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ABSTRACT With the advancements in reinforcement learning (RL), new variants of this artificial
intelligence approach have been introduced in the literature. This has led to increased interest in using
RL to address complex issues in diabetes management. Using RL, a decision maker (or agent) observes
decision-making factors (or state) from the dynamic operating environment, selects actions, and subsequently
receives delayed rewards. The agent adapts its actions to changes in the operating environment to maximize
its cumulative reward and improve system performance. This paper presents how various variants of RL have
been used to improve diabetes management, such as a higher time in range during which the blood glucose
level is within the normal range and a higher similarity between RL and physician’s policies. Key highlights
focus on the application of RL in diabetes management, including a taxonomy of the attributes of RL (e.g.,
roles and advantages), essential elements for training (e.g., data and simulators), representations of diabetes
attributes in RL models, and variants of RL algorithms. In addition, this paper discusses open issues and
potential future developments in the use of RL in diabetes management.

INDEX TERMS Actor-critic reinforcement learning, applied reinforcement learning, deep Q-network,
deep reinforcement learning, diabetes, Markov decision process, multi-agent reinforcement learning,
reinforcement learning.

I. INTRODUCTION
Diabetes mellitus, commonly known as diabetes, is a chronic
metabolic disease. The number of diabetic patients has
increased from 108 million in 1980 to 537 million in
2021, and it is expected to increase to 783 million by
2045 [1], [2], [3]. It is a concern that diabetes can lead
to higher rates of intensive care unit (ICU) admissions
and mortality, particularly among those also suffering from
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other noncommunicable and communicable diseases such as
COVID-19 [4], [5].

A. AN OVERVIEW OF DIABETES
Diabetes occurs when a patient’s pancreas: a) does not
produce a sufficient level of insulin to convert glucose to
glycogen for storage in liver and muscle cells to reduce
the blood glucose level; and/ or b) produces more than a
sufficient level of glucagon to convert glycogen to glucose
to increase the blood glucose level [2]. Found in the
pancreas, the β-cells synthesize and secrete insulin [6],
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and the α-cells synthesize and secrete glucagon [7]. Both
insulin and glucagon are hormones that maintain normal
glucose homeostasis in the body to monitor and regulate the
time-series blood glucose level, and their anomalous levels
cause hyperglycemia and hypoglycemia conditions when the
blood glucose level is higher- and lower-than-normal, respec-
tively [8]. Typically, blood glucose levels above 180mg/dL
are considered hyperglycemic, levels between 70mg/dL and
180mg/dL are considered normal, and levels below 70mg/dL
are considered hypoglycemic [9], [10]. Both hyperglycemia
and hypoglycemia can lead to both acute and chronic health
complications. Long-term hyperglycemia can lead to cardio-
vascular disease [11], neuropathy [12], and retinal disease.
Hypoglycemia can cause symptoms such as sweating, trem-
bling, hunger, dizziness, and when the blood glucose level is
too low in the brain, it can cause agitation, seizure, uncon-
sciousness, coma, brain damage, and sudden death [13].

Two common types of diabetes are type 1 diabetes
mellitus (T1DM) and type 2 diabetes mellitus (T2DM).
T1DM patients have autoimmune destruction of the β-
cells causing absolute insulin deficiency. T2DM patients
have β-cell failure and insulin resistance, whereby the liver
and muscle cells do not respond well to insulin, causing
insulin deficiency [14]. Both T1DM and T2DM affect the
conversion of glucose to glycogen for storage, resulting
in a higher level of blood glucose level. T2DM accounts
for between 90% and 95% of all diabetes cases [15], and
patients can suffer from both types simultaneously. While
the root cause of diabetes remains unknown, a combination
of factors affecting patients, including genetics, environment,
and lifestyle, have been suggested [16]. Some of these factors
are dynamic, such as when a patient changes lifestyle from
time to time. For treatment, T1DM requires insulin injections
or infusions. On the other hand, T2DM requires lifestyle
and dietary interventions, and oral medications, and when
these no longer work well enough, it also requires insulin
injections or infusions. The traditional treatment approaches
tend to consider a general patient population rather than
individual patients, and ignore the dynamics of the operating
environment including the patients.

B. AN OVERVIEW OF REINFORCEMENT LEARNING AND
ITS APPLICATION TO DIABETES MANAGEMENT
In reinforcement learning (RL), an autonomous agent
observes the factors that influence decision-making (known
as states) in a dynamic operating environment, chooses
actions based on its current understanding of the best course
of action (known as policy), and receives feedback in the form
of delayed rewards at a later time. The agent takes potential
actions under different states in a trial-and-error manner in
a large number of iterations so that the best-known policy
converges to the optimal policy as time goes by. In other
words, the agent learns the optimal policy that adapts to the
dynamics of the operating environment through interactions
with its operating environment as time goes by. This allows

the agent to accumulate the maximum reward over time,
which improves the overall performance of the system.

RL has been applied in a diverse range of healthcare appli-
cations, including recommending the right treatment [17]
and medicine [18], and their dosage [18] and timing [19].
RL provides various advantages, particularly personalized
care for different individuals rather than following general
guidelines traditionally used for an average individual in
treatments and medications. In addition to the capability
of mimicking the physician’s actions (e.g., prescriptions),
RL learns the best possible course of action leading to good
clinical outcomes in the long run in diabetes management.
Equipped with RL, the system measures and receives
inputs (e.g., the blood glucose level), and then estimates
and recommends the insulin dosage for manual exogenous
injection [20] or automated subcutaneous infusion [6] in a
real-time closed-loop insulin-glucose system. The manual
injection method uses a glucometer and it requires patients
to perform a finger-prick test that takes one drop of blood
from a finger at least four times a day (i.e., before each
meal and sleeping). The automated infusion method uses
a subcutaneous glucose sensor to measure and sample the
blood glucose level every few minutes [21]. In [8] and [22],
the sampling interval of the subcutaneous glucose sensor is
fiveminutes due to the low dynamicity of the glucose-insulin-
glucagon interaction.

C. CONTRIBUTIONS
This paper presents a review of the application of RL in
diabetes management. including a taxonomy of the attributes
of RL, essential elements for training using RL, representa-
tions of diabetes attributes in RL models, and RL algorithms.
Furthermore, we present open issues and future directions for
the application of RL in diabetes management to stimulate
research interest in this area. Our paper focuses on the RL
models and algorithms, so enabling technologies supporting
diabetes management, such as secured communication, are
not covered and have been presented in [23]. General reviews
of the use of artificial intelligence have been presented
in [24], [25], [26], [27], and [28], and a review of the
representations of the RL model has been presented in [29].
Nevertheless, to the best of our knowledge, this paper is the
first of its kind, presenting a comprehensive review of RL
models and algorithms for diabetes management, including
essential elements for training RL, such as data, system
models, simulators, clinical studies, and so on.

D. ORGANIZATION OF THE PAPER
The rest of this paper is organized as follows. Section II
presents background, including the Markov decision process
(MDP) problem, the traditional RL algorithm, and a compar-
ison between RL and other control algorithms. Section III
presents a wide range of attributes related to applying RL in
diabetes management, including the roles, advantages, data,
system models, experiment designs, simulators, simulation
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parameters and values, clinical studies, implementation, and
performance measures. Section IV presents RL models,
including the state, action, and reward representations.
Section V presents RL algorithms and enhancements for
diabetes management, including traditional RL, model-based
RL, multi-agent RL, actor-critic RL, and deep RL. Section VI
presents open issues. Finally, Section VII concludes this
paper.

II. BACKGROUND
Diabetes management can be formulated as the MDP
problem, and subsequently solved using RL. This section
presents an overview of the MDP problem, the traditional
RL algorithm, and a comparison between RL and other
control algorithms to motivate the need for using RL in
diabetes management. Table 1 presents a summary of general
notations used in this paper.

A. THE MDP PROBLEM
The MDP problem is represented as a mathematical frame-
work in the (S,A,P,R) tuple, where S represents the state
space, A represents the action space, P represents the
transition probability matrix, and R represents the reward
function. In MDP, an autonomous agent makes sequential
discrete-time decisions in the dynamic and noisy operating
environment as time goes by [30]. Generally speaking, the
MDP problem conforms to the decision-making process
of physicians in diabetes management. Based on the state
st ∈ S, the agent selects action at ∈ A at time t , then it
observes the next state st+1 and receives the delayed reward
rt+1(st+1) ∈ R : S × A at the next time instant t + 1.
To collect more state information in diabetes management,
the agent can perform state observation more frequently,
such as a state observation every 3 minutes and an action
selection every 120 minutes [14]. The state st transits to the
next state st+1 following the transition probability matrix
P(st+1|st , at ), which represents the dynamics of the operating
environment. The transition probability matrix satisfies the
Markovian (or memoryless) property since a transition to the
next state st+1 depends on the current state st and action
at only, rather than historical series of states and actions.
The agent learns the optimal policy π∗t : S → A, which
maps states in the state space S to optimal actions in the
action space A, using the state st , action at , next state st+1,
delayed reward rt+1(st+1), and the transition probability
matrix P(st+1|st , at ). Nevertheless, the transition probability
matrix and the probability distribution of the reward function
are generally unknown in reality.

B. THE TRADITIONAL RL ALGORITHM
The traditional RL algorithm solves the MDP problem
without using the transition probability matrix, and it has
been applied in diabetes management [14]. It is a model-
free approach that allows the agent to discover through trial-
and-error which actions are appropriate under different states

TABLE 1. Summary of general notations and descriptions.

by interacting with the operating environment as shown in
Figure 1.

The agent’s goal is to maximize its value function Vπt (st ),
which represents the goodness of being in a particular state st
following the policy πt . The value function Vπt (st ), being the
cumulative reward of a state st , is estimated by summing up
the delayed and future (or discounted) rewards as time goes
by as follows:

Vπt (st ) = E[rt+1(st+1)+ γ rt+2(st+2)+ γ 2rt+3(st+3)+ · · · ]

(1)

VOLUME 11, 2023 28393



K.-L. A. Yau et al.: Reinforcement Learning Models and Algorithms for Diabetes Management

FIGURE 1. The closed-loop agent (e.g., the blood glucose regulator)
interacts with the operating environment (e.g., the human body and the
glucose variability) [30]. The agent selects actions (e.g., the insulin
dosage) based on the state (e.g., the patient’s clinical condition, such as
the blood glucose level), and receives feedback in the form of the next
state and delayed reward (e.g., the performance of time in range during
which the blood glucose level is within the normal range).

which is equivalent to Equation (2) due to the recursive
relationship:

Vπt (st ) = rt+1(st+1)+ γVπt (st+1) (2)

To do so, the agent learns the long-term reward of each
state-action pair (st , at ) and identifies the optimal action a∗t
under a particular state st in order to maximize rewards, or the
value function Vπt (st ), as time goes by. In Q-learning, which
is a popular RL approach, the long-term reward, or the Q-
value Qt (st , at ), of each state-action pair is updated using the
Q-function Qt+1(st , at ) as follows:

Qt+1(st , at ) = Qt (st , at )+ α[rt+1(st+1)

+ γ max
a∈A

Qt (st+1, a)− Qt (st , at )] (3)

where a higher learning rate 0 ≤ α ≤ 1 increases the
significance of delayed and discounted rewards, and a higher
discount factor 0 ≤ γ ≤ 1 increases the significance of
the discounted reward, which gives a longer-term view. The
rt+1(st+1) + γ max

a∈A
Qt (st+1, a) − Qt (st , at ) represents the

temporal difference. Alternatively, the Q-function can be re-
written as follows:

Qt+1(st , at ) = (1− α)Qt (st , at )+ α[rt+1(st+1)

+ γ max
a∈A

Qt (st+1, a)] (4)

Without using the transition probability matrix
P(st+1|st , at ), the agent must perform exploration and
exploitation to learn the optimal policy π∗t . The ε-greedy
is a popular approach. Given a particular state st and
the exploration probability 0 ≤ ε ≤ 1, the agent
chooses: a) a random action at with a small probability ε

to learn the Q-value Qt (st , at ) of state-action pairs (st , at )
during exploration; and b) the best possible action a∗t with
probability 1−ε during exploitation. The best possible action
a∗t is chosen as follows:

a∗t = π∗(st ) = argmax
a∈A

Qt (st , a) (5)

C. COMPARISON BETWEEN REINFORCEMENT LEARNING
AND OTHER CONTROL ALGORITHMS
Traditionally, closed-loop control systems, including
proportional–integral-derivative (PID), model predictive
control (MPC), and iterative learning control (ILC), have

been used to monitor and regulate the blood glucose level.
In general, PID reacts to blood glucose levels outside the
normal range, MPC addresses the delayed effects of meal
ingestion and the pharmacological delay of insulin, and
ILC addresses intra- and inter-patient glucose variabilities.
A summary of the closed-loop control systems is presented
in Table 2. RL offers three advantages compared to closed-
loop control algorithms. First, while closed-loop control
algorithms consider a general patient population under
certain conditions, RL considers an individual patient,
so unpredictable personal factors, such as stress, metabolic
changes, and other diseases that cause changes in the
blood glucose level (also known as glucose variability),
are considered. Second, while MPC is more suitable
for the deterministic environment, RL is suitable for the
unpredictable and dynamic operating environment. Third,
RL has lower computational complexity, so it is more
efficient in online and real-time operations. Closed-loop
control systems have been found to be inadequate in keeping
blood glucose levels within the normal range after eating
[31], [32], [33], [34], [35]. Nevertheless, the traditional RL
approach has shortcomings which can be addressed by its
variants and enhancements.

III. ATTRIBUTES OF RL IN DIABETES MANAGEMENT
From the perspective of diabetes management, this section
presents the roles and advantages of RL. Then, it presents
patient data, system models, simulators, simulation param-
eters and values, clinical studies, implementations, and
experiment designs. Improved performancemeasures are also
presented. Figure 2 presents a taxonomy of the attributes of
RL in diabetes management.

A. ROLES OF RL IN DIABETES MANAGEMENT
In diabetes management, the unpredictability and dynamicity
of the operating environment (e.g., the human body and the
glucose variability) has urged RL to play a significant role
in predictive tasks. The unpredictability and dynamics are
attributed to a diverse range of factors, including the insulin
dosage and time, meal size and time, the pharmacological
delay of insulin, and so on. There are three main roles of RL
in diabetes management as follows:

R.1 Estimating the blood glucose level or the insulin
dosage is essential to monitoring and regulating
the time-series blood glucose level continuously
in a real-time closed-loop glucose-insulin system.
The purpose is to maintain the blood glucose
level within the normal range (or minimize the
difference between the current and target glucose
levels) to prevent postprandial hyperglycemia and
hypoglycemia [6]. Estimating an accurate insulin
dosage is a challenging task, even for physi-
cians [23], due to three main challenges. First,
glucose metabolism and insulin dosage have a
nonlinear, complex, and time-varying relationship
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TABLE 2. Comparison between RL and existing control algorithms for T1DM.

FIGURE 2. Attributes of RL in diabetes management.

affected by multiple factors, such as an individual’s
glucose metabolism and physical activity level.
Second, various kinds of delays and inaccuracies
have negative effects on prediction accuracy. One
contributing factor is the measurement noise and
delay caused by subcutaneous glucose sensors [37].
The sensors may have errors and hardware issues
during calibration and normal operation, causing
low stability and sensitivity. Understanding the
characteristics of the consecutive sensor errors (e.g.,
highly interdependent) and noise (e.g., non-Gaussian

or non-white) [38] is essential to detect and mitigate
such errors and noise. Another contributing factor
is the pharmacological delay of insulin in its peak
activation, which is approximately 30 minutes for
an insulin infusion and a few hours for an insulin
injection depending on the types of insulin [6],
[35]. In other words, the blood glucose level has
a delayed response to insulin due to pharma-
cological delay. Third, endogenous characteristics
(e.g., age and gender) and unpredictable exogenous
events (e.g., meal ingestion, stress, and physical
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activities) affect the postprandial blood glucose
level. According to [39], there are at least 42 direct
or indirect factors affecting the blood glucose level.
To accurately estimate the blood glucose level or
insulin dosage, RL must consider the three main
challenges. To estimate the insulin dosage, RL must
also consider insulin-on-board (IOB). IOB is the
amount of bolus insulin that is still active from
the previous bolus insulin injection, which must be
considered if the injection is administered in less
than 3.5 hours [10] to prevent hypoglycemia [40].
Subsequently, the estimated bolus insulin dosage is
injected to regulate the blood glucose level.

R.2 Recommending the right type of treatment at
each time interval, such as during each follow-up
visit [26], [41]. The purpose is to enhance treatment
effectiveness by providing the right medications
and treatment regimen based on individual patients’
clinical condition and medical history to maintain
the blood glucose level within the normal range
under comorbid conditions. The challenge is the
complexity of treating the comorbid conditions
because both hyperglycemia and hypoglycemia are
known to cause other acute and chronic complica-
tions, such as cardiovascular disease and neuropathy
(see Section I-A). RL must address this challenge
to recommend a regimen comprised of multiple
therapeutic classes for treating comorbid condi-
tions, such as antihypertensive to treat high blood
pressure, antihyperglycemic to treat glycemia, and
lipid-lowering to treat cardiovascular disease [41].
Each therapeutic class has multiple pharmacological
subclasses.

R.3 Diagnosing diabetes detects diabetes in its early
stage. The purpose is to identify prediabetes accu-
rately, with minimal false or delayed diagnoses [42].
In prediabetes, the right level of insulin is not
produced, so the blood glucose level becomes
higher-than-normal although it is still lower than
that of diabetes [43]. The prediabetes stage has a
higher risk of advancing to full-blown T2DM and
other diseases, such as stroke and heart disease,
so a healthy lifestyle with the right diet and body
weight, and regular exercise help to prevent further
escalation. The challenge is a large amount of data
and information required to be processed to classify
individuals accurately in diagnosis. RL has been
applied to address this challenge by dynamically
adjusting the weights of rules in a fuzzy rule-
based method to enhance the consistency of rules
applied [42].

B. ADVANTAGES OF RL IN DIABETES MANAGEMENT
In addition to addressing the shortcomings of the traditional
closed-loop control systems (see Section II-C), namely PID,

MPC, and ILC, the RL approach offers three main advantages
in diabetes management as follows:

V.1 Using the model-free approach. The RL agent
learns the appropriateness of different actions under
different states through trial and error while inter-
acting with the operating environment without the
need for a model, such as the transition proba-
bility matrix, characterizing the dynamics of the
operating environment. This is in contrast with
traditional approaches, such as PID and MPC, that
use mathematical glucose-insulin models comprised
of ordinary and partial equations [44] to charac-
terize the dynamics of the operating environment,
particularly the time-varying physiological charac-
teristics, such as the glucose, glucagon, and insulin
levels [45]. Parameter estimation approaches, such
as Bayesian inference [46] and deconvolution [47],
have been used to estimate the coefficients of the
models. Model-free RL has three main advantages
when compared to model-based approaches. First,
RL takes into account the long-term effects of
treatments, while model-based approaches focus
on short-term effects because they cannot model
non-deterministic and time-varying effects. Second,
RL does not need a large amount of prior knowledge
(e.g., meal announcements and expert knowledge),
including hidden factors such as comorbid diseases
and the stress level, which is essential in developing
mathematical models to cover a wide range of states
(e.g., the glucosemetabolism [48]) for characterizing
the dynamics of the operating environment [14].
Instead, the RL agent adapts to the state by learning
and selecting the optimal action that maximizes its
cumulative reward, which considers hidden factors
affecting the state and cumulative reward. Third,
RL interacts with the real operating environment,
while the model-based approach generally describes
the real operating environment partially only [49].

V.2 Optimizing short-term and long-term patient out-
comes. The RL agent makes sequential decisions that
optimize delayed rewards (e.g., controlling the glu-
cose level) and discounted rewards (e.g., improving
the disease trajectory), leading to improvement in the
overall short-term and long-term patient outcomes.
Addressing short-term patient outcomes is essential
to address transient metabolic responses, such as
the rapid increase (decrease) of the postprandial
blood glucose level that results in hyperglycemia
(hypoglycemia). This is in contrast with traditional
approaches, such as k-nearest neighbors and regres-
sion, that optimize short-term patient outcomes
based on the current symptoms only [10].

V.3 Optimizing policy in an online (or incremental) and
offline manner. The RL agent has the capability of
learning in an online and offline manner. In general,
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most RL approaches rely on online learning, which
uses data provided to the agent in real time. The RL
agent observes states and rewards from the operating
environment, then uses the new information to
learn in an incremental manner, contributing to a
lower computational complexity. RL has also been
shown to learn using offline learning based on
a large amount of data sourced from databases
in [50]. Multimodal data from multiple sources
are collected and combined to provide a large
dataset. Examples of data include: a) subpopulation
information, such as environment, the susceptibility
to diabetes, and responses to specific treatments;
and b) personal information, such as patients’ demo-
graphics, lifestyles, and clinical conditions (e.g.,
the blood glucose level) [50]. The offline learning
approach enables the RL agent to better under-
stand and treat diseases, which supports precision
medicine [50]. Since RL performs online and offline
learning approaches, it is in contrast with traditional
approaches that perform offline learning only.

C. ESSENTIALS FOR TRAINING RL IN DIABETES
MANAGEMENT
This section presents essentials for training RL in diabetes
management, including patient data, system models, sim-
ulators, simulation parameters and values, clinical studies,
implementation, and experiment designs.

1) PATIENT DATA
Patient data is collected for training RL agents. Datasets
are either provided by agencies and authorities or collected
by researchers conducting the investigations. While some
investigations use more data and data types to increase the
accuracy of prediction, others reduce the need for some
data, such as medical check-up measurements (e.g., fasting
plasma glucose, BMI, and blood pressure), for patients’
convenience. Table 3 summarizes various data types collected
from patients.

a: DATASET COLLECTED BY AGENCIES AND AUTHORITIES
(D.1)
Various datasets have been collected from diabetic patients
with consent, and the datasets are useful for investigating
diabetes management, particularly in training RL agents.
Five different datasets have been used to train RL agents as
follows:

D1.1 The National Institute of Diabetes and Digestive
and Kidney Diseases (NIDDK) dataset was col-
lected from patients within ten years, and it has
been used to train RL agents [10]. The dataset
consists of patient information (e.g., blood glucose
level, weight, and carbohydrate), treatment, and
diabetes-related complications [52].

D1.2 The PIMA Indian women diabetic dataset was
collected from 768 patients, and it has been widely

TABLE 3. Data types collected from patients and used in training RL
algorithm.

used to train RL agents [43]. The dataset consists of
patient information, including age, blood pressure,
BMI, skin thickness, blood glucose level, insulin
level, diabetes pedigree function, and outcomes.
Three attributes, including age, BMI, and blood
glucose level, were selected to train RL agents
in [43].

D1.3 The medical information mart for intensive care
III (MIMIC-III) version 1.4 dataset was col-
lected from 400,000 patients admitted to the ICU
of the Beth Israel Deaconess Medical Center
from 2001 to 2012, and it has been used to train
RL agents [53]. The dataset consists of patient
information, including demographics, mortality,
and lab test results. The dataset has static variables
(e.g., age, gender, chloride level, hemoglobin level,
and mortality rate) and dynamic variables (e.g.,
blood glucose level, insulin level, temperature,
creatinine, and bicarbonate). 190 diabetic patients
were selected using the ICD-9 code 250.1 to train
RL agents in [51].

D1.4 The Korean national health insurance sharing
service (KNHISS) datasetwas collected from 1mil-
lion patients, out of which 38,127 were diabetic
patients, and it has been used to train RL agents
in [50]. The dataset consists of patient information,
including medical history, medications, the fasting
plasma glucose groups (i.e., normal, prediabetes,
or diabetes), and whether the patient has chronic
complications (e.g., diabetic retinopathy and dia-
betic cataract) and acute complications (e.g.,
myocardial infarction and heart failure) caused by
diabetes, a higher risk of developing diabetes, and
up to four years of diabetes.
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D1.5 The newly diagnosed type 2 diabetic patients in
China (NEW2D) dataset was collected from 3,893
patients from June 2012 to February 2014, and
it has been used to train RL agents [13]. The
dataset consists of a wide range of patient informa-
tion, including demographic, physical examination,
medical history, lifestyle, previous prescriptions,
and lab test results, as shown in Table 3.

There are criteria for choosing patients participating in
data collection to ensure data consistency and exclude certain
patients, such as those diagnosed with prediabetes. In [41],
selected T2DM patients must fulfill three criteria: a) had been
classified as diabetic patients with the E10-E14 codes based
on the international classification of diseases, tenth revision
(ICD-10) for at least twice; b) had anomalous HbA1c level
(i.e., HbA1c ≥ 6.5%) for at least twice; and c) had T2DM
prescription (other than acarbose and metformin) for at least
once. In [13], selected T2DM patients from the NEW2D
dataset (D1.5) must fulfill two criteria: a) each patient has
at least two visits, namely the first and follow-up visits; and
b) had anomalous HbA1c level during the two visits. In [50],
based on the KNHISS dataset (D1.4), two criteria must be
fulfilled, including: a) had been classified as diabetic patients
based on ICD-10; and b) had an oral prescription to reduce
the blood glucose level for at least 30 days. The selected data
was from Jan 1, 2003 to December 31, 2013 or the date of
death, whichever was earlier [50].

The dataset is cleaned by removing data entries that
contains inappropriate, misleading, and redundant values,
such as blood glucose levels and BMI values less than zero,
as shown in [43]. The cleaned dataset becomes smaller, such
as from 768 to 392 patients in the PIMA Indian women
diabetic dataset (D1.2) [43]. Missing data may be inevitable.
For instance, in [41], out of the patient data, 1% has missing
blood pressure and BMI, 8% has missing HbA1c, and so on.
One common approach to handling missing data is to replace
it with values observed in previous encounters, as mentioned
in [41]. However, if a large proportion of variables (e.g. more
than half) in a patient data are missing, the data entry is
removed, as suggested in [51].

b: DATASET COLLECTED BY RESEARCHERS (D.2)
Some researchers collect their own data for investiga-
tions. An example is [13] which collects data using case
report forms in addition to using the existing NEW2D
dataset (D1.5). Data is collected from around 2,800 patients
who made first and follow-up visits (e.g., five visits every
three months within one year) at 80 hospitals. Nevertheless,
the number of participating patients reduced over time when
they fail to return for follow-up visits within one year. The
criteria for choosing patients participating in data collection
includes: a) demographic information (i.e., age is at least
20 years old); b) medical history and event (e.g., time when
patients were diagnosed, which is within the past six months);
c) physical examination; d) prescriptions; and e) lifestyles
(e.g., neither pregnant nor lactating). Measurements related

to diabetes are collected, particularly the HbA1c level, which
represents the average blood glucose level over the past 8 to
12 weeks [54]. The HbA1c level is categorized into high (i.e.,
HbA1c > 9%), medium (i.e., 7% ≤ HbA1c ≤ 9%), and low
(i.e., HbA1c < 7%).

2) SYSTEM MODELS
A system model, which provides the operating environment,
represents the glucose-insulin dynamics of an average virtual
patient (AVP) in diabetes management. During training,
an agent interacts withAVP(s) and learns the optimal policies.
The system model must be realistic and complete, so the US
Food and Drug Administration (FDA) encourages the use of
its approved systemmodels when running simulations, which
helps to avoid using animals in preclinical tests [55]. The rest
of this subsection explains various system models proposed
for investigating RL in diabetes management.

S.1 Ferdinando’s system model, which is created based
on experiments and expert knowledge, comprises
delayed differential equations characterized by blood
glucose and insulin levels [56]. The insulin is
absorbed into the blood following first-order dynam-
ics (or the single delay model) under the skin.
By adjusting the system model parameters, the
model generates different clinical conditions (e.g.,
the rate of insulin-independent glucose uptake and
the apparent distribution volume for glucose) to
model different patients. Using the systemmodel, the
RL agent estimates IOB and selects the right insulin
dosage during action selection [14].

S.2 Lehmann-Deutsch physiological model comprises
multiple differential equations to represent the
glucose-insulin dynamics of T1DM patients [57]
and the variation of multiple parameters with time,
including the plasma glucose concentration, glucose
absorption, net hepatic glucose balance, volume of
the distribution of glucose, the reference glucose
level, the renal excretion of glucose, plasma insulin
concentration, insulin in the remote compartment,
the fractional disappearance rate of insulin, insulin
distribution volume, and the exogenous insulin
dosage [58]. Since generic parameters for the model
reduce variability caused by measurement noise
and inappropriate state estimations, the model uses
different parameters specific to each patient.

S.3 Shifrin’s system model, which is created based on
experience, comprises a transition probability matrix
to represent personal reactions to insulin dosage [10].
The model has a set of states (i.e., the blood
glucose level, carbohydrate intake, and time duration
since the last treatment) and a set of actions (i.e.,
insulin dosage). The transition from one state to
another upon taking an action follows the transition
probability matrix, which is complex due to different
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types of hormones, carbohydrate intakes, and other
processes.

S.4 Lee’s system model, which is created based on exper-
iments, comprises the gamma distribution 0(k, θ)
representing the insulin time-action profile [6], [59].
The profile represents the pharmacokinetics and
pharmacodynamics properties of a patient’s insulin
analogues. k is the shape parameter and θ is a
scale parameter, which is based on a patient’s
insulin activation peak time. The 0(k, θ) distribu-
tion is min-max normalized to generate additional
discount factors fn and Fn (see Section V-H2).
The peak of the distribution is identified using the
euglycemic clamp test through simulation. In the
simulation, a subcutaneous insulin pump infuses
0.2U (or 1,200pmol) insulin once every minute,
providing a total of 6U insulin required to control
the peak of the blood glucose level in a 30-minute
postprandial period. Using the proportional integral
controller [60], glucose is infused intravenously at a
rate and time period determined based on the insulin
time-action profile. The time duration from the
insulin infusion to the peak of its action determines
the θ value of the 0(k, θ) distribution.

S.5 Palumbo’s system model, which is created based
on expert knowledge, comprises [61]: a) a delayed
differential equation characterized by blood glucose
and insulin levels; and b) a nonlinear function
characterized by the insulin dosage (i.e., insulin
infusion rate). Using the system model, the RL
agent selects the right insulin dosage during action
selection [62].

S.6 Hovorka’s glucoregulatory model, which is created
based on experience, comprises parameters sampled
from a prior log-normal distribution and param-
eter correlations sampled from healthy individual
data [63]. The parameters oscillate with random
frequency and phase, which are caused by the
glucose and insulin fluxes, to generate day-to-day
glucose variability. The peak meal absorption time
changes to generate slow and fast carbohydrate
absorption.

In general, an existing system model is selected or a new
system model is designed when a simulator (see the next sub-
section) is not used in simulation studies [62].

3) SIMULATORS
Simulation allows random actions to be selected and tested
under different glucose-insulin dynamics in in silico trials
without safety concerns. Another advantage is that simulation
can be completed within a short time, allowing for a much
longer simulated time. For simulating instantaneous changes
in the blood glucose level (also known as glucose variability),
the simulated time can be in the range of hours for a
simulation step [64]. For simulating first and follow-up visits,
the simulated time can be an interval of several weeks

for a simulation step and several months for a simulation
episode [65]. The numbers of simulation episodes and steps
reduce when the convergence rate of the RL approach
increases. Specifically, higher convergence rates reduce the
time period for RL to search for the optimal policy. Some
important initial values of simulation parameters include the
blood glucose level (e.g., 8.85 mM [14]) and the insulin level
(e.g., 58.95 pM [14]). To reduce the effects of different initial
values, each simulation run is repeated (e.g., 20 times [51]),
and then averaged. Two main simulators, which can be
based on datasets (see Section III-C1), have been used in
investigating RL in diabetes management as follows:

M.1 The UVA/ Padova simulator [66], which has been
approved by the US FDA, has been used to
simulate a closed-loop artificial pancreas in [6],
[21], and [64]. The simulator incorporates processes
related to glucose-insulin dynamics to simulate
the effects of meal ingestion and insulin on the
blood glucose level among AVPs. The processes
include processing consumed food in the gut,
producing glucose in the liver, absorbing exogenous
insulin, and ingesting unannounced meals. There
are three groups of AVPs with different levels of
glucose metabolism and insulin dosage, including
100 adults, 100 adolescents, and 100 children [51],
[66]. A subset of AVPs can be selected for simu-
lation runs, such as 10 adults and 10 adolescents
in [6], and 100 adults in [21]. Meal ingestion
with random parameters helps to simulate patients’
behavior in a realistic manner. Each AVP taking
2,000 unannounced meals are randomized using
three different random seeds in [6]: a) the meal size
is selected from a normal distribution with a mean
of 65g and a standard deviation of 17g; b) the time
period in between meals is selected from another
normal distribution with a mean of 10 hours and
a standard deviation of 1 hour; and c) a meal is
skipped with a probability 0.05. Simglucose [67]
is the python implementation of the UVA/ Padova
simulator.

M.2 The AIDA simulator is an interactive educational
simulator [68], [69], [70] that simulates a closed-
loop artificial pancreas, and it has been used
in [10], [57], and [71]. Similar to the UVA/ Padova
simulator (M.1), the AIDA simulator incorporates
processes related to glucose-insulin dynamics to
simulate the effects of meal ingestion and insulin
on the blood glucose level among AVPs. However,
there are two main differences compared to the
UVA/ Padova simulator [72]. The AIDA simulator
considers insulin and glucagon dynamics, while
the UVA/ Padova simulator does not consider
glucagon dynamics. The AIDA simulator does not
consider inter-patient (a group of individuals) glu-
cose variabilities, while the UVA/ Padova simulator
considers.
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Apart from the popular simulators, in silico simulations
have been written in MATLAB [73], [74] and Python [64].
Using MATLAB, a group of T1DM AVPs, which consist of
10 adults, 10 adolescents, and 8 children, are developed [75].
Each AVP takes three to four meals with random carbohy-
drate contents measured in grams at different times for ten
days. Random uncertainties distributed between −50% and
+50% in a uniform manner are introduced to account for
errors made by patients in the carbohydrate estimations of
meals. Using the Python toolkit called OpenAIGym [76],
the RL agent is developed, tested, and analyzed under
the operating environment provided by the UVA/ Padova
simulator. The dynamic equations and parameters of UVA/
Padova are imported into OpenAIGym. The Optuna library
is used to automate hyperparameter tuning to determine the
best possible hyperparameters of RL and deep reinforcement
learning (DRL), including the deep neural network parame-
ters, by running a large number of simulations in a trial-and-
error manner.

4) SIMULATION PARAMETERS AND VALUES
There are three main parameters requiring careful considera-
tion when running RL algorithms as follows:

L.1 Higher exploration probability 0 ≤ ε ≤ 1 increases
exploration and reduces exploitation. For increasing
exploitation and improving stability, the exploration
probability is set to small values, such as ε =

0.02 and ε = 0.1 [51]. In [65], the exploration
probability of a state reduces gradually with εt =

N0/(N0 + Nt (s)) as the number of visits Nt (s) to
the state s up to decision epoch t increases, where
N0 is a constant. This has been shown to improve
the convergence rate.

L.2 Higher learning rate 0 ≤ α ≤ 1 increases the step
size of an update affecting the amount of changes
of Q-values in RL and network parameters in DRL.
For improving stability, the learning rate is set to
small values, such as α = 0.02 [51]. In [65], the
learning rate of a state-action pair reduces gradually
with αt = 1/Nt (s, a) as the number of visits Nt (s, a)
to the state-action pair (s, a) up to decision epoch
t increases. This has been shown to improve the
convergence rate.

L.3 Higher discount factor 0 ≤ γ ≤ 1 increases
the effect of the long-term reward, and hence
improving the glycemic outcomes in the future [8].
The discount factor γ is generally set to a high value,
such as γ = 0.90 and γ = 0.95 [51], to take account
of delayed effects due to the pharmacological delay
of insulin infusion.

5) CLINICAL STUDIES
Clinical studies of proposed RL solutions for diabetes
management have been conducted, albeit the low number of
such investigations in the literature compared to simulation.
In [7], the clinical study investigates using RL to estimate the

blood glucose level. The study involves 23 T1DM patients
spanning five weeks. There are two scenarios: a) scenario 1
has fixed meal size and time; and b) scenario 2, which is
more realistic, has random meal sizes and times, and random
errors are introduced in the carbohydrate estimation of meals.
Both simulation and clinical studies have been shown to
achieve similar results. In [21], the clinical study investigates
using RL to estimate and adjust the insulin dosage (i.e.,
the basal rate and the bolus insulin dosage), which is
based on the insulin-to-carbohydrate ratio representing the
carbohydrate contents that one unit of insulin covers. The
study involves individual T1DM patients spanning fourteen
weeks. The automated subcutaneous infusion is comprised
of a subcutaneous glucose sensor and a subcutaneous insulin
pump. The insulin dosage is adjusted based on: a) the
blood glucose level of the day before; and b) the transfer
entropy from the insulin to glucose signals. Incorporated
with RL, both manual exogenous injection and automated
subcutaneous infusion approaches have been shown to
achieve closely similar performance.

6) IMPLEMENTATION
Details about the implementation of proposed RL solutions in
diabetes management have been limited in the literature. For
training, the agents’ knowledge, such as Q-tables and policy
networks (or deep neural networks in DRL), is trained on
the cloud in the web server. For action selection, Q-tables
and policy networks are transferred from the cloud to the
AndroidAPS APP [77], which uses the Pytorch mobile
library [78], [79], in smartphones [80]. Using Bluetooth,
the AndroidAPS APP communicates with the subcutaneous
glucose sensor to collect measurements and the subcutaneous
insulin pump to infuse insulin. Data can be collected and
sent to the cloud in the web server for training purpose.
In [8], the RL approach is implemented using TensorFlow,
which can be converted using TensorFlow Lite for use in
smartphones [81], [82].

7) EXPERIMENT DESIGNS
Proposed RL approaches are investigated in simulations,
clinical studies, and implementations to understand their
performance achieved under simulated or real circumstances.
In general, investigations show the effects of various aspects
(e.g., insulin sensitivity and the number of meals) on RL
performance. The effects of the following aspects are of
interest:

E.1 Effects of insulin sensitivity are investigated. Higher
insulin sensitivity reduces the amount of insulin
required to reduce the blood glucose level, so it
increases the responsiveness of insulin infusion
or injection. In [65], the peripheral tissue insulin
sensitivity and the hepatic tissue insulin sensitivity
vary from the nominal value randomly by either
−10%, +10%, or 0%. Variations can be up to
±25% [21] and ±30% [6]. Variations tend to be
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higher in adults (e.g., ±30%) than adolescents (e.g.,
±20%) [8].

E.2 Effects of the number of meals and its variations,
which can be single or multiple meals within a
time period, are investigated. Generally speaking,
meals are measured in grams of carbohydrate or
mmol of the blood glucose level. The amount of
carbohydrate in meals follow a meal schedule, and
it is unannounced in most cases except a few [21].
For single-meal scenarios, a single meal is given to
the patient. The preprandial and postprandial fasting
periods are generally long (e.g., 9 hours [6]). For
multiple-meal scenarios, multiple meals are given
to the patient, which is more realistic. Different
meal sizes and times have been used in experiments.
In [6], three meals are given to patients, specifically
40g carbohydrate for breakfast at 8:00 a.m., 80g
for lunch at 1:00 p.m., and 60g for dinner at
9:00 p.m. In [14], the glucose levels of the meals
are 9, 10, and 10.5 mM for breakfast, lunch, and
dinner, respectively. In [8], four meals are given to
patients, specifically 70g carbohydrate at 7:00 a.m.,
30g at 10:00 a.m., 110g at 2:00 p.m., and 90g
at 9:00 p.m. Randomizations are introduced to
meal size and time [21] to represent noise, such
as advances and delays in meal time. The meal
size is selected from a uniform distribution with a
standard deviation of [−30%,+10%] [8], in which
the skewed range reflects that underestimation is
more common than overestimation in reality [83].
Themeal time is selected from a uniform distribution
with a standard deviation of ±60 minutes [8] or
±10 minutes [6]). Variations of meal absorption
(e.g., 30%) and carbohydrate bioavailability (e.g.,
10%) are also set in [8].

E.3 Effects of the dawn phenomenon are investigated.
The dawn phenomenon is an increase of up
to 30mg/dL in the blood glucose level between
3:00 a.m. and 7:00 a.m. in the early morning on
daily basis [6]. In some cases, the insulin sensitivity
drops by up to 50% from its nominal value, and
such significant change can happen within even
30 minutes causing hyperglycemia [84].

E.4 Effects of delayed insulin infusion or injection,
which introduces some delays to insulin infusion
or injection, such as when a patient is unable to
administer insulin at the right time (e.g., a 6.5-minute
delay in [14]), is investigated. In addition to the
pharmacological delay of insulin in its peak activa-
tion after an insulin infusion or injection, the overall
delay can lead to hyperglycemia. A delayed insulin
infusion or injection can also cause hypoglycemia in
the next dosage due to high IOB.

E.5 Effects of the manual exogenous injection and
automated subcutaneous infusion approaches are
investigated. To measure the blood glucose level,

the manual exogenous injection approach requires
patients to perform a finger-prick test at least four
times a day. On the other hand, the automated
subcutaneous infusion approach uses a subcutaneous
glucose sensor to measure and sample the blood glu-
cose level every few minutes [21]. Subsequently, the
manual exogenous injection approach administers
the estimated insulin four times a day [20]. On the
other hand, the automated subcutaneous infusion
approach uses a subcutaneous insulin pump to infuse
insulin every short time interval, such as 1,200pmol
(or 0.2U) insulin once everyminute [8], [22] in a real-
time closed-loop insulin-glucose system.

D. PERFORMANCE MEASURES
RLhas been shown to improve various performancemeasures
in the literature, including:

P.1 Higher similarity between RL and physician’s poli-
cies shows consistency between policies made based
on the RL agent’s and clinical knowledge [13].

P.2 Lower HbA1c level slows down the progression of
diabetes which helps to reduce the average blood
glucose level within a time period (e.g., over the past
8 to 12 weeks [13]).

P.3 Higher time in range (TIR) increases the percentage
of time duration (e.g., in the most recent 24 hours) in
which the blood glucose level is within the normal
range (between 70mg/dL and 180mg/dL) [8], [9],
[85], [86]. The opposite is the GRADE (glycemic
assessment diabetes equation) measure, which is the
percentage of time duration in which the blood glu-
cose level is outside the normal range at <70mg/dL
(hypoglycemia) and >180mg/dL (hyperglycemia),
particularly during meal ingestion [10]. GRADE
can be calculated using a glucometer in the manual
injection method or a subcutaneous glucose sensor
in the automated infusion method. Higher TIR
reduces GRADE. A range of thresholds between
40mg/dL [10] and 325mg/dL [57] have been used in
the literature while showing an improvement on TIR.
A smaller range of the selected thresholds has been
widely used due to its capability in reducing the risk
of long-term complications of diabetes despite being
more challenging to be achieved.

P.4 Higher proportion of patients achieving the normal
blood glucose level increases the number of patients
achieving the normal blood glucose level [51].

P.5 Lesser occurrences of hyperglycemia and hypo-
glycemia reduce the number of times when the blood
glucose level is outside the normal range.

P.6 Higher accuracy of prediction improves the effec-
tiveness of insulin infusions and injections. The
confusion matrix classifies the outcomes of insulin
infusions into one of the four categories, namely
true positive, false positive, true negative, and false
negative as shown in Figure 3 [43].
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FIGURE 3. A confusion matrix.

P.7 Lower glucose variability, which can be measured
based on standard deviation, reduces the fluctuations
of the blood glucose level within a time period [10].
The estimated insulin dosage is more accurate when
the blood glucose level is more stable.

P.8 Lower insulin dosage reduces the insulin dosage
while achieving the normal blood glucose level,
which helps to reduce side effects [51], such as
weight gain.

P.9 Longer delayed time period of chronic and acute
complications increases the average time period from
diabetes diagnosis to the occurrence of chronic or
acute complications caused by diabetes.

P.10 Higher convergence rate, which is the RL perfor-
mance measure, reduces the time period in searching
for the optimal policy.

P.11 Higher cumulative reward, which is the RL perfor-
mance measure, improves the glycemic outcomes in
diabetes management [64].

IV. RL MODELS FOR DIABETES MANAGEMENT
Different state, action, and reward representations have been
proposed to perform different roles of diabetes management
(see Section III-A) as seen in Table 4. Generally speaking,
in diabetes management, the state represents the physio-
logical condition. The action represents insulin dosage, and
the medicine and treatment regimen. The reward represents
the glycemic outcomes. The decision epoch is generally
synchronized with events, such as meal ingestion and insulin
infusions. The rest of this section presents various ways to
design the state, action, and reward representations.

A. STATE REPRESENTATION APPROACHES
Each state has either a single or multiple sub-states repre-
senting decision-making factors, which can be observations,
estimations, measurements, and so on. The rest of this sub-
section presents sub-state representations and approaches to
simplify the state space.

1) SUB-STATE REPRESENTATIONS
In general, sub-states have been designed to represent
short- and long-term factors, and glycemic condition and
performance.
Sub-states can represent short- and long-term factors.

Examples of short-term sub-states are [8]: a) the current blood

glucose level (mg/dL) (e.g., measured using a glucometer or
a subcutaneous glucose sensor); b) the carbohydrate contents
of a meal (e.g., estimated using a mobile application); c)
the bolus insulin dosage (e.g., administered using an insulin
pump); and d) the glucagon dosage (e.g., also administered
using an insulin pump) if it is used. Examples of long-
term sub-states are [7]: a) the basal insulin dosage; and b)
the current and past readings that describe trends, such as
the mean insulin delivery and the postprandial error in the
blood glucose level (e.g., the percentage of time duration in
hypoglycemia and hyperglycemia) in the previous decision
epoch.
Sub-states can capture the glycemic performance. Exam-

ples of sub-states are [35], [65]: a) the penalty s1,t =
max{gmax,t − Ghyper , 0} that shows the extent of the highest
measured blood glucose level up to decision epoch t ,
namely gmax,t , is higher than the hyperglycemia threshold
Ghyper ; b) the penalty s2,t = max{Ghypo − gmin,t , 0} that
shows the extent of the lowest measured blood glucose
level up to decision epoch t , namely gmin,t , is lower than
the hypoglycemia threshold Ghypo; and c) the discretized
percentages of time duration outside the normal range of
the blood glucose level in hyperglycemia and hypoglycemia.
Representing penalties in sub-states helps to capture the
glycemic performance so that appropriate actions can be
selected to minimize them.

2) APPROACHES FOR STATE REPRESENTATION
Various approaches have been used to improve the repre-
sentations of states and sub-states, including determining the
right number of states, simplifying sub-states with binary and
numerical values, and collecting multiple observations and
measurements in a single decision epoch.
Determining the right number of states helps to ensure

there are a sufficient number of states for making the right
decisions while improving the convergence rate. The Mclust
package [87] determines the right number of states (e.g.,
50 in [51]), which has the highest Bayesian information
criterion value indicating the best possible clustering effect.
Then, the Gaussian mixture model segregates the state space
into states.
Simplifying sub-states with binary and numerical values

reduces the state space. Examples of simplified sub-states,
which represent the patient’s clinical condition [50], are: a)
schronic = {0, 1} represents whether the patient has chronic
complications (e.g., diabetic retinopathy, diabetic cataract,
and foot disease) caused by diabetes; b) sacute = {0, 1}
represents whether the patient has acute complications (e.g.,
myocardial infarction and heart failure) caused by diabetes; c)
srisk = {0, 1} represents whether the patient has a higher risk
of developing diabetes, which depends on multiple factors,
such as age, family history, and BMI; d) speriod = {0, 1, 2}
represents whether the patient has up to four years of diabetes,
between five and eight years, or more than eight years; and
e) splasma = {0, 1, 2} represents whether the patient has a
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TABLE 4. Examples of RL models for diabetes management.

fasting plasma glucose that indicates normal, prediabetes,
or diabetes.
Collecting multiple observations and measurements in a

decision epoch improves the accuracy of state information.
Observations can be collected at time instants i = 1, . . . ,
n ∈ t in a single decision epoch t , where n is the number
of observations in the decision epoch t [10]. Specifically,
the agent collects the ith observations, namely gi,t (e.g., the
blood glucose level), in decision epoch t . After collecting n
observations, the agent selects the optimal action at the end of
the decision epoch t . Given a weight 0 ≤ w ≤ 1, the weighted
blood glucose level gt =

∑i=n
i=1 gi,tw

n−i/
∑i=n

i=1 w
n−i provides

more significance to more recent observations.

B. ACTION REPRESENTATION APPROACHES
Each potential action has either a single or a set of multiple
types of actions. For instance, an action set consists of the
insulin dosage and other medications, which are essential
to treat comorbid patients [10]. The action is generally
discretized to reduce the action space.

The action can be either an actual or relative value.
Examples of actual values are [8], [35]: a) the insulin dosage,
particularly the basal rate is at ∈ A = (Suspension,
0.5 × Ibasal, Ibasal, 1.5 × Ibasal, 2 × Ibasal), where Ibasal is
a unit of the basal rate; and b) the glucagon dosage is at =
0.3µg/kg subject to the rule of 1mg per day to ensure safety.
An example of relative values is the changes in the insulin
dosage at ∈ A = (+1, 0,−1) representing the action to
increase, maintain, or reduce the insulin dosage compared to
the current action, subject to the rule of a ±15% change to
ensure safety [7].

Rules are safety constraints that remove inappropriate
actions from the set of potential actions so that only
appropriate actions are selected for both exploration and
exploitation. Rules are generally set based on physician’s

knowledge. As an example of a physician’s knowledge, the
potential actions (e.g., the insulin dosage) for children must
be more constrained than those of adults [64]. Rules are also
generally set based on the effects of the actions (or outcomes)
which must adhere to strict medical policies in order to
ensure patient safety. Appropriate actions ensure changes,
including state, action, and reward, are acceptable and limited
to a certain percentage. In [7], potential actions are selected
so that the changes in the insulin-to-carbohydrate ratio and
the basal rate are limited to ±15% and ±20%, respectively,
compared to the day before.

C. REWARD REPRESENTATION APPROACHES
In general, examples of rewards are short-term, long-term,
comparative, tunable, and QLAY.

1) SHORT-TERM (INSTANTANEOUS) REWARDS
Instantaneous rewards provide short-term values that reflect
the performance achieved by RL. The instantaneous rewards
can be either a constant value or a difference between the
current and previous states.

In [8], the instantaneous reward values are constants, and
they are determined based on the blood glucose levels. The
reward is rt (st ) = 1 when the blood glucose level is within
the normal range. The reward is rt (st ) = 0.1 when the blood
glucose level is at the borderline (i.e., between 70mg/dL and
90mg/dL, and between 140mg/dL and 180mg/dL). As the
blood glucose level deviates from the normal range, the
reward value reduces when the blood glucose level reduces
from 70mg/dL to 30mg/dL and increases from 180mg/dL
to 300mg/dL. The reward value is rt (st ) = −1 when the
blood glucose level is lower than 30mg/dL and higher than
300mg/dL.

In [51], the instantaneous reward values are differences
between the current and previous states. There are three main
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FIGURE 4. The reward value is based on the blood glucose level. For
instance, the reward value is rt+1(st+1) = −1 when the blood glucose
level is high and low. The reward value for the buffer zones is zero.

states based on blood glucose levels, namely low, medium,
and high. The reward value is rt (st ) = 2 when the blood
glucose level changes from high to low, rt (st ) = 1 when
changes from high to medium, rt (st ) = −4 when remains
at high or low. In [7], a positive reward is given when
the insulin dosage is lower than that of the previous day
without causing an increase in the percentage of time duration
in which the blood glucose level is outside the normal
range.

2) LONG-TERM (AVERAGE) REWARDS
Average rewards provide long-term values that reflect the
performance achieved by RL. In [14], the average reward
values are determined based on the blood glucose levels.
As shown in Figure 4, the reward value is rt+1(st+1) =
Nnormal,k/24, where Nnormal,k represents the number of
decision epochs in which the blood glucose level is within
the normal range in the past 24 hours [14]. For the negative
reward value rt+1(st+1) = −1, the agent avoids such
blood glucose levels which are fatal. In [35] and [88], the
average cost (or negative reward) values are determined by
the occurrences of hyperglycemiaNhyper,k and hypoglycemia
Nhypo,k in day k . The cost value is rt+1(st+1) = (whyper
× Nhyper,k ) + (whypo × Nhypo,k ), where weight whypo =
0.1 is greater than whyper = 0.01 because of the need to
prioritize the avoidance of hypoglycemia due to its more life-
threatening consequences.

3) COMPARATIVE REWARDS
Comparative rewards provide the difference between the
blood glucose level and its target. According to the pancreatic
cellular model [89], the insulin infusion rate I = Ibasal +
Iabove−basal is based on the basal insulin secretion rate Ibasal
and the above-basal insulin secretion rate Iabove−basal =
f (gt , 1gt ) controlled by the current glycemic conditions,
where gt represents the blood glucose level at time t and
1gt represents the rate of change in the blood glucose level
(also known as glucose variability) at time t . Following the
pancreatic cellular model, the reward representation has two
components [6]. First, the long-term reward rt+1,long(st+1) ∝
−|gt − Gtarget | represents the difference between the current
blood glucose level gt at time t and its target value, such
as Gtarget = 120mg/dL [90]. This helps to regulate the
long-term slow-changing basal insulin secretion rate Ibasal .
Second, the short-term reward rt+1,short (st+1) ∝ |Mtarget ×

(gt−Gtarget )−1gt | represents the difference between glucose
variability 1gt at time t and (gt − Gtarget ), where Mtarget

TABLE 5. A summary of RL approaches applied in diabetes management.

is the slope constant of the target glucose variability. This
helps to regulate the short-term fast-changing above-basal
insulin secretion rate Iabove−basal . Both long- and short-term
rewards are weighted using different constant values based on
different levels of clinical risks, such as−1 for benign,−3 for
potentially dangerous, and −5 for hazardous. For instance,
the long-term reward is rt+1,long(st+1) ∝ −3 × |gt −Gtarget |
when the blood glucose level is outside the normal range, and
rt+1,long(st+1) ∝ −|gt−Gtarget |when the blood glucose level
is within the normal range.

4) TUNABLE REWARDS
Reward functions and values can be tuned and adjusted
by physicians based on personal clinical conditions, such
as hypoglycemia and hyperglycemia thresholds, and insulin
sensitivity, for achieving optimal outcomes [10]. The clinical
conditions vary between patients. For instance, young
patients tend to experience hyperglycemia faster than adults.
The agent receives a positive (negative) reward for achieving
a healthy (an unhealthy) blood glucose level. Negative
rewards can be adjusted to penalize the occurrences of
hyperglycemia and hypoglycemia.

5) THE QLAY REWARDS
The quality-adjusted life-year (QLAY) rewards represent the
expected time in a healthy condition [50]. The reward is
rt+1(st+1) = RWTP × 5i(1 − d i(st+1)) − CMED, where
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RWTP represents the willingness to pay for a single perfectly
healthy year without medical intervention and side effects
of treatments, CMED represents the medication cost, and
d i(st+1) represents the decrement factors st+1, including age,
blood pressure, BMI, chronic diseases, acute diseases, risk,
period, and fasting plasma glucose.

V. RL ALGORITHMS FOR DIABETES MANAGEMENT
Various RL approaches and enhancements have been pro-
posed for diabetes management. Table 5 summarizes the
RL approaches, which are described in the rest of this
section. Table 6 summarizes the attributes of RL in diabetes
management.

A. TRADITIONAL RL
The traditional RL approach (see Section II-B) has been
applied in [43] and [62].

1) ZOHORA’s TRADITIONAL RL APPROACH
In [43], the objective is to detect T2DM diabetes in its
early stage (R.3). The state has three sub-states: a) the blood
glucose level (from Level 1 at <115mg/dL to Level 5 at
>150mg/dL); b) BMI (from Level 1 at <25.6 to Level 11 at
>45); and c) age (fromLevel 1 at<24 to Level 6 at>45). The
action represents a change in the state. The reward is rt (st ) =
+10 for a positive patient’s clinical condition and rt (st ) =
−100 in other conditions. Patients with Q-values of more
than +10 are categorized as diabetes, and those in between
0 and <+10 are categorized as prediabetes. Experiments
investigation is based on the PIMA Indian women diabetic
dataset (D1.2). The proposed solution has been shown to
increase the accuracy of prediction (P.6) of T2DM patients
with prediabetes and diabetes. Specifically, it achieves high
values of true positive and true negative, a low value of false
negative, and zero false positive in the confusion matrix (see
Figure 3).

2) NOORI’s TRADITIONAL RL APPROACH
In [62], the objective is to estimate the insulin dosage (R.1).
The state represents the blood glucose and insulin levels. The
action represents the insulin dosage. The reward represents
the absolute difference between the current and target glucose
level. Instead of using Equation (3), the SARSA algorithm,
which updates the Q-function using the real past experience
(or transition) (st , at , rt+1(st+1, at+1), st+1, at+1) rather than
an estimation of the long-term reward, is as follows:

Qt+1(st , at ) = Qt (st , at )+ α[rt+1(st+1)

+ γQt+1(st+1, at+1)− Qt (st , at )] (6)

The SARSA algorithm has been shown to achieve a safer
solution that minimizes negative reward [30]. Using the
Palumbo’s system model (S.5), experiments investigate the
effects of insulin sensitivity (E.1). The proposed solution has
been shown to increase TIR (P.3).

3) JAFAR’s TRADITIONAL RL APPROACH
In [7], the objective is to estimate the insulin-to-carbohydrate
ratio in order to determine the insulin dosage (R.1). The
state has three sub-states: a) the delivered insulin dosage;
b) the percentage of time duration in hyperglycemia; and
c) the percentage of time duration in hypoglycemia. The
action represents a change in the insulin dosage (i.e.,
increase, maintain, or reduce). The reward is a positive
value when the insulin dosage is lower than that of the
previous day without causing an increase in the percentage
of time duration in which the blood glucose level is outside
the normal range. Using the Hovorka’s glucoregulatory
model (S.6), experiments investigate the effects of meal sizes
and times (E.2). Based on simulation and clinical studies, the
proposed solution has been shown to increase TIR (P.3) and
the proportion of patients achieving the normal blood glucose
level (P.4).

B. MODEL-BASED RL
Model-based RL interacts with a model of the operating
environment, rather than a real one, and learns the best
possible course of actions. This reduces the need for a real
state and delayed reward observed from the operating envi-
ronment during training and action selection. Nevertheless,
experiences comprised of state, action, and reward obtained
through interactions with the real operating environment are
still important for developing the model. Compared to the
traditional model-free RL approach, the advantage of the
model-based RL approach is that it can learn even without
taking an action in the real operating environment, while
traditional RL can learn only when taking an action in the real
operating environment. Due to the greater opportunities to
learn, model-based RL has been shown to increase efficiency
and reduce the convergence time, which is more suitable
for applications generating limited experiences and requiring
real-time responses. Nevertheless, one shortcoming of the
model-based RL approach is that the optimality of the
learned policy is limited by the accuracy of the model. Other
shortcomings are presented in (V.1).

1) LI’s AND SHIFRIN’s MODEL-BASED RL APPROACH
The objectives are to estimate the insulin dosage (R.1)
in [51] and to recommend the right type of treatment (R.2)
in [10]. The state represents the blood glucose level and
carbohydrate contents in [10], in addition to other static
and dynamic variables, such as age, gender, insulin level,
and temperature, in [51]. The action represents the insulin
dosage in [51] and [10], and additionally oral prescrip-
tion in [10]. The reward value increases with increasing:
a) the difference between the current blood glucose level
gt at time t and its target value |gt − Gtarget |; and
b) the average difference between the blood glucose
level and the hypoglycemia threshold (Ghypo − gt ) during
hypoglycemia, where gt < Ghypo. The model is the
transition probability matrix P(st+1|st , at ), which represents
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the dynamics of the operating environment [10], [51]. The
transition probability matrix can be estimated based on
real historical datasets and new running data, such as the
physiological characteristics (e.g., the blood glucose and
insulin levels) of a large number of patients in electronic
medical records. Due to the dynamicity of the individual’s
glucose variability, the new running data is added to the
historical dataset, replacing old data with new and novel data,
as time goes by. The transition probability P(st+1|st , at ) =
Nt (st , at , st+1)/

∑
st+1 Nt (st , at , st+1), where Nt (st , at , st+1)

is the number of visits to the (st , at , st+1) set. In [51],
the experiments investigate the effects of different values
of exploration probability (L.1) based on the MIMIC-III
dataset (D1.3). The proposed solution has been shown to
increase the proportion of patients achieving the normal
blood glucose level (P.4) with lower insulin dosage (P.8).
In [10], using the Shifrin’s system model (S.3) and the
AIDA simulator (M.2), experiments investigate the effects
of insulin sensitivity (E.1) and meal sizes under different
patients’ weights (E.2) based on the NIDDK dataset (D1.1).
The proposed solution has been shown to increase TIR (P.3)
and cumulative reward (P.11).

C. MULTI-AGENT RL
Multi-agent RL decomposes the global value function Vπt (st )
(see Equation (1)), which represents the goodness of being in
a particular global state st following the global policy πt , into
separate value function V i

πt
(sit ) for distributed agent i ∈ I ,

where I is a set of agents [51].

1) LI’s MULTI-AGENT RL APPROACH
In the multi-agent approach of [51], each distributed agent
i observes its local state sit and optimizes the local reward,
comprised of delayed reward r it+1(s

i
t+1) and the rewards

of neighboring agents J , contributing to an optimal global
Q-value. The global Q-function is the summation of the
local Q-functions of agents I , specifically Qt (st , at ) =∑I

i=1 αiQit (s
i
t , a

i
t ), where

∑
i α

i
= 1 is the linear weight

factor [51]. The global action is at = (a1, a2, . . . , a|I |),
and the global reward is rt+1(st+1) =

∑
i α

ir it+1(s
i
t+1).

More details about the Li’s approach are presented
in Section V-B1.

D. ACTOR-CRITIC RL
Actor-critic RL has two interactive and complementary com-
ponents, namely critic and actor, which can be represented
using neural networks to solve complex tasks as shown in
Figure 5. The actor-critic RL has been shown to increase the
convergence rate [35].

Each agent may have multiple actor-critic networks.
In [35], there are: a) a basal actor-critic network that estimates
the basal insulin dosage (i.e., the average basal rate); and
b) the bolus actor-critic network that estimates the insulin-
to-carbohydrate ratio, which represents the carbohydrate
contents that one unit of bolus insulin covers in order to

FIGURE 5. The actor-critic algorithm.

estimate the bolus insulin dosage required for an announced
meal and its size.

1) SUN’s ACTOR-CRITIC RL APPROACH
In [21], the objective is to estimate the basal rate and three
insulin-to-carbohydrate ratios (R.1). The state has two sub-
states: a) s1,t = (1/Nhypo,t )

∑
(Ghypo − gt ) represents the

average difference between the blood glucose level and
the hypoglycemia threshold during hypoglycemia, where
gt < Ghypo and Nhypo,t is the number of occurrences of
hypoglycemia up to decision epoch t . Similarly, s2,t =
(1/Nhyper,t )

∑
(gt−Ghyper ) represents the average difference

between the blood glucose level and the hyperglycemia
threshold during hyperglycemia, where gt > Ghyper and
Nhyper,t is the number of occurrences of hyperglycemia up
to decision epoch t . The action represents the insulin dosage
(i.e., the basal insulin rate) and the insulin-to-carbohydrate
ratio. The cost (or negative reward) is rt (st ) = (whyper ×
s1,t ) + (whypo × s2,t ), where whyper and whypo weight the
hyperglycemia and hypoglycemia features.

The critic learns the value function Vπt (st ) of the current
state st (see Equation (1)), which represents the cumulative
reward including the delayed and discounted rewards for
being in a state st . In other words, the critic evaluates the
appropriateness of the current policy πt for the state st . Then,
the critic calculates and provides the temporal difference
rt+1(st+1) + γVπt (st+1) − Vπt (st ) to the actor. The actor
updates its policy πt using the policy gradient approach [64]
πt+1 = πt − αt∇π r̄t (πt ) to approximate the optimal policy
as time goes by, where αt represents the learning rate and
∇π r̄t (πt ) represents the gradient of the average reward r̄t (πt ),
which is based on the temporal difference.

Using the UVA/ Padova simulator (M.1), experiments
investigate the effects of insulin sensitivity (E.1), meal sizes
and times (E.2), the dawn phenomenon (E.3), and the manual
exogenous injection and automated subcutaneous infusion
approaches (E.5). The proposed solution, which shows that
both self-monitoring and continuous blood glucose monitor-
ing approaches achieve comparable performance, has been
shown to increase TIR (P.3) and reduce the risks and occur-
rences of hyperglycemia and hypoglycemia (P.5). In addition,
the continuous blood glucose monitoring approach reduces
glucose variability (P.7), contributing to a more stable blood
glucose level.
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E. DEEP Q-NETWORK
Compared to the traditional RL approach, deep Q-network
(DQN) is a DRL approach comprised of neural networks for
handling complex conditions, including the glucose-insulin
dynamics. DQN has been shown to achieve outstanding
achievements in a diverse range of applications, such as Atari
games [91] and AlphaGo [92].

Figure 6 shows the DQN architecture. There are two
identical neural networks which are fully connected in which
a neuron connects to all neurons in the next layer through
links, and each link has a weight. The main network, which
is characterized by network parameters (or weight matrices)
θt , approximates Q-values Qt (st , at ; θt ) ≈ Q∗t (st , at ) during
action selection and training. The target network, which
is a duplicate of the main network and is characterized
by network parameters θ ′t , approximates the target Q-value
Qt (st , at ; θ

−
t ) and calculate the target yt = rt+1(st+1) +

γ maxa Qt (st+1, a; θ
−
t ). Subsequently, the target yt is used to

calculate the loss function L(θt ) = Es,a[(yt − Qt (s, a; θ ))2]
for weight update during training. Each neural network is
comprised of three types of layers. First, the input layer
represents the state with each neuron representing a sub-
state. So, the number of neurons in the input layer is based
on the number of sub-states. In [88], the input layer has
nine neurons receiving the blood glucose levels of the past
eight time steps and the current insulin dosage. The sub-
state values in the input layer are normalized since they
have different ranges and units, such as the blood glucose
level 10 ≤ G ≤ 400mg/dl and the current insulin dosage
0 ≤ U ≤ 600pmol/min. Second, multiple hidden layers
with a number of neurons in each layer (e.g., 2 layers with
128 neurons in each layer [13])), and each neuron uses an
activation function, such as hyperbolic tangent, log-sigmoid,
and leaky ReLU [13], [88]. Third, the output layer represents
the actions with each neuron representing the Q-value of
the respective action under the input state. So, the number
of neurons in the output layer is based on the number of
potential actions. In [88], the output layer has ten neurons
representing the estimations of the blood glucose level in
the next ten time steps. The Q-values of the output layer are
denormalized.

As shown in Figure 6, there is a replay memory for expe-
rience replay. During training, through back-propagation,
the main network optimizes the network parameters θt by
minimizing the loss function L(θt ). The network param-
eters θt are updated using stochastic gradient descent
θ ← θ − α∇θtL(θt ). During normal operation, through
feed-forwarding, the input layer receives a state, and
the output layer generates the Q-values of all potential
actions.

Compared to the traditional RL approach, the advantage
of DQN is that it addresses the curse of dimensionality,
or the large state space, in traditional RL. Nevertheless, the
shortcomings of DQN are that it requires a high computing
capability and has a longer convergence time, which is based
on the size of the state space [86].

1) LIU’s DRL APPROACH
In [13], the objective is to recommend the right type of treat-
ment during each follow-up visit (R.2). The state represents
a wide range of decision factors, including demographic,
physical examination, medical history, lifestyle, previous pre-
scriptions, and lab test results, as shown in Table 3. The action
represents the number of oral antidiabetic drugs and insulin
dosage. The reward value increases when the HbA1c level
reduces or is less than 7%, and a penalty is imposed when
hypoglycemia occurs. Generally speaking, the number of oral
antidiabetic drugs and insulin dosage increase when the mean
and median HbA1c level increase. The DQN architecture has
dilated recurrent neural networks [93] that consider long-term
dependencies in the prediction of future blood glucose levels.
Clinical studies are based on the NEW2D dataset (D1.5). The
proposed solution has been shown to increase the similarity
between RL and physician’s policies (P.1), and reduce the
HbA1c level (P.2) and the occurrences of hyperglycemia and
hypoglycemia (P.5).

2) ZHU’s DRL APPROACH WITH PRIORITIZED
EXPERIENCE REPLAY
In [8], the objective is to estimate the insulin and glucagon
dosages (R.1). The state represents the blood glucose level,
estimated carbohydrate contents, insulin dosage (i.e., basal
and bolus insulin dosages), and glucagon dosage. The action
represents the basal insulin dosage (i.e., basal insulin rate).
The reward value is a constant value for different ranges of
blood glucose levels, which is higher when the blood glucose
level is within the normal range and lower otherwise. The
DQN approach uses a two-step framework and the prioritized
experience replay approach.

In the two-step framework, there are two main steps.
First, the long-term generalized training is performed to
train a DQN model comprised of dilated recurrent neural
networks without safety constraints [94] using the multi-
dimensional time-series data. The outcome is a DQN model
of meal ingestion, and the blood glucose and hormone
levels, for an average individual. The DQN model provides
initialization to improve the initial performance. Second,
personalized learning is performed through transfer learning
to fine-tune the DQN model using a short-term dataset
with safety constraints so that the DQN model is tailored
for an individual with personal characteristics. During the
personalized training, some of the earlier layers of the
DQN model are retained, and the rest of the layers are
updated to avoid over-fitting. This is because the earlier
layers contain general features useful for the general patient
population, such as suspending insulin infusion during
hypoglycemia.

In the prioritized experience replay approach, each expe-
rience has a selection probability Pi = pφ

i /
∑

i p
φ
i with

pi = |δi|+c, where pi represents the priority of the experience
i, δi represents the temporal difference of experience i, c
is a small positive constant, and 0 ≤ φ ≤ 1 represents
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FIGURE 6. DQN architecture has a main network, a target network, and a replay memory.

the level of using prioritization. So, experiences with higher
temporal differences δi, which indicates their importance, are
selected from the replay memory to provide a minibatch of
experiences for training. The prioritized experience replay
approach has been shown to increase the convergence rate
even when the number of experiences in the replay memory
is limited.

Using the UVA/ Padova simulator (M.1), experiments
investigate the effects of insulin sensitivity (E.1), meal
sizes and times (E.2), the manual exogenous injection
and automated subcutaneous infusion approaches (E.5).
The proposed solution has been shown to increase
TIR (P.3).

F. THE GAUSSIAN PROCESS APPROXIMATION
The Gaussian process approximation (GPA) is a data-driven,
non-parametric, and probabilistic approach that performs
function approximation and regression to provide the Gaus-
sian probability distributions of states under uncertainties
and noise, particularly the glucose-insulin dynamics affected
by the inaccuracy of the blood glucose level measurements
and the pharmacological delay of insulin that can vary
significantly between patients and days. This helps to learn
the optimal policy under continuous and high-dimensional
state and action spaces.

1) PAULA’s GPA APPROACH
In [57] and [71], the objective is to estimate the insulin
dosage (R.1). The state represents the current blood glucose
level and the insulin dosage in the previous time step. The
action represents the insulin dosage. The Gaussian reward
function is based on the blood glucose level with the width
of the glucose band being the normal blood glucose level.
There are three separate Gaussian process models, which
are characterized by their respective mean and covariance
functions, that provide three different estimations: a) the next
state based on different current state-action pairs; b) the value
functions of different states Vπt (st ); and c) the Q-functions
of different state-action pairs Qt (st , at ). There are two main
steps. First, using a general dataset, the agent learns a general
optimal policy π∗t for an average individual based on the
Ito’s stochastic model, which models the glucose variability
and glucose-insulin dynamics, in an offline manner [71]. The
Bayesian active learning approach selects and explores the
relevant part of the state space out of the potential states.
Second, using real experiences of a patient and starting with
the optimal general policy π∗t , the agent learns a personalized
policy πc

t . The agent updates the three separate Gaussian
process models to capture individual dynamics, including the
glucose-insulin dynamics and the insulin sensitivity of an
individual. Subsequently, the agent updates Q-values based
on the estimated Q-functions and value functions. Using
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the Lehmann-Deutsch physiological model (S.2) and the
AIDA simulator (M.2), experiments investigate the effects
of meal sizes and times (E.2) and the pharmacological delay
of insulin (E.4). The proposed solution has been shown to
increase TIR (P.3).

G. PROXIMAL POLICY OPTIMIZATION
Proximal policy optimization (PPO) decomposes the
Q-function into separate components, such as policy,
value function, and advantage, to solve problems with the
continuous state and action spaces [95], such as the blood
glucose and insulin levels, which are continuous in nature.
PPO has single or multiple neural networks, and each neural
network provides specific estimations. For instance, in [14],
a single neural network provides value function Vπt (st ) and
advantage Aπt (st , at ) used to calculate the Q-value of a state-
action pair Qt (st , at ) = Aπt (st , at ) + Vπt (st ), where the
advantage Aπt (st , at ) is a quadratic function of the nonlinear
components of a state.

1) LEE’s PROXIMAL POLICY OPTIMIZATION
In [6], the objective is to estimate the insulin dosage (R.1).
The state represents the current glycemic conditions, namely
the blood glucose level and the glucose variability with mea-
surement errors and noise, and IOB. The state is normalized
by the running mean and standard deviation through the
normalization layer as shown in Figure 7. The action, which
is selected using the policy network, represents the insulin
dosage. The reward is based on the difference between the
current blood glucose level and its target value, and glucose
variability (see Section IV-C3). As shown in Figure 7, the
PPO approach has three multiple neural networks: a) the
policy network maps states st to actions at ; b) the short-
term value function network estimates the short-term return
rt+1,short (st+1) and its average r̄t+1,short (st+1); and c) the
long-term value function network estimates the long-term
return rt+1,long(st+1) and its average r̄t+1,long(st+1). PPO
selects actions tominimize advantageAt = (rt+1,short (st+1)−
r̄t+1,short (st+1)) + θ (rt+1,long(st+1) − r̄t+1,long(st+1)), where
θ is a scale parameter that indicates the significance of the
long-term return and its average. The policy πt is updated
after every single simulated meal. Using the Lee’s system
model (S.4) and UVA/ Padova simulator (M.1), experiments
investigate the effects of insulin sensitivity (E.1) and the
number of meals (E.2). The proposed solution has been
shown to increase TIR (P.3).

H. OTHER ENHANCEMENTS
This section presents other enhancements which can be
incorporated into most RL approaches.

1) LIMITING THE POTENTIAL ACTION SET FOR
DIFFERENT STATES
Limiting the potential action set for different states addresses
the curse of dimensionality, or the large state space,

FIGURE 7. An abstract model for the architecture of the three similar
networks in PPO [6].

in traditional RL. In [50], the objective of the contextual
bandit model [50] is to recommend the right type of treatment
over a period of one year (R.2). This helps to maintain the
blood glucose level within the normal range at the early stage
and prevent complications [96]. The state represents eight
factors, including blood glucose level, age, and BMI. The
action represents prescriptions, which can be monotherapy
(e.g., metformin) at the initial stage, and dual therapy or triple
therapy at the later stage. The mean reward for each state-
action pair is Qt (st , at ) =

∑t
i=0 ri(si, ai)/t . Consequently,

there are a large number of states (i.e., 1,296) and actions
(i.e., 15). The three-armed bandit model selects three best
potential actions for each state. Based on the KNHISS
dataset (D1.4), the proposed solution has been shown to
increase the convergence rate (P.10), the similarity between
RL and physician’s policies (P.1), and the average time period
from diabetes diagnosis to the occurrence of chronic or acute
complications caused by diabetes (P.9).

2) MODELING THE INFUSED INSULIN ACTIVITIES USING
DISCOUNT FACTOR
In general, the pharmacokinetics and pharmacodynamics
properties of individual insulin analogs mimic the natural
pattern of insulin release in the body, whereby the infused
insulin is activated rapidly, peaked, and then reduced gradu-
ally over time following the insulin time-action profile [59].
The discount factor γ has been applied to estimate the
individual insulin analogs, particularly the remaining effect
of the infused insulin.

In [6], the insulin activity is represented by short-
and long-term returns. The short-term return is given
by

∑t−1
i=0 γ ifirt+1,short (st+1) + γ nfnr̄t+1,short (st+n) and the

long-term return is given by
∑t−1

i=0 γ iFirt+1,long(st+1) +
γ nFnr̄t+1,long(st+n), where the insulin becomes inactive after
n steps. The short-term discount factor 0 ≤ fn ≤ 1 and long-
term discount factor 0 ≤ Fn ≤ 1 are based on the insulin
time-action profile, represented by the probability density
function and the cumulative density function of a gamma
distribution, respectively. The proposed solution has been
shown to increase TIR (P.3).

3) DEFINING MULTIPLE REWARD FUNCTIONS FOR
PROBLEMS WITH MULTIPLE SUB-ACTIONS
Each action set can have more than a single sub-action.
In [86], each action set has a pair of sub-actions, namely the
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insulin dosage and infusion time. The insulin infusion time
can be adjusted, which can be administered either before or
after each meal ingestion. The algorithm uses coarse-grained
and fine-grained searches to identify the optimal action
set.

The coarse-grained search uses two different reward
functions to avoid local optima: a) the hard-reward value
increases when the number of times the blood glucose level is
within the normal range after each meal time increases; and
b) the soft-reward value increases when glucose variability
reduces. The hard-reward function selects the optimal insulin
dosage during normal operation. However, when the selected
insulin dosage at different infusion times yields the same hard
reward, the soft-reward function selects the optimal insulin
infusion time given the optimal insulin dosage. The hard-
and soft-reward functions have been shown to avoid local
optima. The selected optimal pair of sub-actions improve
convergence and reduce the convergence time.

The fine-grained search uses a heuristic algorithm to
perform an efficient exploration to reduce the convergence
time. Specifically, it explores a set of potential actions to
limit the search space for an optimal pair of sub-actions. The
potential actions represent the next directions for optimizing
the greedy sub-actions, which mimic the adjustments made
by physicians.

The proposed solution has been shown to increase time in
range (P.3).

VI. OPEN ISSUES
This section presents open issues which can be investigated
to address the shortcomings of RL in diabetes management.

A. INTEGRATING HUMAN INTELLIGENCE INTO RL
Traditionally, artificial intelligence, including RL, operates
without human intervention. Nevertheless, in diabetes man-
agement, stakeholders including physicians, nurses, pharma-
cists, and the patients themselves, provide valuable human
intelligence. Examples of human intelligence include the
physician’s knowledge and policies, the patient’s inputs (e.g.,
the announced meal ingestion, and the clinical conditions and
symptoms not detected by subcutaneous sensors). Human
intelligence can be integrated into RL in three ways. First,
in the human-AI approach, the human selects safe and
appropriate single or multiple potential actions, and then AI
selects and performs the best possible action. This helps to
increase the convergence rate during exploration, particularly
at the early stage of the operation. Second, in the AI-human
approach, AI selects and performs the best possible action,
and then the human verifies the action, such as revising
the reward value of the selected action to further increase
(reduce) the reward of appropriate (inappropriate) actions.
Third, in the joint AI and human approach (see Figure 8),
the state, action, and reward of both human intelligence and
AI are combined. One or more points of interaction between
the human and the AI agent are possible. Consider a human
h and an agent m, the state combines the human state sh,t

FIGURE 8. Points of interaction between human and RL.

and the agent state sm,t ; the selected action is either the
human action ah,t or the agent action am,t ; and the reward
combines the human reward rh,t (sh,t ) and the agent reward
rm,t (sm,t ). Further investigation can be pursued to investigate
and improve ways of collaboration between humans and AI
in human-centered diabetes management.

B. COMPLEMENTING LEARNING WITH DATASETS
COLLECTED IN THE PAST AND EXPERT KNOWLEDGE
In contrast to the traditional supervised and unsupervised
machine learning approaches, RL uses on-policy learning
that selects actions and undergoes learning (or training)
at the same time. Learning is based on the feedback
(i.e., the next state and delayed reward) received from the
operating environment. However, exploring random actions
on patients with and without safety constraints can be both
dangerous and inefficient. The feedback may be affected
by measurement errors and noise. On one hand, the safety
constraints may not be sufficient to address all kinds of
clinical conditions. On the other hand, the safety constraints
may be too strict to learn effectively. Using datasets collected
in the past and expert knowledge can minimize the reliance
on feedback received from the operating environment and
increase learning efficiency, and hence the convergence
rate. Further investigation can be pursued to investigate
and improve ways of complementing learning with datasets
and expert knowledge, rather than relying on the feedback
received from the operating environment only.

C. CONSIDERING THE EFFECTS OF
GLUCOSE-INSULIN-GLUCAGON DYNAMICS
In general, being a model-free approach, the RL agent
learns the appropriateness of different actions under different
states without the need for a model, such as the transition
probability matrix. The model characterizes the glucose-
insulin-glucagon dynamics (e.g., the pharmacological delay
of insulin and meal ingestion) and clinical conditions (e.g.,
the blood glucose level). The lack of understanding of the
operating environment (e.g., individual patients) leads to
various assumptions on the characteristics, effects, and tim-
ings of various dynamics; on the other hand, understanding
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the dynamics of an individual patient helps to address the
complexity and efficiency of the RL model while improving
performance.

In the actor-critic RL approach in [88], the critic stores
the blood glucose level of the past eight time steps and the
current insulin dosage to estimate the value function Vπt (st ).
Subsequently, the actor estimates the insulin dosage in the
next ten steps. The right number of steps in the past and
the future can be affected by the dynamics of the operating
environment. In [88], the action representation is at =
0.3×Vπt (st )−4.4Et , whereEt represents the extent to which
the blood glucose level is outside the normal range [88].
The static values, such as 0.3 and 4.4, in the action repre-
sentation can be affected by the dynamics of the operating
environment.

Further investigation can be pursued to investigate and
improve ways of understanding the individual patient’s
dynamics, then incorporate the findings when determining
the designs and hyperparameters of RL models and algo-
rithms.

D. OTHER OPEN ISSUES
Further investigation can also be made to address the
following open issues:

• Incorporating physicians’ medical knowledge into algo-
rithms.

• Using the trend or predicted blood glucose level to
perform early interventions as safety precautions.

• Using historical states and actions (e.g., the blood
glucose levels and complications in the past) to increase
safety and robustness against measurement errors and
sensor noise.

• Tailoring new rules for an individual patient. For
instance, the HbA1c target is less stringent for patients
who are elderly (e.g., 7.5% for patients aged 65 to 75,
and<8.0% for patients aged 76 and above [97]) andwho
have experienced hypoglycemia.

• Introducing the dynamics of RL models. For instance,
the decision epochs, such as the time intervals between
visits to physicians, are unequal.

• Incorporating new aspects, such as physical activities,
comorbid diseases, prescriptions, the body conditions
(e.g., pregnancy and puberty), and races and ethnicities,
in simulation. The variation of these aspects in an
individual patient can be considered, such as the
physical activities during weekdays and over the week-
end. Although these factors affect glucose variability
and glucose-insulin dynamics, they have not been
incorporated in FDA-approved simulators, such asUVA/
Padova [66]. Incorporating the new aspects helps to
avoid the overestimation of the benefits of RL in
diabetes management.

• Performing clinical trials. Although RL has been
proposed for a diverse range of healthcare solutions,
there have only been a few clinical trials [65].

VII. CONCLUSION
This paper presents a review of the application of reinforce-
ment learning (RL) to improve three main roles in diabetes
management, including estimating the blood glucose level
(or the insulin dosage), recommending the right type of
treatment, and diagnosing diabetes. RL offers three main
advantages: a) using the model-free approach; b) optimizing
short- and long-term patient outcomes; and c) optimizing
policy in an online and offline manner. This enables RL
to address the challenges of diabetes management, which
revolves around the individual patient’s glucose variability
and glucose-insulin dynamics, including the pharmacological
delay of insulin. Various aspects of training RL in diabetes
management are presented, including patient data, system
models, simulators, simulation parameters, clinical studies,
implementation, experiment designs, and performance mea-
sures. A diverse range of RL approaches has been proposed,
including the traditional RL, model-based RL, multi-agent
RL, actor-critic RL, deep Q-network, the Gaussian process
approximation, and the proximal policy optimization. Based
on RL, this paper discusses how diabetes can be managed
using appropriate representations (i.e., state, action, and
reward) and various enhanced algorithms. RL has been shown
to increase the similarities with physician’s policies, time
in range, the proportion of patients achieving the normal
blood glucose level, prediction accuracy, and the delayed
time period of complications, as well as reduce the HbA1c
level, glucose variability, occurrences of hyperglycemia
and hypoglycemia, and insulin dosage. RL performance
measures, such as the convergence rate and cumulative
reward, have also been shown to improve. Finally, this paper
presents open issues for further investigation.
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