IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 20 February 2023, accepted 11 March 2023, date of publication 20 March 2023, date of current version 23 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3259360

== RESEARCH ARTICLE

An Analysis of Machine Learning-Based
Semantic Matchmaking

ERKAN KARABULUT “! AND RUTE C. SOFIA 2, (Senior Member, IEEE)

"nformatics Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
2fortiss GmbH, 80805 Munich, Germany

Corresponding author: Erkan Karabulut (e.karabulut@uva.nl)

This work was supported in part by the Project Horizon 2020 (H2020) European Connected Factory Platform for Agile Manufacturing
(EFPF) under Grant 825075, and in part by the Project H2020 European Union (EU)-Internet of Things (IoT) under Grant 956671.

ABSTRACT Interoperability remains to be one of the main challenges in the Internet of Things. The
increasing number of IoT data sources from various vendors augments the complexity of integrating
different sensors and actuators on the existing platforms, requiring human involvement and becoming
error prone. To improve this situation, devices are usually coupled with a semantic description of their
attributes. Such semantic descriptions, Things Descriptions, TD, are therefore an abstraction of devices, that
is helpful to achieve a smoother integration of devices into IoT platforms. However, TD are usually vendor-
based, so for large-scale IoT infrastructures, the integration complexity increases, as there will be different
descriptions of similar sensors, provided by different vendors to be interconnected into IoT platforms. In this
context, the paper assesses different ML-based semantic matchmaking approaches, against a sentence-based
statistical similarity approach. For the ML approaches, the paper focuses on clustering and Natural Language
Processing. The three approaches have been implemented on a realistic testbed, and experiments carried out
show that the best performance achieved in terms of accuracy, time to completion of a matchmaking request,
and memory usage is the NLP-based approach.

INDEX TERMS IoT, machine learning, semantics, matchmaking, interoperability.

I. INTRODUCTION

Internet of Things (IoT) infrastructures today integrate a wide
variety of IoT devices such assensors, actuators, that are
provided by different vendors. In such environments, each
vendor usually provides IoT services via a vendor-specific
IoT platform. Hence, the process of integration of IoT devices
in large-scale IoT infrastructures becomes complex, requiring
a significant level of manual intervention and as consequence,
being error prone.

The required level of intervention can be reduced by
considering standardised semantic models to describe IoT
data sources. Therefore, standards such as the Web of Things
(WoT)' architecture or the One Data Model (OneDM)?

The associate editor coordinating the review of this manuscript and

approving it for publication was Sangsoon Lim
1https://www.w3.org/WoT/
2https://onedm.org/

VOLUME 11, 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Semantic Definition Format (SDF) provide the support to
describe IoT data sources semantically and are widely
adopted to increase interoperability.

Still, there are differences in terms of semantic descriptions
applied by vendors which arise for different reasons. For
instance, such differences may relate with specific regulation
differences across vertical domains (e.g., Health, Manufac-
turing). They may also result from specific requirements
derived from the vendor platform. For instance, temperature
sensors provided by different sensors may rely by default on
different units, or may identify the attribute ““‘temperature”
with different wording, e.g., “Temp”, “Temperature”.

Adding to this complexity, IoT services can also be
described (to improve interoperability) via semantic tech-
nologies often derived from standards, e.g., ETSI SAREF.

3 https://saref.etsi.org/

27829

https://orcid.org/0000-0003-2710-7951
https://orcid.org/0000-0002-7455-5872
https://orcid.org/0000-0001-9924-7115

IEEE Access

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

Therefore, a way to improve the integration of IoT devices
into IoT platforms is to consider a semantic matchmaking
approach that can, in a semi-automated way, provide a finer-
grained matchmaking between IoT semantic descriptions,
the so-called Thing Descriptions, and semantic IoT service
descriptions.

The focus of this work is therefore to address how to build
such a semantic matchmaking approach, proposing a semi-
automated mechanism to match IoT Things Descriptions
into IoT services, based on Machine Learning (ML), and
following an ontological approach. The current work is based
on the approach that has been briefly described in [1]. The
key contributions of this paper are: i) debate on the reasons to
apply ML and which approaches may best support semantic
matchmaking in the context of IoT services; ii) an analysis
of different ML approaches to be applied in the context of
semantic matchmaking; iii) a validation based on a realistic
testbed of selected ML proposals for semantic matchmaking
in IoT environments.

The remainder paper is organized as follows. Related
work is presented in section II, where it is also explained
how our work contributes beyond state of the art. Section
IIT explains terminology and provides a use-case to assist
in the explanation of our work. Section IV debates on
the different available semantic matchmaking categories.
Section V presents the proposed software architecture and
its implementation. Section VI provides an evaluation of
selected ML algorithms in terms of matchmaking accuracy
and time to completion. Section IX summarizes the paper and
explains next steps.

Il. RELATED WORK
Several related work addresses interoperability aspects by
considering the use of semantic technologies to provide some
level of abstraction to IoT devices or services, be it at a
communication protocolar level, session, or even application
level. In this context, the work developed by the W3C Web of
Things working groups towards a semantic description of IoT
devices, Web of Things Thing Description (WoT TD)* is one
of the main semantic abstractions for IoT devices. The WoT
TD is used to describe an IoT device, its attributes, interfaces,
meta-data, security-related properties, and can also be
enriched by context-related information. SensorThings API
Sensing® that is published by Open Geospatial Consortium
(OGC), describes a geospatial-enabled and unified way to
interconnect IoT devices. The SDF® language from One
Data Model (OneDM) is another approach to semantic
interoperability, a language that provides a way to describe
IoT devices independently of the underlying communication
technology.

Still, when handling with a large number of sensors and
IoT services, it is also important not just to semantically

4https://www.vv3.org/TR/wot—thing—description/
5 https://docs.ogc.org/is/18-088/18-088.html
6https://onedm.org/ sdflanguage/

27830

describe cyber-physical systems, but also to have a way to
compose enriched semantic descriptions for categories of
devices, to speed up the data aggregation process, and to
provide finer-grained results. In this context, a composition
approach quite used in Web services is the atomic mashup.
For the specific context of IoT, Kast et al. have proposed the
use of semantic descriptions to identify a set of IoT devices
that can be used together [2]. The authors have introduced
the concept of System Description (SD) which represents
a mashup of IoT devices containing an enriched WoT TD.
A mashup in this context is a set of IoT Things that can
be used together to offer a specific service. The authors
also introduce an atomic aggregation approach, the atomic
Mashup, which refers to a series of indivisible interactions to
perform a certain task, from the perspective of a service.
The atomic mashup approach is interesting as it assist
in fine-grained data aggregation, via an atomic model of
categorizing similar TDs. However, this approach requires
pre-defined templates and a set of user-configurable rules
for the design space reduction. Therefore, atomic mashup
generation still requires a considerable effort from a human
operator. To assist this problem, Korkan et al. have developed
an atomic mashup generator that aims to reduce the design
space for a mashup generation process [3].

Ontology-based semantic matchmaking is the most com-
mon approach supporting IoT semantic matchmaking. For
instance, Shu et al. proposed an ontological approach based
on OWL which computes the semantic distance of concepts
in an ontology [4]. Ontologies support scalability within
a specific domain, e.g., manufacturing, health. However,
cross domain semantic matchmaking based on ontological
approaches creates issues due to the lack of specific cross-
domain approaches. Cassar et al. address this problem via
a hybrid semantic matchmaking approach, that relies on
probabilistic matchmaking combine with latent semantic
analysis with a weighted-link analysis based on logical
signature matching [5]. While their solution is interesting
in terms of cross-domain interoperability and scalability,
it falls short in terms of the capability of detecting closeness
between different TDs, e.g., when different ontologies are
applied. Things to Service Matchmaking (TSMatch) is
a fortiss semantic matchmaking concept and open-source
middleware’ which has first relied on statistical proxim-
ity (Sgrensen—dice coefficient and term frequency—inverse
document frequency) to support semi-automated semantic
matchmaking [6]. Bnouhanna et al. showed that by applying
statistical similarity, it was feasible to improve the overall
service response and time to completion of specific requests
derived from IoT services. Our work builds on the TSMatch
learnings, and relies on ML to improve the overall IoT service
answer, in terms of latency (time to completion) and accuracy.

Ill. USE-CASE
Fig. 1 provides a representation of an IoT semantic match-
making use-case between IoT Things, and IoT services,

7https ://git fortiss.org/iiot_external/tsmatch

VOLUME 11, 2023

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

IEEE Access

Room A ! Room B
E 5 Industrial Machine Y
Temperature Door state | |
Sensor Sensor | Temp
A :
o v &
f— < = ‘D
S
Card scanner v ' Noise Environment
Brightness sensor temp

Semantic device ?
descriptions N
! loT Management Client
I e —
| Platform _
Raw sensor * -
measurements What is the
average temperature
per room?

FIGURE 1. Using semantic matchmaking to improve data aggregation results in a Smart Facility use-case.

within the context of a Smart Factory shop-floor. Today,
factories hold multiple sensors integrated into the different
factory environments, e.g., shop-floor, warehouse. There
are machines from different vendors, with coupled sensors
attached on them. Moreover, sensors are also used to
monitor the environment, e.g., CO2, temperature, humidity.
Employees of this facility are using wearable devices, tablets
and smart phones which also have sensing capabilities.
In this scenario, different IoT platforms have been acquired
to different vendors. Therefore, each platform considers
different semantic standards to support an interoperable data
exchange. Data exchange is supported by a data bus across
the factory, and the different platforms rely on specific
communication protocols to exchange data, e.g., OPC UA,
MQTT Sparkplug. Different services, e.g., data analytics
tooling, environmental monitoring services, certification
services, are interconnected to the data spine via software-
based connectors that have been specifically devised for this
purpose, by the different vendors, or by an integrator. Some
of these services run on the so-called Edge (close to the field-
level devices, e.g., on the shop-floor) and others run on the
Cloud.

In this scenario, a semantic matchmaking can help
identifying sensors that can be used together to provide a
requested service. The matchmaking can occur on different
aspects such as measurement type or measurement unit.
As an example, various machines obtained from different
vendors has similar sensors integrated on them, however
with differences in their semantic descriptions. The proposed
semantic matchmaking approach facilitates interoperability
in such scenarios. From the computational perspective, the
semantic matchmaking process can occur on the Cloud, or on
the Edge. Placing the matchmaking on the Edge is expected to
lower latency, and to also reduce energy consumption, as most
of the data processing (including aggregation) is performed
closer to the end-user.

For this scenario, the following assumptions are considered
in the context of the work developed:

VOLUME 11, 2023

« semantic matchmaking occurs on the Edge, to reduce
latency.

o Any IoT devices are represented by a standardised TDs.

o Any IoT service is represented by a standardised
semantic description.

o« A set of ontologies can be used, to improve the
matchmaking.

e The IoT device discovery is handled by an existing
process.

IV. SELECTED SEMANTIC MATCHMAKING APPROACHES
To understand which matchmaking approaches exist, we have
analysed and categorized existing related work on semantic
matchmaking, as listed in Table 1. This paper focuses on
the matchmaking for semantic descriptions that are written
in English language only. Taking multiple languages into
account during the matchmaking remains to be an open issue
for a future work.

The related work analysed shows that 4 different
approaches have been frequently used in the context of
IoT semantic matchmaking: i) ontology-based; ii) clustering-
based; iii) statistics-based; iv) supervised learning-based.

The first category of work (ontology-based) takes ontology
data (or a set of classes) as input and matches or labels a given
data point to one of the elements in the ontology using rule-
based functions or queries that are developed specifically for
the elements of that ontology [7], [8]. In case there are data
points which are described based on another ontology, or the
characteristics of the data isn’t covered within currently used
ontology, then this approach will fail to do a matchmaking.
Therefore, this approach is strictly dependant on an ontology
and also requires manual intervention each time a new term
or a notion is introduced in the system. The proposed solution
should work with any given ontology and therefore this
approach may not be the most suitable.

The second category of work analysed,clustering-based,
creates clusters that consist of semantically similar ele-
ments [9], [10], [11]. When a new data point has been

27831

IEEE Access

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

detected, it is matched to the semantically closest cluster. This
approach requires a training process per ontology or per set
of output classes. However, it can be accomplished without
any source code changes or manual intervention, and also
without labelling data required for training. Assuming that an
ontology may not change too frequently, then this approach
can be a good candidate for semantic matchmaking in the
context of [oT.

The third approach (statistical) matches words that are
semantically close to each other. Notion of similarity can
be obtained using various statistical approaches such as
Jaccard similarity [12] and term frequency-inverse document
frequency, or also using a lexical database [13]. This approach
has the advantage of not requiring learning, and of also not
requiring an ontology.

The last category (supervised learning) has been used
in smaller scale sensing use-cases, given that the derived
datasets may be of different sizes, and integrate very different
features. It requires a training process with all possible output
classes which can’t be known beforehand in this type of
use-cases. As an example, assume that a model is trained
using a supervised approach. When a new IoT sensing device
that is described using a different information model is
introduced to the system, the model will not understand the
new information model, requiring adjustment.

Out of the studied work, we have selected three different
approaches that may be applicable cross-domain (do not
dependend of an ontology) and that do not require labelled
data: i) a statistical approach, based on sentence similarity; ii)
a Natural Language Processing (NLP) neural network-based
approach; iii) a clustering-based approach. The first approach
is based on [13] and doesn’t include any learning process.
It uses the WordNet [16] lexical database to create a semantic
vector representation of a sentence and also considers the
order of the words in a sentence. Since there is no learning
process, it can be implemented without being dependant on
any information model or ontology. It focuses directly on
calculating the similarity between sentences and it can also
be used short texts or phrases. Values in a Thing Description
(TD) are usually a couple of words long, or in the case of a
“description” field it can be as long as a couple of sentences.
Therefore, this approach is a good candidate for semantic
matchmaking of IoT Things to services.

The second approach is based on NLP and uses a neural
network model to learn word associations from a large corpus
of text [17], [18]. In this context, Mikolov et al. introduced
Continuous Bag-of-Words Model (CBOW) and Continuous
Skip-gram Model (Skip-gram). These approaches are used
to create vector representations of words. CBOW predicts a
word based on the context used, while Skip-gram predicts a
set of words before and after a given word. The first model
fits better to the described scenario, since the goal is to predict
output classes based on the context, e.g. match a given TD to
an output class with the name “Temperature”.

The third approach relies on clustering, being based on
the k-Means algorithm. k-Means is a well known clustering

27832

TABLE 1. Semantic matchmaking approaches and categories.

[Type [Title | Matching
Ontology- A Hybrid Semantic Matchmaker | IoT services to
based for IoT Services [5] requests
Ontology- Semantic Matchmaking for Job | Job seekers to
based Recruitment: An Ontology- | job postings

Based Hybrid Approach [14]
Supervised A Machine-Learning Approach | Building Codes

learning-based

for Semantic Matching of Build-
ing Codes and Building Infor-
mation Models (BIMs) for Sup-
porting Automated Code Check-
ing [15]

to Building
Information
Models (BIMs)

Cluster analysis
for db schemas,
supervised
learning for
instance-level
matching

Semantic Matching Across Het-
erogeneous Data Sources [9]

Data source
matching, e.g.
matching of 2
relational db

Supervised
learning-based

Ontology Matching: A Machine
Learning Approach [12]

Different
ontologies in a
single domain

Clustering Short Text Clustering Enhanced | Query to docu-
by Semantic Matching | ments on (Short

Model [10] texts is social

media) dataset
Clustering The k-Means Clustering Algo- | Clustering of
rithm With Semantic Similarity | patients using

To Estimate The Cost of Hospi- | a semantic

talization [11] similarity as
distance based

on an ontology

Statistics-based | Sentence Similarity Based on Se- | Semantic
mantic Nets and Corpus Statis- | meaning
tics [13] of different
sentences
Ontology- Machine learning in the Internet | Sensor data
based of Things: A semantic-enhanced | to ontology
approach [7] elements

method that is also used in semantic matchmaking [11].
Clustering-based algorithms have the drawback that the total
number of clusters to be considered need to be defined
beforehand, so for a semantic matchmaking process it is
necessary to assess how that number can be obtained. For
the proposed approach, the number of clusters has been set
to the number of ontological categories for an ontology
element. A category in an ontology refers to a list of possible
values for an ontology element. Taking the example of the
cross-domain FIESTA-IoT ontology [19], ‘“Temperature”,
“Humidity”” and “Air Quality”’ are some of possible values
for the FIESTA-IoT “Quantity Kind” ontology element.

V. ARCHITECTURAL DESIGN
The developed concept illustrated in Fig. 2, where the blue
boxes represent the software components that have been
added in the context of this work, has been integrated into
the fortiss open-source software TSMatch v2.0.8

TSMatch has been applied in experimental pilots (TRL6)
across the H2020 European Connected Factory Platform for
Agile Manufacturing (EFPF)” project, and a demonstrator is

8https J//git.fortiss.org/iiot_external/tsmatch
9https JIwww.efpf.org/

VOLUME 11, 2023

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

IEEE Access

i TSMatch
: [E Ontology
i s

| |
" Datmbase :eodf

Interfaces (MQTT,
HTTP, Websockets)

10T Thing

T
T~

v

Thing !
Descriptions |

Things [

Registry

1 """"""""" |

Semantic Matchmaking |

Matching

Requests Results

‘ j——

10T Thing

Data Pre-processing

Extemal service, user

or platform
TSMatch
Connector

Data Aggregation

I __

Mosquitto Broker (MQTT) |

FIGURE 2. The implemented modules on the TSMatch semantic
matchmaking moddleware.

available and interconnected to the EFPF data spine via the
fortiss IloT Lab.!”

The main goal of TSMatch is to automate the data
exchange between IoT data sources and services, while
satisfying the service needs. For that, release v1 of TSMatch
followed a semantic similarity matchmaking approach.
Release v2 of TSMatch integrates the results of our work.
Following a client-server approach, TSMatch comprises a
server-side, the TSMatch engine, and a TSMatch client.

TSMatch relies on the coaty.io'! framework to discover
IoT devices on an infrastructure. The respective TDs are
stored on a database (graphDB) implemented via Neo4j, and
which stores IoT TDs, service requested, and matchmaking
results. [oT Things are interconnected via MQTT (Mosquitto)
with coaty.io.

Moreover, multiple connectors have been developed to
allow interoperability of TSMatch with different platforms.
For instance, the EFPF connector corresponds to a MQ
Telemetry Transport (MQTT)-Advanced Message Queuing
Protocol (AMQP) connector. A REST connector is used to
interconnection with external service platforms.

The design of the proposed semantic matchmaking process
considers the following functional blocks (blue):

« Ontology interface.

« Data pre-processing.

o Semantic matchmaking, where the three different
approaches selected have been implemented: i) statis-
tical approach based on cosine similarity (LEX-DB);
ii) NLP neural-network model approach (W2VEC), iii)
clustering-based approach (k-Means).

o Data Aggregation.

The proposed mechanism runs in 2 different phases: a

setup phase (section V-A) and a run-time phase (section V-C).

10https://www.fortiss‘org/en/research/fortiss—labs/detail/iiot—lab
1 https://coaty.io/

VOLUME 11, 2023

During setup, an ontology is imported into the TSMatch via
the ontology interface module. During run-time, both the
TD dataset(s) and the ontology dataset(s) are pre-processed,
and then passed to the semantic matchmaking functional
block, to be handled by one of the three proposed algorithms.
The algorithm then matches TDs to the ontology centroids
(aggregation points). Service requests are captured by the
data aggregation module and matched to the aggregated TD,
so an aggregated (averaged) value is provided to the service.

A. SETUP PHASE-ONTOLOGY IMPORT

Fig. 3 illustrates the communication sequence for the
ontology importing process. First, an external data provider
sends the ontology data to the ontology interface module via
a REST interface. The ontology interface then replaces the
current ontology data with the new ontology in the graph
database. Then it notifies the TD to Ontology Matching
module about the ontology change. The matching module
gets the existing TDs from the database, matches them to the
new ontology elements, and stores the new matching.

TSMatch is expected to perform the semantic matchmak-
ing based on any given ontology. In order to import ontology
data into the TSMatch, a module named ontology interface
has been developed. The ontology interface provides a
REST API that allows importing an ontology into the graph
database. Currently, it accepts both JSON and OWL files.
When a new ontology import is triggered, the following steps
are executed in order:

« Delete matching of sensors to ontology elements in the

graph database.

o Delete currently used ontology nodes.

« Convert the given ontology to JSON if necessary.

o Create new nodes and edges that corresponds to the

classes and relations in the given ontology.

« Find and mark aggregation points on the ontology if not

already given via the service request.

o Trigger TD to ontology matching service to match

available sensors to the new ontology elements.

In the proposed algorithm, an aggregation point is detected
automatically based on its centrality, i.e., it corresponds to a
node with a high node degree. Child nodes of an aggregation
node, e.g. sub-classes in an ontology, represent possible
values for that aggregation point. To give an example, in the
cross-domain FIESTA-IoT ontology, there are 3 nodes that
have a higher centrality. These are the “QuantityKind”,
“Unit” and “SensingDevice” ontology elements. A given
TD will be matched to one of the child nodes for each
of the aggregation points. An example matching would be;
“QuantityKind”: “Temperature”, “Unit”: ‘“DegreeCelsius”
and “SensingDevice”: “Thermometer”.

In case these aggregation points aren’t given in the request
to the ontology interface, then they can be found by running
an anomaly detection method on the number of neighbors
that each node has. The proposed implementation includes
a simple anomaly detection method that is based on the
statistical empirical rule: according to the statistical empirical

27833

IEEE Access

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

Ontology Data
Provider

TD to Ontology

Interface Matching Module

Ontology ‘ ‘ Graph DB ‘

POST request

containing ontology data | Delete current ontology

and TD maichings

o o

Store new ontology

Trigger td to ontglogy matching
via Coaty

i Getal thing descriptions
-———————

Thing descriptions

Get aggregator points

‘Aggregator points

Maich TDs to
Ontology elements

Store matching resulis

FIGURE 3. A sequence diagram showing the exchanged messages during
an ontology import process.

Semantic

10T Thing Matchmaking

Graph DB

r---
J-----1

Send TD over Coaty

o

Get aggregation points

Aggregation points

Match TDs to
ontology elements

Store matching

FIGURE 4. Communication sequence for a Things Discovery process.

rule, 99.7 percent of the values are within a range that
corresponds to 3 times the standard deviation.

B. SETUP PHASE-THINGS DISCOVERY
Figure 4 illustrates the communication sequence for the
Thing Discovery process.

When an IoT device boots up or becomes active after a
period of inactivity, it publishes its TD via coaty.io. These TD
are stored on the local database of TSMatch. The semantic
matchmaking module subscribes to Thing Discovery events.
When a new TD is received, or when there is a change in
the TD, then the semantic matchmaking process computes the
new data elements as described in the next section, and stores
the new data nodes on the local database (graphDB).

C. RUN-TIME-DATA CLEANUP

Before running the semantic matchmaking algorithm, the TD
files as well as the names of the ontology elements are pre-
processed to clean up the data, i.e., to perform tokenization,
remove punctuation, etc.

After the pre-processing step, the TDs are passed to
one of the selected semantic matchmaking algorithms. The
algorithm matches the given TD to the ontology elements.
Then a relation is created in the graph database between the
TD and the ontology nodes that it is matched to.

27834

"sensor": {
"name": "LightIntensity",
"description”: "Light intensity in Lux",
"type": "object",
"readonly: "true",
"properties”: {
"LightIntensity": {
type": "number",
"readonly": true

FIGURE 5. Part of a TD from [20].

D. RUN-TIME: SEMANTIC MATCHMAKING

This section defines how TD to ontology element match-
making is performed using the proposed three semantic
matchmaking algorithms.

Some attributes in a TD appear in different information
models. Common terms in WoT or OGC and SDF are
“name”, ‘“‘description” or ‘title”. These fields include
valuable information regarding the type of the sensor, its
measurement unit for instance. As an example, the sample
TD shared in Fig. 5 has name and description fields where it
mentions the ontology “‘quantity kind” (Light intensity) and
measurement unit (Lux) of a sensor. Therefore, the algorithm
initially checks if a matchmaking can be done using these
fields.

Each collected TD has one or more sensor description.
Secondly, the algorithm checks if a matching can be
found using the different sensor descriptions. If this is also
unsuccessful, then it checks the remaining parts of the TD
to find a matching to the aggregation points that have been
earlier extracted from the ontology.

1) STATISTICS BASED SENTENCE SIMILARITY: LEX-DB
LEX-DB is based the work by Li et al [13]. It produces
a similarity score between 0 and 1 using semantic and
syntactic information contained in the given pair of texts.
Initially, the algorithm creates raw semantic vectors and word
order vectors for the sentences with the assistance of the
lexical database WordNet. Contribution from each word to
the meaning of a sentence is marked by assigning it a weight
value using a text corpus and then the weights are combined
with the raw semantic vector. Finally, an overall semantic
similarity score is calculated using a weighted word order
similarity and semantic similarity. Li et al. argue that syntax
has more effect on the semantic processing of a text and hence
the authors use higher weight for syntactic similarity than the
word order similarity

2) NLP-BASED SEMANTIC SIMILARITY APPROACH: W2VEC
Word embeddings refers to vector representations of words in
terms of real numbers. Our W2VEC approach is based on the
work by Mikolov et al. where the authors introduce CBOW
(rf. to section II) [17], [18]. As has been explained in Section
II, CBOW trains word vectors from a TD dataset.

VOLUME 11, 2023

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

IEEE Access

W2VEC relies on cosine similarity while calculating
similarity of an ontological element to a value field in a
TD. In order to obtain a single vector for a text field that
consists of multiple words, an average vector is calculated.
However, while comparing two texts with different sizes, e.g.
2 words and 10 words, average vector representation might
not reflect the actual similarity even the 2 words inside the
first text appear in the second text. As an example, consider
the following 2 short texts: “‘temperature sensor’” and “‘a
highly sensitive temperature sensor with model number X
from company Y. Even though it can be inferred that that
these two texts describe a “‘temperature sensor’’, the extra
words in the second sentence (“high”, “sensitive”, ‘“model”’,
“number”’, “X”, “company”’, “Y”) changes the average
representation of the sentence and hence when put on a vector
space, it gets further away from the vector that represents
“temperature sensor’” only. To overcome this, the n-gram
method with a dynamic n value has been applied in W2VEC.
In the n-gram method, the words that appear together in a long
text are put in the same set and such multiple sets of words
created for a single text.

The following steps have been used to compute semantic
similarity between an aggregation point name or category
node name and a key or value in a TD:

o Assign the word count in a category node name or

aggregation point name. (output class name in short)
to N

o If N is smaller than 2, then assign 2 to N.

o Calculate average vector representation for the output
class name.

o Separate a given key or value in a TD into multiple sets
based on the value of N.

« Calculate average vector representations for each set.

o Calculate the cosine similarity between the vector that
represents the output class and vectors that represent
each set.

« Find the set with the highest cosine similarity.

« If the cosine similarity is higher than a threshold, then
accept it as a match.

3) CLUSTERING-BASED SEMANTIC SIMILARITY APPROACH:
K-MEANS

The last semantic similarity approach creates cluster repre-
sentations for each ontology elements based on an adaptation
of k-Means. For a given TD dataset, the algorithm checks if
it matches to an ontology element and extracts the matching
phrase in case of a match. Each matching phrase is then put
into a cluster that is dedicated to a single ontology element.
As an example, there are 11 category elements for domain of
interest category in the FIESTA-IoT ontology and therefore
11 clusters are created. A TD is assigned to only one of the
11 clusters.

The k-Means algorithm requires a notion of distance
between clusters and data points. In the original version
of the algorithm, different number of clusters are evaluated
to find the right amount of clusters that can best represent

VOLUME 11, 2023

{
"QuantityKind": "Illuminance”,
"Unit": "Lux",
"SensingDevice": "LightSensor",
"Domain0fInterest”: "Environment”,
}

FIGURE 6. A service request enriched with elements from the FIESTA-loT
ontology.

the variety among the data points. For our adapted version,
we consider as centroids for each cluster the nodes that
have the highest betweenness centrality value. Then the
algorithm assigns data points to the nearest cluster. After this
initialization phase, centroids for each cluster are calculated
again, this time by taking the average values of data points
in that cluster. Then data points are reassigned to the
closest clusters. This final step is repeated for a predefined
amount of time or until no data point is assigned to a new
cluster. Hence, in the k-Means version used, the number of
clusters is equal to the total number of aggregation points
obtained from the used ontology/ies. For instance, again
considering the FIESTA-IoT ontology, there are 178 different
classes defined for “‘QuantityKind”’, which correspond to the
ontology aggregators (cluster centroids). Hence, in total and
for FIESTA-IoT the algorithm would consider 178 clusters.

E. RUN-TIME: DATA AGGREGATION

Data aggregation is performed based on the assumption that
every IoT service can be described semantically according
to an ontology. Upon receiving a service request, data
aggregation module looks for matching sensing devices
according to the ontological elements inside the request.
Then the engine subscribes to data from those sensors and
aggregate using a simple average function. Based on the
service example provided in Fig.6, the data aggregation
module searches for sensor descriptions in the graphdb that
have a relation to “Illuminance”, “Lux”, “LightSensor”,
and “Environment” nodes. It sends a response back to the
requester that contains a list of sensor and TDs. Lastly,
the module subscribes to data from those IoT devices,
aggregates data using an average function (to be improved)
and continuously sends the aggregated data to the requester
until the service request is deleted.

VI. EXPERIMENTAL ENVIRONMENT AND DATASETS

The three discussed ML-based approaches have been imple-
mented and analysed on the TSMatch testbed of the fortiss
IIoT Lab. The performance evaluation parameters that have
been considered are:

o Accuracy, defined as the semantic matchmaking accu-
racy of Things to service matching. Percentage of correct
matchings to all matchings.

o Time to completion of a matchmaking process, corre-
sponding to the instant of time measured on the device
where TSMatch resides, for matching TD to ontology
elements.

27835

IEEE Access

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

« Peak memory usage during TD to ontology matching

for all of the proposed approaches.

In terms of methodology, we have first created training
and testing datasets for each of the proposed approaches.
The data used as baseline for comparison was manually
extracted from the testing dataset. Each of the semantic
matchmaking algorithms results were then compared to the
baseline in terms of accuracy. The experiments have been
repeated several times.

A. DATASETS
1) TD DATASET
The matchmaking requires datasets comprising heteroge-
neous TDs. For the purpose of analysis, a large TD dataset
has been created'? having as basis two existing datasets.
The first is the WoT Dataset composed of heterogeneous
TDs,!3 corresponding to sensor TD. This dataset comprises
327 files, each of which holds one or more than one sensor
or actuator. There are 2191 sensor TDs in total [20]. The
second is the OneDM SDF TD dataset,14 composed of
200 sensor TDs [21].

Therefore, in total a sensor TD dataset (DAT1) comprising
2391 heterogeneous sensor TDs has been created.

2) ONTOLOGY DATASET

After experimenting with different ontologies, we have
selected the FIESTA-IoT ontology [19], [22]. FIESTA-IoT
has the particularity of integrating cross-domain elements and
therefore it has a good coverage relevant for scenarios across
different domains.

FIESTA-IoT comprises 483 different class of entities
including 178 category elements for ““QuantityKind™, 92 cat-
egory elements for “Unit”, 109 category elements for
“SensingDevice” and 11 category elements for ‘“Domain-
OfInterest” class.

3) TRAINING AND TESTING DATASETS
Out of DAT, 2 testing and 1 training datasets have been built.
A first testing dataset, TESTING1,'? consists of 200 sensor
descriptions, roughly 10%, out of DAT1, that have been
randomly selected based on a uniform distribution using
the package from NumPy.!® The testing dataset has been
manually labeled based on the FIESTA-IoT ontology.
Therefore, due to time constraints, instead of trying different
testing-training split percentages, only 1 split (10%) option
is considered. The remaining %90 percent of DAT1 dataset
is used as the training dataset, TRAINING,!” for Word2Vec
and K-Means algorithms.

12 https://git.fortiss.org/iiot_external/tsmatch/-/tree/master/dataset
13 https://github.com/w3c/wot-testing/tree/main/events/2022.03.
Online/TD

14https ://github.com/one-data-model/playground/tree/master/sdfObject

15 https://git.fortiss.org/iiot_external/tsmatch/-/tree/master/dataset/testing

1 6https ://numpy.org/

17https J//git.fortiss.org/iiot_external/tsmatch/-
/tree/master/dataset/training

27836

A second testing dataset (C-TESTING!®) has been consid-
ered, still relying on 200 sensor descriptions, but removing
the sections of the TD that are not applicable to the
matching towards an ontology. For instance, the WoT TD
attribute “‘created” or ‘“‘modified” defines when the TD is
created and modified. Therefore, it doesn’t contribute to
the semantic meaning while understanding which ontology
element does this description relates to. In C-TESTING, only
the sections of the WoT TD that are applicable to the semantic
matchmaking process are considered. The aim of this specific
dataset is to evaluate potential improvements in terms of node
usage, e.g., CPU, memory, and eventually, running time.

4) BASELINE TESTING DATASET

The performance evaluation that has been carried out
considers the testing datasets (TESTING1, C-TESTING) as
baseline!® which has been manually labelled. This dataset has
been built based on human assessment of the categorisation
of each sensor on the testing datasets against the aggregation
points of the FIESTA ontology. Baseline dataset contains
sparsity for ‘“domain of interest” category due to very
few TDs having domain related information. Therefore the
“domain of interest” category is excluded from all of
the accuracy measurements that are described in the next
sections.

To exemplify how the labelling was done, consider a TD
that has “humidity” as its title, a description section which
mentions that this sensor is measuring relative humidity in a
room and another field named “unit” and its value is “%”.
By looking at the first 2 fields, and to the QuantityKind
category in FIESTA-IoT Ontology, one can infer that
the TD can be linked to the FIESTA aggregation point
“RelativeHumidity”’. Among the sensing device category
elements, this description refers to a ‘“HumiditySensor™.
By looking at the unit field, one can also infer that this sensor
provides data in percentages and hence it corresponds to
“Percent” category element for the unit category.

5) WORD VECTOR TRAINING DATASET

This dataset is used to derive worst-case and best-case
accuracy thresholds, that can be used to apply on the
semantic matchmaking process. A worst-case and best-case
assessment assists in defining limits that are relevant in
particular when considering that the matchmaking process
occurs on the Edge, eventually being applicable to far Edge
devices (constrained devices).

The word vectors published by Google includes 3 million
vectors with 300 dimensions each that takes around 6 GBs
of space in a text file. Therefore a subset of the word vectors
will be used. In order to analyse different word vector subsets,
an experiment that shows the effect of subset size on the
accuracy is carried out. Table 2 shows how different subset

l8https://git.fortiss.org/iiot_external/tsrnatch/-
/tree/master/dataset/testing_cleaned

19https://git.fortiss.org/ii0t_external/tsmatch/—
/blob/master/dataset/testing/ground_truth.txt

VOLUME 11, 2023

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

IEEE Access

TABLE 2. Size and accuracy comparison for word vector subsets of
different sizes.

[Subset size | Size in MBs [Accuracy |

1,000 3.48 49.16
2,000 7.96 50.33
5,000 17.4 68.83
10,000 34.8 62.66
20,000 69.6 64.83
50,000 174 70.16
100,000 348 73

200,000 796 73.83
300,000 1194 74.66

of word vectors perform. The word vectors are ordered based
on the frequency of the words in descending order. Therefore
each subset with size x refers to the most popular x words.
Subset size in MBs refers to how much space does a subset
requires when stored in a text file. Accuracy is calculated
using the best performing key and value thresholds, based on
the results obtained after evaluating different key and value
thresholds (see section VII). While the subset size is linearly
correlated with the size of each file, the increase in accuracy
gets lower as the subset size increases.

For the accuracy comparison, the Word2Vec-based and k-
Means-based semantic matchmaking algorithms are trained
using both the best performing and the worst performing,
smallest and the biggest set of vectors.

B. EXPERIMENTAL ENVIRONMENT

The experiments have been carried out via the fortiss IIoT
Lab TSMatch demonstrator,2° having as basis the reference
scenario provided in Section III. The testbed components that
have utilized during this study are: i) Raspberry Pi 3B+ and
Raspberry Pi 4B with 5 sensors attached to each, measuring
temperature, humidity, CO2 concentration, particle size in
the air and noise, ii) An Intel NUC NUC10i7FNH?! device
that hosts the dockerized TSMatch components, namely, the
TSMatch Engine, the MQTT broker and the graph database
(Neo4]). A full explanation on how to run TSMatch can
be found in the Git open documentation, on the TSMatch
technical report.>> The TSMatch components have been
containerized with Docker, and several scripts have been
developed to run the TSMatch stack.

VIl. PERFORMANCE EVALUATION

This section includes a performance comparison of the
selected similarity approaches. Table 3 shows the settings for
each of the approaches. For the ones that requires a training
process, all besides LEX-DB, the training is performed on a
Lenovo ThinkPad T460p laptop (see table 5). However the
training process is not subjected to an evaluation since the

20https://Www.fortiss.orglen/research/fortiss-labs/detail/iiot-lab

21 https://www.intel.com/content/www/us/en/products/sku/188811/intel-
nuc-10-performance-kit-nuc10i7fnh/specifications.html
2 https://git.fortiss.org/iiot_external/tsmatch

VOLUME 11, 2023

TABLE 3. Summary of settings for the three selected approaches.

[Algorithm | Dataset [Abbreviation |
LEX-DB WordNet [16] lexical db LEX-DB
W2VEC TRAINING W2VEC-TD
W2VEC 300,000 vectors for most popu- | W2VEC-300k

lar words published by Google
W2VEC 1,000 vectors for most popular | W2VEC-1k
words published by Google
K-MEANS TRAINING K-MEANS-TD
K-MEANS 300,000 vectors for most popu- | K-MEANS-
lar words published by Google 300k
K-MEANS 1,000 vectors for most popular | K-MEANS-1k
words published by Google

58.66

R
70

B
60

N
50

|-~
40

o]
=
w
w

Value 5|mllarity threshold

ﬂ . o -
- 30

Key swmllanty thresho\d

FIGURE 7. Impact of key and value thresholds on the accuracy of
W2VEC-300k.

main goal of the proposed approach is to perform a semantic
matchmaking on the edge.

A. SIMILARITY THRESHOLD IMPACT ON W2VEC

There are two threshold values that need to be set manually
before running the semantic matchmaking algorithm. These
thresholds are the key threshold which refers to the value
where a key in a TD is accepted as similar to an aggregation
point, and the value threshold, where a value in a TD is
accepted as similar to child nodes of an aggregation point.
In order to find which key and value thresholds provide
better accuracy, different combinations of the two thresholds
have been evaluated, for all of the proposed approaches. The
sentence similarity approach performed worse than the other
2 approaches in terms of accuracy with using different key-
value thresholds. The results for 2 best performing similarity
approaches, word2vec word embeddings and k-Means, are
shown in this and the following section.

1) THRESHOLD ANALYSIS FOR A 300,000
VECTORS DATASET
The experiment has been carried out by considering the
worst-case and best-case word vectors from table 2.

Figure 7 provides the results when considering 300,000
vectors.

27837

IEEE Access

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

0.8

49.16 49.16

49.16 49.16 49.16
48.16 48.16 48.16

45.16 45.16 45.16

0.8
Key 5|m|Iar|ty threshold

Accuracy

48.16 48.16

0.6

Value similarity threshold
0.7

45.16

FIGURE 8. Impact of key and value thresholds on the accuracy of
W2VEC-1k.

Both key and value similarity is ranging between 0.5 and
0.9. Accuracy is at the highest level when the key similarity
threshold is 0.5, 0.7 and 0.8, and the value similarity threshold
is 0.7. When looking at the row where value similarity is
0.7, changing the key similarity impacts the accuracy in less
than 1 percent. A roughly similar situation holds for all of
the value similarity thresholds. On the other hand, if the key
similarity is kept fixed and the value similarity is changed,
then the accuracy varies more than 10 percent. As an example,
when the key similarity threshold is 0.5 and value similarity
changes between 0.5 and 0.9 then the lowest accuracy value
becomes 58.66 while the highest accuracy is 74.33 percent.
This leads to the conclusion that value similarity threshold
has more relevancy than the key threshold on accuracy. This
is expected, given that the value threshold relates with the
matching to a child node on an ontology, so provides a finer-
grained matchmaking.

Since the accuracy is at the highest when the value
similarity threshold is 0.7 and the key similarity has a lot
less relevancy than the value similarity threshold, another
experiment is carried out by ranging the value similarity
threshold between 0.65 and 0.75 and keeping the key
similarity threshold fixed at 0.5, 0.7 and 0.8. The purpose
of this experiment is to see how much the accuracy changes
when a more finer-grained increase on the value threshold is
applied. This experiment showed that the accuracy is higher
when the value threshold is set to 0.67, 0.68 and 0.69. Setting
the key similarity threshold to 0.5, 0.7 or 0.8 produces the
exact same results. Increasing the value similarity threshold
above 0.69 reduces the accuracy of the algorithm. A list of
best-performing key value pairs for all of the approaches
described in this and the following sections are given in the
table 4. Also a more detailed threshold analysis can be found
in [23].

2) THRESHOLD IMPACT ANALYSIS FOR A 1,000 VECTORS
DATASET

A larger vector dataset intuitively provides the best perfor-
mance. However, it also brings the trade-off of having to

27838

0.8

80
.

70
.
’;

47.83 47.83 47.83 47.83 47.83

ﬂ 45.83 45.83 45.83 45.83

Key 5|m||ar|ty thresh:)ld

Value similarity threshold

0.6

FIGURE 9. Impact of key and value thresholds on the accuracy of
K-MEANS-300k.

handle large storage and large processing times. Therefore,
a second experiment to calibrate the key and value thresholds
is carried out, by considering a small dataset, using only
the 1,000 vectors for most popular words from Google’s
dataset.

Figure 8 provides the results achieved when the key
and similarity thresholds varies between 0.5 and 0.9. The
highest accuracy obtained from this experiment is 50. This
experiment shows that changing the key similarity threshold
doesn’t impact the accuracy result when 1,000 vectors
are used. Accuracy values change only when the value
similarity change. We hypothesize that for sparse datasets,
matchmaking to aggregation points may not be enough to
perform well.

Next, another experiment is performed to see how
finer-grained changes in value similarity threshold effects
the accuracy. Since the key similarity threshold didn’t
have significant impact in the accuracy in the previous
experiment, a key threshold is trivially picked for this
experiment. The results show that the highest accuracy is
again 50 when the value threshold is 0.79, 0.8, 0.81, 0.82,
0.83 or 0.84. Increasing the threshold further reduces the
accuracy.

B. SIMILARITY THRESHOLD IMPACT ON K-MEANS

1) THRESHOLD IMPACT ANALYSIS FOR THE 300,000
VECTORS DATASET

The same experiments are repeated for the K-Means approach
when different key and value thresholds ranging between
0.5 and 0.9 are applied. Results are presented in Figure 9.
In this experiment, changing the key threshold doesn’t impact
the accuracy. The best performing value threshold is 0.7 with
an accuracy of 58.

A second experiment is conducted, in which the value
similarity ranges between 0.65 and 0.75 since the best
performing value threshold in the previous experiment was
0.7. In this case, 0.69 value similarity threshold lead to the
highest accuracy of 60.66.

VOLUME 11, 2023

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

IEEE Access

g
70
- 410 41.0 41.0 41.0 41.0

D w
ER=]
]
£ 60
° &
>
E - 39.83 39.83 39.83 39.83 39.83 g
& °]
= 50
1
& 2- 3716 37.16 37.16 37.16 37.16
> ©
- 40
g - 335 335 335 335 33.5
| i i i i - 30
0.5 0.6 0.7 0.8 0.9

Key similarity threshold

FIGURE 10. Impact of key and value thresholds on the accuracy of
K-MEANS-1k.

TABLE 4. Summary, best performing key and value thresholds.

| Approach | Key | Value
W2VEC-300k 0.5,0.7 and 0.8 0.67, 0.68 or 0.69
W2VEC-1k No impact 0.79, 0.8, 0.8I,
0.82,0.83 or 0.84
K-MEANS-300K No impact 0.69
K-MEANS-1K No impact 0.91, 0.92, 0.93 or
0.94

2) THRESHOLD IMPACT ANALYSIS FOR THE 1,000

VECTORS DATASET

We have run a similar experiment for 1,000 vectors using
different key and value thresholds and results are shown in
Figure 10. Again, changing the key similarity threshold for
this experiment didn’t impact the algorithm accuracy. The
best performing value similarity threshold is 0.9 with the
highest accuracy of 49.33 percent.

Another experiment with the finer-grained value thresh-
olds is conducted. In this time, value threshold ranges
between 0.85 and 0.95 since the previous experiment showed
0.9 as the best performing threshold. The accuracy value is at
the highest 49.6 level when the value threshold is 0.91, 0.92,
0.93 or 0.94.

C. THRESHOLD IMPACT ANALYSIS SUMMARY

A summary for the threshold analysis is provided in Table 4.
In regards to W2VEC-300K, the threshold analysis shows
that the best performing key threshold values are 0.5, 0.7 and
0.8 for key and one of 0.67, 0.68 or 0.69 for value. When only
1,000 word vectors (W2VEC-1K) are used, the key similarity
threshold does not impact significantly the accuracy and
the best performing value thresholds are: 0.79, 0.8, 0.81,
0.82, 0.83 or 0.84. In regards to K-MEANS-300K, the key
similarity threshold changes did not impact significantly
the algorithm accuracy, and the best performing value
threshold is 0.69. When 1,000 word vectors are considered
(K-MEANS-1K) the key similarity threshold again didn’t
have a significant impact on the accuracy and the

VOLUME 11, 2023

a0

60
5 40
i
0— -
rod ‘r‘@o’o & & P pr-‘o &+°%
o

e &
& & &
*\1‘ -

& b

Algorithm

FIGURE 11. Accuracy for category QK.

Category Unit
o =] 2
!
|
|

FIGURE 12. Accuracy for category Unit.

best performing value threshold was one of 0.91, 0.92,
0.93 or 0.94.

D. ALGORITHM ACCURACY ANALYSIS

A second set of experiments has been carried out to assess the
accuracy of the proposed approaches, for the best and worst-
case threshold scenarios summarised in Table 4.

The results are compared both in terms of the total
matchmaking accuracy and also accuracy per category used
in the FIESTA-IoT ontology. There are 4 categorizations
published for quantity kind (QK), unit, sensing device (SD)
and domain of interest ontology elements. As mentioned in
section VI-A4, the baseline testing dataset has a high sparsity
when it comes to the domain of interest category. Hence it has
been excluded in the accuracy analysis.

A match occurs when the selected semantic matchmaking
algorithm matches a given TD to the same ontology element
as the one that is in the baseline dataset. A mismatch occurs
when the algorithms matches the TD to a different ontology
element. Lastly, if the algorithm can’t find a match for a given
TD even though there is a match described in the baseline
dataset, then we call it an undetected occurrence. A detailed
results table showing the number of matched, miss-matched
and undetected instances can be found in [23].

E. SUMMARY OF ACCURACY RESULTS
Fig. 11 presents the accuracy values achieved by each
algorithm when performing a matchmaking of IoT TDs to

27839

IEEE Access

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

Category SD
na a
a a8 =

Algorithm

80

Total
e e @
a =3 (=1 =)

Algorithm

FIGURE 14. Total accuracy.

the FIESTA-IoT category QK. Results show that W2VEC
achieves the best accuracy overall. However, the accuracy
significantly decreases (as expected) when sparser datasets
are used. K-Means is the second best performing algorithm
overall, while LEX-DB also shows good performance
(however, LEX-DB has been trained with Word2NET).
Figure 14 provides accuracy results for all algorithms, when
TDs are matched to the FIESTA-IoT category Unit. In this
case, W2VEC and K-MEANS achieve a similar performance,
with one exception, when the smaller and sparser dataset is
considered. Overall, both algorithms achieve a good accuracy
percentage both for 300k vectors and for 1k vectors. LEX-
DB is presented here, for reference. As explained, LEX-DB
has been trained against WordNet and therefore, the accuracy
should not change.

Figure 13 provides accuracy results for all algorithms,
when TDs are matched to the FIESTA-IoT category SD.
W2VEC is the algorithm that provides the best accuracy for
this case. K-MEANS exhibits a different result pattern, where
the accuracy is slightly higher for the sparser testing dataset
(45 instead of 43). The LEX-DB value is now lower for the
SD category, which implies that the type of wording may not
adequately cover the SD category.

Figure 14 shows the total averaged accuracy per algorithm
and case run. W2VEC has a particular good performance
when 300k vectors are used, but it significantly reduces if 1k
vectors are used. On the other hand, K-MEANS achieves less

27840

accuracy than W2VEC when 300k vectors are considered, but
seems more stable when 1k vectors are applied.

Overall, W2VEC seems to provide better results when
large, dense datasets are considered. For the 1K case, W2VEC
accuracy lowers and is similar to the one of K-Means.
However, for the majority of cases tested, W2VEC achieves
the overall best performance.

LEX-DB accuracy, which has been trained against Word-
Net, can only be compared with the cases run for 300k
vectors. In such case, LEX-DB achieves lower performance
than either W2VEC or K-MEANS across all use-cases.

For the case of the smaller and sparser testing dataset (TD
cases), both W2VEC and K-MEANS is very low.

Opverall, the accuracy achieved for all algorithms and ran
cases is between 60% and 80%. Ideally, such accuracy should
reach a 90% level, in order for an adequate automated process
to run better. We believe this can be improved by relying on
multiple ontologies, e.g., a cross-domain approach.

VIil. NODE USAGE ANALYSIS

A last batch of experiments has been run to assess node usage
of each algorithm, having in mind future deployments in
Edge devices. For far Edge devices, we have selected three
different types of equipment representing different types of
Edge devices, and Table 5 shows CPU, memory, disk and
operating systems for each selected device:

o A Lenovo ThingPad T460p, standing for a regular end-

user equipment device.

« A Raspberry Pi 4B, standing for an embedded Edge

controller device.

« An Intel NUC 10, standing for an example of a IoT

gateway device.

The node usage analysis considers average time required
to perform a match (Matching Duration in milliseconds,
MD), and peak memory in MBytes (PM, MB) use for each
selected algorithm. To obtain the running time, the semantic
matchmaking algorithm is executed with a given similarity
algorithm for 200 times and average time required to match a
TD to an ontology element is calculated. Memory usage of the
process that runs the matchmaking algorithm is also tracked
during the whole execution and highest memory usage is
observed. Table 6 presents results for TESTINGI.

In terms of MD, the best algorithm is W2VEC across
all devices. LEX-DB is by far the algorithm performing
worse across all devices. In regards to memory, the algorithm
that shows better performance is LEX-DB overall, while
W2VEC and K-MEANS show a similar performance.
We have repeated the experiment for the C-TESTING set,
to understand if a deeper cleaning process of the dataset
may in the future significantly impact node usage results.
Results are provided in Table 7. Results show that a thorough
cleaning process can improve results in terms of MD, but we
highlight that there is not a significant impact. For instance,
W2VEC-300k has a performance improvement from 774ms
to 708ms (0.08%) for the Lenovo equipment; a reduction
from 2783 to 2184 ms (0.2%) for the Raspberry Pi 4B.

VOLUME 11, 2023

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

IEEE Access

TABLE 5. Hardware details and operating system of each testing device.

[Device [CpU [Memory | Disk (Total / Free [OS |
Lenovo ThingPad T460p Intel® Core™ i7-6700HQ | Samsung M471A1K43- | Samsung SSD 850 (465 | Ubuntu 20.04.4 LTS
CPU @ 2.60GHz x 8 BBO0O-CPB 16 GiB GiB /245 GiB)
Raspberry Pi 4B Broadcom BCM2711, | 4GB RAM 32 GB/16.8 GB SD Card | Raspbian GNU/Linux 10
Quad core Cortex-A72 (buster)
(ARM v8) 64-bit SoC @
1.5GHz
Intel® NUC 10 Perfor- | Intel(R) Core(TM) i7- | Kingston SODIMM | Samsung SSD 970 EVO | Ubuntu 20.04.3 LTS
mance kit NUC10i7FNH 10710U CPU @ 1.10GHz DDR4 Synchronous 2667 | Plus (500 GBs / 404 GBs)
MHz 16 GiB
TABLE 6. Node usage analysis results for TESTING1. observed hint that such integration may not pay up in terms
of node usage improvement.
Device Device MD (ms) | PM Algorithm
Type (MB) IX. SUMMARY
156189 | 258 LEX-DB This work addressed the development of semi-automated
End-us Lenovo 774 3894 W2VEC-300k tchmaki hat ist IoT int bili
(ll‘le‘;}tseer ThinkPad 3005 3910 K-MEANS- matchmaking proce.tssest a C.an.aSSISt' ol interoperability.
T460p 300k The proposal considers an existing middleware, TSMatch,
179 249 WIVEC-1K and addresses the reasons to integrate ML in order to develop
609 249 K-MEANS-1k . . .
above 10 1 142 [EXDB a finer-grained matchmaking. Three approaches have been
Edge Raspberry minutes selected (LEX-DB, W2VEC, K-MEANS) and evaluated in
controller Pisp | 2183 2401 W2VEC-300k a realistic testbed, fortiss IIoT Lab, in terms of accuracy
3899 2402 K-MEANS- . .
300k and node usage impact. Results achieved show that the
715 121 W2VEC-1k best performing solution is W2VEC (NLP based on a
égg; 5 égé E’%Esg S-1k neural network model), being LEX-DB the worse performing
T I\%ljtél?o 535 3380 W2VEC-300K solution. The results achieved allowed also to detect gaps that
o .
Gateway Performance| 1440 3890 K-l\;I(EANS- can be addressed in future work.
i7FNH 300
145 240 W2VEC-1k ACKNOWLEDGMENT
236 240 K-MEANS-Ik The authors would like to thank Prof. Jorg Ott for his
advisorship in the M.Sc. work that lead to this publication.
TABLE 7. Node usage analysis for C-TESTING. The work of Erkan Karabulut was done while at fortiss
GmbH.
Device Device MD (ms PM Algorithm
Type s |) 8 REFERENCES
148911 257 LEX-DB [1] E. Karabulut, N. Bnouhanna, and R. C. Sofia, “ML-based data classi-
Lenovo 708 3307 W2VEC-300K fication and data aggregation on the edge,” in Proc. CoNEXT Student
Egd-}lser ThinkPad [1766 3908 K-MEANS- Workshop, Dec. 2021, pp. 21-22.
cevice T460p 300k [2] A.Kast, E. Korkan, S. Kabisch, and S. Steinhorst, “Web of things system
160 249 W2VEC-1K description for representation of mashups,” in Proc. Int. Conf. Omni-Layer
404 249 K-MEANS-1K Intell. Syst. (COINS), Aug. 2020, pp. 1-8.
above 10 | 141 LEX-DB [3] E. Korkan, F. Salama, S. Kaebisch, and S. Steinhorst, “A-MaGe: Atomic
Ed Rasob minutes mashup generator for the web of things,” in Proc. Int. Conf. Web Eng.
8¢ aSP crry 2184 2400 W2VEC-300k Cham, Switzerland: Springer, 2021, pp. 320-327.
controller Pi4B 3671 2401 K-MEANS- [4] G.Shu,O.F Rana,N.]J. Avis, and C. Dingfang, “Ontology-based semantic
300k matchmaking approach,” Adv. Eng. Softw., vol. 38, no. 1, pp. 59-67,
626 121 W2VEC-1k Jan. 2007.
1665 121 K-MEANS-1k [5] G. Cassar, P. Barnaghi, W. Wang, and K. Moessner, “A hybrid semantic
56031 255 LEX-DB matchmaker for IoT services,” in Proc. IEEE Int. Conf. Green Comput.
loT Intel® 315 3338 W2VEC300K Commun., Nov. 2012, pp. 210-216.
0 NUC 10 910 3801 K-MEANS- [6] N. Bnouhanna, E. Karabulut, R. C. Sofia, E. E. Seder, G. Scivoletto,
Gateway Performance Insolvibile. “A luati P o thi .
TFNH 300k and G. Insolvibile, “An evaluation of a semantic thing to service
124 240 W2VEC-1k matching approach in industrial IoT environments,” in Proc. IEEE Int.
376 240 K-MEANS-1k Conf. Pervasive Comput. Commun. Workshops Affiliated Events (PerCom

Workshops), Mar. 2022, pp. 433-438.

M. Ruta, F. Scioscia, G. Loseto, A. Pinto, and E. Di Sciascio, ‘“Machine
learning in the Internet of Things: A semantic-enhanced approach,”
Semantic Web, vol. 10, no. 1, pp. 183-204, Dec. 2018.

[71

The improvement range is similar when considering the 1k
cases (0.1%). In terms of memory usage, there is also not a
significant improvement.

Adding a deeper cleaning process will also impact the
overall memory and matching time. The improvements

VOLUME 11, 2023

[8]

[9]

C. Malewski, A. Broring, P. Maue, and K. Janowicz, ‘“Semantic
matchmaking & mediation for sensors on the sensor web,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 3, pp. 929-934, Mar.
2014.

H. Zhao, “Semantic matching across heterogeneous data sources,”
Commun. ACM, vol. 50, no. 1, pp. 45-50, Jan. 2007.

27841

IEEE Access

E. Karabulut, R. C. Sofia: Analysis of Machine Learning-Based Semantic Matchmaking

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Z. Peng, G. Xin, Y. Wei, W. Wang, B. Wang, and L. Wang, ““Short text
clustering enhanced by semantic matching model,” in Proc. 2nd Int. Conf.
Inf. Syst. Comput. Aided Educ. (ICISCAE), Sep. 2019, pp. 480-484.

I. B. G. Sarasvananda, R. Wardoyo, and A. K. Sari, “The K-means
clustering algorithm with semantic similarity to estimate the cost of
hospitalization,” Indonesian J. Comput. Cybern. Syst., vol. 13, no. 4,
pp. 313-322, 2019.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy, “‘Ontology matching:
A machine learning approach,” in Handbook on Ontologies. Cham,
Switzerland: Springer, 2004, pp. 385-403.

Y. Li, D. McLean, Z. Bandar, J. O’Shea, and K. Crockett, ““Sentence
similarity based on semantic nets and corpus statistics,” IEEE Trans.
Knowl. Data Eng., vol. 18, no. 8, pp. 1138-1150, Aug. 2006.

M. Fazel-Zarandi and M. S. Fox, ‘“Semantic matchmaking for job
recruitment: An ontology-based hybrid approach,” in Proc. 8th Int.
Semantic Web Conf., vol. 525, 2009, p. 2009.

R. Zhang and N. El-Gohary, “A machine-learning approach for semantic
matching of building codes and building information models (BIMs) for
supporting automated code checking,” in Proc. Int. Congr. Exhib. Sustain.
Civil Infrastruct. Cham, Switzerland: Springer, 2019, pp. 64-73.

G. A. Miller, “WordNet: A lexical database for English,” Commun. ACM,
vol. 38, no. 11, pp. 39-41, 1995.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘Distributed
representations of words and phrases and their compositionality,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 1-9.

R. Agarwal, D. Gomez, T. Elsaleh, L. Sanchez, J. Lanza, and A. Gyrard,
“Federated interoperable semantic IoT/cloud testbeds and applications,”
Zenodo, Reston, VA, USA, Tech. Rep., Apr. 2016, doi: 10.5281/
zenodo.1193299.

W3C. Web of Things (WoT) Testing. Accessed: Apr. 15, 2022. [Online].
Available: https://github.com/w3c/wot-testing/

O. D. Model. Onedm SDF Playground. Accessed: Apr. 15,2022. [Online].
Available: https://github.com/one-data-model/playground/

R. Agarwal, D. G. Fernandez, T. Elsaleh, A. Gyrard, J. Lanza,
L. Sanchez, N. Georgantas, and V. Issarny, ‘“Unified IoT ontology to enable
interoperability and federation of testbeds,” in Proc. IEEE 3rd World
Forum Internet Things (WF-1oT), Dec. 2016, pp. 70-75.

E. Karabulut, “Ml-based data classification and data aggregation on the
edge,” M.S. thesis, Dept. Inform., Tech. Univ. Munich, Munich, Germany,
May 2022.

27842

ERKAN KARABULUT received the B.Sc. degree
in computer engineering from Yildiz Technical
University, Istanbul, in 2019, and the M.Sc.
degree in computer science from TU Munich,
in 2022. He is currently pursuing the Ph.D. degree
with the INtelligent Data Engineering Laboratory
(INDElab), University of Amsterdam. He was
a Research Assistant with the fortiss—Research
Institute of the Free State of Bavaria for software-
intensive services and systems, for two years, until
2022. His current research interests include semantics in the IoT, sensor
networks, edge computing, and digital twins.

RUTE C. SOFIA (Senior Member, IEEE) received
the Ph.D. degree, in 2004. She co-founded the
Portuguese startup Senception Lda, a startup
focused on personal communication platforms,
from 2013 to 2019. She was the COPELABS
Scientific Director, from 2013 to 2017, where she
was a Senior Researcher, from 2010 to 2019. She is
currently the Industrial IoT Head with the fortiss—
Research Institute of the Free State of Bavaria
for software-intensive services and systems. She
is also an Invited Associate Professor with Universidade Lus6fona de
Humanidades e Tecnologias and an Associate Researcher with ISTAR,
Instituto Universitdrio de Lisboa. She is the Co-Founder of the COPELABS
Research Unit. Her research background has been developed in industrial and
academic contexts. She holds more than 70 peer-reviewed publications in her
fields of expertise, one book, 14 book chapters, and nine patents. Her current
research interests include network architectures and protocols, the IoT, edge
computing, in-network computing, and network mining. She was an ACM
Senior Member. She is an ACM Europe Councilor, from 2021 to 2025. She
was an IEEE ComSoc N2Women Awards Co-Chair, from 2020 to 2021.

VOLUME 11, 2023

http://dx.doi.org/10.5281/zenodo.1193299
http://dx.doi.org/10.5281/zenodo.1193299

