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ABSTRACT In recent years, since the cloud can provide tremendous advantages regarding storage and
computing resources, the industry has been motivated to move industrial control systems to the cloud.
However, the cloud also introduces significant security challenges since moving control systems to the cloud
can enable attackers to infiltrate the system and establish an attack that can lead to damages and disruptions
with potentially catastrophic consequences. Therefore, some security measures are necessary to detect these
attacks in a timely manner and mitigate their impact. In this paper, we propose a security framework for
cloud control systems that makes them resilient against attacks. This framework includes three steps: attack
detection, attack isolation, and attack mitigation. We validate our proposed framework on a real testbed and
evaluate its capability by subjecting it to a set of attacks. We show that our proposed solution can detect an
attack in a timely manner and keep the plant stable, with high performance during the attack.

INDEX TERMS Attack detection, attack isolation, attackmitigation, cloud control systems, resilient control.

I. INTRODUCTION
In recent years, we have had numerous advances in network
technology, and these technologies have been combined with
control systems to create network control systems (NCS).
In this type of control system, the control loop is closed
through the communication channel, making monitoring and
adjusting the plant remotely possible. Control systems usu-
ally have to deal with big data. This increases the commu-
nication and computational load of the network and causes
the requirements for high-quality and real-time control to go
beyond the traditional network control topology capability.
These problems can have a significant negative impact on the
industry. Industry 4.0 is the next generation of the industry
that focuses heavily on interconnectivity, automation, and
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real-time data and makes great efforts to cope with these
problems.

Industry 4.0 integrates industry with some modern tech-
nologies, including the Internet of Things (IoT), cloud
computing, data analytics, Artificial Intelligence (AI),
and machine learning into their production facilities and
throughout their operations [1]. These digital technologies
lead to increased automation, predictive maintenance, self-
optimization of process improvements, and, above all, a new
level of efficiencies and responsiveness to customers not pre-
viously possible [2]. Internet of Things (IoT) can be described
as a communication infrastructure and methodology between
objects [3]. These objects can be provided with sensors or
actuators and easily make information available or perform
complex actions. Industrial Internet of Things (IIoT) is a
subcategory of IoT and is used for industrial purposes such as
manufacturing, monitoring, and supply chain management.
Heterogeneous industrial Internet of things (Het-IoT) is also
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introduced based on the key characteristic of IoT: heterogene-
ity. In Het-IoT, it is vital that machines with different hard-
ware platforms and networks can have efficient functioning
and interaction [4].

IoT devices generate a huge amount of data that must
be stored somewhere. One of the important technologies in
industry 4.0 is cloud computing which provides the storage
resources and processing power needed to make use of this
data. Hence, by getting advantages of introduced technolo-
gies in industry 4.0 and combining IoT and cloud computing,
issues of resource-constrained NCSs can be almost solved.
By combining the benefits of network control and cloud com-
puting technology, a new concept called cloud control system
(CCS) has been developed. In CCSs, the core processing unit
is shifted to a cloud server and endows the control system
with massive parallel computation [5].

Industry 4.0 is technology-driven and is based on the digi-
tal transformation of the industry. Based on the assumption
that Industry 4.0 focuses less on the original principles of
social fairness and sustainability but more on digitalization
and AI-driven technologies for increasing the efficiency and
flexibility of production, Industry 5.0 was introduced [6].
Industry 5.0 is value-driven and is based on three pillars
i.e., human-centric, sustainability, and resilience [7]. Industry
5.0 aim to increase the degree of personalization and focuses
on making industries more robust, intelligent, and smarter.

Industry 4.0 strives to combine the digital world with
physical actions to drive smart factories and enable advanced
manufacturing. But while it plans to enhance digital capabil-
ities throughout the manufacturing and drive revolutionary
changes to connected devices, it also brings with it new
cyber risks for which the industry is unprepared [8]. Although
combining the cloud with control systems has many benefits,
it leads to many security challenges. Controllers in the cloud
server and sensors in the physical domain are supposed to
send packets through the communication channel. This com-
munication can be exposed to various security attacks, includ-
ing passive and active attacks. In recent years, several attacks
have targeted control systems and caused damage [9], [10],
[11], [12], [13]. This indicates the possibility of such attacks
on CCSs and the need for appropriate security measures to
protect these systems.

To see how cyber-attacks can affect systems, computer
security literature identifies three fundamental properties of
information and services in IT systems, namely confiden-
tiality, integrity, and availability, often denoted as CIA, and
they can be violated by disclosure, deception, and denial-
of-service attacks, respectively. In this paper, we try to find
a solution for deception attacks that target data integrity in
cloud control systems. Integrity relates to the trustworthiness
of data, meaning there is no unauthorized change to the infor-
mation between the source and destination. In a deception
attack, the attacker manipulates the data sent through the
network. For example, by injecting false data into the mea-
surement signal sent to the controller violates data integrity

and deceives the controller into generating the wrong control
signal.

Various measures to protect systems against cyber-attacks
can be classified as prevention, detection, andmitigation [14].
In prevention, the goal is to prevent the possibility of attacks
by reducing the vulnerability of system components, for
example, by encrypting communication channels or using
firewalls and security protocols [15]. On the other hand,
detection is an approach in which the system is constantly
monitored for anomalies caused by adversary actions. Once
an attack is detected, mitigation actions try to reduce the
impact of attacks on the system.

There are two important reasons why having detection and
mitigation actions is necessary, and only prevention actions
like encryption are not enough. First of all, there could be
a powerful attacker who can break these prevention actions
and intrude into the system to establish a malicious attack
like what we had before. In recent years, we have had a
lot of attacks in different parts of the industry, which shows
some attackers could break the prevention layer and infiltrate
the system. So, in this condition, we need such detection
and mitigation actions to make the system able to tolerate
such an attack and remain stable. The second reason to have
detection and mitigation actions is that in some systems like
power grids, most parts of the equipment are old, and imple-
menting prevention measures like encryption will be costly
because of the corresponding update of equipment [16].
Therefore, in this case, we can use detection and mitigation
actions that are completely adaptable to already-implemented
industrial control systems. Hence, our aim in this paper
is to design methods related to detection and mitigation
actions.

For attack mitigation, we get the advantage of the virtual
sensor concept, which is a method to deal with sensor fail-
ures. In this method, the controller is reconfigured when a
fault is detected by removing the faulty sensors’ data and
reconstructing them based on healthy ones [17]. This method
has a simple algorithm that does not have any complex com-
putation that takes time, and also, implementing it does not
need to add any new equipment. Hence, it is beneficial to
develop this method for mitigating attacks’ effects. However,
there is a tricky requirement for this method that makes
using it difficult. In fact, the main requirement of the virtual
sensor technique is isolation which means diagnosing exactly
on which sensor(s) there is an attack. As we will survey
in section II, the papers that have proposed virtual sensor
method for attack mitigation either have skipped the isolation
part [18] or their proposed isolation method has some defects
such that they have low efficiency and are not applicable to
real systems that we will explain in section VI-B [17].

Therefore, in this paper, we propose a novel isolation
method that is based on the combination of the concepts of
digital twins and cloud computing with control theory and
makes it possible to develop virtual sensors method for attack
mitigation.
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To show how this isolation method works and evaluate it,
first, we need to have a method to detect the attack and then
show that our isolation method can diagnose the location of
the detected attack. Then, using knowledge from the isolation
part, we try to mitigate the attack’s effect using the vir-
tual sensor method. Hence, we introduce a novel framework
consisting of three parts: an attack detection part to detect
anomalies in the system, an attack isolation part to diagnose
the location of the attack, and an attackmitigation part to keep
the system in a safe mode during and after an attack. Hence,
we make the following novel contributions in this paper:

• Proposing a novel framework for attack-resilient cloud
control systems by introducing a new isolation method.

• An evaluation of two different methods: observer-based
attack detection and an analytical redundancy relation
(ARR) method for detecting anomalies in data mea-
sured from the sensors in cloud-based industrial control
systems.

• Proposing a novel isolation method to detect exactly
which component(s) have been attacked even in the pres-
ence of simultaneous attacks on several measurement
signals, and we show this method has much better effi-
ciency than the other available isolation method (ARR).

• Proposing a mitigation method by developing fault-
tolerant control techniques (virtual sensors) for cloud
control systems in which we add a reconfiguration block
that hides the attack from the controller and makes the
controller able to tolerate attack conditions.

• Implementing our proposed security framework on a
real testbed as a proof of concept and demonstrating
that the detection part can detect attacks in a timely
manner, the isolation part can accurately diagnose on
which component we have an attack, and the mitigation
part can keep the plant stable with good performance
during the attack.

The remainder of this paper is organized as follows.
Section II investigates the related studies and explains the
research gap. Section III provides background about CCSs
(the real-world system we are studying) and then introduces
the real testbed, which is used for implementing our proposed
framework, and at the end, defines our considered attack
model. The proposed solution, including attack detection, iso-
lation, and mitigation, is explained in Section IV. Section V
contains all details about our evaluation of the proposed solu-
tion. The results of the experiments are given in Section VI.
Final remarks and conclusions are discussed in Section VII.

II. RELATED WORK
Recently, regarding the increasing number of attacks in indus-
try, many researchers have been attracted to this problem, and
some studies have been done.

Authors of [3] have proposed a method to detect the
threats in IIoT based on Hidden Markov Model (HMM).
In this method, HMM is used to model sequential data
which is generated from IIoT devices. A Genetic Algorithm

(GA) is applied to optimize the parameters of HMM. Also,
a dynamic window-based sequence extractor has been pro-
posed to extract multiple sequences simultaneously before
processing by multi-HMM.

In [19], an anomaly detection method has been proposed
for IIoT named ASTREAM, which can accomplish efficient
and accurate anomaly detection with good scalability. This
method merges the sliding window, change detection, and
model update strategies into LSHiForest, and it can effec-
tively handle the infiniteness, correlations, and distribution
change of data streams.

Trust affects the consumption pattern of a specific service
that is provided by an IIoT device. However, due to the lack of
perception in machines, trust cannot be built especially since
each object is interpreted differently and different applica-
tions running on the IIoT devices may assign different trust
scores. Hence, the authors of [7] first propose trust metrics.
Then, they present a trust model based on the neutrosophic
weighted product method (WPM) used by IIoT applications
to assess IIoT devices’ trust scores. The developed model
assesses devices’ trustworthiness based on the spatial knowl-
edge, temporal experience, and behavioral patterns retrieved
from the IIoT devices. Finally, they use neutrosophic K-NN
clustering and neutrosophic support vector machines (SVM)
to classify the extracted characteristics to generate the final
trust score and make a decision.

Generally, available methods for attack detection can be
divided into two different groups: model-based methods, like
designing estimators, and data-based methods, like using
machine learning methods. Here, we survey some of these
methods.

Some studies have proposed using machine learning
(ML) algorithms to detect attacks. These algorithms can be
employed to learn normal behavior from available data and
then compare measured samples with these learned models
to determine if that is anomalous or not. In [20], a review of
recently proposed deep learning (DL) solutions for detecting
cyber-attacks has been provided that shows DL modules can
be used to detect cyber-attacks.

Also, some studies have proposed model-based methods.
In [21], a distributed filtering algorithm is proposed to esti-
mate the system state, and an attack detector is designed by
considering a dynamic threshold. The authors of [22] pro-
posed adding watermarking signals to the control inputs and
checking received observations by various statistical tests to
detect attacks. However, adding these watermarking signals
can increase the control cost. In this paper, they tried to reduce
the control cost when the system is not under attack. The
authors of [23] also proposed adding the watermarking signal
to control input by designing a dual-rate control framework,
including a model predictive controller and a state-feedback
predictor-based controller. Also, they consider a reconfigura-
tion block to mitigate the effects of the watermarking signal
on control costs.

One of the most important and common model-based
methods used for anomaly detection from years ago until
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today is based on the concept of designing an estimator. In this
method, an estimator such as Kalman filter is designed to
estimate the system’s state, and the real value of the measured
signal is estimated based on that. Then, by comparing the
measured signals that we get from sensors with the esti-
mated ones, a residual signal is generated, and by performing
statistical tests such as generalized likelihood ratio (GLR)
or cumulative sum (CUSUM) on this signal, an anomaly is
detected. This anomaly detection method has been applied
to different applications like power systems [24], [25], [26],
[27], automated vehicles [28], [29], [30], industrial control
systems [31], [32], [33], etc.

Once the attack has been detected, a mitigation method is
needed to reduce the attack’s impact on the system. Hence,
some research has been done regarding the mitigation of
deception attacks. For example, in [34], the authors have
proposed an improved adaptive resilient control scheme for
mitigating adversarial attacks such that the controller ensures
the asymptotic stability of the closed-loop system and avoids
the violation of the state constraints. In [35], a novel data-
based adaptive integral sliding-mode control strategy was
proposed, which can ensure the stability and nearly optimal
performance of data-driven systems against a class of actuator
attacks. The authors of [31] have proposed a secure con-
trol design for mitigating false data injection attacks. This
includes a robust controller that considers this kind of attack
as model uncertainties. At the same time, it compensates for
measurement noise and process noise.

In our prior work [36], we proposed a security frame-
work including detection and mitigation methods for CCSs
in Industry 4.0. We demonstrated that we could detect attacks
in a timely manner using this framework that is deployed
in the cloud. Once the attack has been detected, an alarm
signal is sent to the physical side, which makes us able to
switch to an ancillary controller to mitigate the attack. In this
paper, we have improved our previous work, and instead of
employing the ancillary controller, we will reconfigure our
main controller such that it will be able to control the plant in
an abnormal state and keep it stable with good performance.
Also, in our previous work, we had to send the alarm signal
from the cloud to the physical side through a secure commu-
nication channel to prevent potential attacks on it. However,
in this work, there is no need to send an alarm signal from the
cloud to the physical domain, and all detection and mitigation
actions will be done in the cloud domain.

Since cyber-attacks also affect the physical behavior of the
system, the tools used for fault-tolerant control can be applied
for attack-resilient control. So, here to mitigate the attack,
we reconfigure our controller in the cloud by developing the
virtual sensor concept, which is a method to deal with sensor
failures. The authors of [18] have also proposed using the
virtual sensor concept to mitigate attacks in industrial control
systems, especially energy management systems (EMSs), but
they have skipped the isolation part in this method. Isolation
is the necessary and main part of the virtual sensor method
that gives knowledge of exactly on which sensor(s) there is

an attack. So, in this paper, we propose an attack-resilient
framework for CCSs where we develop the virtual sensor
concept as a mitigation method, and also, we propose a novel
isolationmethod that can exactly diagnose onwhich sensor(s)
an attack has occurred.

In [17], where the virtual sensor concept was first proposed
as a fault-tolerant control method to deal with sensor failures,
analytical redundancy relations (ARR) have also been pro-
posed for isolation. So, we compare our proposed isolation
methodwith this ARRmethod, andwe show the defects of the
ARR method and how our method is more powerful than it is
to diagnose the location of attacks. Furthermore, as an attack
detection method in our proposed attack resilient framework,
we compare two differentmethods to detect attacks: observer-
based and ARR.

III. CLOUD CONTROL SYSTEMS AND ATTACK MODELS
Our targeted system in this paper is cloud control systems
which is one of the main technologies of Industry 4.0. Cyber-
physical systems (CPS) integrate sensing, computation, con-
trol, and networking into physical objects and infrastructure,
connecting them to the internet and each other. A cloud
control system is a specific type of cyber-physical system
in which the controller is deployed in the cloud. The cloud
provides seemingly endless computing and storage resources
that can be used to execute more advanced control strate-
gies, allowing the controller to evaluate complex problems
that are too computationally demanding to perform locally.
In this section, we first describe cloud control systems and
then illustrate the real testbed we have used to evaluate our
proposed security framework. Finally, we specify the attack
model that we have considered in this paper.

A. BACKGROUND: CLOUD CONTROL SYSTEMS
Fig. 1 shows the general structure of cloud control systems.
A cloud control system is composed of two layers: the cyber
layer and the physical layer. The cyber layer consists of a
communication channel and a cloud, while the physical layer
contains a plant, actuators, and sensors [37]. The plant can be

FIGURE 1. Cloud Control Systems overview.
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modeled as follows:

x(k + 1) = Ax(k) + Bu(k) + Ed(k)

y(k) = Cx(k) + v(k) (1)

where x ∈ Rn is the state vector, y ∈ Rp is the measurement
signal, u ∈ Rnu is the control signal, d ∈ Rnd is disturbance,
v ∈ Rp is measurement noise, A, B, C and E are coefficient
matrices, and k is the time instant. In this system, the con-
troller is deployed in the cloud, so there is a communication
network between the plant and the controller through which
the control signals u and the measurement y should be sent.
Hence, this communication channel can provide an entry
point for attackers to infiltrate the system and manipulate
these signals, which can lead to damage and catastrophic
consequences. However, under normal conditions in which
there is no attack, we will have ũ = u and ỹ = y in Fig. 1,
and we assume in this normal condition the plant is stable and
is controlled well by the cloud controller.

In order to determine how an attack can affect a physical
system and jeopardize it, we need to characterize the safety
constraints of the system. For this, we use the safe set con-
cept based on [14]. Usually, each physical system has some
physical limits: for example, in power systems, cables cannot
sustain an arbitrarily large instantaneous power. So, based on
these limitations and by appropriate scaling of the output of
the system y(k) using λ, a safe set can be defined for each
system as follows:

Sx =

{
x : max

k
{∥Cx(k) + v(k)∥∞} ≤ λ

}
(2)

The system is said to be safe if the state trajectory x(k)
remains in Sx . Therefore, the attacker, to damage the system,
tries to drive the state of the system out of its safe set.

B. TESTBED DESCRIPTION
As a proof of concept for our proposed security framework,
we implemented it on a real testbed whose details can be
found in [38].

1) PLANT
In our testbed, we use a ball and beam process as the plant,
as shown in Fig. 2. A ball and beam system includes a long
beam on top of which the ball rolls back and forth. This
system is open-loop unstable, and the ball swings and falls
off the end of the beam. So the controller tries to hold the
ball on the set-point on top of the beam by tilting the beam
using an electrical motor. We define a safe set for the ball and
beam system by considering the length of the beam. Since
the length of the beam is 1.1 m, the allowed range for the
position of the ball is [−0.55 m, 0.55 m], and the attacker’s
goal is to drive the ball out of this range and cause the ball to
fall off the end of the beam. Also, if the attacker moves the
ball from its predefined set-point but holds it on the beam,
it may not damage the system but can cause extra cost and
decrease efficiency. Hence, our aim in this paper is to hold
the ball on the beam and the exact set-point.

FIGURE 2. Ball and beam system.

We have chosen this system as a plant because it has a
fast dynamic and is time critical, and even in the absence
of attacks, controlling it over the cloud is tricky. Hence,
applying our proposed method for this process and keeping
it stable in the presence of attacks can prove the effectiveness
of our method very well. The ball and beam system has three
measurement signals ( y(t) = [y1(t) y2(t) y3(t)] ): the
position of the ball y1, the speed of the ball y2, and the angle
of the beam y3. This process can be modeled in continuous
time as follows:

ẋ(t) =


0 1 0

0 0 −
5g
7

0 0 0

 x(t) +

 0
0

0.44

u(t)

y(t) =

 a1 0 0
0 b2 0
0 0 c3

 x(t) (3)

where g = 9.80665 is the gravity of Earth. We discretize
this continuous time model with a sampling time of 0.05 s
for designing the controller and our security framework.
Also, we consider a sampling period of sensor measurements
equal to 0.05 s. So, by discretizing this system, measurement
signals y1, y2, and y3 will be discrete signals. y1 contains
the positions of the ball on the beam at each sampling time,
y2 contains the ball’s speeds at each sampling time, and
y3 contains the beam’s angles at each sampling time. The
allowed range for y1 is between −0.55 m and 0.55 m regard-
ing the beam length that is 1.1 m. Control signal u is also a
discrete signal containing the control value generated by the
controller. The control value is generated by the controller to
determine the speed that should be set for the beam to adjust
the ball’s position on the beam.

2) CONTROLLER
We design an MPC controller to make the ball and beam
system stable and control the position of the ball. The control
action is obtained by solving, at each sampling instant k ,
a finite horizon (N ) open-loop optimal control problem, using
the current state of the plant as the initial state as follows:

minimize
u

J =

k+N−1∑
i=k

(
xT (i)Qx(i) + uT (i)Ru(i)

+ xT (i+ N )Px(i+ N )
)
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subject to xi+1 = Axi + Bui,

J
[
x(i)
u(i)

]
≤ j, H

[
x(i)
u(i)

]
= h,

x(i+ N ) ∈ T (4)

whereQ,R and P are cost matrices,A andB define the model
of the system, x is the state vector, u is the control signal, and
the constraints of the system are defined by the matrices and
vectors J , j, H and h. T is called the terminal set and forces
the final state to ensure the controller’s stability. We deployed
this controller in a Kubernetes cluster that will be described
in the following.

3) KUBERNETES CLUSTER
The testbed has been equipped with a seven-node Kubernetes
cluster as the edge cloud. Kubernetes (K8S) is a portable,
extensible, open-source platform for managing container-
ized workloads and services that facilitates both declarative
configuration and automation [39]. The cluster has been
equipped with an Nginx ingress [40] and Prometheus oper-
ator [41]. The Nginx ingress is exposed using the K8S Node-
Port paradigm. We use this K8S cluster to implement our
controller and our attack detection, isolation, and mitigation
algorithms.

C. ATTACK MODEL
In general, cyber-attacks in the literature can be classified into
three main types: denial of service (DoS) attacks, deception
attacks, and disclosure attacks [42]. In this paper, we consider
deception attacks in which the attacker tries to manipulate the
data integrity for the transmitted packets between different
components of the cyber-physical system. So, in the cloud
control systems case, the attacker may manipulate the mea-
surement signal y or control signal u in Fig. 1. In our previous
work [43], we considered deception attacks on control signals
u, and we designed a method for detecting and mitigating
it. Hence, in this paper, we consider deception attacks on
measurement signals y.
Assumption: We consider there is no attack on control

signal u, and we only have deception attacks on the mea-
surement signal y. However, we consider that it is possible
to have an attack on several sensor measurements at the
same time. We will examine our security framework for all
2p − 2 conditions for an attack occurring on y, where p is the
number of measurement signals: y ∈ Rp. We subtract 2 from
2p becausewe disregard the case inwhich there is no attack on
the measurement signals and also the case in which we have
an attack on all measurement signals since we assume the
attacker is not able to have access to all measurement signals
at the same time.

By considering the above assumption, in our case, we have
three measurement signals in our testbed, and we will con-
sider 23 − 2 = 6 different modes for occurring an attack on
the system.

The attacker adds an attack vector fa(k) = [a1(k) a2(k) . . .
ap]T to the measurement signal y(k) = [y1(k) y2(k) . . .

FIGURE 3. Proposed attack resilient framework overview.

yp(k)], and this attack vector has nonzero entries for mea-
surements under attack and zero values for all other mea-
surements. So, we can model this attack using (1) as
follows:

ỹk = Cx(k) + v(k) + fa(k) (5)

By applying this attack, the controller will receive the
manipulated measurement signal and, based on that, will
generate the wrong control signal. This wrong control signal
can make the plant unstable and drive the state trajectory of
the physical system to an unsafe set that will cause extensive
damage to the system.

IV. PROPOSED SOLUTION
In this section, we propose a security framework for cloud
control systems to ensure the stability of the plant and main-
tain good performance under attacks. Actually, using this
framework, we detect attacks in a timely manner and then
mitigate them to diminish the effects of the attack on the plant.
Fig. 3 demonstrates an overview of our proposed security
framework. As shown in this figure, this framework includes
attack detection, isolation, and mitigation parts, all deployed
inside the cloud. Hence it is adaptable to the already imple-
mented CCSs’ frameworks, and we do not need to change
them a lot. In the following, we will explain each part of our
framework separately.

A. ATTACK DETECTION
In the attack detection part of our proposed security frame-
work, we try to generate a residual signal such that it is
close to zero and less than a predefined threshold in normal
conditions during which there is no attack, and it will exceed
the threshold once the attack has occurred. In this section,
we will investigate two different methods to generate residual
signals and detect the attack: observer-based and Analytical
Redundancy Relations (ARR).
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1) OBSERVER-BASED ATTACK DETECTION
In this method, we use an observer to estimate the real value
of the sensor measurement that has been manipulated by the
attacker. The main requirement for using this method is the
observability of the system. Hence, by assuming that our
system is observable, we propose designing a Kalman filter as
an observer for the system based on our previous work [44].
As you can see in Fig. 4, the Kalman filter, by using control
signals u and measurement signals y, tries to estimate the
correct value of the sensor measurements ŷ.

FIGURE 4. Observer-based attack detection overview.

For designing the Kalman filter, the measurement noise,
which is added to the measurement signals, and the process
noise, which describes the amount of uncertainty or deviation
of the model from the real system, should be considered.
By considering these noises in the system, it generally can
be modeled as follows:

x(k + 1) = Ax(k) + Bu(k) + Gw(k) w → N(0,Q)

y(k) = Cx(k) + Fv(k) v → N(0,R) (6)

where x is the state vector, y is the measurement signal, u is
the control signal, w is process noise, v is measurement noise
and k shows time instance. Here, we consider process noise
and measurement noise to be white noise with covariances Q
and R, respectively (here Q and R are not the same Q and R
in (4)). Also, A, B, C, G, and F are coefficient matrices.

A Kalman filter for this system will be designed using the
following recursive algorithm, which consists of two parts:
time update and measurement update [45]. The time update
part consists of the following steps:

1) x(k|k − 1) = A(k)x̂(k − 1|k − 1) + B(k)u(k) (7)

2) P(k|k − 1) = G(k − 1)Q(k − 1)GT(k − 1)

+ A(k − 1)P(k − 1|k − 1)AT(k − 1)

(8)

and the measurement update part consists of the following
steps:

3) K(k) = P(k|k − 1)CT(k)
(
C(k)P(k|k − 1)CT(k)

+ F(k)R(k)FT(k)
)−1 (9)

4) x̂(k|k) = x̂(k|k − 1) + K
(
k)(y(k) − C(k)x̂(k|k − 1)

)
(10)

5) P(k|k) =
(
I − K(k)C(k)

)
P(k|k − 1) (11)

where x̂ is the estimated state vector, P is the estimat-
ing covariance matrix and K is the Kalman gain. In a
time-invariant system like (6), A(k) = A(k − 1) = A and
the same rule is valid for other coefficient matrices in (6).

Using this Kalman filter, state variables of the system are
estimated, and the system’s output can also be estimated
based on these state variables using the model of the system
as follows:

ŷ(k) = C x̂(k) (12)

Then by comparing y and ŷ, residual signals can be generated
as follows:

r(k) = y(k) − ŷ(k) (13)

where r ∈ Rp that means for each measurement signal, there
is a discrete residual signal. In normal conditions, the residual
signal should be equal to zero, but the measurement noise
causes some deviation from zero. Hence, we need a decision
function for the evaluation of the residual signal, and it will
determine whether an attack is present. For this, we use a
decision function consisting of a test function and a threshold
function based on our previous work [36], [44]. Test function
ϕ(rp(k)) provides a measure of the residual’s deviation from
zero as follows:

ϕ(rp(k)) = |rp(k)| (14)

where rp is the pth of residual signal related to pth of mea-
surement signal. Then, the test function will be evaluated by
a threshold function 8(k) as follows:{

H0 : ϕ(rp(k)) ≤ 8p(k)
H1 : ϕ(rp(k)) > 8p(k)

(15)

where hypothesis H0 indicates normal operation of the sys-
tem and H1 indicates the abnormal mode of the system that
triggers an alarm signal, and this should be checked for all
residual signals related to all measurement signals.

In this paper, we suggest two different algorithms to deter-
mine the thresholds for attack detection. The first method
that we have also used in our previous work [25] is Based
on the 68-95-99.7 rule that says in a Gaussian distribution,
68.27%, 95.45%, and 99.73% of the values lie within one,
two, and three standard deviations of the mean, respectively.
Since the noises in this paper are assumed Gaussian noise
with zero mean, by considering a threshold equal to 3σ that σ
is the standard deviation of measurement noise, 99.73% false
alarms that may occur due to these noises can be filtered. The
second method for determining threshold is based on [18]
in that the author uses a set of healthy data, during which
there are no attacks, for calculating appropriate thresholds,
for example, the maximum value of the difference between
data and their set-points can be used as the threshold. In this
paper, we use this method to determine thresholds for residual
signals and consider the absolute value of the maximum devi-
ation of the residual signal from zero in normal conditions
during which there is no attack.
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2) ANALYTICAL REDUNDANCY RELATIONS
As is said in Section IV-A1, observability of the system is
naturally required for using observer-based attack detection
methods. Analytical redundancy relations are equations that
are deduced from an analytical model, which solely uses
measured variables and control signals as input. The main
argument in the ARR method is that there is no need to use
an observer to estimate the unknown states by elimination of
these states, so observability of the system is not required in
this method. Analytical redundancy relations must be consis-
tent in the absence of an attack and can thus be used for resid-
ual generation. Analytical redundancy can be seen as a tool
for obtaining conditions, based on available measurements
and control signals, that are necessarily fulfilled when the
supervised system works in a normal mode. This method will
be designed based on a continuous-time model of the system.
Hence, we consider the general continuous-time version of
(1) as follows:

ẋ(t) = g(x(t),u(t), d(t))

y(t) = h(x(t),u(t), d(t)) (16)

We can determine the nominal and attacked cases, respec-
tively, as provided below:

H0 ⇔ [ẋ(t) = g(x(t),u(t), d(t))]

∧ [y(t) = h(x(t),u(t), d(t))] (17)

H1 ⇔ [ẋ(t) ̸= g(x(t),u(t), d(t))]

∨ [y(t) ̸= h(x(t),u(t), d(t))] (18)

where H0 shows the normal condition and H1 shows abnor-
mal condition.

To find ARRs, we will differentiate the output equations q
times, and q is the minimum natural number that satisfies the
following condition:

(q+ 1)p > n+ (q+ 1)nd (19)

Regarding y ∈ Rp, we have p output equations and by
differentiating them q times, we will have (q+1)p equations.
Unknown variables in these equations are state variables x ∈

Rn, disturbance and its differentiation ¯d (q) ∈ R(q+1)nd . In this
paper, z(q) indicate the qth order derivative of variable z, and
we have ¯z(q) = [z ż . . . z(q)]T . Thus, to have enough linearly
independent equations to calculate the unknown variables
based on known variables and eliminate them,we need to start
with q times differentiation that q meets (19), and then we
need to check the independency of relations, and if there are
not n+ (q+ 1)nd independent equations, we should increase
q and differentiate again. Algorithm 1 shows all steps for
generating ARRs.

Obtained ARRs from algorithm 1 can be used for detecting
attacks as it has been demonstrated below:

r
(
ȳ(q), ū(q)

)
= 0 ⇔ H0

r
(
ȳ(q), ū(q)

)
̸= 0 ⇔ H1 (20)

Algorithm 1 Algorithm for Finding ARRs

1 Input: n, p, nd and system’s model by considering
attack vector fa:

ẋ(t) = g(x(t),u(t), d(t))

y(t) = h(x(t),u(t), d(t), fa(t))

Output: ARRs
1: Find the minimum q that satisfies:

(q+ 1)p > n+ (q+ 1)nd
2: Find matrix Hq that includes output equations and
their differentiation up to qth order of derivative:

y
ẏ
ÿ
...

y(q)

 =



h(x,u, d, fa)

h1
(
x, ū(1), d̄

(1)
, f̄a

(1)
)

h2
(
x, ū(2), d̄

(2)
, f̄a

(2)
)

...

hq
(
x, ū(q), d̄

(q)
, f̄a

(q)
)


= Hq

3: while rank
([

∂Hq

∂x
∂Hq

∂ d̄ (q)

])
̸= n+ (q+ 1)nd do

q = q + 1;
Find the new Hq based on step 2 but using the
new q

4: if rank
([

∂Hq

∂x
∂Hq

∂ d̄ (q)

])
= n+ (q+ 1)nd then

Use at least the n+ (q+ 1)nd first equations in
Hq to find unknown variables x and
d̄
(q)

= [d d (1) . . . d (q)] based on known
variables:[

x
d̄
(q)

]
=

 φx

(
ȳ(q)M , ū(q), f̄a

(q)
)

φd

(
ȳ(q)M , ū(q), f̄a

(q)
)


Substitute these obtained variables in the remained
equations of Hq and put fa(t) = 0 to find ARRs:
0 = r

(
ȳ(q), ū(q), 0

)

Using algorithm 1, we can find ARRs for our testbed
described in Section III-B as shown below:

r(t) =

 r1(t)
r2(t)
r3(t)

 =


ẏ1(t) −

a1
b1
y2(t)

ẏ2(t) +
b2
c3

5g
7
y3(t)

ẏ3(t) − 0.44 cu(t)

 (21)

As can be seen, these residual signals are composed of only
the outputs y, the outputs’ derivatives y(q), and the input
u. In normal conditions, these residuals should be close to
zero, and whenever they deviate from zero and exceed the
threshold, it demonstrates there is something abnormal in the
system.

B. ATTACK ISOLATION
Attack isolation means finding on which measurement sig-
nals an attack has occurred and determining the location
of the attack. We need isolation to know which measure-
ment signals are reliable and we will use this knowledge in
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the mitigation part. In this section, we provide two differ-
ent approaches for isolation: ARR and our proposed digital
twin-based isolation method.

1) ANALYTICAL REDUNDANCY RELATIONS
In Section IV-A2, it was explained howARRs can be used for
detecting attacks, and now we want to use them to determine
on which measurement signal(s), an attack has occurred.
As it can be seen in (20), obtained residuals from the ARR
method are only dependent on measurement signals and its
derivatives ȳ(q) as well as control signals and its derivatives
ū(q). In the ARR method, isolation is done based on which
residual signal reacts to the attack. Regarding the reaction
of residuals to the attacks, we will create a signature for
each attack condition and determine on which signals we
have an attack. If these residuals react to the attacks on each
measurement signal differently, we can diagnose on which
measurement signal the attack has occurred.

For our testbed that was described in Section III-B, based
on the residuals that we found for it in (21), r1 is dependent on
ẏ1 and y2, so changes in y1 and/or y2 can affect r1. In the same
way, r2 is dependent on ẏ2 and y3, thus, variation in y2 and
y3 can cause changes in r2. Finally, r3 is related to ẏ3 and u,
therefore manipulation of y3 and/or u can be reflected in r3.
Based on these relations, we can assign a signature to each
attack and do isolation as shown in Table 1:

TABLE 1. Attack isolation using ARRs.

For example, when an attack occurs on y2, r1 and r2 react
to this attack. Hence, if we consider (r3r2r1) as a binary code,
we have (011)2 = 3 that will be the signature for the attack on
y2. In Table 1, we can see each attack has a unique signature
that makes us able to diagnose on which measurement signal
the attack has occurred.

Although the ARRs isolation method seems simple, it is
completely dependent on the model of the system and also
how ARRs are related to the measurement signals. Hence,
we cannot guarantee that always works. Also, as said before,
in this paper, we consider that it is possible to have simulta-
neous attacks on several measurement signals. consequently,
we need an isolation method that can be used for the isolation
of such simultaneous attacks. However, the ARRmethod can-
not guarantee that. For example, in our testbed case, if there
are two simultaneous attacks on y1, and y2, based on Table 1,
there will be variation in r1 due to the attack on y1, and
changes in r1, and r2 due to the attack on y2. Therefore,
for a simultaneous attack on y1 and y2, we have changes in
r1 and r2 and the signature for this attack will be (011)2 =

3 that is the same as the signature of the single attack on
y2.Therefore, regarding these defects of the ARR isolation

FIGURE 5. Digital twin-based attack isolation and mitigation.

method, in the next section, we propose a novel isolation
method that is able to isolate both single and simultaneous
attacks. All other defects of the ARR isolation method are
discussed in Section VI.

2) PROPOSED DIGITAL TWIN-BASED ISOLATION METHOD
We need isolation because based on our attack mitigation
method that will be explained in Section IV-C, after detecting
the attack, to be able to mitigate that attack, we will ignore
the measurement signals that have been manipulated by the
attacker and reconstruct these signals using healthy ones.
Hence, by utilizing cloud capacity and based on the digital
twin concept, we propose a novel attack isolation method to
determine which measured signals are under attack.

If we consider we have n sensors, so we will have 2n −

2 different modes that the attack can occur on the measure-
ment signals. Thus, in our mitigation part, we will design a
virtual sensor for each mode to reconstruct the manipulated
measurement signals from healthy measurements. As we said
before, all three steps: detection, isolation, and mitigation are
implemented in the cloud, so although virtual sensors do not
need complex calculation, we will use the cloud capacity for
deploying these 2n − 2 virtual sensors.

Fig.5 shows the virtual sensors that each of them has
designed for each mode. They use the measurement and
control signals, and depending on the fact that each virtual
sensor works in which mode, it assumes one or some mea-
surement signals are under attack and removes them and uses
the rest for reconstructing removed signals. Therefore, all
2n−2 virtual sensors try to generate the measurement signals
y, but the output of only one of them that has considered the
correct mode shows the real value of the measurement signals
before manipulating by the attacker. In order to determine
which virtual sensor generates the real measurements, we get
help from digital twins. Digital twin is a rather new concept
and one of themost important Industry 4.0 technologies.With
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digital twins, we have virtual replicas of physical systems so
that they precisely mirror the internal behavior of the physical
systems [46]. Hence, in our isolation method, we will take
advantage of digital twins to define a reference operation that
we can use for comparing the outputs of virtual sensors with
it. The signals generated by the virtual sensor that has consid-
ered the correct mode will have the minimum difference with
the output of the digital twin, and to define this difference,
we integrate the absolute error (IAE) as follows:

Ej =

kn∑
i=1

∣∣zi − zDTi
∣∣ , j ∈ {1, 2, . . . , 2n − 2} (22)

where kn is a window that we use to calculate IAE from step
k − kn to the current step k , and by doing this, we try to
consider the history of the differences between the output of
virtual sensors (z) with the output of the digital twin (zDT )
and this will lead to having a more reliable choice than
when only calculate the difference at current step k . The size
of this window time depends on the dynamic of the plant.
For example, the ball and beam system has a fast dynamic
and reacts to changes immediately. So, considering a small
window can cover its divergence from the normal condition.
However, for a plant with a slow dynamic, like the quadruple
tank process, a large window time should be chosen since it
reacts to changes gradually.

In (22), z is the output of a virtual sensor, and zDT is
the output of the digital twin. So, in each time instant k ,
we calculate 2n − 2 errors (IAE). When the alarm signal
from the detection part shows there is an attack in the system,
we choose the virtual sensor that has the minimum error
between these 2n−2 calculated errors for the mitigation part.
Obviously, from this chosen virtual sensor, we can realize
which signals have been removed and determine the mode
of the attack.

In the isolation part, the mathematical model of the plant
is used for creating the digital twin based on [44] and [47].

C. ATTACK MITIGATION
In our previous work [36], we proposed to employ an ancil-
lary controller in the physical domain to mitigate the impacts
of the attack such that once the attack has been detected,
we switch from the cloud controller to this local controller.
We showed that this method works well and we can keep the
plant stable under attack. In this paper, our idea for mitigating
the attack is reconfiguring the main controller instead of
employing a local controller. This idea is adaptable to the
already implemented CCSs framework, and we do not need
to implement a new controller. Hence, it will be more cost-
efficient, and also it can be implemented on more complex
systems effortlessly.

In our mitigation method, we try to hide the attack from
the controller, and as you can see in Fig. 6, we add a recon-
figuration block in the cloud close to the controller, and it
gets the measurement signal that has been manipulated by

FIGURE 6. Hiding the attack from the controller using reconfiguration
block.

the attacker and approximately gives the correct measurement
signal to the controller. Therefore, the attacker, whose goal
was deceiving the controller and making the system unstable,
cannot be successful because the attack will be hidden from
the controller, and the controller will generate the correct
control signal based on the output of the reconfiguration
block.

In the reconfiguration block in Fig. 6, to reconstruct the
measurement signal, we utilize the virtual sensor that is also
explained in the isolation part. In the model of the plant (1),
each row of matrix C is related to each sensor measurement.
Based on the isolation part, we can diagnose that the attack
has occurred on which sensors, and by removing the rows
relates to the sensors that we have an attack on, we can
generate matrix Ca. Using this, the system with attacks can
be described by the state-space model:

ẋa(t) = Axa(t) + Bu(t) + Ed(t)

ya(t) = Caxa(t) (23)

where the attacks on sensors are reflected by the matrix
Ca. By removing rows related to the sensors under attack
from matrix C and creating Ca, ya also will contain only
healthy measurement signals. To see if the real value of other
sensor measurement signals that have been manipulated by
the attacker can be reconstructed from ya, we need to check
the following condition:

rank


Ca
CaA
CaA2

...

CaAn−1

 = n (24)

where n is the dimension of the matrixA ∈ Rn×n. If condition
(24) is satisfied, it means (A,Ca) is observable, and the entire
state vector can be reconstructed. Regarding this condition,
we will consider the following assumption.
Assumption: By checking the above observability condi-

tion for all modes in which the attack may occur on one or
several sensors, we consider some redundancy in sensors.
We also consider the minimum number of sensors we need
to meet observability conditions for all attack modes as pro-
tected measurements such that attackers cannot access them.
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TABLE 2. Different modes of attack.

Now we can design a virtual sensor based on [17] as
follows:

ẋV (t) = AVxV (t) + BVuc(t) + Lya(t)

yc(t) = CVxV (t) + Pya(t) (25)

that we have:

AV = A− LCa
BV = B

CV = C − PCa
P = CCa+ (26)

in (26), L is chosen such that A − LCa is Hurwitz.
For designing a discrete-time virtual sensor, equiva-

lent equations can be used by substituting matrices with
discrete-time system model matrices.

V. EXPERIMENTS
To evaluate our proposed security framework, we deploy it
on the real testbed that was explained in Section III-B, and
in this section, we describe our experiments. In our testbed,
we have three sensors for measuring the position of the ball,
the speed of the ball, and the angle of the beam.Hence, we can
have 23 = 8 different combinations of these measurement
signals and by disregarding the case in which we have attacks
on all measurement signals (based on our assumption in
Section III-C it is not possible), we can define 23 − 1 =

7 different modes as shown in Table 2. In this table, mode 1 is
related to the normal condition in which there is no attack on
measurement signals.

Based on (5), and regarding the fact that we have three
sensors in our testbed, fa(k) = [a1(k) a2(k) a3(k)]T is
added to measurements signals and depending on that we
have attack(s) on which signal(s), ai can be zero or non zero.
In our experiments, we generate these non-zero values as
follows:

ai = N
(
µ, σ 2

)
, µ = λr (kj − k0) (27)

where σ 2 is constant and µ increases with time. In fact,
by applying this attack, we will increase the real value of the
measurement signal gradually with time, such that detecting
the attack becomes difficult. So, The smaller λr is, the more
difficult it is to detect.

Also, in order to evaluate different parts of our proposed
methods in different conditions, we utilize Chaos Mesh [48].

Chaos Mesh is an open-source cloud-native Chaos Engineer-
ing platform. It offers various types of fault simulation and
has an enormous capability to orchestrate fault scenarios.
Network Chaos is a fault type in Chaos Mesh that we use
for applying different amounts of delay in the Round-Trip
Time (RTT) between the plant and the controller in the cloud
to create the real condition in which there may be different
amounts of network delays.

A. EVALUATION OF ATTACK DETECTION METHODS
In the first part of the experiment, we evaluate the attack
detection part. In (27), if λr is high, it affects the system and
changes the ball’s position quickly. However, such an attack
will be detected easily. So, the slope should be low and change
the ball’s position gradually, in which case it is difficult to
detect. The length of the beam equals 1.1 meters, and the
allowed range for the position of the ball is [-0.55 m, 0.55 m].
We chose 0 meters (middle of the beam) as the set-point for
the ball’s position in the controller. Based on this, choosing
0 < λr ≤ 0.05 in (27) is reasonable since it will cause
the ball to fall off, and also, it won’t be easy to detect. So,
if we can detect these attacks, we will be able to detect attacks
with larger λr as well. Hence, for evaluating and comparing
two observer-based and ARR-based attack detection methods
that we proposed in Section IV-A, for each mode in Table 2,
we generate attacks based on (27) with each λr ∈ S that S =

{0.001, 0.01, 0.02, 0.03, 0.04, 0.05} and apply it based on (5)
on corresponding measurement signals. Then, we compare
the efficiency of these two different methods for detecting
attacks by measuring the time it takes to detect the attack.

B. EVALUATION OF ATTACK ISOLATION METHODS
In Section IV-B, we provided two different isolation methods
for determining the location of the attack. In the second part
of our experiment, we evaluate these isolation methods in
different modes of attack in which we may have an attack
on a measurement signal or a simultaneous attack on sev-
eral measurement signals, and we show the defects of the
ARR method and the effectiveness of our proposed isolation
method.

C. EVALUATION OF ATTACK MITIGATION METHOD
In the third part of our experiment, we evaluate our mitigation
method. For this, we apply different modes of attack on our
testbed and then we investigate how we can mitigate the
attack. For this part, we detect attacks using observer-based
attack detection and isolate them using our proposed isolation
method. Also, as a performancemetric, we use IAE as follows
to compare the control performance in normal condition,
in attack condition when we have mitigation, and in attack
condition when we do not have any mitigation.

IAE =

T∑
k=0

|y(k) − s(k)| , (28)

VOLUME 11, 2023 27875



F. Akbarian et al.: Attack Resilient Cloud-Based Control Systems for Industry 4.0

FIGURE 7. The average time to detect attacks using observer-based and ARR attack detection methods.

where y(k) here is the position signal, and s(k) is the set-point
for the position of the ball on the beam.

Since in our control system (ball and beam system), the
control objective is tracking the reference, we have chosen
IAE as a performance metric for evaluating our mitigation
method.

VI. RESULTS AND DISCUSSION
In this section, the results from the experiments detailed in
Section V are presented.

A. ATTACK DETECTION
Regarding Section V-A, for evaluating the attack detection
part, for each mode of Table 2 except mode 1 that shows
the normal condition, we considered attack with different
λr ∈ S. For each mode and each λr we run our experiment
for 15000 steps, which equals 750 s, and apply the attack
on the 14500th sample, that is 725 s, and then we measure
how much time it takes to detect this attack. For each mode
and each λ, by applying different delays in RTT using Chaos
Mesh, we repeat the experiment 10 times each with different
RTT ∈ [20.2 ms, 104.1 ms] and calculate the average time
it takes to detect the attack. Fig. 7 shows the average time
it takes to detect the attacks using observer-based and ARR
attack detection methods. As can be seen, by increasing
λr the time to detect the attack is decreasing because the
steeper the attack signal is, the greater change it makes in
the position of the ball and the faster it is detected. So,
on average, the maximum time for detecting the attack with
λr = 0.001 that is the slowest and the most difficult one to
detect, is 172.2 ms using the observer-based method, and it
is 305 ms using the ARR method. Hence, for other attacks
with larger λr , it takes less than this time to detect the attack,
which means both of these attack detection methods can
detect attacks fast. By comparing Fig. 7a and Fig. 7b, it can
be seen the time to detect attacks using both methods is close.

TABLE 3. ARR signatures for each mode of attack.

However, on average, the time to detect the attack in each
mode using observer-based attack detection is shorter than
the ARR attack detection method.

B. ATTACK ISOLATION
In the ARR-based isolation method, based on Table 1,
we define the signatures for each mode of attack in Table 2
for our testbed in Table 3. As can be seen in this table, modes
3 and 5, and also modes 6 and 7, have the same signature. So,
when we get the signature of 7, we are not able to diagnose
that the attack has occurred on angle and position signals or it
has occurred on angle and speed signals. Also, when we get
the signature as 3, we are not able to diagnose that the attack
has occurred on both the position signal and speed signal or
only on the speed signal. Fig. 8 shows residual signals for the
ARR-based isolationmethod formodes 6 and 7. In this figure,
all attacks are applied on the system at 45 s. Fig. 8a is related
to mode 6, and in this mode, we have simultaneous attacks on
the position signal and angle signal and based on Table 1, this
attack will have an effect on r1 due to the attack on position
signal (y1) and also it will have an effect on r2 and r3 due to
the attack on angle signal (y3). So, as can be seen in Fig. 8a
as we expect all residuals exceed their threshold and as the
signature for this attack, we will have (r1r2r3) = (111)2 = 7.

Fig. 8b is related to mode 7, and in this mode, we have
simultaneous attacks on the speed signal and angle signal.
based on Table 1, this attack will have effect on r1 and r2 due
to the attack on speed signal (y2) and also it will have effect
on r2 and r3 due to the attack on angle signal (y3). So, as can
be seen in Fig. 8b as we expect all residuals exceed their
threshold and as the signature for this attack, we will have
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FIGURE 8. Residual signals for the ARR-based isolation method for mode 6 and 7.

(r1r2r3) = (111)2 = 7. So, for both cases, modes 6 and 7,
we got the same signature 7, and that means that if we get
signature 7, we will not be able to distinguish whether we are
in mode 6 or 7.

Therefore, one of the main weak points of the ARR-based
isolation method is that this method is completely dependent
on the model of the plant, and based on that, signatures of
different modes of attack will be defined, and we do not have
any control over that. Hence, we may have similar signatures
for different modes and not be able to diagnose the correct
mode of attack, as we had this problem for our testbed in
Table 3. However, we do not have such a problem in our
proposed isolation method since we design an observer for
each mode and calculate the error for each mode separately.

In addition to this problem, there are also two critical issues
in the ARR-based isolation method. The first one that has
a big impact on correct isolation is defining an appropriate
threshold such that if the residual signal exceeds this thresh-
old, we can consider it as one for generating the signature;
otherwise, it will be considered as zero. The second issue is
related to the fact that residual signals that will generate the
signature of the attack do not exceed their threshold at the
same time. Therefore, we need to define a window that shows
the certain amount of time that we should wait after the first
residual exceeds its threshold to seewhich other residuals will
exceed their threshold to consider them as one and the rest as

zero and decide about the signature for the attack. Because
after a while that the plant is going to be unstable due to the
attack, all residuals will start to increase, and theymay exceed
their threshold. Hence, we should consider only the residuals
that exceed their threshold inside the window. The red area in
Fig. 8 and 9 denotes the window time.

It is difficult to choose thresholds for residual signals
and window time because it should work for all conditions.
A smaller threshold will lead to the residual signal exceeding
the threshold, and we will have faster isolation, but it will
also cause some false alarms, and the residuals that should be
considered zero will be considered as one, and consequently,
we will have a wrong signature and wrong isolation. Longer
window time is more conservative and causes not missing
the residuals that will exceed their thresholds a bit later.
However, the longer window time will lead to waiting longer,
and consequently, it takes more time to do isolation, and this
will affect attackmitigation. Because if the attack is powerful,
it will make the plant unstable soon, and we need to detect,
isolate and mitigate this attack as fast as possible to save the
system.

Fig. 9a shows residual signals for the condition in which
we have an attack on position signal at 45 s. So, in this
condition based on Table 1, we expect only r1 to exceed
its threshold to create signature (001)2 = 1. Regarding our
chosen thresholds in Fig. 9a, during the window time, only
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FIGURE 9. Threshold challenges in ARR_based isolation method.

r1 exceeds its threshold as we expected. Fig. 9b also shows
residual signals for the condition we have an attack on speed
signal at 45 s. So, it seems chosen thresholds work well, and
as we expect based on Table 1 and 3, during the window time,
r1 and r2 exceed their threshold. However, in Fig. 9c residual
signals for the condition, we have an attack on position signal
at 45 s, and in this condition, we have also applied 40 ms
delay using Chaos Mesh such that the average RTT in this
condition is about 66 ms. In this condition, same as Fig. 9a,
we expect only r1 to exceed its threshold during window
time, but we can see r2 also has exceeded its threshold,
which will lead to having a wrong signature and wrong
isolation.

To solve such a problem, we can either increase the thresh-
old for r2 or decrease the window time, but both of these
changes are so challenging. For example, here, if we want to
increase the threshold for r2 to solve the problem in Fig. 9c
such that r2 that has passed the threshold remains under the
threshold, it will cause a problem in Fig. 9b since in this figure
r2 is supposed to surpass the threshold, but if we increase the
threshold such that r2 in Fig. 9c remains under the threshold,
r2 in Fig. 9b also will be so close to the threshold or lower
than it that will cause misleading and generating the wrong
signature.

On the other hand, decreasing the window time for solving
the problem in Fig. 9c, cannot be an option. Since if the
window time is decreased such that the time when r2 exceeds
the threshold is out of window time and is not considered for
generating the signature, this may cause missing the residuals
that will exceed their thresholds a bit later. For example, r1 in
Fig. 9b takes more time to exceed its threshold, so we need

to consider not too short window time for considering such
residual as one.

Increasing both threshold and window time together could
be a solution for this problem, but it will lead to waiting more
time, and consequently, it takes more time to do isolation, and
this will affect attack mitigation. For example, this can solve
the problem of r2 in Fig. 9c, but in Fig. 9b, we should wait for
about 40 sampling steps to consider r2 as one for generating
signature that is too long and does not work for the ball and
beam process that has fast dynamic and makes it unstable.

Therefore, the ARR-based isolation method not only does
not work for attacks that cause the same signature but also
choosing the appropriate threshold and window time is very
challenging and has a big impact on the result. Also, delay
can affect the result and cause generating wrong signature
and wrong isolation. So, ARR may work for detection, but
it has very low efficiency as an isolation method. Because
in attack detection using ARR, we care only about the first
residual signal that exceeds its threshold, but all residual
signals should be considered for isolation.

Fig. 10 shows our proposed isolation method’s perfor-
mance to determine which measurement signals the attack
has occurred and specify the mode of attack. In this figure,
we generate the attack based on (27) with λr = 0.04 and
apply it to related measurement signals to each mode of
Table 2 at 725 s. For instance, in mode 2, we apply this attack
only to the position signal, and in mode 6, we apply it to both
position and angle signals. Also, using ChaosMesh, we apply
a network delay of 40 ms such that the average RTT between
the plant and the controller in the cloud is about 66.1 ms in
these experiments. As can be seen in Fig. 10, in all six modes
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FIGURE 10. Isolation using our proposed method and mitigation based on this isolation.
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of attack, even in the presence of applied delay in RTT, our
proposed isolation method works well, and after detecting the
attack by observer-based attack detection part, can precisely
specify the mode of the attack and diagnose on which sensor
there is an attack.

C. ATTACK MITIGATION
In the following, based on the detection and isolation from the
previous section, we activate our mitigation part to mitigate
the attack’s impact. In Fig. 10, we can also see the position
signal for each mode of attack. As seen in the figure, the
blue curve shows the ball’s position on the beam in the
presence of our mitigation method, and the red curve shows
the ball’s position on the beam in the absence of the miti-
gation method. For example, in Fig. 10d, the attack applies
to position and speed signals simultaneously at 725 s and
starts to cause the ball to deviate from its set-point in order to
make it off the beam. However, this attack is detected by the
observer-based attack detection after three sampling times at
725.15 s and activates our proposed isolation method. Then,
our proposed isolationmethod specifiesmode 5 for this attack
based on Table 2 means that there are attacks on position
and speed signal. Based on this isolation, in our mitigation
part, in the reconfiguration block in Fig. 6, before feeding
measurement signals to the controller, position, and speed
signals are removed and regenerated using the rest of the
measurement signals and then these new signals are fed to
the controller. By doing this, as the blue curve in Fig. 10d
shows, our mitigation method moves the ball back to the set-
point. Otherwise, in the absence of this mitigation, the ball
continues to deviate from the set-point following the red curve
in Fig. 10d, and at the end, it will fall off from the end of the
beam.

Regarding Section V-C, to evaluate our mitigation method
and to see if it can keep the system stable with good perfor-
mance, we measure the controller’s performance using IAE.
Fig. 11 shows IAE for the normal condition during which
there are no attacks, attack condition without mitigation, and
attack condition with our mitigation in each attack mode.
In all cases, the IAE is measured up until the point where
the ball falls off the beam. As can be seen in this figure, in all
modes of the attack IAE for the condition that we mitigate the
attack using our proposed security framework is close to IAE
in the normal condition, which proves that we can keep the
plant stable with good performance during the attack.

VII. CONCLUSION
In this work, an attack-resilient framework for cloud control
systems has been proposed, and its effectiveness has been
proved by implementing it on a real cloud-based testbed.
Two observer-based and ARR-based methods were investi-
gated and evaluated as attack detection in this framework.
We showed both methods have acceptable performance and
can detect attacks fast, but the observer-base method can
detect attacks in a shorter time.

FIGURE 11. IAE for each mode of the system.

In the isolation part, first, we evaluated the available isola-
tion method ARR and showed that the ARR-based isolation
method not only does not work for attacks that cause the
same signature but also choosing the appropriate threshold
and window time is very challenging and has a significant
impact on the result. Also, delay can affect the result and
cause generating wrong signature and wrong isolation. So,
ARR may work for detection, but it has very low efficiency
as an isolation method. Regarding the defects of this method,
we proposed a novel approach by combining the digital twin
concept, cloud computing, and control theories. We showed
that in comparison to ARR, it has a promising performance
and does not have the flaws that are raised about ARR as
an isolation method. This method can diagnose the mode
of attack correctly, and delay in RTT does not affect its
performance.

Our novel isolation method uses the concepts of digital
twins and cloud computing, and that is a departure from
previousmethods, which usually are verymuch based on pure
control theory, and gives a whole new way to approach these
types of problems that ties into current hot research trends
plus it works better than previous methods.

We also proposed a mitigation part in this framework
by developing the virtual sensor concept for cloud control
systems based on fault-tolerant control systems. By applying
different modes of attack on the system, we proved that this
mitigation method could keep the system stable with a good
performance during the attack. So, even if the attacker can
break the prevention scenarios and intrude into the system to
establish an attack, we can make the system able to tolerate
this attack using our proposed framework.

Future work to investigate other kinds of attacks on CCSs,
like Replay attacks, will be carried out to design some meth-
ods to detect andmitigate these kinds of attacks. Also, wewill
study some new techniques for delay compensation between
the cloud and the plant. In this paper, we used an MPC
controller for this objective, and using its predictive features,
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we tried to deal with the delay problem. As a future work,
we will design delay compensation methods that allow us
to have even simpler controllers inside the cloud instead of
MPC.
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