and (10)

are upper and lower 3×3 triangular transfer functionmatrices
respectively, i.e.,

A1(s) =


2

s+ 5
3

2s+ 1
0

0
4

s+ 5
4

s+ 7

0 0 −
6

s+ 1

 (9)

A2(s) =


−

7
s+ 4

0 0

0
4

2s+ 9
0

5
s+ 6

8
0.5s+ 1

−
1

6s+1

 . (10)

Let a third matrix A3 be defined as in Eq. (11).

A3(s) =


−5

s2 + 2
0 0

2
9s+ 1

4
s+ 7

9
11s+ 1

0 0
8

3s+ 2

 . (11)

The matrix A3(s) has a non-zero element above the diagonal
(element A23) and a non-zero element below the diagonal
(element A21). It is therefore evident that A3(s) of Eq. (11) is
technically not an upper or lower triangular matrix. However,
if the two 3-sized vectors α(s) and β(s) that gave rise to A3(s)
are defined as

α (s) =
[
α1 (s) α2 (s) α3 (s)

]T (12)

β (s) =
[
β1 (s) β2 (s) β3 (s)

]T (13)

such that

α (s) = A3 (s) .β (s) (14)

then, we can re-arrange the elements of the vectors of Eqs.
(12) and (13) to lead, respectively, to new vectors αrearr(s)
and βrearr(s) such that

αrearr(s) =
[
α1 (s) α3 (s) α3 (s)

]T (15)

βrearr (s) =
[
β1 (s) β3 (s) β2 (s)

]T
. (16)

With the rearranged vectors of Eqs. (15) and (16), Eq. (14)
becomes

αrearr (s) = A3,2 (s) .βrearr (s) (17)
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where

A3,2(s) =


−5

s2 + 2
0 0

0
8

3s+ 2
0

2
9s+ 1

9
11s+ 1

4
s+ 7

 . (18)

Because signals within a system can be rearranged as
shown in Eqs. (15), (16) and (17) without the loss of any of the
features of the system, closed-loop transfer function matrices
of the form of the RHS of Eq. (11) are regarded as triangular
in this study.

III. GENERALIZED ATDIMC FOR SQUARE
MULTIVARIABLE SYSTEMS WITH DELAYS
A. ATDIMC SHIFTING INVERSE RESPONSES AND
CONTROL-LOOP INTERACTIONS TO nTH OUTPUT FOR
n × n SYSTEMS WITH DELAYS AND RHP TRANSMISSION
ZEROS
Let the plant and controller transfer function matrices of
rational elements plus delays be respectively given by

G (s) =

G11 (s) . . . G1n (s)
...

. . .
...

Gn1 (s) . . . Gnn (s)

 (19)

C (s) =

C11(s) . . . C1n(s)
...

. . .
...

Cn1(s) . . . Cnn(s)

 (20)

where

Gij (s) = Gijr (s).e−θgijs; i = 1, 2, . . . , n; j = 1, 2, . . . , n;

θgij ≥ 0 (21)

Cij (s) = Cijr (s).e−θcijs; i = 1, 2, . . . , n; j = 1, 2, . . . , n;

θcij ≥ 0. (22)

In Eqs. (21) and (22), Gijr (s) and Cijr (s) are rational open-
loop-stable transfer functions, and θgij and θcij are the delays
associated with Gij (s) and Cij (s) respectively.
For plant inputs being u1, u2, . . . , un and plant outputs

being y1, y2, . . . , yn, triangular decoupling can be achieved
such that interactions and inverse responses are shifted to
yn, with outputs y1, y2, . . . , yn−1 being completely non-
interacting (or very mildly interacting) and without inverse
responses (or with very mild inverse responses). With ref-
erence to [25], for this to occur, the closed-loop transfer
function matrix Hn×n,n(s), assuming the existence of an RHP
transmission zero at s = z (z ∈ R+) for the system, can be
written as

Hn×n,n (s) =

[
Hdiag1,n 0(n−1)×1
Hrow1,n Hnn

]
(23)

where

Hdiag1,n = diag
{
H11,H22, . . . ,Hn−1,n−1

}
Hrow1,n =

[
Hn1 Hn2 · · · Hn,n−1

] }
(24)

and 0(n−1)×1 is an (n− 1) × 1 zero matrix.
In Eq. (23) and (24),

Hkk =
e−θk s

τks+ 1
; k = 1, . . . , n− 1

Hnp =
s.an,p
(s+ z)

.
e−θps

τps+ 1
; p = 1, . . . , n− 1

Hnn =
−s+ z
s+ z

.
e−θns

τns+ 1


, (25)

with an,p being a constant whose value is to be calculated such
that the controller in Eq. (7) is stable.

Let the adjoint of G(s) be given by

adj(G) =


ĝ11 (s) ĝ12 (s) . . . ĝ1n (s)
ĝ21 (s) ĝ22 (s) . . . ĝ2n (s)

...
...

. . .
...

ĝn1 (s) ĝn2 (s) . . . ĝnn (s)

 . (26)

The inverse of G(s) can be written as

G−1(s) =
P (s)
Z (s)

.


ĝ11 (s) ĝ12 (s) . . . ĝ1n (s)
ĝ21 (s) ĝ22 (s) . . . ĝ2n (s)

...
...

. . .
...

ĝn1 (s) ĝn2 (s) . . . ĝnn (s)


(27)

where P(s) and Z (s) are the pole and approximate zero poly-
nomials of G(s) respectively. Based on the existence of an
RHP transmission zero in G(s),

Z (s) = (−s+ z)M (s) (28)

whereM (s) has roots with negative real parts.
By substituting Eqs. (23) and (27) into Eq. (7), the initial

controller matrix expression Cn×n,n,init1(s) can be computed
by simplematrixmultiplication. Further adjustments can then
be made to the controller to first reduce irrational transfer
function expressions using model reduction techniques and
then remove RHP poles with RHP zeros.
Proposition 1: With reference to the adjoint matrix of Eq.

(26), let the vectors vq and ĝn be n-sized vectors defined
respectively by

vq =
[
v1q v2q . . . vnq

]T (29)

ĝn =
[
ĝ1n ĝ2n . . . ĝnn

]T (30)

where

vγ q = ĝγ q (s) + ĝγ n (s) .
s.an,q (s)
(s+ z)

; γ = 1, . . . , n. (31)

With a closed-loop transfer function matrix Hn×n,n given by
Eq. (23) and the plant inverse G−1(s) given by Eq. (27),
the internal model controller Cn×n,n,init1 (s) can be computed
according to Eq. (32), i.e.

Cn×n,n,init1(s) = G−1(s)Hn×n,n (32)

to yield

Cn×n,n,init1 (s)
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=
P (s)

(−s+ z)M (s)
×

[
v1F1 v2F2 . . . vn−1Fn−1 ĝnFmn

]
(33)

where

Fq =
e−θqs

τqs+ 1
; q = 1, . . . , n− 1 (34)

Fmn =
−s+ z
s+ z

.
e−θns

τns+ 1
. (35)

Proof: The proof is given in Appendix A1.
Remark 1: With appropriate steps taken to remove the

right-half-plane poles with right-half-plane zeros in the con-
troller matrix arising from the utilization of Proposition 1,
the controller that emerges guarantees closed-loop stability
as well as null steady-state offset for all outputs.
Remark 2: Eq. (33) will only be stable if each of vγ q (s)

has the expression (−s + z) as one of its factors. Theorem 1
will help us ensure that this condition is satisfied.
Theorem 1: For an open-loop-stable, n × n system with

delays and a single RHP transmission zero at s = z, the
expression

vγ q(s) = ĝγ q + ĝγ n
s.an,q
(s+ z)

, γ = 1, . . . , n;

q = 1, . . . , n− 1 (36)

has the expression −s+ z as one of its factors if and only if
an,q = −2ĝγ q(z)

/
ĝγ n(z); γ = 1, . . . , n. (37)

Proof: For (−s+ z) to be a factor of vγ q(s), vγ q(z) must
be 0:

vγ q(z) = ĝγ q(z) + ĝγ n(z)
z.an,q (z)
(z+ z)

= 0

ĝγ n(z).an,q (z) = −2ĝγ q(z)

an,q (z) = −2ĝγ q(z)
/
ĝγ n(z); γ = 1, . . . , n. (38)

Remark 3: Based on Eq. (38), because each of an,q (z) is
unique for a particular value of n and q, then

ĝ1q(z)
/
ĝ1n(z) = ĝ2q(z)

/
ĝ2n(z) = . . . = ĝnq(z)

/
ĝnn(z). (39)

Eq. (39) holds for every square matrix with an RHP transmis-
sion zero at s = z and an adjoint matrix of Eq. (26).
Remark 4: As shown in Theorem 2 (Section III-B), a pro-

cedure similar to that of the proof of Theorem 1 can be used
to develop conditions to actualize a triangular decoupling
IMC design that moves inverse responses and control-loop
interactions to the ith output (i < n).
WithMn,γ q defined as

Mn,γ q =

(
ĝγ q(s) + ĝγ n(s).

s.an,q (s)
(s+ z)

) /
(−s+ z) (40)

substitution of Eq. (40) into Eq. (33), with the RHP zero
and pole terms removed, leads to the final internal model
controller achieving shifting of inverse responses and control-
loop interactions to the nth output as

Cn×n,n,fin(s) =
[
c1F1 c2F2 . . . cn−1Fn−1 ĝnctn

]
(41)

where Fq is as given in Eq. (34), ĝn is as given in Eq. (30),
and

cq =
[
c1q c2q . . . cnq

]T
; q = 1, . . . , n− 1

cγ q =
P(s)Mn,γ q(s)

M (s)
; γ = 1, . . . , n; q = 1, . . . , n− 1

ctn =
P(s)(s)e−θns

(s+ z)M (s)(τns+ 1)

 .

(42)

B. ATDIMC SHIFTING INVERSE RESPONSES AND
CONTROL-LOOP INTERACTIONS TO iTH OUTPUT FOR n × n
SYSTEMS WITH DELAYS AND RHP TRANSMISSION ZEROS
Using Eqs. (19)-(22), for triangular decoupling to be achieved
such that interactions and inverse responses are shifted to yi
(i < n), the closed-loop transfer functionmatrixHn×n,i(s) can
be written in block matrix form as,

Hn×n,i (s) =

 Hdiag1,i 0(i−1)×1 0(i−1)×(n−i)
Hrow1,i Hii Hrow2,i

0(n−i)×(i−1) 0(n−i)×1 Hdiag2,i


(43)

where

Hdiag1,i = diag
{
H11,H22, . . . ,Hi−1,i−1

}
Hrow1,i =

[
Hi1 Hi2 · · · Hi,i−1

]
Hrow2,i =

[
Hi,i+1 Hi,i+2 · · · Hin

]
Hdiag2,i = diag

{
Hi+1,i+1,Hi+2,i+2, . . . ,Hnn

}
 (44)

and 0(i−1)×1, 0(i−1)×(n−i), 0(n−i)×(i−1) and 0(n−i)×1 are,
respectively, (i − 1) × 1, (i − 1) × (n − i), (n − i) × (i − 1)
and (n− i) × 1 zero matrices. In Eq. (44),

Hkk =
e−θk s

τks+ 1
; k = 1, . . . , i− 1, i+ 1, . . . , n

Hir =
s.ai,r
(s+ z)

.
e−θr s

τrs+ 1
; r = 1, . . . , i− 1, i+ 1, . . . , n

Hii =
−s+ z
s+ z

.
e−θis

τis+ 1


(45)

with ai,r being a constant whose value is to be determined.
The procedure for determining ai,r is discussed in Theorem 2
and is similar to that of an,q in Theorem 1.
As indicated in Section II-B, the matrix in Eq. (43) is not

technically triangular but becomes triangular by rearranging
the vectors that are related by the matrix. Thus, if

Yn×n,i (s) = Hn×n,i (s)Rn×n,i (s) (46)

where

Yn×n,i (s) =
[
Y1(s) Y2(s) . . . Yn(s)

]T (47)

Rn×n,i (s) =
[
R1(s) R2(s) . . . Rn(s)

]T (48)

then, by rearranging the elements of the vectors in Eqs. (47)
and (48) such that

Yn×n,i,2 (s)
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=
[
Y1(s) . . . Yi−1(s) Yi+1(s) . . . Yn(s) Yi(s)

]T (49)

Rn×n,i,2 (s)

=
[
R1(s) . . . Ri−1(s) Ri+1(s) . . . Rn(s) Ri(s)

]T (50)

Eq. (46) becomes

Yn×n,i,2 (s) = Hn×n,i,2 (s)Rn×n,i,2 (s) (51)

where Hn×n,i,2 (s) is given by

Hn×n,i,2 (s) =

 Hdiag1,i 0(i−1)×1 0(i−1)×(n−i)
0(n−i)×(i−1) Hdiag2,i 0(n−i)×1
Hrow1,i Hrow2,i Hii


(52)

and the sub-matrices of Hn×n,i,2 (s) are the same as in Eq.
(44).

It is easy to see that Hn×n,i,2 (s) can easily be derived from
Hn×n,i (s). It is also easy to see thatHn×n,i,2 (s) is of the same
triangular form as Hn×n,n (s) of Eq. (23). The matrix of Eq.
(45) can therefore be recast into the form of Eq. (52) and used
to design a triangular decoupling internal model controller
that shifts inverse responses and interactions to the ith output
(i < n) using a procedure similar to that in Section III-A.
Proposition 2: With reference to the adjoint matrix of Eq.

(26), let the vectors vr and ĝi be n-sized vectors defined
respectively by

vr =
[
v1r v2r . . . vnr

]T (53)

ĝi =
[
ĝ1i ĝ2i . . . ĝni

]T (54)

where

vwr = ĝwr (s) + ĝwi (s) .
s.ai,q (s)
(s+ z)

;

w = 1, 2, . . . , n; r = 1, . . . , i− 1, i+ 1, . . . , n. (55)

With a closed-loop transfer function matrix Hn×n,i given by
Eq. (43) and the plant inverse G−1(s) given by Eq. (27),
the internal model controller Cn×n,i,init1 (s) can be computed
according to

Cn×n,i,init1(s) = G−1(s)Hn×n,i (56)

to yield

Cn×n,i,init1 (s)

=
P (s)

(−s+ z)M (s)
×

[
v1F1 . . . vi−1Fi−1 vi+1Fi+1 · · · vnFn ĝiFmi

]
(57)

where

Fq =
e−θqs

τqs+ 1
; q = 1, . . . , i− 1, i+ 1, . . . , n (58)

Fmi =
−s+ z
s+ z

.
e−θis

τis+ 1
. (59)

Proof: The proof is given in Appendix A2.

Remark 5: With appropriate steps taken to remove the
right-half-plane poles with right-half-plane zeros in the con-
troller matrix arising from the utilization of Proposition 2,
the controller that emerges guarantees closed-loop stability
as well as null steady-state offset for all outputs.
Remark 6: Eq. (57) will be stable only if vwr (s) in Eq. (55)

has the expression (−s + z) as one of its factors. Theorem 2
will help us ensure that this condition is satisfied.
Theorem 2: For an open-loop-stable, n × n system with

delays and a single RHP transmission zero at s = z, the
expression

vwr (s) = ĝwr (s) + ĝwi(s).
s.ai,r (s)
s+ z

,w = 1, 2, . . . , n;

r = 1 . . . , i− 1, i+ 1, . . . , n (60)

has the expression −s+ z as one of its factors if and only if

ai,r = −2ĝwr (z)
/
ĝwi(z); w = 1, . . . , n. (61)

Proof: For (−s+ z) to be a factor of vwr (s), vwr (z) must
be 0, i.e.,

vwr (z) = ĝwr (z) + ĝwi(z).
z.ai,r (z)
(z+ z)

= 0

ĝwi(z).ai,r (z) = −2ĝwr (z)

ai,r (z) = −2ĝwr (z)
/
ĝwi(z); w = 1, . . . , n. (62)

Remark 7: Based on Eq. (62), since each of ai,r (z) is
unique for a particular value of i and r , then

ĝ1r (z)
/
ĝ1i(z) = ĝ2r (z)

/
ĝ2i(z) = . . . = ĝnr (z)

/
ĝni(z). (63)

As in Eq. (39), Eq. (63) holds for every square matrix with an
RHP transmission zero at s = z and an adjoint of Eq. (26).
WithMi,wr defined as

Mi,wr =

(
ĝwr (s) + ĝwi(s).

s.ai,q (s)
(s+ z)

) /
(−s+ z) (64)

the appropriate substitutions and the removal of the RHP pole
and zero terms lead to the final internal model controller
achieving shifting of inverse responses and control-loop inter-
actions to the ith output as

Cn×n,i,fin (s)

=
[
c1F1 . . . ci−1Fi−1 ci+1Fi+1 · · · cnFn ĝicti

]
(65)

where Fr is as given in Eq. (58), ĝn as given in Eq. (54), and
cr, cwr and cti are as given in Eq. (66).

cr =
[
c1r c2r . . . cnr

]T
;

r = 1, 2, . . . , i− 1, i+ 1, . . . , n

cwr =
P(s)Mi,wr (s)

M (s)
;w = 1, . . . , n;

r = 1, 2, . . . , i− 1, i+ 1, . . . , n

cti =
P(s)e−θis

(s+ z)M (s)(τis+ 1)


. (66)
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C. MODIFIED ATDIMC FOR MITIGATION OF SEVERE
INTERACTION EFFECTS ON LEAST-DESIRED OUTPUT yn

For some systems with strong couplings between control
loops, at least one of the n ATDIMC designs has its least-
desired output experiencing severe interaction effect from
another output strongly coupled to it originally, potentially
causing the overall error-index value to increase significantly
in comparison with that of the dynamic decoupling IMC
design.

To mitigate the effect of this strong interaction, a modified
ATDIMC scheme is proposed which replaces the interaction
expression in the closed-loop transfer function matrix with an
all-pass expression in the diagonal element corresponding to
the output strongly coupled to the least-desired output. This
essentially nullifies the strong interaction effect from yn and
replaces it with an inverse response in the other output yj(j <
n) that was strongly coupled to yn in the first place.

Mathematically, let the expression ‘‘imperfect yj&yn’’
describe an ATDIMC design that modifies the ATDIMC
design of Section III-A such that the effect of the interaction
between outputs yj and yn is removed from imperfect output
yn, with an inverse response then introduced to yj. This modi-
fication yields 2 least-desired outputs yj and yn, with yj having
only an inverse response and yn having a combination of an
inverse response and n − 2 control-loop-interaction features
as a result of couplings between yn and other outputs aside yj,
i.e. y1, y2, . . . , yj−1, yj+1, . . . , yn−1.
The emerging closed-loop transfer function Hn×n,yjyn

becomes a modified version of Eq. (23), i.e.

Hn×n,yjyn (s)

=


Hdiag1,yjyn 0(j−1)×1 0(j−1)×(n−j−1) 0(j−1)×1
01×(j−1) Hjj 01×(n−j−1) 0

0(n−j−1)×(j−1) 0(n−j−1)×1 Hdiag2,yjyn 0(n−j−1)×1
Hrow1,yjyn 0 Hrow2,yjyn Hnn

,

(67)

where

Hdiag1,yjyn = diag
{
H11,H22, . . . ,Hj−1,j−1

}
Hdiag2,yjyn = diag

{
Hj+1,j+1, . . . ,Hn−1,n−1

}
Hrow1,yjyn =

[
Hn1 Hn2 · · · Hn,j−1

]
Hrow2,yjyn =

[
Hn,j+1 Hn,j+2 · · · Hn,n−1

]
 . (68)

As evident, Eq. (23) for the ‘‘imperfect yn’’ ATDIMC
design has been modified to Eq. (67) for the ‘‘imperfect
yj&yn’’ ATDIMC design. It is noteworthy that both Hjj and
Hnn are lone non-zero elements of the jth and nth columns of
Hn×n,yjyn (s) respectively.

For Eq. (68),

Hkk =
e−θk s

τks+ 1
; k = 1, . . . , j− 1, j+ 1, . . . , n− 1;

Hjj =
−s+ z
s+ z

.
e−θjs

τjs+ 1

Hnp =
s.an,p(s)
(s+ z)

.
e−θps

τps+ 1
;

p = 1, . . . , j− 1, j+ 1, . . . , n− 1;Hnj = 0

Hnn =
−s+ z
s+ z

.
e−θns

τns+ 1


.

(69)

Aswith previous designs, the initial controllerCn×n,jn,init1(s)
can be described by modified versions in Eqs. (33) to (35),
leading to
Cn×n,jn,init1(s)

=
P (s)

(−s+ z)M (s)
×

[
v1F1 . . . vj−1Fj−1 ĝiFmi vj+1Fj+1 · · ·

vn−1Fn−1 ĝnFmn
]
, (70)

where
vq =

[
v1q v2q . . . vnq

]T
;

q = 1, . . . , j− 1, j+ 1, . . . , n− 1

Fq =
e−θqs

τqs+ 1
; q = 1, . . . , j− 1, j+ 1, . . . , n− 1

ĝα =
[
ĝ1α ĝ2α . . . ĝnα

]T
;α = j, n

Fmα =
−s+ z
s+ z

.
e−θαs

ταs+ 1
; α = j, n


(71)

and vγ q is as given in Eq. (31) for γ = 1, . . . , n; q =

1, . . . , j− 1, j+ 1, . . . , n− 1.
Using the procedure in Section III-A for developing the

controller transfer function matrix, the internal model con-
troller that achieves ‘‘imperfect yj and yn’’ such that the effect
of the interaction between outputs yj and yn is removed from
imperfect output yn, with an inverse response then introduced
to yj, is given by
Cn×n,jn,fin (s)

=
[
c1F1 . . . cj−1Fj−1 ĝicti cj+1Fj+1 · · ·

cn−1Fn−1 ĝnctn
]

(72)

where Fq is as given in the 2nd sub-equation of Eq. (71), ĝα

is as given in the 3rd sub-equation of Eq. (71), and

cq =
[
c1q c2q . . . cnq

]T
;

q = 1, . . . , j− 1, j+ 1, . . . , n− 1

ctα =
P(s)e−θαs

(s+ z)M (s)(ταs+ 1)
; α = j, n

 . (73)

D. MODIFIED ATDIMC FOR MITIGATION OF SEVERE
INTERACTION EFFECTS ON LEAST-DESIRED OUTPUT yi
Similar to Section III-C above, let the expression ‘‘imper-
fect yj&yi’’ describe an ATDIMC design that modifies the
ATDIMC design of Section III-B such that the effect of
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the interaction between outputs yj and yi is removed from
imperfect output yi, with an inverse response then intro-
duced to yj. This modification yields 2 least-desired out-
puts yj and yi, with yj having only an inverse response
and yi having a combination of an inverse response
and n − 2 control-loop-interaction features as a result
of couplings between yi and other outputs aside yj, i.e.
y1, y2, . . . , yj−1, yj+1, yj+2 . . . , yi−1, yi+1, yi+2, . . . , yn.
The emerging closed-loop transfer function Hn×n,yjyi

becomes a modified version of Eq. (43), i.e., (74), as shown
at the bottom of the page, where

Hdiag1,yjyn = diag
{
H11,H22, . . . ,Hj−1,j−1

}
Hdiag2,yjyn = diag

{
Hj+1,j+1, . . . ,Hi−1,i−1

}
Hdiag3,yjyn = diag

{
Hi+1,i+1, . . . ,Hnn

}
Hrow1,yjyn =

[
Hn1 Hn2 · · · Hn,j−1

]
Hrow2,yjyn =

[
Hn,j+1 Hn,j+2 · · · Hn,i−1

]
Hrow3,yjyn =

[
Hn,i+1 Hn,i+2 · · · Hnn

]


(75)

and

Hkk =
e−θk s

τks+ 1
;

k = 1, . . . , j− 1, j+ 1, . . . , i− 1, i+ 1, . . . , n

Hjj =
−s+ z
s+ z

.
e−θjs

τjs+ 1

Hir =
s.ai,r (s)
(s+ z)

.
e−θr s

τrs+ 1
;

r = 1, . . . , j− 1, j+ 1, . . . , i− 1, i+ 1, . . . , n

Hii =
−s+ z
s+ z

.
e−θis

τis+ 1



. (76)

It is noteworthy that both Hjj and Hii in Eq. (58) are the lone
non-zero elements of the jth and ith columns of Hn×n,yjyi (s)
respectively.

The initial controller Cn×n,ji,init1(s) that emerged using Eq.
(5) can be described by modified versions in Eqs. (53)-(59),
i.e.

Cn×n,ji,init1(s)

=
P (s)

(−s+ z)M (s)
×

[
v1F1 . . . vj−1Fj−1 ĝjFmj vj+1Fj+1 · · ·

vi−1Fi−1 ĝiFmi vi+1Fi+1 · · · vnFn
]

(77)

where

vr =
[
v1r v2r . . . vnr

]T
Fr =

e−θr s

τrs+ 1
ĝα =

[
ĝ1α ĝ2α . . . ĝnα

]T
; α = j, i

Fmα =
−s+ z
s+ z

.
e−θαs

ταs+ 1
; α = j, i


. (78)

For the 1st and 2nd sub-equations of Eq. (78), r takes values
1, 2, . . . , j− 1, j+ 1, . . . , i− 1, i+ 1, . . . , n.

Using the procedure in Section III-B to develop the con-
troller yields the internal model controller achieving imper-
fect yj and yi as

Cn×n,ji,fin (s)

=
[
c1F1 . . . cj−1Fj−1 ĝjct j cj+1Fj+1 · · ·

ci−1Fi−1 ĝicti ci+1Fi+1 · · · cnFn
]

(79)

where Fq is as given in the 2nd sub-equation of Eq. (78), ĝα

is as given in the 3rd sub-equation of Eq. (78), and

cr =

[
c1r c2r . . . cnr

]T
cwr =

P(s)Mi,wr (s)
M (s)

;w = 1, . . . , n

ctα =
P(s)e−θαs

(s+ z)M (s)(ταs+ 1)
; α = j, i


. (80)

Remark 8: It is technically possible to eliminate more than
one interaction effect if there are multiple severe interaction
effects on the least-desired outputs of Sections III-A and
III-B, since the closed-loop transfer function matrix remains
triangular. However, the advantage of using the ATDIMC
may be lost if multiple interaction effects are replaced
by inverse responses on the outputs coupled to the least-
important output; hence, the decision to limit the removed
interaction effect to just one. In fact, the limiting situation
that results from replacing all interactions with the corre-
sponding inverse responses on the outputs coupled to the
least-important output is equivalent to dynamic decoupling.

IV. MODEL SIMPLIFICATION FOR ELEMENTS OF THE
CONTROLLER TRANSFER FUNCTION MATRIX
As previously shown, for the designs of Sections III-A
and III-B, the expressions Mn,γ q (s) and Mi,wr (s) are
developed according to Eqs. (40) and (64) respectively,
with the same expressions then used respectively in
Sections III-C and III-D for the modified ATDIMC designs.
According to Eqs. (40) and (64), bothMn,γ q (s) andMi,wr (s)
are developed using the appropriate elements of the adjoint

Hn×n,yjyi =


Hdiag1,yjyi 0(j−1)×1 0(j−1)×(i−j−1) 0(j−1)×1 0(j−1)×(n−i)
01×(j−1) Hjj 01×(i−j−1) 0 01×(n−i)

0(i−j−1)×(j−1) 0(i−j−1)×1 Hdiag2,yjyi 0(i−j−1)×1 0(i−j−1)×(n−i)
Hrow1,yjyn 0 Hrow2,yjyn Hii Hrow3,yjyn
0(n−i)×(j−1) 0(n−i)×1 0(n−i)×(i−j−1) 0(n−i)×1 Hdiag3,yjyi

 (74)

VOLUME 11, 2023 32209



K. S. Ogunba et al.: Extended Approach to ATDIMC of Square Stable Multivariable Systems

of the transfer function matrix of the plant. Because adjoints
of the transfer function matrices of systems with delays have
irrational elements for n > 2, Mn,γ q (s) and Mi,wr (s) are
irrational. Because both Mn,γ q (s) and Mi,wr (s) are used
to develop the transfer function matrices of the controllers
for all designs, some model simplification is necessary to
reduce Mn,γ q (s) and Mi,wr (s) to rational-transfer-function-
plus-delay expressions M̂n,γ q (s) and M̂i,wr (s) such that

M̂n,γ q (s) = M̂rat,n,γ q (s) e−dn,γ qs (81)

M̂i,wr (s) = M̂rat,i,wr (s) e−di,wr s (82)

where M̂rat,n,γ q and M̂rat,i,wr are rational and proper transfer
functions, and dn,γ q and dn,γ q are real and positive numbers.

Similarly, the adjoint elements ĝγ n (s) and ĝwr (s), directly
used in the controller matrix development in Sections III-A
and III-C (2nd sub-equation of Eqs. (42) and 3rd sub-equation
of Eq. (71)), and III-B and III-D (Eqs. (55) and the 3rd sub-
equation of Eq. (78)), are irrational for n× n systems (n > 2)
and require some model simplification to rational-transfer-
function-plus-delay expressions ˜̂gγ n and ˜̂gwr such that

˜̂gγ n (s) = ˜̂grat,γ n (s) e−dγ ns (83)
˜̂gwr (s) = ˜̂grat,wr (s) e−dwr s (84)

where ˜̂grat,γ n and ˜̂grat,wr are rational and proper transfer
functions, and dγ n and dwr are real and positive numbers.

The recursive least squares techniques of [39] were used
in [11], [12], and [20] for appropriate reductions of con-
troller terms, whereas moment matching was used in [14].
In this study, the method of model simplification used was the
method ofminimization of the Integral Time-WeightedAbso-
lute Error (ITAE) of the difference between the step responses
of the actual and reduced expressions. This provides a good
opportunity for responses of original and reduced functions to
be observed. The basic graphical knowledge of step responses
to transfer functions of different orders is used to dictate
transfer-function structures and constraints for the reductions.

Mathematically, for the irrational transfer function expres-
sion ϕ(s), if the symbol ‘‘L−1’’represents the Inverse Laplace
Transform, then the unit step response can be written as

ϕstep,actual (t) = L−1
{

ϕ (s)
s

}
(85)

while for the reduced expression ϕ̂ (s), given by

ϕ̂ (s) =
N (s)
D(s)

e−ds

=
αPsp + αP−1sp−1

+ . . . + α2s2 + α1s+ 1
βqsq + βq−1sq−1 + . . . + β2s2 + β1s+ 1

e−ds

(86)

the unit step response can be written as

ϕstep,reduced (t) = L−1
{

ϕ̂ (s)
s

}
. (87)

The error e between the responses of the actual and reduced
expressions is given by

e(t) = ϕstep,actual (t) − ϕstep,reduced (t) (88)

and the ITAE is given by

ITAE =

∫ tfinal

tinit
t |e(t)|dt. (89)

The minimization of the ITAE can be performed using a host
of optimization schemes provided in MATLAB/SIMULINK,
with the common choices being Pattern Search and Genetic
Algorithms.

It is noteworthy that for each of the regular ATDIMC
designs for a system, a reduction must take place for each
element of the transfer function matrix of the controller.
This means that n2 reductions are performed to get each of
the n regular ATDIMC controllers. For one of the n regular
ATDIMC designs, the computational complexity is compa-
rable to that of simplified decoupling of [20] that performs
reduction of all elements of an n×n decoupler and an apparent
process. Also, just as techniques like simplified decoupling of
[20] and inverted decoupling of [19] provide multiple options
and configurations fromwhich one makes the best choice, the
n ATDIMC designs are possibilities from which the best can
be selected based on control objectives.

V. ROBUSTNESS ANALYSIS OF ATDIMC DESIGNS
As pointed out in [16], for a square multivariable control
system in the IMC configuration, if G(s) is the plant being
controlled, C(s) is the controller in the IMC configuration,
K (s) is the conventional-feedback-controller equivalent to
C(s), S(s) is the sensitivity function and TI (s) is the com-
plementary sensitivity function, then if µ-analysis is per-
formed on the designed control system, then robust stability
and robust performance are both assured if both structured
singular values µRS and µRP of robust stability and robust
performance respectively are less than unity, i.e.,

µRS = µ [−WI (s)TI (s)] < 1 (90)

µRP = µ

[
−WI (s)TI (s) −WI (s)K (s) S (s)

WP (s) S (s)G(s) WP(s)S(s)

]
< 1

(91)

where WI and WP are both n × n diagonal matrices rep-
resenting weights for multiplicative input uncertainty and
performance at the output respectively, and are given by

WI = diag{wi wi . . . wi } (92)

Wp = diag{wp wp . . . wp }. (93)

In Eq. (92), the uncertainty weight wi is expressed as

wi(s) =
τ s+ r0(
τ
r∞

)
s+ 1

(94)

where r0 is the relative uncertainty at steady-state, 1
τ

is
the approximate frequency at which the relative uncertainty
reaches 100%, and r∞ is the magnitude of the weight at high
frequency.

In Eq. (93), the performance weight wP is expressed as

wP(s) =

s
M + ω∗

B

s+ ω∗
BA

(95)
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FIGURE 2. Block diagram for robust performance with multiplicative
input uncertainty within conventional feedback configuration.

where M is the peak sensitivity (whose inverse is wp at high
frequencies), A is a parameter (whose inverse is wp at low
frequencies) and ω∗

B is the system bandwidth. Figure 2 shows
a block diagram of the multiplicative input uncertainty and
the performance uncertainty measured at the output.

In this study, µ-analysis was performed on each of the
designed controllers to test for robust stability and robust per-
formance. Aswill be seen, at least oneATDIMCdesign yields
better robustness results than the dynamic decoupling coun-
terpart, with the designs with severe interactions in the least-
desired outputs expectedly yielding poor robust performance
results. It will also be seen that themodifiedATDIMCdesigns
improve on the robustness results of the original ATDIMC
designs being modified. The details of the chosen uncertainty
and performance weights are provided in Section VI.

VI. SIMULATION RESULTS
A. THE 3 × 3 DEPROPANIZER
The Depropanizer, presented in literature as a control system
that separates propane from the feed that comes from a deeth-
anizer column in distillation control [6], has the following
transfer function matrix:

G (s)

=


−0.2697
97.5s+ 1

e−27.5s 1.978
118.5s+ 1

e−53.5s 0.07724
96s+ 1

e−56s

0.4881
56s+ 1

e−117s −5.26
58.5s+ 1

e−26.5s 0.19996
51s+ 1

e−35s

0.6
40.5s+ 1

e−16.5s 5.5
19.5s+ 1

e−15.5s −0.5
18s+ 1

e−17s

.

(96)

This system has a dominant RHP transmission zero at s =

0.0120061. It also has strong couplings between the control
loops, with the first channel interacting very strongly with the
controls in the second and third channels.

Noting that n is 3 for this system, ATDIMC designs were
made for the Depropanizer plant for ‘‘imperfect y1’’ (Sec-
tion III-B, i = 1, n = 3), ‘‘imperfect y2’’ (Section III-B,
i = 2, n = 3), ‘‘imperfect y3’’ (Section III-A, n = 3),
‘‘imperfect y1&y2’’ (Section III-D, j = 1, i = 2), ‘‘imperfect
y1&y3’’ (Section III-C, j = 1, i = 3) and ‘‘imperfect y2&y3’’
(Section III-C, j = 2, i = 3). The details of these designs are
contained in Appendices B1 to B6 of this paper respectively.

For comparison, a dynamic decoupling IMC design was
made using the method of [11], with implementations
performed using the IMC structure and model reductions
performed using the minimization of ITAE of step
responses. In addition, the multivariable PID controllers in
[20], achieved using simplified dynamic decoupling, were
implemented and compared with the ATDIMC, modified
ATDIMC, and dynamic decoupling IMC controllers in [18].
The details of the controllers in [18] and [20] are contained
in Appendices B7 and B8 respectively.

With reference to Eqs. (94) and (95), the uncertainty
and performance weights used in [20] were selected for
the robustness analysis of the designed controllers. These
weights are as presented in Eqs. (97) and (98).

wi,deprop(s) =
0.009s+ 0.15
0.0045s+ 1

(97)

wP,deprop(s) =

s
2.75 + 0.00075

s
. (98)

The input uncertainty weight corresponds to approximately
15% uncertainty at low frequency and 200% uncertainty at
high frequency, whereas the performance weight corresponds
to integral action (for null steady-state error) and a maximum
sensitivity peak ofM = 2.75.

The best of the designed ATDIMC controllers (design for
‘‘imperfect y1’’) is tuned to attain a slightly better robust
performance than the MV-PID design in [20]. The resulting
tuning parameters were τ1 = τ2 = τ3 = 105. These
tuning parameters were then used for all other ATDIMC
and dynamic DIMC designs to compare both the robust-
ness characteristics and nominal quantitative plant output and
plant input characteristics for the same specified speeds of
responses. The graphs of all these designs were also plot-
ted for a visual comparison of plant input and plant output
responses. Figure 3 shows the plant output and input plots
while Table 1 shows the computed integral-absolute-error
(IAE), total-variation (TV), µRS and µRP values for the plant
outputs and plant inputs, respectively, for all the designs.

G (s) =



2e−69.1463s

1.5s+ 1
3.5e−18.1317s

5s+ 1
3.75e−27.4206s

5.5s+ 1
1.25e−20.2779s

4s+ 1
7.225e−32.8696s

3.235s+ 1
−10e−25.1989s

7s+ 1
6e−10.0481s

2s+ 1
4e−10.0223s

2.22s+ 1
8.4e−37.2156s

3.14s+ 1
3.8e−13.8045s

9.35s+ 1
4e−10.0147s

6.3s+ 1
9e−33.418s

4.24s+ 1
−3.45e−30.9474s

12s+ 1
4.6e−46.2443s

15s+ 1
7.5e−24.4816s

2.3s+ 1
5.2e−45.0222s

8.9s+ 1


. (99)
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FIGURE 3. Plant output & input responses of ATDIMC, modified ATDIMC, dynamic DIMC and simplified decoupling
schemes on 3 × 3 depropanizer, for tuning parameters τ1 = τ2 = τ3 = 105 and reference signals as unit step
functions applied at 0s, 2000s and 4000s respectively.

TABLE 1. Comparison of performance indices of the ATDIMC and modified ATDIMC methods with dynamic DIMC methods for implementations on
depropanizer, for tuning parameters as τ1 = τ2 = τ3 = 105.

TABLE 2. Comparison of performance indices of the ATDIMC and modified ATDIMC methods with dynamic DIMC methods for implementations on 4 × 4
F4d2 system, with tuning parameters as τ1 = τ2 = τ3 = τ4 = 106.

B. THE 4 × 4 F4d2 SYSTEM OF [40]
The 4 × 4 F4d2 System of [40], with a dominant RHP zero
at s = 0.0432123, has the transfer function matrix given as
(99), shown at the bottom of the previous page.

This system has strong control-loop couplings, with the
first channel interacting most strongly with the controls in the
second, third and fourth channels.

Noting that n is 4 for this system, ATDIMC designs
were made for the 4 × 4 F4d2 plant for ‘‘imperfect y1’’
(Section III-B, i = 1, n = 4), ‘‘imperfect y2’’ (Section III-B,
i = 2, n = 4), ‘‘imperfect y3’’ (Section III-B, i = 3, n = 4),

‘‘imperfect y4’’ (Section III-A, n = 4), ‘‘imperfect y1&y2’’
(Section III-D, j = 1, i = 2), ‘‘imperfect y3&y2’’ (Section III-
D, j = 3, i = 2) and ‘‘imperfect y4&y2’’ (Section III-D,
j = 4, i = 2). The details of these designs are contained
in Appendices C1 to C7 of this paper respectively. Several
other modified ATDIMC designs could have been made but
those made above were chosen because of the effect of the
interaction component of the design for ‘‘imperfect y2’’.

For comparison, a dynamic decoupling IMC design was
done using the method in [18], with implementations per-
formed using the IMC structure and model reductions
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FIGURE 4. Plant output & input responses of ATDIMC, modified ATDIMC and dynamic DIMC schemes on 4 × 4 F4d2
system for τ1 = τ2 = τ3 = τ4 = 106, with reference signals as unit step functions applied at 0s, 1000s, 2000s and
3000s respectively.

performed using the minimization of the ITAE of step
responses. This design was compared with the ATDIMC and
modified ATDIMC designs. Details of the dynamic decou-
pling IMC design are provided in Appendix C8.

With reference to Eqs. (94) and (95), the uncertainty and
performanceweights chosen for the robustness analysis of the
designed controllers are:

wi,F4d2(s) =
0.009s+ 0.15
0.0045s+ 1

(100)

wP,F4d2(s) =

s
3.00 + 0.00075

s
. (101)

The input uncertainty weight corresponds to approximately
15% uncertainty at low frequency and 200% uncertainty at
high frequency, whereas the performance weight corresponds
to integral action (for null steady-state error) and a maximum
sensitivity peak ofM = 3.
The tuning parameters chosen for the designs are τ1 =

τ2 = τ3 = τ4 = 106. These tuning parameters ensured
a good trade-off between performance and robustness for
the designed controllers. As in the case of the designs for
the Depropanizer, robustness characteristics and nominal
quantitative plant output and plant input characteristics were
compared for the same specified speeds of responses. The
graphs of all these designs are also plotted graphically for a
visual comparison of plant input and plant output responses.
Figure 4 shows the plant output and input response plots while
Table 2 shows the computed IAE, TV, µRS and µRP values
for the plant outputs and plant inputs respectively, for all the
designs.

C. DISCUSSION OF RESULTS
From the plots and tables, it is seen that in each ATDIMC
case for a single least-desired output, inverse responses and
interactions are successfully transferred to the ‘‘imperfect
output’’. For both systems, one ATDIMC design is guaran-
teed to have a lower overall output IAE value and higher
robustness than the DIMC counterpart for the same tuning
parameters, with at least one other ATDIMC design having a
higher output IAE value and lower robustness than that of
DIMC. Beyond IMC-based designs, it is fair to say based
on the results of the designs on the 2 systems that the best
ATDIMC design gives better nominal and robust results than
the best dynamic decoupling design for a square stable mul-
tivariable system with delays and RHP transmission zeros,
IMC-based or otherwise.

It is also possible that other ATDIMC and modified
ATDIMC designs yield better nominal IAE values than those
of dynamic decoupling IMC (as is the case for the F4d2 sys-
tem that has three of the four ATDIMC designs and all three
modifiedATDIMCdesigns having lower IAE values than that
of dynamicDIMC) and better robustness results (as is the case
for the F4d2 system that has the design for ‘‘imperfect y3’’
yielding marginally better robust stability and robust perfor-
mance indices). However, superior nominal and robustness
characteristics are guaranteed for a single ATDIMC design
(the designs for ‘‘imperfect y1’’ in both examples). This is
consistent with the results obtained in [37] for the two-input,
two-output case. If error indices and robustness are the prin-
cipal considerations, the task is to determine which ATDIMC
design yields the best nominal and robustness characteristics,
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with the assurance that such a design will outperform existing
frequency-domain-based dynamic decoupling designs with
similar nominal and/or robustness specifications.

As shown in the plots and tables, in situations where the
single least-desired output suffers from the effect of a severe
interaction (as is the case for the ‘‘imperfect y2’’ and ‘‘imper-
fect y3’’ designs for the Depropanizer, on one hand, and the
‘‘imperfect y2’’ design for the F4d2 system, on the other
hand), the modified ATDIMC designs reduce the overall
IAE values and improve the robust performance indices of
the original ATDIMC designs being modified. In situations
where an ATDIMC design with a severe interaction effect on
the least-desired output has an overall IAE value close to that
of the dynamic decoupling IMC design (as is the case for the
‘‘imperfect y2’’ design for the Depropanizer, on one hand, and
the ‘‘imperfect y2’’ design for the F4d2 system, on the other),
the modified ATDIMC design can reduce the IAE value
below that of the dynamic decoupling IMC design (as is the
case with the ‘‘imperfect y1&y2’’ design for the Depropanizer
that improves on the overall IAE value for the ‘‘imperfect
y2’’ design, on the one hand, and all the modified ATDIMC
designs for the F4d2 System that improve on the overall
IAE value for the ‘‘imperfect y2’’ design’’, on the other).
As seen in the robustness values, however, while the modified
ATDIMC designs lower the structured singular values for
robust performance for the ATDIMC designs being modified,
there is no guarantee that the resulting structured singular
values will be better than those of dynamic decoupling IMC.
In any case, as shown in Table 2, all designs satisfy the
robustness requirements, even if some are more robust than
others.

From the foregoing, it can be stated that for a stable n× n
system with delays and RHP transmission zeros represented
by an n × n transfer function matrix with rational-transfer-
function-with-delay elements, the proposed triangular decou-
pling internal model control produces n different regular
ATDIMC designs, on one hand, and n−1 modified ATDIMC
designs per output whose ‘‘imperfection’’ is being modified,
on the other. It is also clear that at least one of the regu-
lar ATDIMC designs outperforms the corresponding DIMC
design for the same choice of tuning parameters as far as
nominal and robustness characteristics are concerned. Indeed,
the best ATDIMC design also outperforms the best of other
dynamic-decoupling-based control techniques, as shown in
the comparison of the technique with the MV-PID technique
of [20].

It is also clear that in situations where the controlled
systems have strong control-loop couplings, the strong cou-
plings introduce pronounced disturbance-like effects on the
least-desired output, making the overall IAE to grow signifi-
cantly despite a successful shift of all inverse responses and
interactions to that output. This is noticed in the design for
‘‘imperfect y3’’ for the Depropanizer, on one hand, and the
design for ‘‘imperfect y2’’ for the F4d2 system, on the other.
This is a shortcoming of the regular ATDIMC approach and
the modified ATDIMC formulation was developed to reduce

the severeness of the disturbance-like interaction effects.
Admittedly, the modified ATDIMC does not guarantee that
the overall IAE value will be lower than that of DIMC.
A reformulation of the triangular decoupling problem using
optimization techniques is likely to yield improved results for
cases of severe interaction effects on the least-desired output.
Also, a synthesis procedure that constrains the interaction
effects on the least desired output is likely to yield better
results for such situations.

The application of this technique to the model of the
Depropanizer significantly shows that the formulation is
applicable to a practical system. As shown, the best design
using this technique is practically applicable to square
multivariable systems with delays and RHP zeros. In all
nonminimum-phase situations where DIMC is applicable, the
ATDIMC is also applicable and has the potential of giving
better results than DIMC.

VII. CONCLUSION
The proposed extended ATDIMC and modified ATDIMC
concepts have been shown to achieve the set objectives of
restricting the inverse response and interaction features to one
and two outputs, respectively. It has also been shown that the
overall error-index value of at least one ATDIMC design (the
best design) is lower than that of the dynamic decoupling IMC
technique for the same choice of tuning parameters least-
desired output. These results are consistent with those in [37].

It can also be concluded that strong disturbance-like inter-
action effects can be noticed in the least-desired output in sit-
uations where control systems have strong control-loop cou-
plings. The modified ATDIMC helps to reduce these effects
but does not guarantee superiority to DIMC or dynamic-
decoupling-based non-IMC designs. This is a shortcoming
of the ATDIMC technique. However, based on the promise
shown by the best ATDIMC design, optimization-based tech-
niques and robust synthesis techniques can be used to perform
a reformulation of the triangular decoupling problem so that
the interaction effects on the least-desired output can be
constrained to an acceptable level.

As pointed out in Section IV, it can also be concluded that
each of the elements of the transfer function matrix of each
designed controller must be reduced to a rational-transfer-
function-plus-delay. This means that an n×n system requires
n2 reductions. This is like the situation with simplified decou-
pling that requires reduction of the elements of the decoupler
matrix and the ‘‘apparent process’’, as in [20]. However,
as shown with the simulation examples, the best ATDIMC
design for a system with delays and RHP transmission zeros
outperforms the best of simplified decoupling and other
dynamic-decoupling-based techniques. As the dimensions
increase, the advantages of using dynamic-decoupling-based
and triangular-decoupling-based techniqueswill significantly
reduce compared with the computational effort. In situations
of high dimensions, a decentralized/multiloop approach will
be preferable for simplicity, even if the overall IAE value will
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be higher than a technique based on dynamic decoupling or
triangular decoupling.

Ultimately, as noted in [3], the best MIMO IMC perfor-
mancewill always be achieved based on a technique of factor-
ization such as inner-outer factorization. Extensions of IMC
to linear and nonlinear nonminimum-phase systems with
or without delays ultimately must consider equivalents of
inner-outer factorization for optimumperformance. However,
as seen in the designs for delay-free nonminimum-phase sys-
tems, the design process for inner-outer-factorization-based
IMC is computationally intensive and leads to more complex

controllers than those obtained using dynamic-decoupling-
based or triangular-decoupling-based techniques. In addi-
tion, the development of an analytical technique for per-
forming inner-outer factorization for multivariable systems
with delays is a difficult task, meaning that the only tech-
niques in existence for extending the celebrated characteris-
tics of IMC to square stablemultivariable systemswith delays
and RHP transmission zeros are based on either dynamic
decoupling (as seen in [11], [12], [14], and [15]) or trian-
gular decoupling, as has been shown in both [37] and this
study.

C11,1 =
0.02421 (4.2488s+ 1) (86.8672s+ 1) (95.875s+ 1)

(s+ 0.0120061) (14.9671s+ 1) (64.657s+ 1) (τ1s+ 1)
(B1-2)

C12,1 =
1.86421 (86.8672s+ 1) (95.875s+ 1)
(48.375s+ 1) (103.625s+ 1) (τ2s+ 1)

(B1-3)

C13,1 =
1.05709 (86.8672s+ 1) (95.875s+ 1)

(63.3672s+ 1) (99.0021s+ 1) (τ3s+ 1)
(B1-4)

C21,1 =
0.005762 (20s+ 1) (86.8672s+ 1) (95.875s+ 1) e−57s

(s+ 0.0120061) (11.99s+ 1) (19.75s+ 1) (24.72s+ 1) (54.48s+ 1) (τ1s+ 1)
, (B1-5)

C22,1 =
0.116745 (−123.73s+ 1) (86.87s+ 1) (95.88s+ 1) e−24.5s

(49.25s+ 1) (49.5s+ 1) (79s+ 1) (τ2s+ 1)
(B1-6)

C23,1 =
0.120804 (−19.375s+ 1) (−14.25s+ 1) (86.8672s+ 1) (95.875s+ 1) e−5s

(30.1875s+ 1) (30.5s+ 1) (41.75s+ 1) (92.9375s+ 1) (τ3s+ 1)
(B1-7)

C31,1 =
0.0924557 (8s+ 1) (86.8672s+ 1) (95.875s+ 1) e−6s

(s+ 0.0120061) (23.37s+ 1) (24.29s+ 1) (40.18s+ 1) (44.61s+ 1) (τ1s+ 1)
(B1-8)

C32,1 =
3.52011 (−16.75s+ 1) (−5s+ 1) (86.8672s+ 1) (95.875s+ 1) e−10.53s

(30.125s+ 1) (30.5s+ 1) (45.125s+ 1) (93.875s+ 1) (τ2s+ 1)
(B1-9)

C33,1 =
0.597495 (−6s+ 1) (−5s+ 1) (86.87s+ 1) (95.88s+ 1) (180s+ 1) e−26s

(26s+ 1) (48s+ 1) (102s+ 1) (126s+ 1) (τ3s+ 1)
. (B1-10)

C11,2 =
2.01714 (−87.75s+ 1) (86.87s + 1) (95.88s + 1) e−16s

(120.9824s+ 1) (75.4844s+ 1) (τ1s+ 1)
(B2-2)

C12,2 =
0.0223818(0.778s+ 1)(86.8672s+ 1)(95.875s+ 1)e−27s

(s + 0.0120061)(17.5129s+ 1)(112.1701s+ 1)(τ2s+ 1)
(B2-3)

C13,2 =
1.05709 (86.8672s+ 1) (95.875s+ 1) e−14.75s

(73.0313s+ 1) (113.453s+ 1) (τ3s+ 1)
(B2-4)

C21,2 =
0.47989(86.8672s+ 1)(95.875s+ 1)e−14.9966s

(20.5002s+ 1)(91.5s+ 1)(τ1s+ 1)
(B2-5)

C22,2 =
0.001401 (−2.6612s+ 1) (86.8672s+ 1)(95.875s+ 1)
(s + 0.0120061)(6.5784s+ 1)(78.2277s+ 1)(τ2s+ 1)

(B2-6)

C23,2 =
0.120804(86.8672s+ 1)(95.875s+ 1)
(82.1221s+ 1)(83.375s+ 1) (τ3s+ 1)

(B2-7)

C31,2 =
7.70073(86.8672s+ 1)(95.875s+ 1)
(62.9922s+ 1)(124s+ 1(τ1s+ 1)

(B2-8)

C32,2 =
0.0422627(14.1653s+ 1)(86.8672s+ 1)(95.875s+ 1)e−2.5s

(s + 0.0120061)(60.6375s+ 1)(94.8681s+ 1)(τ2s+ 1)
(B2-9)

C33,2 =
0.597495(−262.3s+ 1)(86.87s+ 1)(95.88s+ 1)e−91.5s

(128.5s+ 1)(0.1s + 1) (τ3s+ 1)
. (B2-10)
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APPENDIX A
PROOFS OF PROPOSITIONS 1 AND 2
APPENDIX A1: PROOF OF PROPOSITION 1
From Eq. (32),

Cn×n,n,init1(s)

= G−1(s)Hn×n,n
Cn×n,n,init1 (s)

=
P (s)

(−s+ z)M (s)
.


ĝ11 (s) ĝ12 (s) . . . ĝ1n (s)
ĝ21 (s) ĝ22 (s) . . . ĝ2n (s)

...
...

. . .
...

ĝn1 (s) ĝn2 (s) . . . ĝnn (s)



×


H11(s) 0 . . . 0 0

0 H22(s) . . . 0 0
...

...
. . .

...
...

0 0 . . . Hn−1,n−1(s) 0
Hn1(s) Hn2(s) . . . Hn,n−1(s) Hnn(s)


(A1-1)

where

Hkk =
e−θk s

τks+ 1
; k = 1, . . . , n− 1

Hnp =
s.an,p
(s+ z)

.
e−θps

τps+ 1
; p = 1, . . . , n− 1

Hnn =
−s+z
s+z . e

−θns

τns+1


. (A1-2)

C11,3 =
2.01714(−249s+ 1)(86.8672s+ 1)(95.875s+ 1)e−0.3281s

(52.002s+ 1) (87s+ 1) (107.5s+ 1) (τ1s+ 1)
(B3-2)

C12,3 =
1.86421(−54.5s+ 1)(86.8672s+ 1)(95.875s+ 1)e−13.8324s

(56.125s+ 1) (76s+ 1) (114.25s+ 1) (τ2s+ 1)
(B3-3)

C13,3 =
0.0126915(4.9874s+ 1)(86.8672s+ 1)(95.875s+ 1)e−25.5s

(s+ 0.0120061) (54.0078s+ 1) (108.282s+ 1) (τ3s+ 1)
(B3-4)

C21,3 =
0.479895(−30s+ 1)(86.8672s+ 1)(95.875s+ 1)e−4.64s

(82s+ 1)(91.25s+ 1)(95.25s+ 1)(τ1s+ 1)
(B3-5)

C22,3 =
0.116744(−193.25s+ 1)(86.87s+ 1)(95.88s+ 1)e−18.07s

(83.498s+ 1)(84.25s+ 1)(84.5s+ 1)(τ2s+ 1)
(B3-6)

C23,3 =
0.0014507(7.5s+ 1)(86.8672s+ 1)(95.875s+ 1)

(s+ 0.0120061)(20.71s+ 1)(23.15s+ 1)(80.21s+ 1)(81.33s+ 1)(τ3s+ 1)
(B3-7)

C31,3 =
7.70073(−25.4688s+ 1)(86.8672s+ 1)(95.875s+ 1)(225.25s+ 1)

(33.25s+ 1)(43.25s+ 1)(95.5s+ 1)(134.375s+ 1)(τ1s+ 1)
(B3-8)

C32,3 =
3.52142(−25.73s+ 1)(86.8672s+ 1)(95.875s+ 1)(211.5s+ 1)
(38.0625s+ 1)(1 + 43s)(1 + 102s)(1 + 124.998s)(τ2s+ 1)

(B3-9)

C33,3 =
0.00717992(86.8672s+ 1)(95.875s+ 1)(386s+ 1)e−5.5s

(s+ 0.0120061)(42.69s+ 1)(46.805s+ 1)(136.63s+ 1)(τ3s+ 1)
. (B3-10)

C11,12 =
0.024218(4.2488s+ 1)(86.8672s+ 1)(95.875s+ 1)
(s+ 0.0120061)(14.9671s+ 1)(64.657s+ 1)(τ1s+ 1)

(B4-2)

C12,12 =
0.0223818(0.778s+ 1)(86.8672s+ 1)(95.875s+ 1)e−27s

(s + 0.0120061)(17.5129s+ 1)(112.1701s+ 1)(τ2s+ 1)
(B4-3)

C13,12 =
1.05709 (86.8672s+ 1) (95.875s+ 1) e−14.75s

(73.0313s+ 1) (113.453s+ 1) (τ3s+ 1)
(B4-4)

C21,2 =
0.00576166(20s+ 1)(86.8672s+ 1)(95.875s+ 1)e−57s

(s + 0.0120061)(11.9847s + 1)(19.747s + 1)(24.7244s + 1)(54.4759s + 1)(τ1s+ 1)
(B4-5)

C22,12 =
0.001401 (−2.6612s+ 1) (86.8672s+ 1)(95.875s+ 1)
(s + 0.0120061)(6.5784s+ 1)(78.2277s+ 1)(τ2s+ 1)

(B4-6)

C23,12 =
0.120804(86.8672s+ 1)(95.875s+ 1)
(82.1221s+ 1)(83.375s+ 1) (τ3s+ 1)

(B4-7)

C31,12 =
0.0924557(8s+ 1)(86.8672s+ 1)(95.875s+ 1)e−6s

(s + 0.0120061) (23.3672s + 1) (24.2855s + 1) (40.1834s + 1) (44.6128s + 1) (τ1s+ 1)
(B4-8)

C32,12 =
0.0422627(14.1653s+ 1)(86.8672s+ 1)(95.875s+ 1)e−2.5s

(s + 0.0120061)(60.6375s+ 1)(94.8681s+ 1)(τ2s+ 1)
(B4-9)

C33,12 =
0.597495(−262.3s+ 1)(86.87s+ 1)(95.88s+ 1)e−91.5s

(128.5s+ 1)(0.1s + 1) (τ3s+ 1)
. (B4-10)
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Combining the 2 matrices in Eq. (A1-1) yields
Cn×n,n,init1(s)

=
P (s)

(−s+ z)M (s)

×


K11 K12 . . . K1,n−1 K1n
K21 K22 . . . K2,n−1 K2n
...

...
. . .

...
...

Kn−1,1 Kn−1,2 . . . Kn−1,n−1 Kn−1,n
Kn1 Kn2 . . . Kn,n−1 Knn


(A1-3)

where

Kγ q (s) = vγ q (s)
e−θqs

τqs+ 1

=

(
ĝγ q(s) + ĝγ n(s).

s.an,q (s)
(s+ z)

)
e−θqs

τqs+ 1
;

γ = 1, 2, . . . , n; q = 1, 2, . . . , n− 1 (A1-4)

Kγ n(s) = ĝγ n.
−s+ z
s+ z

.
e−θns

τns+ 1
, γ = 1, 2, . . . , n. (A1-5)

C11,13 =
0.024218(4.2488s+ 1)(86.8672s+ 1)(95.875s+ 1)

(s + 0.0120061) (14.9671s+ 1)(64.657s+ 1)(τ1s+ 1)
(B5-2)

C12,13 =
1.86421(−54.5s+ 1)(86.8672s+ 1)(95.875s+ 1)e−13.8324s

(56.125s + 1)(76s + 1)(114.25s + 1)(τ2s+ 1)
(B5-3)

C13,13 =
0.0126915 (4.9874s+ 1) (86.8672s+ 1)(95.875s+ 1)e−25.5s

(s + 0.0120061) (54.0078s+ 1) (108.282s+ 1) (τ3s+ 1)
(B5-4)

C21,13 =
0.00576166(20s+ 1)(86.8672s+ 1)(95.875s+ 1)e−57s

(s + 0.0120061) (11.98s + 1)(19.75s + 1)(24.72s + 1)(54.48s + 1)(τ1s+ 1)
(B5-5)

C22,13 =
0.116744(−193.25s+ 1)(86.8672s+ 1)(95.875s+ 1)e−18.0716s

(83.498s + 1)(84.25s + 1)(84.5s + 1)(τ2s+ 1)
(B5-6)

C23,13 =
0.0014507(7.5s+ 1)(86.8672s+ 1)(95.875s+ 1)

(s + 0.0120061)(20.71s + 1)(23.15s + 1)(80.22s + 1)(81.33s + 1) (τ3s+ 1)
(B5-7)

C31,13 =
0.0924557 (8s+ 1) (86.8672s+ 1) (95.875s+ 1) e−6s

(s + 0.0120061) (23.37s + 1)(24.29s + 1)(40.18s + 1)(44.61s + 1)(τ1s+ 1)
(B5-8)

C32,13 =
3.52142(−25.7344s+ 1)(86.8672s+ 1)(95.875s+ 1)(211.5s+ 1)

(38.0625s + 1)(43s + 1)(102s + 1)(124.998s + 1)(τ2s+ 1)
(B5-9)

C33,13 =
0.00717992(86.8672s+ 1)(95.875s+ 1)(386s+ 1)e−5.5s

(s + 0.0120061) (42.6858s + 1)(46.8048s + 1)(136.629s + 1) (τ3s+ 1)
. (B5-10)

C11,23 =
2.01714(−249s+ 1)(86.8672s+ 1)(95.875s+ 1)e−0.3281s

(52.002s+ 1) (87s+ 1) (107.5s+ 1) (τ1s+ 1)
(B6-2)

C12,23 =
0.0223818(0.778s+ 1)(86.8672s+ 1)(95.875s+ 1)e−27s

(s + 0.0120061)(17.5129s + 1)(112.17s + 1)(τ2s+ 1)
(B6-3)

C13,23 =
0.0126915 (4.9874s+ 1) (86.8672s+ 1)(95.875s+ 1)e−25.5s

(s+0.0120061) (54.0078s+ 1) (108.282s+ 1) (τ3s+ 1)
(B6-4)

C21,23 =
0.479895(−30s+ 1)(86.8672s+ 1)(95.875s+ 1)e−4.64s

(82s+ 1)(91.25s+ 1)(95.25s+ 1)(τ1s+ 1)
(B6-5)

C22,23 =
0.001401(−2.6612s+ 1)(86.8672s+ 1)(95.875s+ 1)
(s + 0.0120061)(6.5784s + 1)(78.2277s + 1)(τ2s + 1)

(B6-6)

C23,23 =
0.0014507(7.5s+ 1)(86.8672s+ 1)(95.875s+ 1)

(s + 0.0120061)(20.71s + 1)(23.15s + 1)(80.22s + 1)(81.33s + 1) (τ3s+ 1)
(B6-7)

C31,23 =
7.70073(−25.4688s+ 1)(86.8672s+ 1)(95.875s+ 1)(225.25s+ 1)

(33.25s+ 1)(43.25s+ 1)(95.5s+ 1)(134.375s+ 1)(τ1s+ 1)
(B6-8)

C32,23 =
0.0422628(14.1653s+ 1)(86.8672s+ 1)(95.875s+ 1)e−2.5s

(s + 0.0120061) (60.6375s + 1) (94.8681s + 1) (τ2s+ 1)
(B6-9)

C33,23 =
0.00717992(86.8672s+ 1)(95.875s+ 1)(386s+ 1)e−5.5s

(s+ 0.0120061)(42.69s+ 1)(46.805s+ 1)(136.63s+ 1)(τ3s+ 1)
. (B6-10)
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Rewriting Eqs. (A1-3) to (A1-5) in block matrix form yields

Cn×n,n,init1 (s)

=
P (s)

(−s+ z)M (s)
×

[
v1F1 v2F2 . . . vn−1Fn−1 ĝnFmn

]
(A1-6)

where

vq =
[
v1q v2q . . . vnq

]T (A1-7)

ĝn =
[
ĝ1n ĝ2n . . . ĝnn

]T (A1-8)

Fq =
e−θqs

τqs+ 1
; q = 1, . . . , n− 1 (A1-9)

Fmn =
−s+ z
s+ z

.
e−θns

τns+ 1
. (A1-10)

APPENDIX A2: PROOF OF PROPOSITION 2

Cn×n,i,init1(s) = G−1(s)Hn×n,i

Cn×n,i,init1 (s) =
P (s)

(−s+ z)M (s)

·


ĝ11 (s) ĝ12 (s) . . . ĝ1n (s)
ĝ21 (s) ĝ22 (s) . . . ĝ2n (s)

...
...

. . .
...

ĝn1 (s) ĝn2 (s) . . . ĝnn (s)

 α(s),

(A2-1)

where

α (s)

=



H11 0 . . . 0 0 0 . . . 0 0
0 H22 . . . 0 0 0 . . . 0 0
...

...
. . .

...
...

... . . . 0 0
0 0 . . . Hi−1,i−1 0 0 . . . 0 0
Hi1 Hi2 . . . Hi,i−1 Hii Hi,i+1 . . . Hi,n−1 Hin
0 0 . . . 0 0 Hi+1,i+1 . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 0 . . . 0 0 0 0 Hn−1,n−1 0
0 0 . . . 0 0 0 0 0 Hnn


(A2-2)

where

Hkk =
e−θk s

τks+ 1
; k = 1, . . . , i− 1, i+ 1, . . . , n

Hir =
s.ai,r
(s+ z)

.
e−θr s

τrs+ 1
; r = 1, . . . , i− 1, i+ 1, . . . , n

Hii =
−s+ z
s+ z

.
e−θis

τis+ 1


.

(A2-3)

Combining the 2 matrices in Eq. (A2-1) yields

Cn×n,i,init1 (s) =
P (s)

(−s+ z)M (s)

W11 · · · W1n
...

. . .
...

Wn1 · · · Wnn

 (A2-4)

where

Wwr (s) = vwr (s)
e−θqs

τqs+ 1

=

(
ĝwr (s) + ĝwi(s).

s.ai,q (s)
(s+ z)

)
e−θqs

τqs+ 1

C11,dd =
0.024218(4.2488s+ 1)(86.8672s+ 1)(95.875s+ 1)
(s+ 0.0120061)(14.9671s+ 1)(64.657s+ 1)(τ1s+ 1)

(B7-2)

C12,dd =
0.02238185(0.778s+ 1)(86.8672s+ 1)(95.875s+ 1)e−27s

(s + 0.0120061)(112.1701s + 1)(17.5129s + 1)(τ2s+ 1)
(B7-3)

C13,dd =
0.0126915(4.9874s+ 1)(86.8672s+ 1)(95.875s+ 1)e−25.5s

(s+ 0.0120061)(54.0078s+ 1)(108.282s+ 1) (τ3s+ 1)
(B7-4)

C21,dd =
0.00576166(20s+ 1)(86.8672s+ 1)(95.875s+ 1)e−57s

(s+ 0.0120061)(11.985s+ 1)(19.75s+ 1)(24.724s+ 1)(54.48s+ 1)(τ1s+ 1)
(B7-5)

C22,dd =
0.001401(−2.6612s+ 1)(86.8672s+ 1)(95.875s+ 1)
(s + 0.0120061)(6.5784s + 1)(78.2277s + 1)(τ2s+ 1)

(B7-6)

C23,dd =
0.0014507(7.5s+ 1)(86.8672s+ 1)(95.875s+ 1)

(s + 0.0120061)(20.71s + 1)(23.15s + 1)(80.22s + 1)(81.33s + 1) (τ3s+ 1)
(B7-7)

C31,dd =
0.0924557 (8s+ 1) (86.8672s+ 1) (95.875s+ 1) e−6s

(s + 0.0120061) (23.37s + 1)(24.29s + 1)(40.18s + 1)(44.61s + 1)(τ1s+ 1)
(B7-8)

C32,dd =
0.04226275(14.1653s+ 1)(86.8672s+ 1)(95.875s+ 1)e−2.5s

(s + 0.0120061)(94.8681s + 1)(60.6375s + 1)(τ2s+ 1)
(B7-9)

C33,dd =
0.00717992(86.8672s+ 1)(95.875s+ 1)(386s+ 1)e−5.5s

(s + 0.0120061) (42.6858s + 1)(46.8048s + 1)(136.629s + 1) (τ3s+ 1)
. (B7-10)
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w = 1, 2, . . . , n; r = 1, . . . , i− 1, i+ 1, . . . , n

(A2-5)

Wwi(s) = ĝwi(s).
−s+ z
s+ z

.
e−θis

τis+ 1
, r = i. (A2-6)

Rewriting Eqs. (A1-4) to (A1-6) in block matrix form yields

Cn×n,i,init1 (s)

=
P (s)

(−s+ z)M (s)
×

[
v1F1 . . . vi−1Fi−1 vi+1Fi+1 · · · vnFn ĝiFmi

]
(A2-7)

where

vr =
[
v1r v2r . . . vnr

]T (A2-8)

Fr =
e−θr s

τrs+ 1
; r = 1, . . . , i− 1, i+ 1, . . . , n (A2-9)

ĝi =
[
ĝ1i ĝ2i . . . ĝni

]T (A2-10)

Fmi =
−s+ z
s+ z

.
e−θis

τis+ 1
. (A2-11)

C11,1 =
0.00611518(s+ 1)2(16.9688s+ 1)(17.375s+ 1)e−5.25s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(5.25s+ 1)(10.25s+ 1) (τ1s+ 1)
(C1-2)

C12,1 =
0.0154741(0.2817s+ 1)(0.375s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(10s+ 1)(100s+ 1) (τ2s+ 1)
(C1-3)

C13,1 =
0.0310904(−0.7969s+ 1)(−0.6406s+ 1)(16.9688s+ 1)(69s+ 1)e−8.875s

(0.1133s+ 1)(0.25s+ 1)(11.625s+ 1)(16.998s+ 1) (τ3s+ 1)
(C1-4)

C14,1 =
−0.0997113(0.7656s+ 1)(0.9922s+ 1)(16.9688s+ 1)(17.375s+ 1)
(0.1133s+ 1)(0.25s+ 1)(22.9766s+ 1)(23.9922s+ 1) (τ4s+ 1)

(C1-5)

C21,1 =
0.004593(−4.8125s+ 1)(4.7548s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.5s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(6s+ 1)(6.2539s+ 1) (τ1s+ 1)
(C1-6)

C22,1 =
−0.0616478(0.2625s+ 1)(16.9688s+ 1)(17.375s+ 1)e−14.89s

(0.1133s+ 1)(0.25s+ 1)(313.938s2 + 24.498s+ 1) (τ2s+ 1)
(C1-7)

C23,1 =
0.021459(3.3255s+ 1)(16.9688s+ 1)(17.375s+ 1)(104s+ 1)e−28.88s

(0.1133s+ 1)(0.25s+ 1)(14s+ 1)(18.9375s+ 1) (τ3s+ 1)
(C1-8)

C24,1 =
−0.0152609(−86.69s+ 1)(1.57s+ 1)(16.969s+ 1)(17.375s+ 1)e−28.25s

(0.1133s+ 1)(0.25s+ 1)(17.4844s+ 1)(18.625s+ 1) (τ4s+ 1)
(C1-9)

C31,1 =
0.00765788(s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.501s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(136.8s2 + 18.84s+ 1) (τ1s+ 1)
(C1-10)

C32,1 =
0.0533(−0.725s+ 1)(−0.592s+ 1)(−0.525s+ 1)(16.97s+ 1)(17.38s+ 1)e−25.36s

(0.1133s+ 1)(0.25s+ 1)(16.0993s+ 1)(16.3358s+ 1)(16.8149s+ 1) (τ2s+ 1)
(C1-11)

C33,1 =
−0.0715523(−13.19s+ 1)(−0.656s+ 1)(−0.602s+ 1)(16.97s+ 1)(17.375s+ 1)e−33.38s

(0.1133s+ 1)(0.25s+ 1)(12s+ 1)(12.75s+ 1)(12.875s+ 1) (τ3s+ 1)
(C1-12)

C34,1 =
0.0402176(−1.125s+ 1)(−0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)(62.2499s+ 1)e−25.38s

(0.1133s+ 1)(0.25s+ 1)(15.25s+ 1)(16.625s+ 1)(18.5s+ 1) (τ4s+ 1)
(C1-13)

C41,1 =
−0.0110499(0.2501s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(s+ 0.0432123)(7.5s+ 1)(9.3124s+ 1) (τ1s+ 1)
(C1-14)

C42,1 =

[
−0.0121119(−5.7046s+ 1)(−2.25s+ 1)(−2.0714s+ 1)(−1.4392s+ 1)

(−1.4151s+ 1)(16.9688s+ 1)(17.375s+ 1)

]
[
(0.1133s+ 1)(0.25s+ 1)(4.5767s+ 1)(5.0133s+ 1)

(6.9103s+ 1)(7.9433s+ 1)(23.4457s+ 1)

]
(τ2s+ 1)

(C1-15)

C43,1 =

[
(0.104841(−5.8125s+ 1)(−3.8125s+ 1)(−3.4375s+ 1)(−1.9688s+ 1)

(−1.8672s+ 1)(16.9688s+ 1)(17.375s+ 1)

]
[
(0.1133s+ 1)(0.25s+ 1)(6.5313s+ 1)
(7s+ 1)2(8.4453s+ 1)(18.5s+ 1)

]
(τ3s+ 1)

(C1-16)

C44,1 =
(0.0816345(−11.125s+ 1)(−1.9824s+ 1)(−0.75s+ 1)(16.9688s+ 1)(17.375s+ 1)e−10s

(0.1133s+ 1)(0.25s+ 1)(10.0625s+ 1)(18s+ 1)(18.75s+ 1) (τ4s+ 1)
. (C1-17)

VOLUME 11, 2023 32219



K. S. Ogunba et al.: Extended Approach to ATDIMC of Square Stable Multivariable Systems

APPENDIX B
CONTROLLER MATRIX DETAILS FOR DESIGNS FOR THE
3 × 3 DEPROPANIZER
APPENDIX B1: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y1’’ FOR 3 × 3
DEPROPANIZER
Using the procedure in Section III-B (i = 1), the ATDIMC
controller achieving ‘‘imperfect y1’’ for 3 × 3 Depropanizer
was computed as

C3×3.1 (s) =

C11,1(s) C12,1(s) C13,1(s)
C21,1(s) C22,1(s) C23,1(s)
C31,1(s) C32,1(s) C33,1(s)

 (B1-1)

where as B1-2–B1-10, shown at the bottom of page 15.

APPENDIX B2: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y2’’ FOR 3 ×

3 DEPROPANIZER
Using the procedure in Section III-B (i = 2), the ATDIMC
controller achieving ‘‘imperfect y2’’ was computed as

C3×3.2 (s) =

C11,2(s) C12,2(s) C13,2(s)
C21,2(s) C22,2(s) C23,2(s)
C31,2(s) C32,2(s) C33,2(s)

 (B2-1)

where as B2-2–B2-10, shown at the bottom of
page 15.

C11,2 =
0.141506(−13.25s+ 1)(2.6565s+ 1)(16.9688s+ 1)(17.375s+ 1)(63s+ 1)e−2.2168s

(0.1133s+ 1)(0.25s+ 1)(19s+ 1)(19.875s+ 1)(20.3125s+ 1) (τ1s+ 1)
(C2-2)

C12,2 =
0.000668673(−0.5002s+ 1)(16.9688s+ 1)(17.375s+ 1)98s+ 1)e−2.9415s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.432123)(14.1249s+ 1)(14.7812s+ 1) (τ2s+ 1)
(C2-3)

C13,2 =
0.0310904(1.9531s+ 1)(16.9688s+ 1)(17.375s+ 1)(54.0088s+ 1)
(0.1133s+ 1)(0.25s+ 1)(11.7188s+ 1)(14.375s+ 1) (τ3s+ 1)

(C2-4)

C14,2 =
−0.0997113(−6.8125s+ 1)(−3.2969s+ 1)(−2.3906s+ 1)(17.375s+ 1)(43.496s+ 1)

(0.1133s+ 1)(0.25s+ 1)(11.9844s+ 1)(12.9688s+ 1)(18s+ 1) (τ4s+ 1)
(C2-5)

C21,2 =
0.106285(5.945s+ 1)(16.9688s+ 1)(17.375s+ 1)(137.47s+ 1)e−32.9666s

(0.1133s+ 1)(0.25s+ 1)(16.7344s+ 1)(19.5s+ 1) (τ1s+ 1)
(C2-6)

C22,2 =
−0.00266395(−9.6875s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.875s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.5s+ 1)(8.75s+ 1) (τ2s+ 1)
(C2-7)

C23,2 =
0.021459(−183.608s+ 1)(−0.1011s+ 1)(4s+ 1)(16.969s+ 1)(17.375s+ 1)e−33.8682s

(0.1133s+ 1)(0.25s+ 1)(10s+ 1)(17.0938s+ 1)(17.3438s+ 1) (τ3s+ 1)
(C2-8)

C24,2 =
−0.0152609(0.7495s+ 1)(16.9688s+ 1)(17.375s+ 1)(45.125s+ 1)(315s+ 1)e−29.82s

(0.1133s+ 1)(0.25s+ 1)(28s+ 1)2(32s+ 1) (τ4s+ 1)
(C2-9)

C31,2 =
0.177215(−17.9999s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−5.4668s

(0.1133s+ 1)(0.25s+ 1)(26s+ 1)(30.25s+ 1) (τ1s+ 1)
(C2-10)

C32,2 =
0.00230408(−5.75s+ 1)(7.25s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(19.5s+ 1)(22.75s+ 1) (τ2s+ 1)
(C2-11)

C33,2 =
−0.0715523(−33.5039s+ 1)(3.002s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.375s

(0.1133s+ 1)(0.25s+ 1)(25.7499s+ 1)(27s+ 1) (τ3s+ 1)
(C2-12)

C34,2 =
0.0402176(16.9688s+ 1)(17.375s+ 1)(103.398s+ 1)e−18.1868s

(0.1133s+ 1)(0.25s+ 1)(30.5002s+ 1)(32.4985s+ 1) (τ4s+ 1)
(C2-13)

C41,2 =
−0.255712(−0.9941s+ 1)(−0.953s+ 1)(−0.875s+ 1)(16.97s+ 1)(17.375s+ 1)(45.89s+ 1)
(0.1133s+ 1)(0.25s+ 1)(11.5625s+ 1)(12.125s+ 1)(12.633s+ 1)(14.094s+ 1) (τ1s+ 1)

(C2-14)

C42,2 =
−0.000523385(s+ 1)(16.9688s+ 1)(17.375s+ 1)(129.875s+ 1)e−4.126s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(11.875s+ 1)(12.1875s+ 1) (τ2s+ 1)
(C2-15)

C43,2 =

[
0.104841(−1.6875s+ 1)(−1.6016s+ 1)(−1.3789s+ 1)(16.9688s+ 1)

(17.375s+ 1)(44.75s+ 1)

]
e−2.0156s

(0.1133s+ 1)(0.25s+ 1)(12.0898s+ 1)(12.4373s+ 1)(13.0938s+ 1)(14s+ 1) (τ3s+ 1)
(C2-16)

C44,4 =

[
0.0816345(−1.4531s+ 1)(−1.2263s+ 1)(−0.8513s+ 1)(16.9688s+ 1)

(17.375s+ 1)(48.0156s+ 1)

]
e−13.875s

(0.1133s+ 1)(0.25s+ 1)(11.48s+ 1)(12.0625s+ 1)(13.0938s+ 1)(13.375s+ 1) (τ4s+ 1)
. (C2-17)
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APPENDIX B3: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y3’’ FOR 3 ×

3 DEPROPANIZER
Using the procedure in Section III-A, the ATDIMC controller
achieving ‘‘imperfect y3’’ for 3 × 3 Depropanizer was com-
puted as

C3×3.3 (s) =

C11,3(s) C12,3(s) C13,3(s)
C21,3(s) C22,3(s) C23,3(s)
C31,3(s) C32,3(s) C33,3(s)

 (B3-1)

where as B3-2–B3-10, shown at the bottom of page 16.

APPENDIX B4: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y1&y2’’ FOR 3 ×

3 DEPROPANIZER
Using the procedure in Section III-D (j = 1, i = 2), the
ATDIMC controller achieving ‘‘imperfect y1&y2’’ for 3 × 3

Depropanizer was computed as

C3×3.12 (s) =

C11,12(s) C12,12(s) C13,12(s)
C21,12(s) C22,12(s) C23,12(s)
C31,12(s) C32,12(s) C33,12(s)


(B4-1)

where as B4-2–B4-10, shown at the bottom of page 16.

APPENDIX B5: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y1&y3’’ FOR 3 ×

3 DEPROPANIZER
Using the procedure in Section III-C (j = 1, n = 3), modified
ATDIMC controllers achieving ‘‘imperfect y1 & y3’’ for 3×3
Depropanizer was computed as

C3×3.13 (s) =

C11,13(s) C12,13(s) C13,13(s)
C21,13(s) C22,13(s) C23,13(s)
C31,13(s) C32,13(s) C33,13(s)


(B5-1)

C11,3 =
0.141506(−0.75s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)(67s+ 1)e−7.4374s

(0.1133s+ 1)(0.25s+ 1)(16s+ 1)(16.0005s+ 1)(16.5s+ 1) (τ1s+ 1)
(C3-2)

C12,3 =
0.0154719(3.75s+ 1)(16.9688s+ 1)(17.375s+ 1)(153s+ 1)
(0.1133s+ 1)(0.25s+ 1)(18.9688s+ 1)(21.875s+ 1) (τ2s+ 1)

(C3-4)

C13,3 =
0.00134349(−20s+ 1)(16.9688s+ 1)(17.375s+ 1)(29.0078s+ 1)e−37.4932s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(19.9961s+ 1)(23.7324s+ 1) (τ3s+ 1)
(C3-2)

C14,3 =
−0.0997113(7.1875s+ 1)(16.9688s+ 1)(17.375s+ 1)(50s+ 1)e−30s

(0.1133s+ 1)(0.25s+ 1)(18.25s+ 1)(24s+ 1) (τ4s+ 1)
(C3-5)

C21,3 =
0.106285(4.5541s+ 1)(16.9688s+ 1)(17.375s+ 1)(70.2298s+ 1)e−31.7871s

(0.1133s+ 1)(0.25s+ 1)(7.9828s+ 1)(45.2332s+ 1) (τ1s+ 1)
(C3-6)

C22,3 =
−0.0616478(−1.17s+ 1)(−1.09s+ 1)(−0.96s+ 1)(−0.5s+ 1)(16.97s+ 1)(17.375s+ 1)e−7.623s

(0.1133s+ 1)(0.25s+ 1)(7.125s+ 1)(7.75s+ 1)(8s+ 1)2 (τ2s+ 1)
(C3-7)

C23,3 =
0.0009273(−7.5418s+ 1)(16.9688s+ 1)(17.375s+ 1)(60.1769s+ 1)e−43.6871s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(7.0857s+ 1)(59.912s+ 1) (τ3s+ 1)
(C3-8)

C24,3 =
−0.0152609(−2.3125s+ 1)2(−1.6719s+ 1)(16.9688s+ 1)(17.375s+ 1)(82s+ 1)e−13s

(0.1133s+ 1)(0.25s+ 1)(8s+ 1)(9s+ 1)(10s+ 1)(12s+ 1) (τ4s+ 1)
(C3-9)

C31,3 =
0.177215(−1.8789s+ 1)(−0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−7.1249s

(0.1133s+ 1)(0.25s+ 1)(28.5938s+ 1)(30s+ 1) (τ1s+ 1)
(C3-10)

C32,3 =
0.05332(8.2129s+ 1)(16.9688s+ 1)(17.375s+ 1)e−14.034s

(0.1133s+ 1)(0.25s+ 1)(42.2791s+ 1) (τ2s+ 1)
(C3-11)

C33,3 =
−0.00309194(0.5s+ 1)(s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.75s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(21s+ 1)(21.9927s+ 1) (τ3s+ 1)
(C3-12)

C34,3 =
0.0402176(−5.2383s+ 1)(−0.8916s+ 1)(16.9688s+ 1)(17.375s+ 1)(77.5s+ 1)e−7.125s

(0.1133s+ 1)(0.25s+ 1)(23.7188s+ 1)(23.9999s+ 1)(24.2188s+ 1) (τ4s+ 1)
(C3-13)

C41,3 =
−0.255607(−1.0625s+ 1)(−s+ 1)(5.125s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(18s+ 1)(19.75s+ 1)(20s+ 1) (τ1s+ 1)
(C3-14)

C42,3 =
−0.0121119(−13.25s+ 1)(−9.75s+ 1)(−0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−29.6855s

(0.1133s+ 1)(0.25s+ 1)(4.3828s+ 1)(10.5s+ 1)(22.0156s+ 1) (τ2s+ 1)
(C3-15)

C43,3 =
0.00452948(1.0039s+ 1)(1.9373s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(15.499s+ 1)(16.0156s+ 1) (τ3s+ 1)
(C3-16)

C44,3 =
0.0816345(−1.375s+ 1)(−0.625s+ 1)(−0.25s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(18s+ 1)(19.9995s+ 1)(20.001s+ 1) (τ4s+ 1)
. (C3-17)
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where as B5-2–B5-10, shown at the bottom of
page 17.

APPENDIX B6: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y2&y3’’ FOR 3 ×

3 DEPROPANIZER
Using the procedure in Section III-C (j = 2, n = 3), modified
ATDIMC controllers achieving ‘‘imperfect y2 & y3’’ for 3×3
Depropanizer was computed as

C3×3.23 (s) =

C11,23(s) C12,23(s) C13,23(s)
C21,23(s) C22,23(s) C23,23(s)
C31,23(s) C32,23(s) C33,23(s)


(B6-1)

where as B6-2–B6-10, shown at the bottom of page 17.

APPENDIX B7: CONTROLLER MATRIX FOR DYNAMIC
DIMC DESIGN USING PROCEDURE IN [18] FOR 3 ×

3 DEPROPANIZER
Using the procedure in [18], with the structure adopted being
the IMC structure and the model simplification technique
used being as described in Section IV of this paper, the
dynamic decoupling internal model controller developed for
comparison purposes is

C3×3,dd (s) =

C11,dd (s) C12,dd (s) C13,dd (s)
C21,dd (s) C22,dd (s) C23,dd (s)
C31,dd (s) C32,dd (s) C33,dd (s)


(B7-1)

where as B7-2–B7-10, shown at the bottom of page 18.

C11,4 =
0.141506(−42.2836s+ 1)(16.9688s+ 1)(17.375s+ 1)e−10.5814s

(0.1133s+ 1)(0.25s+ 1)(18.3872s+ 1)(18.6942s+ 1) (τ1s+ 1)
(C4-2)

C12,4 =

[
0.0154741(−25.9887s+ 1)(−10.2656s+ 1)(−1.9412s+ 1)(−1.4979s+ 1)

(16.9688s+ 1)(17.375s+ 1)

]
e−11.6372s

(0.1133s+ 1)(0.25s+ 1)(10.4221s+ 1)(11.6229s+ 1)(12.6775s+ 1)(20.8565s+ 1) (τ2s+ 1)
(C4-3)

C13,4 =
0.0310904(5.873s+ 1)(16.9688s+ 1)(17.375s+ 1)(119.5s+ 1)e−17.72s

(0.1133s+ 1)(0.25s+ 1)(14.5s+ 1)(22s+ 1) (τ3s+ 1)
(C4-4)

C14,4 =
−0.0997113(−s+ 0.0432123)(1.6032s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(14.3083s+ 1)(14.9843s+ 1) (τ4s+ 1)
(C4-5)

C21,4 =
0.106285(−2.3971s+ 1)(−2.2659s+ 1)(−0.0625s+ 1)(16.97s+ 1)(17.375s+ 1)e−24.7031s

(0.1133s+ 1)(0.25s+ 1)(6s+ 1)(7s+ 1)(8s+ 1) (τ1s+ 1)
(C4-6)

C22,4 =
−0.0616478(−2.2031s+ 1)(−1.6563s+ 1)(−0.1094s+ 1)(16.97s+ 1)(17.375s+ 1)e−26.29s

(0.1133s+ 1)(0.25s+ 1)(8.5s+ 1)(9s+ 1)(9.75s+ 1) (τ2s+ 1)
(C4-7)

C23,4 =
0.021459(−1.1875s+ 1)(−1.1563s+ 1)(−1.125s+ 1)(16.97s+ 1)(17.375s+ 1)(52s+ 1)e−3s

(0.1133s+ 1)(0.25s+ 1)(6s+ 1)(8s+ 1)(10s+ 1)2 (τ3s+ 1)
(C4-8)

C24,4 =
−0.0152609(−s+ 0.0432123)(−0.5s+ 1)3(16.9688s+ 1)(17.375s+ 1)(18.0635s+ 1)e−32.4428s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(5.25s+ 1)(5.5s+ 1)(6.002s+ 1)(6.5s+ 1) (τ4s+ 1)
(C4-9)

C31,4 =
0.177215(−3.5s+ 1)2(16.9688s+ 1)(17.375s+ 1)(68.906s+ 1)

(0.1133s+ 1)(0.25s+ 1)(20s+ 1)2(22s+ 1) (τ1s+ 1)
(C4-10)

C32,4 =
0.05332(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)(50.2656s+ 1)e−31.9583s

(0.1133s+ 1)(0.25s+ 1)(28.3125s+ 1)(29.125s+ 1) (τ2s+ 1)
(C4-11)

C33,4 =
−0.0715523(−0.6406s+ 1)(−0.0293s+ 1)(16.9688s+ 1)(17.375s+ 1)(45s+ 1)

(0.1133s+ 1)(0.25s+ 1)(9.75s+ 1)(10s+ 1)(20s+ 1) (τ3s+ 1)
(C4-12)

C34,4 =
0.0402176(−s+ 0.0432123)(1.25s+ 1)(16.9688s+ 1)(17.375s+ 1)e−59.5665s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.0625s+ 1)(10s+ 1) (τ4s+ 1)
(C4-13)

C41,4 =
−0.255607(−3.5059s+ 1)(1.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−14.4375s

(0.1133s+ 1)(0.25s+ 1)(14.0078s+ 1)(19.498s+ 1) (τ1s+ 1)
(C4-14)

C42,4 =
−0.0121119(−4.9401s+ 1)(−4.908s+ 1)(−4.8946s+ 1)(−4.725s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(15.0116s+ 1)(15.0298s+ 1)(15.0422s+ 1)(24.9239s+ 1) (τ2s+ 1)
(C4-15)

C43,4 =
0.104841(−1.625s+ 1)(−1.375s+ 1)(−1.1152s+ 1)(−s+ 1)(16.9688s+ 1)(17.375s+ 1)e−8s

(0.1133s+ 1)(0.25s+ 1)(5s+ 1)(6.5s+ 1)(11.75s+ 1)(13.125s+ 1) (τ3s+ 1)
(C4-16)

C44,4 =
0.00352762(−0.9609s+ 1)(16.9688s+ 1)(17.375s+ 1)(60.0938s+ 1)e−35.57s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.8745s+ 1)(59.9998s+ 1) (τ4s+ 1)
. (C4-17)
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APPENDIX B8: CONTROLLER MATRIX FOR
MULTIVARIABLE PID DESIGN BY SIMPLIFIED DYNAMIC
DECOUPLING USING PROCEDURE IN [20] FOR 3 ×

3 DEPROPANIZER
Using the procedure for multivariable PID Design by Simpli-
fied Decoupling in [20], the authors presented the following
controller for the 3 × 3 Depropanizer:

C3×3,mvp (s) =

K11,mvp(s) K12,mvp(s) K13,mvp(s)
K21,mvp(s) K22,mvp(s) K23,mvp(s)
K31,mvp(s) K32,mvp(s) K33,mvp(s)


(B8-1)

where

K11,mvp = 0.5072 +
0.0056
s

(B8-2)

K12,mvp = 0.0584 +
0.005
s

−
3.68s

13.89s+ 1
(B8-3)

K13,mvp = 0.1113 +
0.0039
s

(B8-4)

K21,mvp = 0.0301 +
0.0013
s

−
4.456s

44.35s+ 1
(B8-5)

K22,mvp = 0.0245 +
0.0003
s

(B8-6)

K23,mvp = 0.0032 +
4.4 × 10−4

s
+

0.995s
35.6s+ 1

(B8-7)

K31,mvp = 1.0293 +
0.0214
s

−
76.5s

83.35s+ 1
(B8-8)

K32,mvp = 0.2106 +
0.0095
s

+
0.01s

0.26s+ 1
(B8-9)

K33,mvp = 0.6 +
0.0022
s

+
12.28s

2.05s+ 1
. (B8-10)

C11,12 =
0.00611518(s+ 1)2(16.9688s+ 1)(17.375s+ 1)e−5.2502s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(5.25s+ 1)(10.25s+ 1) (τ1s+ 1)
(C5-2)

C12,12 =
0.000668673(−0.5002s+ 1)(16.9688s+ 1)(17.375s+ 1)(98s+ 1)e−2.9415s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(14.1249s+ 1)(14.7812s+ 1) (τ2s+ 1)
(C5-3)

C13,12 =
0.0310904(1.9531s+ 1)(16.9688s+ 1)(17.375s+ 1)(54.0088s+ 1)
(0.1133s+ 1)(0.25s+ 1)(11.7188s+ 1)(14.375s+ 1) (τ3s+ 1)

(C5-4)

C14,12 =
−0.0997113(−6.8125s+ 1)(−3.2969s+ 1)(−2.3906s+ 1)(17.375s+ 1)(43.496s+ 1)

(0.1133s+ 1)(0.25s+ 1)(11.9844s+ 1)(12.9688s+ 1)(18s+ 1) (τ4s+ 1)
(C5-5)

C21,12 =
0.00459281(−4.8125s+ 1)(4.7548s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.51s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(6s+ 1)(6.2539s+ 1) (τ1s+ 1)
(C5-6)

C22,12 =
−0.00266395(−9.6875s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.875s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.5s+ 1)(8.75s+ 1) (τ2s+ 1)
(C5-7)

C23,12 =
0.021459(−183.608s+ 1)(−0.1011s+ 1)(4s+ 1)(16.9688s+ 1)(17.375s+ 1)e−33.87s

(0.1133s+ 1)(0.25s+ 1)(10s+ 1)(17.0938s+ 1)(17.3438s+ 1) (τ3s+ 1)
(C5-8)

C24,12 =
−0.0152609(0.7495s+ 1)(16.9688s+ 1)(17.375s+ 1)(45.125s+ 1)(315s+ 1)e−29.82s

(0.1133s+ 1)(0.25s+ 1)(28s+ 1)2(32s+ 1) (τ4s+ 1)
(C5-9)

C31,12 =
0.00765788(s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.5007s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(136.813s2 + 18.8438s+ 1) (τ1s+ 1)
(C5-10)

C32,12 =
0.00230408(−5.75s+ 1)(7.25s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(19.5s+ 1)(22.75s+ 1) (τ2s+ 1)
(C5-11)

C33,12 =
−0.0715523(−33.5039s+ 1)(3s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.375s

(0.1133s+ 1)(0.25s+ 1)(25.7499s+ 1)(27s+ 1) (τ3s+ 1)
(C5-12)

C34,12 =
0.0402176(16.9688s+ 1)(17.375s+ 1)(103.398s+ 1)e−18.1868s

(0.1133s+ 1)(0.25s+ 1)(30.5002s+ 1)(32.4985s+ 1) (τ4s+ 1)
(C5-13)

C41,12 =
−0.0110499(0.2501s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(7.5s+ 1)(9.3124s+ 1) (τ1s+ 1)
(C5-14)

C42,12 =
−0.000523385(s+ 1)(16.9688s+ 1)(17.375s+ 1)(129.875s+ 1)e−4.126s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(11.875s+ 1)(12.1875s+ 1) (τ2s+ 1)
(C5-15)

C43,12 =

[
0.104841(−1.6875s+ 1)(−1.6016s+ 1)(−1.3789s+ 1)(16.9688s+ 1)

(17.375s+ 1)(44.75s+ 1)

]
e−2.0156s

(0.1133s+ 1)(0.25s+ 1)(12.0898s+ 1)(12.4373s+ 1)(13.0938s+ 1)(14s+ 1) (τ3s+ 1)
(C5-16)

C44,12 =

[
0.0816345(−1.4531s+ 1)(−1.2263s+ 1)(−0.8513s+ 1)(16.9688s+ 1)

(17.375s+ 1)(48.0156s+ 1)

]
e−13.875s

(0.1133s+ 1)(0.25s+ 1)(11.4766s+ 1)(12.0625s+ 1)(13.0938s+ 1)(13.375s+ 1) (τ4s+ 1)
. (C5-17)
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APPENDIX C
CONTROLLER MATRIX DETAILS FOR DESIGNS FOR THE 4
× 4 F4d2 SYSTEM OF [40]
APPENDIX C1: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y1’’ FOR 4 × 4 F4d2
SYSTEM OF [40]
Using the procedure in Section III-B (i = 1), the ATDIMC
controller achieving ‘‘imperfect y1’’ for 4 × 4 F4d2 System
was computed as

C4×4,1 (s) =


C11,1(s) C12,1(s) C13,1(s) C14,1(s)
C21,1(s) C22,1(s) C23,1(s) C24,1(s)
C31,1(s) C32,1(s) C33,1(s) C34,1(s)
C41,1(s) C42,1(s) C43,1(s) C44,1(s)


(C1-1)

where as C1-2–C1-17, shown at the bottom of
page 19.

APPENDIX C2: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y2’’ FOR 4 × 4 F4d2
SYSTEM OF [40]
Using the procedure in Section III-B (i = 2), the ATDIMC
controller achieving ‘‘imperfect y2’’ for 4 × 4 F4d2 System
was computed as

C4×4,2 (s) =


C11,2(s) C12,2(s) C13,2(s) C14,2(s)
C21,2(s) C22,2(s) C23,2(s) C24,2(s)
C31,2(s) C32,2(s) C33,2(s) C34,2(s)
C41,2(s) C42,2(s) C43,2(s) C44,2(s)


(C2-1)

C11,32 =
0.141506(−13.25s+ 1)(2.6565s+ 1)(16.9688s+ 1)(17.375s+ 1)(63s+ 1)e−2.2168s

(0.1133s+ 1)(0.25s+ 1)(19s+ 1)(19.875s+ 1)(20.3125s+ 1) (τ1s+ 1)
(C6-2)

C12,32 =
0.000668673(−0.5002s+ 1)(16.9688s+ 1)(17.375s+ 1)(98s+ 1)e−2.9415s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(14.1249s+ 1)(14.7812s+ 1) (τ2s+ 1)
(C6-3)

C13,32 =
0.00134349(−20s+ 1)(16.9688s+ 1)(17.375s+ 1)(29.0078s+ 1)e−37.4932s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(19.9961s+ 1)(23.7324s+ 1) (τ3s+ 1)
(C6-4)

C14,32 =
−0.0997113(−6.8125s+ 1)(−3.2969s+ 1)(−2.3906s+ 1)(17.375s+ 1)(43.496s+ 1)

(0.1133s+ 1)(0.25s+ 1)(11.9844s+ 1)(12.9688s+ 1)(18s+ 1) (τ4s+ 1)
(C6-5)

C21,32 =
0.106285(5.9453s+ 1)(16.9688s+ 1)(17.375s+ 1)(137.477s+ 1)e−32.9666s

(0.1133s+ 1)(0.25s+ 1)(16.7344s+ 1)(19.5s+ 1) (τ1s+ 1)
(C6-6)

C22,32 =
−0.00266395(−9.6875s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.875s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.5s+ 1)(8.75s+ 1) (τ2s+ 1)
(C6-7)

C23,32 =
0.000927295(−7.5418s+ 1)(16.9688s+ 1)(17.375s+ 1)(60.1769s+ 1)e−43.6871s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(7.0857s+ 1)(59.912s+ 1) (τ3s+ 1)
(C6-8)

C24,32 =
−0.0152609(0.7495s+ 1)(16.9688s+ 1)(17.375s+ 1)(45.125s+ 1)(315s+ 1)e−29.82s

(0.1133s+ 1)(0.25s+ 1)(28s+ 1)2(32s+ 1) (τ4s+ 1)
(C6-9)

C31,32 =
0.177215(−17.9999s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−5.4668s

(0.1133s+ 1)(0.25s+ 1)(26s+ 1)(30.25s+ 1) (τ1s+ 1)
(C6-10)

C32,32 =
0.00230408(−5.75s+ 1)(7.25s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(19.5s+ 1)(22.75s+ 1) (τ2s+ 1)
(C6-11)

C33,32 =
−0.00309194(0.5s+ 1)(s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.75s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(21s+ 1)(21.993s+ 1) (τ3s+ 1)
(C6-12)

C34,32 =
0.0402176(16.9688s+ 1)(17.375s+ 1)(103.398s+ 1)e−18.1868s

(0.1133s+ 1)(0.25s+ 1)(30.5002s+ 1)(32.4985s+ 1) (τ4s+ 1)
(C6-13)

C41,32 =

[
−0.255712(−0.9941s+ 1)(−0.9531s+ 1)(−0.875s+ 1)(16.9688s+ 1)

(17.375s+ 1)(45.8906s+ 1)

]
(0.1133s+ 1)(0.25s+ 1)(11.5625s+ 1)(12.125s+ 1)(12.6328s+ 1)(14.0938s+ 1) (τ1s+ 1)

(C6-14)

C42,32 =
−0.000523385(s+ 1)(16.9688s+ 1)(17.375s+ 1)(129.875s+ 1)e−4.126s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(11.875s+ 1)(12.1875s+ 1) (τ2s+ 1)
(C6-15)

C43,32 =
0.00452948(1.0039s+ 1)(1.9373s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(15.499s+ 1)(16.0156s+ 1) (τ3s+ 1)
(C6-16)

C44,32 =

[
0.0816345(−1.4531s+ 1)(−1.2263s+ 1)(−0.8513s+ 1)(16.9688s+ 1)

(17.375s+ 1)(48.0156s+ 1)

]
e−13.875s

(0.1133s+ 1)(0.25s+ 1)(11.4766s+ 1)(12.0625s+ 1)(13.0938s+ 1)(13.375s+ 1) (τ4s+ 1)
. (C6-17)
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where as C2-2–C2-17, shown at the bottom of
page 20.

APPENDIX C3: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y3’’ FOR 4 × 4 F4d2
SYSTEM OF [40]
Using the procedure in Section III-B (i = 3), the ATDIMC
controller achieving ‘‘imperfect y3’’ for 4 × 4 F4d2 System
was computed as

C4×4,3 (s) =


C11,3(s) C12,3(s) C13,3(s) C14,3(s)
C21,3(s) C22,3(s) C23,3(s) C24,3(s)
C31,3(s) C32,3(s) C33,3(s) C34,3(s)
C41,3(s) C42,3(s) C43,3(s) C44,3(s)


(C3-1)

where as C3-2–C3-17, shown at the bottom of
page 21.

APPENDIX C4: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y4’’ FOR 4 × 4 F4d2
SYSTEM OF [40]
Using the procedure in Section III-A (n = 4), the ATDIMC
controller achieving ‘‘imperfect y4’’ for 4 × 4 F4d2 System
was computed as

C4×4,4 (s) =


C11,4(s) C12,4(s) C13,4(s) C14,4(s)
C21,4(s) C22,4(s) C23,4(s) C24,4(s)
C31,4(s) C32,4(s) C33,4(s) C34,4(s)
C41,4(s) C42,4(s) C43,4(s) C44,4(s)


(C4-1)

C11,42 =
0.141506(−13.25s+ 1)(2.6565s+ 1)(16.9688s+ 1)(17.375s+ 1)(63s+ 1)e−2.2168s

(0.1133s+ 1)(0.25s+ 1)(19s+ 1)(19.875s+ 1)(20.3125s+ 1) (τ1s+ 1)
(C7-2)

C12,42 =
0.000668673(−0.5002s+ 1)(16.9688s+ 1)(17.375s+ 1)(98s+ 1)e−2.9415s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(14.1249s+ 1)(14.7812s+ 1) (τ2s+ 1)
(C7-3)

C13,42 =
0.0310904(1.9531s+ 1)(16.9688s+ 1)(17.375s+ 1)(54.0088s+ 1)
(0.1133s+ 1)(0.25s+ 1)(11.7188s+ 1)(14.375s+ 1) (τ3s+ 1)

(C7-4)

C14,42 =
−0.0997113(−s+ 0.0432123)(1.6032s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(14.3083s+ 1)(14.9843s+ 1) (τ4s+ 1)
(C7-5)

C21,42 =
0.106285(5.9453s+ 1)(16.9688s+ 1)(17.375s+ 1)(137.477s+ 1)e−32.9666s

(0.1133s+ 1)(0.25s+ 1)(16.7344s+ 1)(19.5s+ 1) (τ1s+ 1)
(C7-6)

C22,42 =
−0.00266395(−9.6875s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.875s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.5s+ 1)(8.75s+ 1) (τ2s+ 1)
(C7-7)

C23,42 =
0.021459(−183.608s+ 1)(−0.1011s+ 1)(4s+ 1)(16.9688s+ 1)(17.375s+ 1)e−33.87s

(0.1133s+ 1)(0.25s+ 1)(10s+ 1)(17.0938s+ 1)(17.3438s+ 1) (τ3s+ 1)
(C7-8)

C24,42 =
−0.0152609(−s+ 0.0432123)(−0.5s+ 1)3(16.9688s+ 1)(17.375s+ 1)(18.0635s+ 1)e−32.443s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(5.25s+ 1)(5.5s+ 1)(6s+ 1)(6.5s+ 1) (τ4s+ 1)
(C7-9)

C31,42 =
0.177215(−17.9999s+ 1)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−5.4668s

(0.1133s+ 1)(0.25s+ 1)(26s+ 1)(30.25s+ 1) (τ1s+ 1)
(C7-10)

C32,42 =
0.00230408(−5.75s+ 1)(7.25s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(19.5s+ 1)(22.75s+ 1) (τ2s+ 1)
(C7-11)

C33,42 =
−0.0715523(−33.5039s+ 1)(3s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.375s

(0.1133s+ 1)(0.25s+ 1)(25.7499s+ 1)(27s+ 1) (τ3s+ 1)
(C7-12)

C34,42 =
0.0402176(−s+ 0.0432123)(1.25s+ 1)(16.9688s+ 1)(17.375s+ 1)e−59.5665s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.0625s+ 1)(10s+ 1) (τ4s+ 1)
(C7-13)

C41,42 =

[
−0.255712(−0.9941s+ 1)(−0.9531s+ 1)(−0.875s+ 1)(16.9688s+ 1)

(17.375s+ 1)(45.8906s+ 1)

]
(0.1133s+ 1)(0.25s+ 1)(11.5625s+ 1)(12.125s+ 1)(12.6328s+ 1)(14.0938s+ 1) (τ1s+ 1)

(C7-14)

C42,42 =
−0.000523385(s+ 1)(16.9688s+ 1)(17.375s+ 1)(129.875s+ 1)e−4.126s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(11.875s+ 1)(12.1875s+ 1) (τ2s+ 1)
(C7-15)

C43,42 =

[
0.104841(−1.6875s+ 1)(−1.6016s+ 1)(−1.3789s+ 1)(16.9688s+ 1)

(17.375s+ 1)(44.75s+ 1)

]
e−2.0156s

(0.1133s+ 1)(0.25s+ 1)(12.0898s+ 1)(12.4373s+ 1)(13.0938s+ 1)(14s+ 1) (τ3s+ 1)
(C7-16)

C44,42 =
0.00352762(−0.9609s+ 1)(16.9688s+ 1)(17.375s+ 1)(60.094s+ 1)e−35.57s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)(8.8745s+ 1)(60s+ 1) (τ4s+ 1)
. (C7-17)
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where as C4-2–C4-17, shown at the bottom of
page 22.

APPENDIX C5: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y1&y2’’ FOR 4 × 4 F4d2
SYSTEM OF [40]
Using the procedure in Section III-D (j = 1, i = 2), the
ATDIMC controller achieving ‘‘imperfect y1&y2’’ for 4 × 4
F4d2 System was computed as

C4×4,12 (s) =


C11,12(s) C12,12(s) C13,12(s) C14,12(s)
C21,12(s) C22,12(s) C23,12(s) C24,12(s)
C31,12(s) C32,12(s) C33,12(s) C34,12(s)
C41,12(s) C42,12(s) C43,12(s) C44,12(s)


(C5-1)

where as C5-2–C5-17, shown at the bottom of
page 23.

APPENDIX C6: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y3&y2’’ FOR 4 × 4 F4d2
SYSTEM OF [40]
Using the procedure in Section III-D (j = 3, i = 2), the
ATDIMC controller achieving ‘‘imperfect y1&y2’’ for 4 × 4
F4d2 System was computed as

C4×4,32 (s) =


C11,32(s) C12,32(s) C13,32(s) C14,32(s)
C21,32(s) C22,32(s) C23,32(s) C24,32(s)
C31,32(s) C32,32(s) C33,32(s) C34,32(s)
C41,32(s) C42,32(s) C43,32(s) C44,32(s)


(C6-1)

C11,dd =
0.00611518(−s+ 0.0432123)(s+ 1)2(16.9688s+ 1)(17.375s+ 1)e−5.2502s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(5.25s+ 1)(10.25s+ 1) (τ1s+ 1)
(C8-2)

C12,dd =
0.000668673(−0.5002s+ 1)(−s+ 0.0432123)(16.97s+ 1)(17.375s+ 1)(98s+ 1)e−2.9415s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(14.1249s+ 1)(14.7812s+ 1) (τ2s+ 1)
(C8-3)

C13,dd =
0.00134349(−20s+ 1)(−s+ 0.0432123)(16.9688s+ 1)(17.375s+ 1)(29.0078s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(19.9961s+ 1)(23.7324s+ 1) (τ3s+ 1)
(C8-4)

C14,dd =
−0.0997113(−s+ 0.0432123)2(1.6032s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(14.31s+ 1)(14.9843s+ 1) (τ4s+ 1)
(C8-5)

C21,dd =
0.00459281(−4.8125s+ 1)(−s+ 0.0432123)(4.7548s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.51s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(6s+ 1)(6.2539s+ 1) (τ1s+ 1)
(C8-6)

C22,dd =
−0.00266395(−9.6875s+ 1)(−s+ 0.0432123)(0.5s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.875s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(8.5s+ 1)(8.75s+ 1) (τ2s+ 1)
(C8-7)

C23,dd =
0.000927295(−7.5418s+ 1)(−s+ 0.0432123)(16.9688s+ 1)(17.375s+ 1)e−43.6871s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(7.0857s+ 1)(59.912s+ 1) (τ3s+ 1)
(C8-8)

C24,dd =
−0.015261(−s+ 0.0432123)2(−0.5s+ 1)3(16.9688s+ 1)(17.375s+ 1)(18.0635s+ 1)e−32.443s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(5.25s+ 1)(5.5s+ 1)(6.002s+ 1)(6.5s+ 1) (τ4s+ 1)
(C8-9)

C31,dd =
0.00765788(−s+ 0.0432123)(s+ 1)(16.9688s+ 1)(17.375s+ 1)e−12.5007s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(136.813s2 + 18.8438s+ 1) (τ1s+ 1)
(C8-10)

C32,dd =
0.00230408(−5.75s+ 1)(−s+ 0.0432123)(7.25s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(19.5s+ 1)(22.75s+ 1) (τ2s+ 1)
(C8-11)

C33,dd =
−0.00309194(−s+ 0.0432123)(0.5s+ 1)(s+ 1)(16.9688s+ 1)(17.375s+ 1)e−21.75s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(21s+ 1)(21.9927s+ 1) (τ3s+ 1)
(C8-12)

C34,dd =
0.0402176(−s+ 0.0432123)2(1.25s+ 1)(16.9688s+ 1)(17.375s+ 1)e−59.57s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(8.0625s+ 1)(10s+ 1) (τ4s+ 1)
(C8-13)

C41,dd =
−0.0110499(−s+ 0.0432123)(0.2501s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(7.5s+ 1)(9.3124s+ 1) (τ1s+ 1)
(C8-14)

C42,dd =
−0.00052339(−s+ 0.0432123)(s+ 1)(16.97s+ 1)(17.375s+ 1)(129.875s+ 1)e−4.13s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(11.875s+ 1)(12.1875s+ 1) (τ2s+ 1)
(C8-15)

C43,dd =
0.00452948(−s+ 0.0432123)(1.0039s+ 1)(1.9373s+ 1)(16.9688s+ 1)(17.375s+ 1)

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(15.499s+ 1)(16.0156s+ 1) (τ3s+ 1)
(C8-16)

C44,dd =
0.00352762(−s+ 0.0432123)(−0.96s+ 1)(16.9688s+ 1)(17.375s+ 1)(60.094s+ 1)e−35.57s

(0.1133s+ 1)(0.25s+ 1)(s+ 0.0432123)2(8.8745s+ 1)(59.9998s+ 1) (τ4s+ 1)
. (C8-17)
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where as C6-2–C6-17, shown at the bottom of
page 24.

APPENDIX C7: CONTROLLER MATRIX FOR ATDIMC
DESIGN ACHIEVING ‘‘IMPERFECT y4&y2’’ FOR 4 × 4 F4d2
SYSTEM OF [40]
Using the procedure in Section III-D (j = 4, i = 2), the
ATDIMC controller achieving ‘‘imperfect y1&y2’’ for 4 × 4
F4d2 System was computed as

C4×4,42 (s) =


C11,42(s) C12,42(s) C13,42(s) C14,42(s)
C21,42(s) C22,42(s) C23,42(s) C24,42(s)
C31,42(s) C32,42(s) C33,42(s) C34,42(s)
C41,42(s) C42,42(s) C43,42(s) C44,42(s)


(C7-1)

where as C7-2–C7-17, shown at the bottom of page 25.

APPENDIX C8: CONTROLLER MATRIX FOR DYNAMIC
DIMC DESIGN USING PROCEDURE IN [18] FOR 4 × 4 F4d2
System Of [40]
Using the procedure in [18], with the structure adopted being
the IMC structure and the model simplification technique
used being as described in Section IV of this paper, the
dynamic decoupling internal model controller developed for
the 4 × 4 F4d2 System of [40] is:

C4×4,dd (s) =


C11,dd (s) C12,dd (s) C13,dd (s) C14,dd (s)
C21,dd (s) C22,dd (s) C23,dd (s) C24,dd (s)
C31,dd (s) C32,dd (s) C33,dd (s) C34,dd (s)
C41,dd (s) C42,dd (s) C43,dd (s) C44,dd (s)


(C8-1)

where as C8-2–C8-17, shown at the bottom of page 26.
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