
Received 9 February 2023, accepted 14 March 2023, date of publication 20 March 2023, date of current version 29 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3259104

RelaHash: Deep Hashing With Relative Position
PHAM VU THAI MINH 1, NGUYEN DONG DUC VIET1, NGO TUNG SON 1,2, BUI NGOC ANH 1,
AND JAFREEZAL JAAFAR 2, (Senior Member, IEEE)
1Information and Communication Technology Department, FPT University, Hanoi 100000, Vietnam
2Department of Computer and Information Sciences, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia

Corresponding author: Ngo Tung Son (sonnt69@fe.edu.vn)

ABSTRACT Deep hashing has been widely used as a solution to encoding binary hash code for approxi-
mating nearest neighbor problem. It has been showing superior performance in terms of its ability to index
high-level features by learning compact binary code. Many recent state-of-the-art deep hashing methods
often use multiple loss terms at once, thus introducing optimization difficulty and may result in sub-optimal
hash codes. OrthoHash was proposed to replace those losses with just a single loss function. However, the
quantization errorminimization problem inOrthoHash is still not addressed effectively. In this paper, we take
one step further - propose a single-loss model that can effectively minimize the quantization error without
explicit loss terms. Specifically, we introduce a new way to measure the similarity between the relaxed codes
with centroids, called relative similarity. The relative similarity is the similarity between the relative position
representation of continuous codes and the normalized centroids. The resulting model outperforms many
state-of-the-art deep hashing models on popular benchmark datasets.

INDEX TERMS Image retrieval, quantization, supervised deep hashing, neural network, convolutional
neural network.

I. INTRODUCTION
In the big data era, there is an increasing demand for
an efficient way to quickly retrieve images from a set of
query images in giant image databases. Many image retrieval
algorithms for approximating nearest neighbors have been
proposed, ranging from Tree [2], [3], [4], Ranking [5],
to hashing techniques [6], [7]. Hashing techniques have
empirically shown their advantages compared to other meth-
ods in terms of time and space complexity. Hashing is a
mapping function that generates compact binary codes to
represent the images (indexing process) in order to store and
retrieve images from the database efficiently later (retrieval
process), as illustrated in Figure 1. Comparing images by
their binary hash codes in the Hamming space is very efficient
because it only requires a logical bit-wise XOR operation,
followed by a popcount. Combined with hash code search-
ing algorithms [8], this can significantly reduce computa-
tional time to search for images in large high-dimensional
databases. The goal of learning to hash is to learn a hash func-
tion that can preserve the semantic difference between data

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Shorif Uddin .

points. Images with similar semantics should be assigned to
similar hash codes, while distinct images should be assigned
to very different hash codes. Learning to hash can also lever-
age deep learning to become deep hashing, which shows
much more performance than conventional methods. With
the rise of deep learning [9], many powerful yet efficient
neuron network architectures have been proposed [10], [11],
[12], [13], [14] and rapidly incorporated into deep hashing
[15], [16], [17], [18], [19]. As a result, deep hashing can
encode compact binary codes representing complex, high-
level features.

In order to quantize the Euclidean space into the discrete
Hamming space, deep hashing methods often use a quanti-
zation layer. Quantization error is the amount of information
loss caused by this quantization process. Many deep hash-
ing methods often include quantization error minimization
objectives (Figure 2) by explicitly adding some penalty terms
into the loss function [20], [21], [22], [23]. These penalty
terms often aim to reduce the Euclidean distance (Figure 3a)
between these two representations. However, this generally
makes the training process harder and can lead to sub-optimal
solutions. Recently many efforts have aimed to reduce the
total number of loss terms added to the loss function [1], [24].

30094
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0002-6457-1123
https://orcid.org/0000-0003-4098-3147
https://orcid.org/0000-0001-6703-3868
https://orcid.org/0000-0002-8850-6203
https://orcid.org/0000-0002-7184-2809


P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

FIGURE 1. Overview of the image indexing and retrieval framework.
Images in the database get pre-processed, and their key features are
extracted into an indexed feature database (indexing process). In order to
retrieve the top R retrieved items (retrieval process), query images
representing users’ intentions will search through this indexed feature
database.

FIGURE 2. The illustration of high quantization error (a) and low
quantization error (b) of the learned hash code in the Euclidean space.

FIGURE 3. The visualization of how quantization error is measured.
Quantization error is the amount of information loss caused by the
quantization layer, i.e., the difference between the continuous hash code
in the Euclidean space and its discrete representation in the Hamming
space. This difference can be measured by the Euclidean distance (a) or
angular distance (b).

OrthoHash [1] proposed directly merging the quantization
error optimization objective into the main loss function by
only minimizing the angle instead (Figure 3b). Nevertheless,

we find that the quantization error can be further optimized
to achieve even better performance.

This paper presents a new approach to address the issue
of quantization error in a unified loss manner using a novel
concept called ‘‘relative similarity’’. A new layer called the
Relative Transform layer is introduced and combined with
the scaled dot-product similarity, leading to a model that can
learn hash codes with low quantization error without the need
for additional loss terms.We have conducted extensive exper-
iments to illustrate the effectiveness of our model compared
to many recent state-of-the-art methods. Our model outper-
forms many current state-of-the-art methods on single-label
datasets while having a competitive performance on multi-
label datasets. Concretely, our model RelaHash generally
achieves new state-of-the-art performance on CIFAR-10 [25]
and ImageNet100 [26] datasets. Interestingly, we also have
some considerable improvements, about 2.6%-11.5% on
ImageNet100 16-bits settings compared to other methods.

In this paper, ourmain contributions are as follows:

1) We introduce a new transformation layer that implicitly
embeds the minimizing quantization error objective
into the softmax loss without the need for additional
loss terms.

2) We propose a novel method to measure similarity
between points in space, called Relative Similarity.

3) We demonstrate the effectiveness and robustness of our
model - RelaHash - compared to recent state-of-the-
art methods on several popular benchmark datasets and
establish new state-of-the-art.

Our work in this paper is organized as follows: We review
related work on deep hashing in Section II. Then, we present
the detail of our proposed method in Section III. The exper-
imental results and some visual analysis of our approach are
provided in Section IV. Finally, we draw some conclusions
in Section V.

II. RELATED WORK
Hashing is divided into data-dependent and data-independent
methods. Data-independent hashing methods [6], [27] are
to design hash functions that do not rely on underlying
data. On the other hand, data-dependent hashing methods
are learning to hash based on data. With the advancement
of deep learning [9], learning to hash begins to leverage the
deep learning power, to become deep hashing [8], [28], [29].
Deep hashing can be unsupervised or supervised, whereas
supervised methods have empirically shown much better per-
formance over unsupervised ones because they can derive
semantic similarity from labeled data. HashGAN [16] uses
labels to obtain pairwise similarity information for augment-
ing the training data. These labels also allow DFPH [30] to
extract multi-level visual and semantic information contained
in images. Besides, DOH [31] utilizes labels to learn local
and global semantics using two subnetworks, whereas [32]
makes use of multi-label to learn instance-aware represen-
tations split into groups, each group represents a category.

VOLUME 11, 2023 30095



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

Additionally, HashFormer [17] directly optimizes retrieval
accuracy by using labels to compute its average precision
loss. Based on how similarity between data points is mea-
sured, supervised deep hashing methods can be further cate-
gorized into pairwise [16], [22], [33], triplet-wise [34], [35],
and pointwise [1], [36], [37] methods. Among them, pairwise
and triplet-wise methods are prone to imbalance data, have a
high learning time complexity of at least an order of O(N 2),
and are hard to cover the entire data distribution. Thus, point-
wise methods are generally better and suitable for real-world
application [1], [37]. Learning in a pointwise manner with
a set of target centroids has increasingly shown great per-
formance compared to other methods. Data points that have
mutual labels are converged to the same hash centroids. CSQ
[37] uses fixed centroids generated by the Hadamard matrix,
while DPN [36] uses hinge-like polarized loss to converge
to randomly generated target vectors. OrthoHash [1] also
proposed Maximum Hamming Distance algorithm that can
heuristically find optimal centroids [38]. Our method takes
a similar approach to learning hash code with pre-defined
centroids in the Hamming space.

Several factors contribute to the quality of learned hash
codes, such as vanishing gradient [20], [33], code-balance
[24], [39], and quantization error [24].

Hashing is a binary optimization problem, which is proved
to be NP-hard. Learning to hash is to learn a mapping from
a continuous distribution to a discrete distribution. Continu-
ous values will be quantized into discrete values through a
quantization layer - where the sign function is often used.
The gradient of the sign function, however, is ill-defined.
Its gradient is 0 for all non-zero values, which makes it
impossible for the network to learn through backpropagation
with gradient descent. Existing methods often find ways to
get around this problem, such as by softening the discrete
constraints [33] or by using the straight-through estimator
layer [40] to custom the backpropagation flow [20], [39].
These methods involve sophisticated ways to modify the
computational graphs, resulting in complicated optimiza-
tion. Our method avoids these complicated problems by
using a different approach that does not need to involve the
non-differentiable sign function at training time.

Quantization error is the amount of information lost when
relaxed hash codes pass through the quantization layer. This
error occurs when using a discrete distribution to approximate
a continuous distribution. Minimizing this error often leads
to improvement in retrieval performance. Existing methods
usually penalize this error by introducing additional loss
terms such as the Minkowski distance between the relaxed
and the discrete hash codes [20], [21], [22], [23]. HSWD [24]
proposed tominimize this error by penalizing theWasserstein
distance between these relaxed codes with a uniform dis-
crete distribution. HHF [41] tries to balance between metric
loss and quantization loss by designing an inflection point.
By adding another loss term, we have to make an extra effort
to balance these losses, making the training process more

difficult and possibly producing suboptimal hash codes [20].
This paper proposes a method to reduce quantization errors
naturally.

Some point-wise methods such as CSQ [37] and DPN
[36] use pre-transformations on learning hash code before
comparing them with centroids. CSQ uses the tanh function
before computing BCE, whereas DPN employs a ternary
assignment before going to the Polarization Loss to gain
better performance. Our method uses Relative Transform as
a proxy to learn the continuous codes with low quantization
constraints. The obtained Relative Position representations
from this function are adjusted in the continuous space by
taking into account the total squared norm of each instance,
which results in these representations being pulled toward the
center. These adjustments will update the continuous codes
appropriately through backpropagation.

The use of angle-based techniques to measure similarity
between data points to learn hash codes has recently shown
promising results [1], [42], [43]. These methods can utilize
previous work in metric learning problems about margin loss,
such as A-Softmax [44], L-Softmax [45], and Large Margin
Cosine Loss [46], to further minimize intra-class distances
while maximizing inter-class distances at the same time.
OrthoHash [1] has found a way to integrate the quantization
error into the main loss by maximizing cosine similarity
between data points and centroids, resulting in a single-loss
model that allows end-to-end training. Ourmethod inherits all
these advantages since we closely follow these approaches.

III. RelaHash: DEEP HASHING WITH RELATIVE POSITION
This section begins by mathematically defining the hashing
problem and formulating our model. We then present our new
formula to measure similarity and apply it to the supervised
deep hashing problem. After that, we discuss the optimiza-
tion process, including the derivatives and time complexity of
the transformation function.

Here are the mathematical definitions of our supervised
deep hashing problem. Let X = {xn}Nn=1 be N data points
and Y = {yn ∈ {0, 1}M }N as their corresponding label of M
classes. Our learning goal is a non-linear hash function f that
maps from X to K -bits binary codes, as follows:

H = f (X ) = sgn(Z) (1)

where the function is given by:

f : X →H = {hn ∈ {−1, 1}K }Nn=1 (2)

where sgn(z) is the element-wise sign function, return 1 if
z ≥ 0 and −1 otherwise, and Z = {zn ∈ RK

}
N
n=1 is the

relaxed codes computed by the backbone φ(·) following by a
latent layer.

Z = φ(X )W (3)

where φ(X ) ∈ Rd is the output of the backbone φ, andW ∈
Rd×K denotes the weights of the latent layer. We define a set
ofM centroids C = {ci ∈ {−1, 1}K }Mi=1, where each centroid

30096 VOLUME 11, 2023



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

FIGURE 4. Overview of RelaHash’s architecture. First, the backbone φ

computes deep representation features of images, followed by a
fully-connected hash layer W and a batch norm layer to compute K -bit
relaxed hash codes. These continuous codes Z can go through the
quantization layer (sgn function) to get output binary codes. To train
these continuous codes Z , we calculate their Relative Similarity with
centroids C and then use their corresponding labels Y to compute
Softmax Loss. See section III for details. The dashed arrows indicate
where backpropagation is dropped.

represents the semantic position of a class in the Hamming
space.

A. FORMULATE MODEL
Our model uses the following architecture as shown in
Figure 4. We use the backbone φ(·) as a feature extractor
for images. The extracted feature will go through a fully
connected hash layer (latent layer), followed by a batch norm
layer. The batch norm layer allows the model to achieve code
balancing while not modifying the computational graph [1].
The resulting representation is the continuous hash codes, i.e.
relaxed codes Z = {zn ∈ RK

}
N
n=1, which can be applied

sgn(·) function to get the corresponding binary hash codes.
In order to update hash codes Z , we compute the scaled
dot-product similarity between the Relative Position repre-
sentation of Z with the normalized centroids C∗. By maxi-
mizing this similarity through a softmax loss (cross-entropy),
we can achieve a new representation of Z in the Euclidean
space where quantization error and hamming distance to
their assigned centroids are minimized. We use Maximum
Hamming Distance algorithm [38] to generate fixed centroids
C in the Hamming space.

B. RELATIVE SIMILARITY
1) RELATIVE POSITION
Given a set of column vectors Z = {zn ∈ RK

}
B
n=1, where B

denotes the batch size, and K denotes the number of bits. The
relative position representation of Z is defined as:

RelativeTransform(Z) =
√
B× K

Z − µbatch

∥Z − µbatch∥F
(4)

in which ∥·∥F is the Frobenius norm. µbatch is a single
real-valued number representing the mean along the bits of
the expectation of the batch, which is obtained as:

µbatch :=
1
K

K∑
i=1

E[Z]i (5)

This new representation of Z embeds the quantization error
learning objective while still preserving the relative rela-
tionship between the column vectors zn ∈ Z in both the
Euclidean space and Hamming space.

2) SCALED DOT-PRODUCT SIMILARITY WITH RELATIVE
POSITION
We then compute the similarity between each vector z∗n ∈
Z∗ := RelativeTransform (Z) and the normalized centroids
c∗i =

ci
∥ci∥
∈ C∗ whose ci ∈ C via scaled dot product

operation. The matrix of output can be computed as follow:

sim(Z, C) = αZ∗⊺C∗ (6)

in which α is the hyperparameter controlling the scale of the
dot product operation. We aim to maximize the similarity
between each vector z∗n and the centroids c∗i representing
its ground-truth label. This can be accomplished by using
their associated labels with softmax loss (cross-entropy loss).
Since the term

√
B× K in equation (4) is constant, this

can be merged with hyperparameter α. Geometrically, the
dot product between a vector z∗n and a centroid c∗i can be
interpreted as:

z∗n
⊺c∗i =

∥∥z∗n∥∥ ∥∥c∗i ∥∥ cos θz∗n,c
∗
i

(7)

In which ∥·∥ is the Euclidian norm,
∥∥c∗i ∥∥ = 1 since c∗i is

the normalized vector, and θz∗n,c
∗
i
is the angle between z∗n and

c∗i . Since our equation is proportional to the cosine of θz∗n,c
∗
i
,

maximizing this product also means minimizing the angle
θz∗n,c

∗
i
, which reduces quantization error and enhances the

discriminativeness of hash code [1]. For the norm of vector
z∗n, we let the network decide its own best value.

3) HASHING WITH RELATIVE SIMILARITY
Since we are using softmax loss to maximize inter-class
distance in the Hamming space while minimizing intra-class
variance, we can leverage the large cosine margin loss [46].
Therefore, our loss function is as follows:

L = −
1
N

N∑
n=1

log
e
s
(
sim

(
z∗n,c
∗
yn

)
−m

)

e
s
(
sim

(
z∗n,c∗yn

)
−m

)
+
∑M

i=1,i̸=yn e
s·sim(z∗n,c

∗
i )

VOLUME 11, 2023 30097



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

= −
1
N

N∑
n=1

log
e
s
(
α·z∗⊺n c∗yn−m

)

e
s
(
α·z∗⊺n c∗yn−m

)
+
∑M

i=1,i̸=yn e
s·α·z∗⊺n c∗i

(8)

where m is the cosine margin, and s is the scale factor. As a
further enhancement to formula (8), we decided to scale
margin m by α, resulting in the following new loss function:

L = −
1
N

N∑
n=1

log
e
s·α
(
z∗⊺n c∗yn−m

)

e
s·α
(
z∗⊺n c∗yn−m

)
+
∑M

i=1,i̸=yn e
s·α·z∗⊺n c∗i

= −
1
N

N∑
n=1

log
e
β
(
z∗⊺n c∗yn−m

)

e
β
(
z∗⊺n c∗yn−m

)
+
∑M

i=1,i̸=yn e
β·z∗⊺n c∗i

(9)

where β = s · α is the hyperparameter acts similar role
compared to s and α. By minimizing this loss, we are able to
train a robust deep hashing network that generates accurate
binary hash codes.

C. OPTIMIZATION PROCESS
Let 2 denotes the parameters of the network, which is
comprised of the backbone φ and the latent layer W . The
learning rate of the backbone φ is lowered by ten times to
avoid overfitting. First, we preprocess the training set X , and
initialize centroids C by using the MaxHD algorithm [38].
These centroids then remain fixed and will not be learned.
In fact, learning centroids may even harm the model’s perfor-
mance [36], [37]. In the forward propagation of the training
stage, we calculate Z∗ and C∗, then calculate the total loss.
Backward propagation is performed by calculating the gra-
dient of network parameters and updating them using Adam
optimizer [47]. The overall optimization process is summa-
rized in Algorithm 1. In step 8 of Algorithm 1, we obtain the
gradient of Z∗ as follows:

dL =
∂L

∂
(
Z∗⊺C∗

) : dZ∗
⊺
C∗ =

∂L

∂
(
Z∗⊺C∗

)C∗⊺ : dZ∗
⊺

= C∗
(

∂L

∂
(
Z∗⊺C∗

))⊺

: dZ∗

⇔
∂L

∂Z∗
= C∗

(
∂L

∂
(
Z∗⊺C∗

))⊺

(10)

where (:) is the Frobenius inner product. To calculate ∂L
∂Z in

step 9 of Algorithm 1, we need to calculate ∂Z∗
∂Z .

1) THE DERIVATIVE OF THE RELATIVE TRANSFORM
FUNCTION
We now need to analyze the derivative of the Relative Trans-
form function. We set the following:

Z − µbatch = A ∈ RK×B

The derivative of Z∗ with respect to Z is obtained by using
the chain rule:

∂Z∗

∂Z
=

∂Z∗

∂A
∂A
∂Z

(11)

Algorithm 1 RelaHash
1: Prepare training set X .

2: Initialize centroids C.
3: repeat

{Forward propagation :}

4: - Calculate Z by φ and W

5: - Z∗← RelativeTransform(Z)

6: - Calculate C∗ by C {normalize centroids}

7: - Calculate loss L by Z∗ and C∗

{Backward propagation :}

8: - Calculate ∂L
∂Z∗

9: - Calculate ∂L
∂Z =

∂L
∂Z∗

∂Z∗
∂Z

10: - Calculate ∂L
∂2
=

∂L
∂Z

∂Z
∂2

11: - Update network’s parameters

12: until convergence

We have to compute the derivative of Z∗ with respect to A,
then calculate the derivative of A with respect to Z . First,
we differentiate the Frobenius norm:

γ = ∥A∥F
γ 2
= ∥A∥2F = A : A

2γ dγ = 2A : dA
dγ = γ−1A : dA (12)

Following this, we differentiate Z∗

Z∗ =
1
∥A∥F

A = γ−1A

dZ∗ = γ−1dA− γ−2Adγ

(13)

We define an identity tensor E using Kronecker deltas δ:

Eijkl = δikδjl =

{
1 if i = k and j = l
0 otherwise

Substitute dγ into equation (13), we have:

dZ∗ = γ−1E : dA− γ−2A
(
γ−1A : dA

)
= γ−1

[
E − (γ−1A)⊗

(
γ−1A

)]
: dA

= γ−1
(
E −Z∗ ⊗Z∗

)
: dA

= ∥A∥−1F
(
E −Z∗ ⊗Z∗

)
: dA

⇔
∂Z∗

∂A
= ∥A∥−1F

(
E −Z∗ ⊗Z∗

)
(14)

where ⊗ is the tensor product. Meanwhile, the derivative of
A with respect to Z can be computed as follows:

A = Z − µbatch = Z −
1

B× K

K∑
i=1

B∑
j=1

Zij

30098 VOLUME 11, 2023



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

TABLE 1. Performance comparison for 4 different bits on various benchmark datasets. Results on CIFAR-10 are run by us, while the results of other
methods on ImageNet100 and NUS-WIDE are obtained from [1] to make them directly comparable. The highest value of each column is shown in bold.
Point-wise, pair-wise, and triplet-wise methods are indicated by the superscripts 1, 2, and 3.

⇔
∂A
∂Z
= E − (B× K )−1J (15)

where J is a tensor of ones. From equation (11), (14), and
(15) we can derive the following:

∂Z∗

∂Z

=
∂Z∗

∂A
∂A
∂Z

=

[
∥A∥−1F

(
E −Z∗ ⊗Z∗

)]
·

(
E − (B× K )−1J

)
=

[
(B× K )−1

(
Z∗

K∑
k=1

B∑
b=1

Z∗kb − JK×B

)
⊗ JK×B

− Z∗ ⊗Z∗ + E
]
∥Z − µbatch∥

−1
F (16)

The equation (16) above is the derivative of Z∗ with respect
to Z . By using the chain rule combined with the derivative
of the total loss with respect to Z∗, we can compute the
derivative of the continuous hash code as ∂L

∂Z =
∂L

∂Z∗
∂Z∗
∂Z .

Following this, backpropagation is used to calculate the
derivative of 2.

2) TIME COMPLEXITY
This subsection investigates the computational complexity of
the Relative Similarity function during forward propagation
and backward propagation.

a: FORWARD PROPAGATION
After obtaining Z from backbone φ, calculating Relative
Position Z∗ in equation (4) takes O(KB) since calculating
µbatch, A, and γ each takes O(KB). Additionally, it takes
O(KM ) to compute normalized centroids C∗ from C. For
equation (6), calculating the scaled dot-product between
Z∗ ∈ RK×B and C∗ ∈ RK×M takes O(MKB). As a result,
the forward propagation of Relative Similarity has a time
complexity ofO(KB+KM+MKB) = O(K (B+M+BM )) =
O(KBM ).

b: BACKWARD PROPAGATION
According to equation (10), ∂L

∂Z∗ takes O(KMB) to calculate.
Furthermore, equation (16) requires O(B2K 2) to calculate
∂Z∗
∂Z . In step 9 of Algorithm 1, we can computationally
calculate ∂L

∂Z as follows:

∂L
∂Zij

=

K∑
k=1

B∑
b=1

∂L
∂Z∗kb

∂Z∗kb
∂Zij

(17)

Based on the above equation, calculating ∂L
∂Z takes O(B2K 2).

Since C is fixed during training, we do not need to compute
its gradient. As a result, the backward propagation has a time
complexity of O(KMB+ B2K 2

+ B2K 2)= O(KB(M + KB)).
Generally, the time complexity of Relative Similarity is
O(KBM ) during forward propagation and O(KB(M + KB))
during backward propagation.

IV. EXPERIMENTS
This section begins by comparing RelaHash’s performance
with existing state-of-the-art models on image retrieval tasks
using many popular benchmark datasets. Afterward, we pro-
vide the ablation study of many hyperparameters. We then
compare RelaHash with other methods from a variety of
perspectives. Finally, we visualize the learned hash code and
the actual retrieved results from our method.

A. SETUP
1) DATASETS
CIFAR-10 [25] is a single-label dataset, cosisting of 60K
32×32 colored images grouped into 10 categories.We follow
prior settings [20], [36], [42], [48], [49], and randomly select
100 images from each class as the query set. The remaining
59000 images are used as the database. We randomly sample
500 images from each class from the database for training.
ImageNet100 is also a single-label dataset that contains only
100 classes from the ImageNet dataset [26]. Following prior
settings [1], [33], [36], [37], [48], we use all the training
set as the database, all the validation set as the queries, and

VOLUME 11, 2023 30099



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

FIGURE 5. Performance comparision on various benchmark datasets under mAP@R w.r.t. different bits.

FIGURE 6. Experimental results of RelaHash and other methods on ImageNet100 under three evaluation metrics.

randomly sample 100 images in each class from the database
for training.
NUS-WIDE [50] is a multi-label dataset containing 269,648
images divided into 81 concepts. Following prior settings
[1], [33], [36], [37], [48], [51], we use the most 21 frequent
concepts, select 100 images in each class as the queries, and
the remaining images are used as the database. We randomly
sample 500 images from each class from the database for
training. Because NUS-WIDE is a multi-label dataset, we use
label smoothing to generate labels for softmax loss, as in [1].

2) BASELINES
To demonstrate our model’s performance, we compare our
model with the seven most recent well-known state-of-the-art
hashing methods, including one pair-wise method [33], one
triplet-wise method [34], and five point-wise methods [1],
[20], [36], [37], [48].

3) EVALUATION METRIC
Following prior works in deep hashing [42], [37], [21],
we evaluate retrieval performance based on the mean of
Average Precision (AP) per R retrieved items (mAP@R),
Precision-Recall curve (PR curve), Precision curve w.r.t.
different numbers of retrieved items (P@N), and Precision
curve within Hamming distance 2 (P@H≤2). Specifically,
mAP@R is calculated by averaging Average Precision across

all classes.

mAP@R =
1
N

N∑
i=1

APi (18)

4) EXPERIMENTAL SETTINGS
We follow the training settings as in [1], as we use pre-trained
AlexNet [10] as the backbone, Adam optimizer [47] with the
same learning rate of 0.0001, and train for 100 epochs for all
methods. For our method, the β hyperparameter and batch
size B are obtained by grid search.

On CIFAR-10, we ran all results on NVIDIA Tesla T4
GPU provided by Google Colab with their default hyperpa-
rameter settings. Results of other methods on ImageNet100
and NUS-WIDE are taken from [1] to make them directly
comparable. Our results on ImageNet100 are run on a sin-
gle NVIDIA GeForce RTX 2070 SUPER GPU, and our
results on NUS-WIDE are run on a single NVIDIA GeForce
RTX 3060 GPU.

B. RESULTS
Table 1 shows retrieval performance in terms of mAP@R.
On single-label datasets (CIFAR-10 and ImageNet100), our
method performed the best with significant improvements
compared to recent state-of-the-art methods. On CIFAR-10
dataset, our method achieved about 0.3%-4.5% improve-
ments in mAP@R compared to others. On ImageNet100
dataset, pair-wise and triplet-wise methods such as

30100 VOLUME 11, 2023



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

TABLE 2. The performance in terms of mAP@R of various β values for 4 different bits on CIFAR-10 (16 batch size) and ImageNet100 (64 batch size)
datasets (m = 0.5). The highest mAP@R of each column is shown in bold. The second highest mAP@R of each column is underlined.

HashNet [33] and DTSH [34] face the issue of imbal-
anced data, so RelaHash has a considerable improvement
from 11.5% on 128-bits to 19%-28.9% on 16-bits settings.
Compared with other point-wise methods, RelaHash has
improvements of about 2.6%-11.5% on 16-bits settings,
0.5%-6.3% on 32-bits settings, 0.2%-5.4% on 64-bits settings
and 1%-6.8% on 128-bits settings. On NUS-WIDE - a multi-
label dataset, our method is comparable to current state-
of-the-art point-wise methods. We have a slight boost over
OrthoHash [1] on 16-bits settings while still having competi-
tive performance on other bits. In the multi-label dataset, the
data point is pulled towards multiple hash centroids simul-
taneously, making it more difficult for RelaHash to find the
optimal hash codes. As the number of dimensions increases,
the discrete hash codes can more accurately represent the
continuous output, so quantization error reduction becomes
less effective. In fact, trying to reduce the quantization error
too much in multi-label settings can even result in overfitting.
mAP@R w.r.t. different numbers of K -bits on these datasets
are shown in Figure 5. Figure 6 shows retrieval performance
in Precision-Recall curves (PR curve), Precision curves w.r.t.
different numbers of retrieved items (P@N), and Precision
curves within Hamming distance 2 (P@H≤2) of compared
methods on ImageNet100 with 64-bits settings. It can be
observed from the graph that our method has better general
retrieval performance over other methods. We thus conclude
that naturally reducing quantization error on single-label
datasets can lead to better performance.

C. ABLATION STUDY
This subsection examines the impact of hyperparameters β,
m, and batch size B on the performance of the method. All
results in this subsection are run on NVIDIA Tesla T4 GPU
provided by Google Colab.

1) EFFECT OF MARGIN m
For a better understanding of how margin m affects model
performance, we train our model with Adam optimizer for

FIGURE 7. The performance analysis of hyperparameter margin m on
CIFAR-10 datasets with 64-bits settings (β = 50).

100 epochs on CIFAR-10 with 64-bits settings, set β = 50,
and use batch size of 16. Variousmargins were tested between
0.0 and 1.0. The results are presented in Figure 7. It can be
observed from the graph that performance degrades when the
m value passes through 0.2. Due to the cosine constraint [46],
whenm is too large, the feature space begins to vanish and the
model fails to converge.

2) EFFECT OF SCALE β

Various experiments with different settings were conducted
in order to find the optimal parameter β and investigate how
it affects our model’s performance.

In the first experiment, we try different β values, starting
from 0.5 with the increasing power of 2. This time we also
train our model using Adam optimizer for 100 epochs on
CIFAR-10 dataset with 64-bits settings, set m = 0.5, and
using batch size of 16. The results are shown in Figure 8.
We conducted another experiment - testing β with different

values in order to find how optimal β varies between bits and
datasets. On both CIFAR-10 and ImageNet100, we used the
Adam optimizer and stopped training when the best mAP@R

VOLUME 11, 2023 30101



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

TABLE 3. The performance in terms of mAP@R of various batch size (B) values for 4 different bits on CIFAR-10 (β = 80) and ImageNet100 (β = 100)
datasets. (m = 0.5) The highest mAP@R of each column is shown in bold. The second highest mAP@R of each column is underlined.

FIGURE 8. The performance analysis of hyperparameter β on CIFAR-10
datasets with 64-bits settings (m = 0.5).

ceased to increase after 6 epochs - which often occurred
after 12-25 epochs. A batch size of 16 was used on CIFAR-
10, while a batch size of 64 was used on ImageNet100.
A value of 0.5 is set for the hyperparameter m. The results
are summarized in Table 2.

We can observe from Table 2 and Figure 8, the model’s
performance varies around 0.1%-0.5% with different choices
of the β hyperparameter. As the number of bits increases, the
variance in performance decreases.

3) EFFECT OF BATCH SIZE
The number of batch size B is also critical to RelaHash’s
performance. We experimented with various settings in order
to determine the optimal batch size for each bit and dataset.
For the first experiment, we set β = 50 and train our model
using Adam optimizer for 100 epochs on CIFAR-10 with
64-bits settings to try different batch sizes, starting from
4 with the increasing power of 2. The results are presented
in Figure 9.
Another experiment was conducted with different batch

sizes of 16, 32, 64, and 128 for each bit and dataset setting.
On both CIFAR-10 and ImageNet100, we used the Adam
optimizer and stopped trainingwhen the best mAP@R ceased
to increase after 6 epochs - which often occurred after 12-25
epochs. On CIFAR-10 we set β = 80, while on ImageNet100
we set β = 100. A value of 0.5 is set for the hyperparameter
m. The obtained results are summarized in Table 3.

FIGURE 9. The performance analysis of batch size B on CIFAR-10 datasets
with 64-bits settings (m = 0.5).

We can observe from Table 3 and Figure 9, the model’s
performance varies around 1%-2% with different choices of
batch size. CIFAR-10 has an optimal batch size of 16 among
all K -bits settings, whereas ImageNet100 has optimal batch
sizes proportional to the number of bits.

D. FURTHER ANALYSIS
This subsection analyzes the performance of RelaHash com-
pared to other methods in terms of quantization error,
orthogonality, and separability. Furthermore, we also com-
pare RelaHash’s performance when LMCL is used as the
same loss in other point-wise methods.

1) QUANTIZATION ERROR
Quantization error is the amount of information loss when
the relaxed hash codes Z pass through the quantization
layer, i.e., the sign function. Retrieval performance can be
improved by minimizing this quantization error. Specifically,
the process of mapping the continuous hash code zn ∈ RK

in the Euclidean space into the discrete binary hash code
hn ∈ {−1, 1}K in the Hamming space introduces quanti-
zation error. This quantization error can be measured either
by Euclidean or Angle distance, as illustrated in Figure 3.
Precisely, we measure the quantization error of the database
by Euclidean distance (19), squared Euclidean distance (20),
and the angle θznhn between the continuous hash code zn and

30102 VOLUME 11, 2023



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

FIGURE 10. Analysis of quantization error on ImageNet100 with 64-bits settings.

FIGURE 11. Orthogonality analysis with 64-bits ImageNet100.

the discrete hash code hn (21).

1
N

N∑
n=1

∥zn − hn∥ (19)

1
N

N∑
n=1

∥zn − hn∥2 (20)

1
N

N∑
n=1

deg
(
cos−1

(
zn · hn
∥zn∥ ∥hn∥

))
(21)

in which N is the size of the database. As depicted in
Figure 10, our approach exhibits a relatively low quantiza-
tion error compared to other techniques. It can be noticed
that while both DTSH and JMLH have low quantization
errors, they perform poorly in terms of mAP. Our method,
on the other hand, has a lower quantization error compared to
the majority of other methods, including OrthoHash. These
findings indicate that our method is effective in reducing
quantization error.

2) ORTHOGONALITY
The orthogonality of hash codes can be measured by com-
puting the center of data points’ hash codes belonging to
each class in the Hamming space (Hcenter). As a result, the
orthogonality can be calculated as follows:∥∥∥∥ 1K HcenterH⊺

center − I
∥∥∥∥
F

(22)

FIGURE 12. Separability analysis with 64-bits ImageNet100.

where K is the number of bits, and I is the identity matrix.
Better performance can be achieved by lowering orthogo-
nality. According to Figure 11, our method has relatively
low orthogonality compared with other methods. The high
orthogonality of DTSH indicates that its learned hash code
has some redundant correlations. In contrast, CSQ has low
orthogonality, meaning that each bit learned is orthogonal
to the others. This is due to CSQ’s use of the Haddamard
matrix in generating centroids, which ensures equal distances
between each centroid. As a result, we can conclude that the
hash codes generated by our method have a low pairwise
correlation between any two bits.

3) SEPARABILITY
In order to get an insight into inter-class distances (1inter-class)
versus intra-class distances (1intra-class) between data points,
we take a look at the separability of the learned hash codes
in the Hamming space

(
H ⊂ {−1, 1}K

)
. A histogram of

intra-class and inter-class distances between compared meth-
ods is shown in Figure 13. The difference in the expectation
of these two distributions is the separability in the Hamming
space, expressed as follows:

E [1inter-class]− E [1intra-class] (23)

where E[·] is the expectation of the distances between
data points in the Hamming space. The separability metric
indicates how separative learned clusters are (Figure 15).

VOLUME 11, 2023 30103



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

TABLE 4. Performance comparison using LMCL [46] for all pointwise methods on CIFAR-10 and ImageNet100 datasets with different K -bits settings. The
highest value of each column is shown in bold.

FIGURE 13. Histogram of intra-class and inter-class Hamming distances
with 64bits ImageNet100. The arrow annotation is the separability in
Hamming distances.

Separability increases when clusters are more separable,
resulting in better retrieval performance. It can be observed
that CSQ has the smallest variance in inter-class Hamming
distances because its generated centroids have equal distances
of K2 from each other. The separability of RelaHash and other
methods is displayed in Figure 12. As shown in the figure,
our method has the highest separability, leading to the best
retrieval results. Therefore, we can conclude that our method
is effective in separating clusters in high-dimensional space.

4) COMPARISON USING LARGE MARGIN COSINE LOSS
This subsection compares various point-wise methods by
using LMCL [46] as the same loss function. Specifically,

TABLE 5. The visualization of continuous hash codes training process
with 4 classes and 2-bits settings.

we set m = 0.2 and s =
√
K with the same batch size of

64, using Adam optimizer and train for 100 epochs for all
methods. Results are shown in Figure 14 and summarized in
table 4.

Based on the results, we are able to demonstrate that our
method is still superior to other point-wise methods even
when using LMCL as the loss function. On ImageNet100,
our method also yields great performance when only behind
OrthoHash in 16 and 32 bits settings.

E. VISUALIZATION
For a better understanding of how RelaHash learns, we visu-
alize the process of training their continuous hash codes in

30104 VOLUME 11, 2023



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

FIGURE 14. Performance comparision using LMCL [46] for all pointwise methods on CIFAR-10 and ImageNet100 datasets under mAP@R w.r.t.
different bits.

FIGURE 15. The t-SNE visualization of learned hash codes Z on CIFAR-10.

Euclidean space and their t-SNE representation. Furthermore,
we compare our retrieval results with other retrieval methods
on ImageNet100 datasets.

TABLE 6. The visualization of continuous hash codes training process
with 8 classes and 3-bits settings.

1) LOW-DIMENSIONAL HASH CODES VISUALIZATION
a: 2-DIMENSIONAL HASH CODES
We train deep hashing methods using the first 4 classes
of CIFAR-10 [25] dataset on 2-bits settings. The continu-
ous (relaxed) hash codes Z before the quantization layer
are visualized in Table 5. The learned hash codes of our
method are pulled closer to their respective centroids

VOLUME 11, 2023 30105



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

FIGURE 16. Examples of Top-10 retrieved results on ImageNet100.

C =

{(
1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)}
. Due to this, our

method has lower quantization error than others while having
low intra-class and high inter-class distances.

b: 3-DIMENSIONAL HASH CODES
We train deep hashing methods using 8 classes taken from
CIFAR-10 [25] dataset on 3-bits settings. The continuous
(relaxed) hash codes Z before the quantization layer are
visualized in Table 6. In comparison to 2-bits settings, our
method can achieve similar performance.

2) HIGH-DIMENSIONAL HASH CODES VISUALIZATION
To gain insight into high-dimensional hash codes, we used
t-SNE [52] to visualize the learned continuous hash codes Z
on the CIFAR-10 [25] dataset with 64-bits settings. As seen
in Figure 15, the hash codes learned by our model exhibit
better cluster separation than other methods. Data points with
the same label are pulled closer together, while those with
different labels are pushed away. These visualizations rein-
force the conclusion in subsection IV-D3 about separability
in the high-dimensional space.

3) RETRIEVED RESULTS
We show retrieval results of HashNet [33], OrthoHash
[1], and our RelaHash on ImageNet100 [26] with various
query images from easy to difficult, as in Figure 16. Com-
paring RelaHash to other methods, our proposed method

appears to return more relevant results. One side note is
that the ImageNet100 database and training set only contain
100 classes randomly sampled from the ImageNet-1K dataset
[26], making it difficult to include many unknown objects in
the database. All methods successfully return relevant results
from the database on images whose class label is in the
training set. As the query image becomes more challenging,
such as when the class definition is vague, the label does
not exist in the training set, or only a few relevant samples
exist in the database, RelaHash begins to demonstrate its
effectiveness.

V. CONCLUSION & FUTURE WORK
In this paper, we proposed a new approach to reducing
quantization error without the need for explicit quantization
loss terms. We demonstrated that low quantization error can
be achieved by using an intermediate representation called
Relative Position to learn compact hash codes. Our approach
is robust to imbalanced datasets and has the advantage of
using margin losses. Unlike conventional approaches, our
method does not require explicit quantization loss terms or
involve the quantization layer at training time, allowing for
end-to-end training of the network. Comprehensive experi-
ments confirmed that ourmethod outperforms state-of-the-art
methods on single-label datasets while having a competitive
performance on multi-label dataset. We discovered that our
method can bring adverse effects when it tries to further
lower quantization error in multi-label contexts. In our study,
we found that ourmethod is effective in reducing quantization
error, lowering pairwise correlation between any two bits, and
separating clusters in the high-dimensional space. This work
takes the field of deep hashing one step further in achieving
end-to-end training without additional explicit constraints on
the final loss.

In the future, we will work on finding better hash centroids,
determining a systematic way to select the hyperparameter β,
and applying the method to unsupervised deep hashing.

The code is available at https://github.com/thaiminhpv/
RelaHash

REFERENCES
[1] J. T. Hoe, K. W. Ng, T. Zhang, C. S. Chan, Y.-Z. Song, and T. Xiang, ‘‘One

loss for all: Deep hashing with a single cosine similarity based learning
objective,’’ in Proc. Adv. Neural Inf. Process. Syst. Red Hook, NY, USA:
Curran Associates, vol. 34, 2021, pp. 24286–24298.

[2] P. Ciaccia, M. Patella, and P. Zezula, ‘‘M-tree: An efficient access method
for similarity search in metric spaces,’’ in Proc. VLDB, 1997, pp. 426–435.

[3] A. Guttman, ‘‘R-trees: A dynamic index structure for spatial searching,’’
SIGMOD Rec., vol. 14, no. 2, pp. 47–57, Jun. 1984.

[4] J. L. Bentley, ‘‘Multidimensional binary search trees used for associative
searching,’’ Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[5] B. Xu, J. Bu, C. Chen, D. Cai, X. He, W. Liu, and J. Luo, ‘‘Efficient
manifold ranking for image retrieval,’’ in Proc. 34th Int. ACM SIGIR Conf.
Res. Develop. Inf. Retr. (SIGIR). New York, NY, USA: Association for
Computing Machinery, 2011, pp. 525–534.

[6] M. Datar, N. Immorlica, P. Indyk, and S. V. Mirrokni, ‘‘Locality-sensitive
hashing scheme based on P-stable distributions,’’ in Proc. Twentieth Annu.
Symp. Comput. Geometry (SCG). New York, NY, USA: Association for
Computing Machinery, 2004, pp. 253–262.

30106 VOLUME 11, 2023



P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

[7] B. Kulis and K. Grauman, ‘‘Kernelized locality-sensitive hashing for
scalable image search,’’ in Proc. IEEE ICCV, Kyoto, Oct. 2009,
pp. 2130–2137.

[8] J. Wang, T. Zhang, J. Song, N. Sebe, and H. Tao Shen, ‘‘A survey on
learning to hash,’’ 2016, arXiv:1606.00185.

[9] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, Feb. 2015.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Advances in Neural Informa-
tion Processing Systems, vol. 25. Red Hook, NY, USA: Curran Associates,
2012.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in
Advances in Neural Information Processing Systems, vol. 27, Z. Ghahra-
mani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, Eds.
Red Hook, NY, USA: Curran Associates, 2014.

[12] M. Tan and Q. V. Le, ‘‘EfficientNet: Rethinking model scaling for convo-
lutional neural networks,’’ 2019, arXiv:1905.11946.

[13] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszko-
reit, and N. Houlsby, ‘‘An image is worth 16×16 words: Transformers for
image recognition at scale,’’ 2020, arXiv:2010.11929.

[14] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, ‘‘Swin
transformer: Hierarchical vision transformer using shifted Windows,’’ in
Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Montreal, QC, Canada,
Oct. 2021, pp. 9992–10002.

[15] A. Krizhevsky and G. Hinton, ‘‘Using very deep autoencoders for content-
based image retrieval,’’ in Proc. ESANN, Jan. 2011, p. 2.

[16] Y. Cao, B. Liu, M. Long, and J. Wang, ‘‘HashGAN: Deep learning to hash
with pair conditionalWasserstein GAN,’’ inProc. IEEEConf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 1287–1296.

[17] T. Li, Z. Zhang, L. Pei, and Y. Gan, ‘‘HashFormer: Vision transformer
based deep hashing for image retrieval,’’ IEEE Signal Process. Lett.,
vol. 29, pp. 827–831, 2022.

[18] Y. Chen, S. Zhang, F. Liu, Z. Chang, M. Ye, and Z. Qi, ‘‘TransHash:
Transformer-based Hamming hashing for efficient image retrieval,’’ in
Proc. Int. Conf. Multimedia Retr. New York, NY, USA: Association for
Computing Machinery, Jun. 2022, pp. 127–136.

[19] L. Peng, J. Qian, C. Wang, B. Liu, and Y. Dong, ‘‘Swin transformer-based
supervised hashing,’’ Int. J. Speech Technol., Jan. 2023.

[20] S. Su, C. Zhang, K. Han, and Y. Tian, ‘‘Greedy hash: Towards fast
optimization for accurate hash coding in CNN,’’ in Advances in Neural
Information Processing Systems, vol. 31. Red Hook, NY, USA: Curran
Associates, 2018.

[21] Y. Cao, M. Long, B. Liu, and J. Wang, ‘‘Deep Cauchy hashing for
Hamming space retrieval,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2018, pp. 1229–1237.

[22] W.-J. Li, S. Wang, and W.-C. Kang, ‘‘Feature learning based deep super-
vised hashing with pairwise labels,’’ in Proc. 25th Int. Joint Conf. Artif.
Intell. (IJCAI). New York, NY, USA: AAAI Press, 2016, pp. 1711–1717.

[23] H. Liu, R. Wang, S. Shan, and X. Chen, ‘‘Deep supervised hashing for fast
image retrieval,’’ in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 2064–2072.

[24] K. D. Doan, P. Yang, and P. Li, ‘‘One loss for quantization: Deep hashing
with discrete Wasserstein distributional matching,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 9437–9447.

[25] A. Krizhevsky and G. Hinton, ‘‘Learning multiple layers of features from
tiny images,’’ Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009,
vol. 1, no. 4.

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2009, pp. 248–255.

[27] A.Gionis, P. Indyk, andR.Motwani, ‘‘Similarity search in high dimensions
via hashing,’’ in Proc. 25th Int. Conf. Very Large Data Bases (VLDB).
San Francisco, CA, USA: Morgan Kaufmann, 1999, pp. 518–529.

[28] X. Luo, H. Wang, D. Wu, C. Chen, M. Deng, J. Huang, and X.-S. Hua,
‘‘A survey on deep hashing methods,’’ 2020, arXiv:2003.03369.

[29] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, ‘‘Learning to hash for
indexing big data—A survey,’’ 2015, arXiv:1509.05472.

[30] A. Redaoui and K. Belloulata, ‘‘Deep feature pyramid hashing for efficient
image retrieval,’’ Information, vol. 14, no. 1, p. 6, Dec. 2022.

[31] L. Jin, X. Shu, K. Li, Z. Li, G.-J. Qi, and J. Tang, ‘‘Deep ordinal hash-
ing with spatial attention,’’ IEEE Trans. Image Process., vol. 28, no. 5,
pp. 2173–2186, May 2019.

[32] H. Lai, P. Yan, X. Shu, Y. Wei, and S. Yan, ‘‘Instance-aware hashing for
multi-label image retrieval,’’ IEEE Trans. Image Process., vol. 25, no. 6,
pp. 2469–2479, Jun. 2016.

[33] Z. Cao, M. Long, J. Wang, and P. S. Yu, ‘‘HashNet: Deep learning to hash
by continuation,’’ 2017, arXiv:1702.00758.

[34] X. Wang, Y. Shi, and K. M. Kitani, ‘‘Deep supervised hashing with triplet
labels,’’ 2016, arXiv:1612.03900.

[35] B. Liu, Y. Cao, M. Long, J. Wang, and J. Wang, ‘‘Deep triplet quantiza-
tion,’’ 2019, arXiv:1902.00153.

[36] L. Fan, K. W. Ng, C. Ju, T. Zhang, and C. S. Chan, ‘‘Deep polarized
network for supervised learning of accurate binary hashing codes,’’ in
Proc. 29th Int. Joint Conf. Artif. Intell., Yokohama, Japan, Jul. 2020,
pp. 825–831.

[37] L. Yuan, ‘‘Central similarity quantization for efficient image and video
retrieval,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Seattle,
WA, USA, Jun. 2020, pp. 3080–3089.

[38] J. T. Hoe, K. W. Ng, C. S. Chan, Y.-Z. Song, T. Zhang, and
T. Xiang. Supplementary Material for One Loss for All: Deep
Hashing With a Single Cosine Similarity Based Learning Objective.
Accessed: Feb. 26, 2023. [Online]. Available: https://openreview.net/
attachment?id=2pJZSVcSZz&name=supplementary_material

[39] Y. Li and J. van Gemert, ‘‘Deep unsupervised image hashing by maximiz-
ing bit entropy,’’ 2020, arXiv:2012.12334.

[40] Y. Bengio, N. Léonard, and A. Courville, ‘‘Estimating or propagating
gradients through stochastic neurons for conditional computation,’’ 2013,
arXiv:1308.3432.

[41] C. Xu, Z. Chai, Z. Xu, H. Li, Q. Zuo, L. Yang, andC.Yuan, ‘‘HHF: hashing-
guided Hinge function for deep hashing retrieval,’’ IEEE Trans. Multime-
dia, early access, Nov. 16, 2022, doi: 10.1109/TMM.2022.3222598.

[42] C. Zhou, L.-M. Po, Y. F. W. Yuen, K. W. Cheung, X. Xu, K. W. Lau,
Y. Zhao, M. Liu, and H. W. P. Wong, ‘‘Angular deep supervised hashing
for image retrieval,’’ IEEE Access, vol. 7, pp. 127521–127532, 2019.

[43] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik, ‘‘Angular quantization-
based binary codes for fast similarity search,’’ in Advances in Neural
Information Processing Systems, vol. 25, F. Pereira, C. J. Burges, L. Bottou,
and K. Q.Weinberger, Eds. Red Hook, NY, USA: Curran Associates, 2012.

[44] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, ‘‘SphereFace: Deep
hypersphere embedding for face recognition,’’ 2017, arXiv:1704.08063.

[45] W. Liu, Y. Wen, Z. Yu, and M. Yang, ‘‘Large-margin softmax loss for
convolutional neural networks,’’ in Proc. 33rd Int. Conf. Mach. Learn.,
New York, NY, USA, vol. 48, 2016, pp. 507–516.

[46] H. Wang, ‘‘CosFace: Large margin cosine loss for deep face recognition,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2018,
pp. 5265–5274.

[47] D. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’ in
Proc. Int. Conf. Learn. Represent., Dec. 2014, pp. 1–9.

[48] Y. Shen, J. Qin, J. Chen, L. Liu, F. Zhu, and Z. Shen, ‘‘Embarrassingly sim-
ple binary representation learning,’’ in Proc. IEEE/CVF Int. Conf. Comput.
Vis. Workshop (ICCVW), Seoul, South Korea, Oct. 2019, pp. 2883–2892.

[49] H. Lai, Y. Pan, Y. Liu, and S. Yan, ‘‘Simultaneous feature learning and hash
coding with deep neural networks,’’ 2015, arXiv:1504.03410.

[50] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, andY. Zheng, ‘‘NUS-WIDE: A
real-world web image database fromNational University of Singapore,’’ in
Proc. CIVR. New York, NY, USA: Association for Computing Machinery,
Jul. 2009, pp. 1–9.

[51] H.-F. Yang, K. Lin, and C.-S. Chen, ‘‘Supervised learning of semantics-
preserving hash via deep convolutional neural networks,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 2, pp. 437–451, Feb. 2018.

[52] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.
Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

PHAM VU THAI MINH was born in Hanoi,
Vietnam. He is currently pursuing the B.Sc. degree
in IT with ICT Department, FPT University,
Hanoi. From 2022 to 2023, he was a Research
Assistant with the SAP-LAB Innovation Labora-
tory, FPT University. Since 2023, he has been a
Data Scientist with Coc Coc. His current research
interests include computer vision, deep learning,
image/video indexing and retrieval, and image
processing.

VOLUME 11, 2023 30107

http://dx.doi.org/10.1109/TMM.2022.3222598


P. V. T. Minh et al.: RelaHash: Deep Hashing With Relative Position

NGUYEN DONG DUC VIET was born in
Hai Duong, Vietnam. He is currently pursuing the
B.Sc. degree in IT with ICTDepartment, FPTUni-
versity, Hanoi, Vietnam. Since 2019, he has been a
Research Assistant with the SAPLAB Innovation
Laboratory, FPT University. From 2021 to 2022,
he was with FPT Software, as a Full-Stack
Engineer. His current research interests include
computer vision, image/video processing, object
detection, and anomaly detection.

NGO TUNG SON received the bachelor’s degree
in computing from theHanoi University of Science
and Technology and the master’s degree in com-
puter science fromLa Rochelle University, France.
He is currently pursuing the Ph.D. degree in
information technology with Universiti Teknologi
Petronas (UTP), Malaysia. From 2008 to 2014,
he was a software engineer in some local and
international companies in the software develop-
ment industry. From 2014 to 2016, he joined the

Panasonic Research and Development Center, Hanoi, Vietnam, as a Senior
Research and Development Engineer. Since 2016, he has been with FPT
University, as a Lecturer in information technology. He was the TeamLeader
of the Intelligent and Adaptive System with SAP-LAB Innovation, FPT Uni-
versity, in 2019. His research interests include artificial intelligence, adaptive
and intelligent systems, and decision support systems. He has publishedmore
than 40 research articles in his research fields.

BUI NGOC ANH received the bachelor’s and
master’s degrees in computer science from the
Hanoi University of Technology. Since 2003,
he has been worked on various projects in the
software industry. With nearly 20 years of expe-
rience in the software industry, he is one of
the experts with FPT Technology Corporation,
Vietnam. In 2011, he started his work as an
IT Lecturer with FPT University, Vietnam. Since
2019, he has been the Head of Computing Funda-

mentals Department, FPT University, where he is currently the Leader of
the SAP-LAB FPT Laboratory. His research interests include big data, data
mining, computer vision, and software engineering.

JAFREEZAL JAAFAR (Senior Member, IEEE)
received the B.Sc. degree in computer science
from Universiti Teknologi Malaysia, in 1998, the
M.App.Sc. degree in IT from RMIT University,
Australia, in 2002, and the Ph.D. degree from the
University of Edinburgh, U.K., in 2009. He joined
the Department of Computer and Information
Sciences, Universiti Teknologi Petronas (UTP),
Malaysia, in 1999, where he was appointed as the
Head, from 2012 to 2016. He was the former Head

of the Center for Research in Data Science, from 2017 to 2020, which focuses
on the implementation of machine learning and predictive analytic in oil and
gas (O&G) industry. He is currently an Associate Professor and the Dean of
the Faculty of Science and Information Technology, UTP. He is also active
in conducting professional training in AI and big data analytic for the public
and industry. His main research interests include AI, machine learning, and
data analytics, with over 100 technical publications. He was a member of
the Academy Science Malaysia SIG in machine learning, a Senior Mem-
ber, and an Executive Committee Member of IEEE CS Malaysia Chapter,
from 2016 to 2018, and MyAIS, from 2017 to 2019. Based on his experience
and expertise, he has been awarded as the Professional Technology (P.Tech.)
by the Malaysia Board of Technology.

30108 VOLUME 11, 2023


