
Received 9 February 2023, accepted 13 March 2023, date of publication 20 March 2023, date of current version 27 March 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3259108

A Mean-VaR Based Deep Reinforcement Learning
Framework for Practical Algorithmic Trading
BOYI JIN
School of Insurance, Shandong University of Finance and Economic, Jinan 250014, China

e-mail: 20110983@sdufe.edu.cn

ABSTRACT It is difficult to automatically produce trading signals based on previous transaction data and the
financial status of assets because of the significant noise and unpredictability of capital markets. This paper
proposes an innovative algorithm to solve the optimal portfolio problem in stock market trading activities.
Our novel portfolio trading strategy utilizes three features to outperform other benchmark strategies in a real-
market environment. First, we propose a mean-VaR portfolio optimization model, the solution of which is
based on the actor-critic architecture. Unlike the existing literature that learns the expectation of cumulative
returns, the critic module learns the cumulative returns distribution by quantile regression, and the actor
module outputs the optimal portfolio weight bymaximizing the objective function of the optimizationmodel.
Secondly, we use a linear transformation function to realize short selling to ensure investors have profit
opportunities in the bear market. Third, A multi-process method, called Ape-x, was used to accelerate the
speed of deep reinforcement learning training. To validate our proposed approach, we conduct backtesting for
two representative portfolios and observe that the proposed model in this work is superior to the benchmark
strategies.

INDEX TERMS Deep reinforcement learning, algorithmic trading, actor-critic architecture, trading strategy.

I. INTRODUCTION
Algorithmic trading, which has been widely used in the finan-
cial market, is a technique that uses a computer program
to automate buying and selling of stocks, options, futures,
and cryptocurrency. Institutional investors such as pension,
mutual, and hedge funds usually use algorithmic trading to
find themost favourable execution price, reduce the impact of
severe market fluctuations and improve execution efficiency.
Algorithmic trading has a far-reaching effect on the overall
efficiency and microstructure of the capital market. There-
fore, asset pricing, portfolio investment, and risk measure-
ment may undergo revolutionary changes.

Classical algorithmic strategies includes arrival price strat-
egy [1], [2]; volume-weighted average price strategy [3], [4];
time-weighted average price strategy [5], implementation
shortfall strategy [6], [7]; guerrilla strategy [8], among oth-
ers. As artificial intelligence (AI) advances quickly, more

The associate editor coordinating the review of this manuscript and

approving it for publication was Emanuele Lattanzi .

academics have begun utilizing deep reinforcement learning
to implement algorithmic trading. Through its excellent fea-
ture representation ability of the deep neural network to fit
the state, action, value, and other functions, deep reinforce-
ment learning has demonstrated strong learning ability and
decision-making ability in autonomous driving [9], [10], job
scheduling [11], [12], and game playing [13], [14]. In addi-
tion to being more advanced than human experts in particular
domains, it also has the potential to achieve artificial gen-
eral intelligence [15]. As a result, researchers started using
deep reinforcement learning to handle portfolio optimization
issues. The actor-only method [16], [17], [18], the critic-only
method [19], [20], [21], and the actor-critic method [22], [23],
[24] are now being used by researchers to examine financial
trading.

According to the modern portfolio theory [25], investors
need to allocate their assets in different securities markets
and products at appropriate proportions to maximize the
expected return in a certain period while controlling the
risk at a certain level [26]. Hence, balancing risk and return

28920
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 11, 2023

https://orcid.org/0000-0001-5053-0980
https://orcid.org/0000-0002-6568-8470

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

is very important in portfolio optimization decision [27].
Nevertheless, classical reinforcement learning algorithms,
such as Deep Q-Network(DQN), Policy Gradient(PG), and
Asynchronous Advantage Actor-Critic(A3C), can only learn
the expectation of a portfolio’s cumulative return by train-
ing the value function or action-value function. These algo-
rithms ignore other important information, such as volatil-
ity and tail risk, and are only suitable for investors as a
neutral risk type. Although [22], [24], [28] consider the
risk-adjusted return in the reward function, these methods
can not measure the cumulative risk under multi-period con-
ditions. So far, no research has focused on cumulative risk
control in multi-period investment strategies.

In this paper, we propose a novel algorithm that bal-
ances the risk and return in long-term investment horizons.
Specifically, we first construct a mean value-at-risk (MVaR)
optimization model, the solution of which is based on an
actor-critic architecture. Both the actor and critic modules are
parameterized with neural networks. Unlike previous studies
that only focus on the expectation of a portfolio’s cumulative
returns, in the paper, the critic module is to learn the distri-
bution of cumulative returns by the distributional reinforce-
ment learning algorithm proposed by [29]. The advantage of
this method is that it can measure the tail risk. Then, the
actor module outputs the optimal weights by maximizing
the abovementioned MVaR optimization model. Experimen-
tal result shows that the proposed algorithm yields higher
profit and undertakes lower risk than the four benchmark
strategies.

Additionally, short selling is allowed in lots of stock
markets. Short selling can provide investors with profit
opportunities in the bear market, help reduce the stock mar-
ket’s speculation and volatility, and increase the capital mar-
ket’s liquidity. Short selling has been considered in many
deep reinforcement learning algorithms. For instance, [30]
proposed an improved deep reinforcement learning (DRL)
method for automated stock trading. Experimental results
show that allowing short selling can improve the algorithm’s
overall performance. [31] use the classic Q-learning algo-
rithm, which allows short selling, to evaluate the performance
of cumulative profits by maximizing different forms of value
functions. Nevertheless, these studies focus on single-asset
trading. Most traders generally hold multiple securities, and
few studies have considered the short-selling problem in
this typical case. In this paper, we use a linear function to
transform the output of the softmax function, which was used
by [24], into the final portfolio weight. This transformation
can not only realize the self-financing constraint but also
control the scale of short selling. Furthermore, the maxi-
mum short-selling amount, which can also be considered
the maximum loss that investors may suffer, can be deter-
mined by adjusting related parameters of the linear transfor-
mation function mentioned above. We further compare the
performance of algorithms with and without short selling
constraints. Experimental results show that short selling can
increase overall performance in some cases.

Finally, reinforcement learning training is mainly divided
into two parts: the sample collection process, that is, the agent
interacts with the environment to generate training samples,
The other is the training process that uses the collected
training samples to update the strategy. These two parts are
coupled in classical algorithms such as PG [16], [18] and
DQN [32], [33], [34], making the training process very time-
consuming. However, in the securities market, profit opportu-
nities are fleeting. Therefore, it is worthwhile to research how
to increase the reinforcement learning algorithm’s training
speed. In this paper, we leverage a multi-process algorithm,
called the Ape-x algorithm proposed by [35], to speed up
the training. The Ape-x algorithm separates data collection
from strategy learning, uses multiple parallel agents to collect
experience data, shares a large experience data buffer, and
sends it to learners for learning. The original Ape-X, which
was based on DQN and Deep Deterministic Policy Gradi-
ent(DDPG), was utilized in the feedback flow separation
control system [53], StarCraft games [54] and controlling
vehicles for autonomous driving [55]. The following two
characteristics are where this paper most clearly improves:
we first connect the Ape-x with a distributed reinforcement
learning framework for off-policy learning. The portfolio
optimization issue is then solved using this architecture for
the first time.

The rest of this paper is organized as follows. In Section II,
we review the related literature and present the differ-
ences between our study and previous studies. Section III
provides an overview of the preliminaries and the back-
ground of financial trading problems, and Section IV
introduces our proposed R3L algorithm. In Section V,
we detail the setups of our experiments and results. Finally,
Section VI presents the conclusions and directions of future
work.

II. RELATED WORKS
In this section, we review the literature works regarding deep
reinforcement learning in financial trading. As mentioned
in the introduction, the algorithms used in financial trading
mainly include the critic-only method, the actor-only method,
and the actor-critic method. Then, we will elaborate on the
application of the three methods.

A. THE CRITIC-ONLY METHOD
The critic-only method is also called the value-based method.
DQN is a well-known value-based deep reinforcement learn-
ing algorithm, the core of which is to use a neural network to
replace the q-label, i. e. the action value function. The input
of the neural network is state information, and the output
is the value of each action. Therefore, The DQN algorithm
can be used to solve the problem of continuous state space
and discrete action space but can not solve the problem of
continuous action space.

DQN and its improved algorithms have received extensive
attention in the research of financial trading. [33] adopted
a DRQN-based algorithm, which was applied to the foreign

VOLUME 11, 2023 28921

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

exchange market from 2012 to 2017, and developed a motion
enhancement technology to mitigate the lack of exploration
in Q-learning. Experimental results showed that the annual
return of some currencies was 60%, with an average of
about 10%. [28] proposed a novel deep Q-learning portfolio
management strategy. The framework consists of two main
components: a group of local agents responsible for trading
a single asset and a global agent that rewards each local
agent based on the same reward function. The results showed
that the proposed approach was a promising method for
dynamic portfolio optimization. The deep Q-learning net-
work proposed by [37] is based on an improved Deep Neural
Networks(DNN) structure consisting of two branches, one
of which learned action values while the other learned the
number of shares to take to maximize the objective function.
[34] discretized the action space by fixing the trading amount,
in which traders can buy or sell a specific asset for a fixed
amount. Short selling is not allowed, and a mapping function
is designed to transform the infeasible action into feasible
action.

Since accurate prediction of stock prices is beneficial
for investment decisions, researchers use deep learning to
solve the problem of time series prediction of stock returns.
[20] deploys Long-Short Term Memory(LSTM) networks
for predicting out-of-sample directional movements for the
constituent stocks of the S&P 500 from 1992 until 2015.
[56] uses self-organizing maps (SOMs) for clustering the
historical prices and produces a low-dimensional discretized
representation of the input space. [57] proposes a hierarchical
attention network for stock prediction (HATS) which uses
relational data for stock market prediction.

B. ACTOR-ONLY METHOD
In the actor-only method, the action taken by the agent
can be learned directly by a neural network. The advantage
of this method is that it makes it available for continuous
action space. [16] constructed a recursive deep neural net-
work for environmental perception and recursive decision-
making. Then, deep learning is used for feature extraction
and combined with fuzzy learning to reduce the uncertainty
of input data. Another novelty of this paper is a variant of
Backpropagation through time(BTT) to handle the vanish-
ing gradient problem. [17] used PG approach for financial
trading. Its main contribution is to analyze the advantages
of the LSTM network structure over the fully connected
network and to compare the impact of some combination of
technical indicators on revenue. [18] used the PG algorithm
to study the trading problem of financial and commodity
futures. The innovation is that they used candlesticks as a
generalization of price movements over some time, and the
candlesticks are decomposed into different subparts by three
clustering methods(i.e., K-means, fuzzy c-means clustering
method, and online clustering method). They proved that the
above-preprocessing data methods could improve the algo-
rithm’s overall representation.

The drawback of the Actor-only method is that, due to the
policy strategy, the number of interactions between agents
and the environment is significantly increased compared with
a value-based method. As a result, the training is very time-
consuming.

C. ACTOR-CRITIC METHOD
The actor-critic method contains two parts: an actor, which
selects action based on probability or certainty, and a critic,
which evaluates the score of the action taken by the actor.
The actor-critic method combines the advantages of the
value-based and policy-based methods, which can not only
deal with continuous and discrete problems but also carry
out the one-step update to improve learning efficiency.
[22] exploited Gated Recurrent Unit(GRU) to extract finan-
cial features. They proposed two algorithms: the Gated Deep
Q-learning trading strategy(GDQN) based on a critic-only
method and the Gated Deterministic Policy Gradient trading
strategy(GDPG) based on the Actor-Critic method. Experi-
mental results show that GDQN and GDPG outperformed the
Turtle trading strategy [38] and DRL trading strategy [16],
and the performance of GDPG is more stable than the GDQN
in the ever-evolving stockmarket. [23] adopted three versions
of the RL algorithm based on Deep Deterministic Policy
Gradient (DDPG), Proximal Policy Optimization (PPO), and
Policy Gradient (PG) for portfolio management. A so-called
Adversarial Training was proposed to reach a robust result
and to consider possible risks in optimizing the portfolio
more carefully. Using Proximal Policy Optimization, [24]
proposed a unique reinforcement learning technique for port-
folio optimization. One of its key features is that the proposed
model’s asset count is dynamic. According to experiments
conducted on a bitcoin market, the proposed method outper-
formed three state-of-the-art algorithms presented by [20],
[39], and [40]. Reference [41] compared the performance
of deep double Q-learning and PPO to several benchmark
execution policies and found that PPO realizes the lowest
total implementation short-fall across exchanges and cur-
rency pairs.

To summarise, these studies used various RL algorithms
for financial trading problems in different settings. The exist-
ing literature also has the following problems. First, most
literature determines the optimal action(portfolio decision)
based onmaximizing the expectation of the cumulative return
and pays less attention to the risk. Although [22], [24], [28]
considers the risk factor in the reward function, these authors
can not measure the risk of cumulative return. Second, short
selling is allowed in many strategies [16], [37], [50], but these
papers considered trading for only one asset; investors often
hold multiple assets to diversify risk. Although [34], [39]
consider trading for multiple assets, short selling was not
allowed, which means that investors will not be able to make
profits in the bear market. Third, the interaction between the
agent and the environment is very time-consuming in the
training process. Most existing literature does not consider
how to improve the training speed. Thus, we contribute to the

28922 VOLUME 11, 2023

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

literature by deriving a portfolio trading strategy with no such
issues mentioned above.

III. PRELIMINARIES
In this section, we introduce some preliminaries about MDP
and elaborate state space, action space, and rewards function
of the proposed algorithm.

A. MARKOV DECISION PROCESS
Markov decision process (MDP) is a mathematical model
for sequential decision problems, which is used to simulate
the random strategies and rewards that agents can realize in
the environment where the system state has Markov prop-
erties. Portfolio optimization is a typical sequential deci-
sion problem. Investors dynamically adjust portfolio weights
according to market information. Thus, we can consider the
portfolio allocation problems as a MDP. In the stock market,
it is difficult for agents to observe complete state variables,
and some information that affects the stock price can not
be observed, which means that the Markov characteristic is
rarely established. The partially observable Markov decision
process(POMDP) is an alternative method. In this method,
the agent only captures part of the information of the current
state environment. A four-tuple(S,A,Pa(s, s′),Ra(s, s′)) can
describe the POMDP.

where:
• S is a finite set of the observable state.
• A is a finite set of actions (and As is the finite set of

actions available from state s).
• Ra(s, s′) is reward function.
• Pa(s, s′) = Pr(st+1 = s′∥st = s, at = a) is the state

transition probability.
The interaction between an agent and financial environ-

mentwill produce a trajectory τ = {s0, a0,R0, s1, a1,R1, . . .}.
Gt is the discounted cumulative reward, which the agent can
obtain at time t expressed as follows:

Gt =

T∑
i=t

γ i−tR(si, si+1) (1)

where γ ∈ [0, 1] is the discounted rate.
To learn the optimal strategy, we use the value function.

There are two types of value functions in reinforcement learn-
ing: state value function, denoted by V (s), and action-value
function, denoted by Q(s, a). The state value function, shown
in Eq.(2), represents the expectation of cumulative rewards
from a certain state s.

V (s) = E[Gt∥st = s] (2)

The action value function, given in Eq.(3), is the expected
return obtained after the agent executes an action in the
current state s.

Q(s, a) = E[Gt∥st = s, at = a] (3)

FIGURE 1. Market feature tensor.

B. STATE SPACE
The limited observability of the market environment is a
significant and challenging issue in algorithmic trading.
Investors might have access to a broader range of information
than they have in the current complex market environment.
It is crucial to know how to handle this restricted amount of
information. The state at the period t, denoted by st , consists
of three types of variables: historical data for the assets(Kt),
portfolio weights(wt) and trading time step(t). The historical
data of the selected portfolio consists of raw data and tech-
nical indicators. The raw data includes the price open, close,
high, low, and volume(OCHLV). Technical indicators consist
of a list of candlestick patterns, including bearish, bullish, sig-
nificant, hammer, inverse hammer, bullish engulfing, piercing
line, morning star, bullish harami, hanging man, shooting
star, bearish engulfing, evening star, three black crows, dark
cloud cover, bearish harami, doji, spinning top(see [43] for
details). These technical indicators are heuristic or mathe-
matical calculations based on the price, volume and other
data of stocks. All historical data can be represented by a
tensor with dimension n× g× h illustrated in Fig.1. N is the
number of risky assets, g is the number of features per asset,
and h denotes a window size which is the number of latest
feature values the agent can observe. Portfolio weight, also
called portfolio vector, is the percentage of a total portfolio
represented by a single asset. The rationality of adding a time
index to the critic network is that it reflects the time value of
money, which refers to the fact that a dollar in hand is worth
more than a dollar promised in future. It means a cash flow
(or cash flows) has different values at different time points.

st = (Kt ,wt , t)

wt = (w1,t ,w2,t , . . .wn,t)

Kt = (K1,t ,K2,t , . . .Kn,t)

Ki,t = (Ki,t,1, . . .Ki,t,g), i = 1, . . . n

Ki,t,j = (Ki,t,j,t−h+1, . . .Ki,t,j,t), j = 1, . . . g (4)

where Ki,t,j,t−k (k = 0, . . . h − 1) represents the value of the
jth feature lag period k of asset i in period t .

C. ACTION SPACE
At each time step, the agent must redetermine the optimal
portfolio weight according to the updated state at the end of

VOLUME 11, 2023 28923

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

each period. The agent executes a trading action according
to the actor network. We get the actor network through the
following steps. First, We construct a neural network Hϕ(s)
whose output is an n-dimensional vector. Since the determin-
istic strategies of DDPG lack exploration, we need to add
noise artificially. [44] uses Ornstein Uhlenbeck process(OU)
as action noise; however, [45] found that noise drawn from
the OU process offered no performance benefits. In this
paper, following [46], we add Gaussian noise, denoted by ϵ,
to output of Hϕ(s), which is given by Eq.5.

A = Hϕ(s) + ϵ

ϵ ∼ clip(N (0, σ), −c, c) (5)

where A = {A1,A2, . . .An} is a n-dimensional vector. Sec-
ond, to meet self-financing conditions, we use the softmax
layer to transform A into a new variable vector SA =

{SA1, SA2, . . . SAn} that represents portfolio weight. This
transformation is given in Eq.(6).

SAi =
expAi∑n
i=1 exp

Ai
, i = 1, 2, . . . n (6)

The drawback of this transformation is that the weight
of each asset in a portfolio is greater than zero, which
makes short selling impossible. Short selling occurs when
an investor borrows a security and sells it on the open mar-
ket, planning to repurchase it later for less money. It allows
investors to benefit from a bear market and use capital pro-
ceeds to overweight the portfolio’s long-only component.
Different from the existing literature, we realize short selling
of assets through the following transformation(Eq. (7)).

wi = SAi × δ −
δ − 1
n

, i = 1, 2, . . . n (7)

where wi(i = 1, 2, · · · n) represents the proportion of
asset i after transformation and δ(called Delta) represents
adjustment parameter. It can be observed that this linear trans-
formation can not only meet the self-financing constraints
of a portfolio but also realize short selling. In particular,
δ = 1 means short selling is not allowed, and δ = 0 indicates
that each asset’s portfolio weight equals 1/n. Furthermore,
in this paper, our portfolio includes four risky assets and a
risk-free asset(n=5); if the adjustment parameter is set to
3(δ = 3), the portfolio weight of a single asset ranges from -
40% to 260%, which means the maximum proportion of short
selling in total assets is 160%.

D. REWARDS
Multiple portfolio problems require investors to make contin-
uous dynamic decisions, and each decision will produce an
immediate reward denoted by rewardt . The reward reflects
the performance of an agent’s action. Let assett denote port-
folio value at the end of period t . The reward is defined
as portfolio return in period t, computed as the following
equation:

rewardt =
assett
assett−1

− 1 (8)

Suppose we do not take into account transaction cost, portfo-
lio value at the end of period t equals portfolio value at the
end of period t−1 plus the value-added part in period t, which
can be expressed as follows:

assett = assett−1 + assett−1 ×

n∑
i=1

wi,t−1 × Ri,t (9)

According to the Eq.(8) and Eq.(9), rewardt can be rewrit-
ten as follows:

rewardt =

n∑
i=1

wi,t−1Ri,t (10)

If we consider transaction cost, assett equals assett−1 plus
the value-added part in period t and minus transaction costs,
which can be computed as follows:

assett = assett−1 + assett−1 ×

n∑
i=1

wi,t−1 × Ri,t−

c1 ×

n∑
i=1

selli,t × sellini,t × pricei,t−

c2 ×

n∑
i=1

buyi,t × buyini,t × pricei,t (11)

where:
• c1 and c2 is the transaction cost for selling and buying.
• selli,t and buyi,t are dummy variables, indicating whether

or not to buy or sell asset i at the end of period t.
• buyini,t and sellini,t denote the trade size of asset i at

the end of period t , which should be greater than or equal to
zero.

In addition, the share of asset i held by an investor at the end
of period t , represented by assett×wi,t , satisfies the following
equation:

assett × wi,t = assett−1 × wi,t−1 × (1 + Ri,t)

+ buyi,t × buyini,t × pricei,t
− selli,t × sellini,t × pricei,t (12)

Obviously, assett × wi,t equals to the cumulative value of
assett−1 × wi,t−1 in period t plus the shares bought(buyi,t ×

buyini,t × pricei,t) minus the shares sold(selli,t × sellini,t ×

pricei,t). Since it does not make sense to buy and sell an
asset simultaneously, which increases transaction costs, one
of selli,t and buyi,t must be zero.

If assett−1, wi,t−1 and wi,t are given, we could adjust
trading strategies to maximize the portfolio value assett .
This optimization problem can be formulated as nonlinear
programming, the objective function of which is to maximize
assett , and the decision variables are selli,t , buyi,t , buyini,t and
sellini,t . The nonlinear programming model can be expressed

28924 VOLUME 11, 2023

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

as follows:

Maximize : assett
Subject to :

assett × wi,t = assett−1 × wi,t−1 × (1 + Ri,t−1)−

selli,t × sellini,t × pricei,t+

buyi,t × buyini,t × pricei,t

assett = assett−1 + assett−1 ×

n∑
i=1

(wi,t−1 × Ri,t−1)−

c1 ×

n∑
i=1

selli,t × sellini,t × pricei,t−

c2 ×

n∑
i=1

buyi,t × buyini,t × pricei,t

selli,t × buyi,t = 0

selli,t + buyi,t = 1

sellini,t ≥ 0

buyini,t ≥ 0 (13)

The Nelder-Mead simplex algorithm is used to solve the
above optimization problems. This algorithm is one of the
simplest ways to optimize a fairly good function. It only
requires functional evaluation and is an ideal choice for
minimizing problems. However, since it does not use any
gradient evaluation, it may take longer to find the minimum
value. To accelerate the convergence rate of the optimization
model mentioned above, selecting an appropriate starting
point is essential. An ideal starting point can shorten the
model optimization time and avoid falling to a local mini-
mum. This paper uses the following methods to determine the
starting point: First, set the transaction cost as zero, that is,
c1 = c2 = 0, and solve the asset value(assett) through
Eq.(11); Then, the transaction share(sellini,t , buyini,t) is
obtained by solving Eq.(12). The transaction cost of single
trading is relatively low comparedwith the asset value. There-
fore, the transaction share obtained by the above method
should be close to the solution of the optimal model.

IV. METHODOLOGY
In the first part of this section, we describe the risk-return
reinforcement learning(R3L) algorithm in detail. The sec-
ond part of this paper introduces the structure of the neural
network. The third part of this section is the architecture
of Ape-X.

A. PROPOSED ALGORITHM
In the context of the deep reinforcement learning algorithm,
the agent chooses the optimal action in light of the cur-
rent environmental state to maximize cumulative return. This
paper’s algorithm is built on actor-critic architecture, consist-
ing of actor and critic networks. Its framework is shown in
Fig.2. In addition, each network has its corresponding target
network, so the algorithm includes four networks, namely the

actor-network, denoted by µϕ(s) with parameter ϕ, and the
critic- network, denoted by Kω(s, a) with parameter ω, the
target actor-network, denoted by µ′

ϕ′ (s) and the target critic-
network, denoted by K ′

ω′ (s, a).
In classical actor-critic architectures such as A3C, TD3,

and DDPG, the actor-network updates ϕ by maximizing the
expectation of cumulative rewards, and the critic network
updates ω by minimizing the error between the evaluation
value and the target value. The algorithm proposed in this
paper is different from the above algorithms. Inspired by dis-
tributional reinforcement learning(DRL) initially proposed
by [46], we estimate the distribution, rather than the expecta-
tion, of cumulative rewards by the critic network.

Distributional reinforcement learning is a new kind of
reinforcement learning algorithm, mainly learning the dis-
tribution of cumulative rewards. The distributional Bellman
operator(τ) is shown in Eq.(14).

τZ (s, a) D
= R(s, a) + γZ (s′, a′) (14)

where Z (s, a) represents the cumulative return obtained by
taking action a in state s, which is a random variable, R(s, a)
is the rewards function.

Under the Wasserstein metric, [46] proved that the dis-
tributional Bellman operator is a γ -contract operator. The
learning task of DRL is to make the distribution Z (s, a) and
the target distribution R(s, a)+ γZ (s′, a′) as similar as possi-
ble. Following [29], we utilize quantile regression to estimate
network parameters. Quantile regression, which projects the
update of distributional Bellman to the quantile distribution,
uses a parameterized quantile distribution to approximate the
value distribution. Let [θ1, θ2, . . . , θN], which is the output of
critic network, denotes the N quantiles of Z (s, a). The target
distribution is shown in Eq.(15), which can be regarded as
ground truth.

τθ ′
j = r + γ θ ′

j , ∀j (15)

The loss function of critic network is defined in Eq.(16).

Lω =
1
N

N∑
i=1

N∑
j=1

[ρτ̂i (τθ ′
j − θi)] (16)

where

ρτ = ∥τ − δµ<0∥|u| = (τ − δµ<0)u (17)

Because |u| is not differentiable at zero, we take the Huber
loss function, given in Eq.(18), instead of |u|.

0κ =

1
2
u2 if |u| ≤ κ

κ(|u| −
1
2
κ) otherwise

(18)

Thus, we get a new loss function, also called the quantile
Huber loss function, expressed as follows:

ρκ
τ = ∥τ − δµ<0∥0κ (19)

As mentioned in the introduction section, the objective
function of portfolio optimization is the weighted sum of the

VOLUME 11, 2023 28925

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

FIGURE 2. The general architecture of the proposed model.

mean and VaR of portfolio cumulative return. If we take N
uniform quantiles, the mean of portfolio cumulative return,
denoted byMR, can be approximately equal to the average of
quantiles of cumulative return, shown in Eq.(20).

MR =

∑N
i=1 θi

N
(20)

VaR is used to measure risk in this paper. VaR refers to
the maximum portfolio loss for a given confidence level in
a specific period. It can be described in Eq.(21), in which
Rp and α denote portfolio cumulative return and confidence
level, respectively.

Prob(Rp ≤ −VARα) = 1 − α (21)

Because VaRα is a quantile of portfolio cumulative return,
in this paper, it can also be expressed as the following:

VaRα = −θN×(1−α) (22)

Given the value of N and α, we can easily get VaRα . For
example, if N = 100, α = 95%, VaR95% = −θ5, if
N = 200, α = 90%, VaR90% = −θ20.

According to classical modern portfolio theory, portfolio
selection aims to construct an optimal portfolio model that
maximizes expected returns under a given acceptable risk
level(ϖ). This optimal model is shown in the following:

Max MR

s.t. VaRα = ϖ (23)

The optimization mentioned above process determines
the optimal weights for various risk levels. In other words,
investors have a variety of portfolio options, which unques-
tionably makes decision-making more challenging. The pro-
gramming as mentioned above problem can be changed into

a single objective programming problem using the following
function in order to arrive at a single ideal solution:

Uϕ = MR− ζ × VARα

=

∑N
i=1 θi

N
+ ζ × θN∗(1−α) (24)

where Uϕ is the so-called utility function, ζ (called Zeta)
denotes the risk attitude of the investor, the higher ζ , the
higher the risk aversion of investors, and the more conser-
vative investment strategies will be adopted.

The loss function and utility function for a mini-batch,
denoted by L and U respectively, are given in Eq.(25).

L =

M∑
k=1

Lkω

U =

M∑
k=1

U k
ϕ (25)

whereM represent batch size.

B. NEURAL NETWORK
We need to model the neural network structure to explore
functional patterns and extract informative features. Based
on the time series nature of stock data, the gated recurrent
unit(GRU) is utilized to construct an informative feature rep-
resentation. The GRU has two gates, i.e., a reset gate and an
update gate. These two gates determine which information
can ultimately be used as the output of the gating recurrent
unit. The reset gate determines how to combine the new input
information with the previous memory, and the update gate
defines the amount of prior memory saved to the current time
step. The actor and critic network structure is shown in Fig.3,

28926 VOLUME 11, 2023

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

FIGURE 3. GRU structure.

FIGURE 4. Actor network structure.

FIGURE 5. Critic network structure.

Fig.4 and Fig.5. Since GRU, LSTM, and Recurrent Neural
Networks(RNN) have similar structural features, we also
used LSTM and RNN networks in the sensitivity analysis.
In addition, Several authors have leveraged convolutional

Neural Networks(CNN) to perform financial trading strategy
[47], [48], treating the stock trading problem as a computer
vision application by using time-series representative images
as input. The convolutional neural network has unique advan-
tages in speech recognition and image processing with its

particular structure of local weight sharing. Its design is
closer to the actual biological neural network. Weight shar-
ing reduces the complexity of the network, especially the
feature that the images of multi-dimensional input vectors
can be directly input into the network, which avoids the
complexity of data reconstruction in the feature extraction
and classification process. Because of CNN’s robust feature
representation ability, we studied the impact of CNN on
the performance of the proposed algorithm in the sensitivity
analysis.

C. DISTRIBUTED FRAMEWORK
In this paper, to make the training result robust, the actor
must interact with the environment at different epochs(or iter-
ations) several times, which is very time-consuming. We uti-
lize Ape-X architecture, proposed by [35], to speed up the
training procedure. This algorithm decouples acting from
learning and decomposes the learning process into three parts.
In the first part, there are multiple actors. Each actor interacts
with its respective environment based on the shared neural
network, accumulating experience and putting it into the
shared experience replay memory. We refer to this part, run-
ning on CPUs, as acting. In the second part, a single learner
samples data from the replay memory and then updates the
neural network. We refer to this part as the learning part
running on a GPU. The third part is mainly responsible for
data transmission. We refer to this part, running on CPUs,
as communication.

We use a multiprocessing method to implement Ape-X.
Specifically, there are 22 parallel processes, of which 20 are
responsible for interacting with the environment, one pro-
cess is accountable for updating network parameters, and
one process is responsible for data exchange. The proposed
method’s general architecture and the algorithm’s pseudo-
code are shown in 1.

V. EXPERIMENTAL SETUP AND RESULT
In order to verify the effectiveness and robustness of the
proposed trading strategy, this section details datasets, per-
formance measures, benchmark models, technical details and
experimental results. In addition, we also need to make the
following assumptions: First, all transactions are made at the
close price at the end of each trading period; Second, the
market size is large enough that the price of security and
market environment is not affected by the transactions; Third,
since frequent adjustment of portfolio weights will gener-
ate many transaction costs, we adjust the portfolio weights
once a week; finally, the investment period is set to one
year.

A. DATASETS
We experiment with two different portfolios. The first
portfolio consists of four famous exchange trading funds
(ETFs) in the US market and a risk-free asset. The ETFs
portfolio includes SPDR S&P 500 ETF Trust (SPY),
Invesco QQQ Trust ETF(QQQ), SPDR Dow Jones Industrial

VOLUME 11, 2023 28927

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

TABLE 1. Pseudocode of the proposed method.

Average ETF(DIA), and iShares Russell 2000 ETF(IWM).
The reason for choosing these four funds is that they are
very representative and have a considerable scale. The SPDR
S&P 500 ETF was jointly launched by State Street Corp
and the American Stock Exchange on January 22, 1993.
As of June 21, 2022, the ETF was the world’s largest, with
$335.7 billion under management. The QQQ is an index ETF
that tracks the performance of 100 NASDAQ stocks, includ-
ing the top 100 NASDAQ stocks. The Russell 2000 Index
comprises 2000 listed companies with the lowest market
value in the Russell Index, reflecting the stock price changes
of small and medium-sized listed companies, including
retail, real estate, finance and other industries. The sec-
ond portfolio consists of stocks of four technology com-
panies on NASDAQ, including ORCL, AAPL, TSLA, and
GOOG, and a risk-free asset. The selected sample rate is
daily. All data used in this paper is available on Yahoo
Finance.

The sample period selected in this paper is from January 1,
2008, to September 31, 2022. The data for this period is
rich enough to represent current market conditions. In addi-
tion, we can find that the sample period also includes the
2008 financial crisis period, which is more conducive to
evaluating the robustness of trading strategies to this special
event. Finally, The trading horizon is divided into both train-
ing and testing sets as follows:

• Training set : 01/01/2008 → 31/12/2018.
• testing set : 01/01/2019 → 31/09/2022.
The potential distribution of the stock trading data stream

may change unpredictably over time, called concept drift.
Thesemay be caused by unexpected events (e.g. the Covid-19
pandemic). Following [51], we use passive detection methods
to solve the problem of concept drift. First, we train agents

based on historical data and then update the learning strategy
with the arrival of new data to allow concept drift without
discarding helpful knowledge.

Although the portfolio only includes five assets, it is
straightforward to increase the number of assets.

B. PERFORMANCE MEASURES
Risk and return are inseparable in the investment decision
process. Under normal circumstances, the risk is highly cor-
related with the return, and a high return means high risk.
Therefore, the performance measures must include these two
aspects. In this article, we use four types of performance
measures to evaluate the proposed trading strategy. The first
type of metric measures the profitability of the investment
strategy, i.e., total return. The second type of metric measures
investment risk, including variance and VaR. The third metric
type considers risk and returns, including the Sharpe and
Sortino ratios. The last type of metric is average turnover.
More detail about performance measures is as follows.

• Total return(TR). The total return is the rate of return
over a period. Total return, computed using Eq.(26), includes
capital gains, interest, realized distributions, and dividends.

TR = (Q[T] − Q[0])/Q[0] (26)

where Q[0] is the value of the initial investment;Q[T] is the
value of the portfolio at the end of the investment period.

• Value at risk(VaR). As mentioned above, VaR calcu-
lates the maximum loss of a portfolio over a given period on
a specified confidence level.

• Sharpe ratio(SR1). The Sharpe ratio, first proposed
by [49], is a measure of risk-adjusted return. This ratio,
computed using Eq.(27), reflects howmuch the return on risk
per unit exceeds the risk-free return. If the Sharpe ratio is

28928 VOLUME 11, 2023

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

positive, a portfolio’s average net value growth rate exceeds
the risk-free interest rate.

SR = (E[Rp] − Rf)/σp (27)

where E[Rp] is the expectation of portfolio return, Rf is risk-
free rate, σp is standard deviation of portfolio return.

•Sortino ratio(SR2).The Sortino ratio is a risk-adjustment
metric used to determine the additional return for each unit of
downside risk. It is similar to the Sharpe ratio, but the Sortino
ratio uses the lower partial standard deviation rather than the
total standard deviation to distinguish between adverse and
favorable fluctuations. The Sortino ratio can be expressed as
follows:

SR = (E[Rp] − Rf)/DR (28)

where DR is the lower partial standard deviation of portfolio
return.

• Standard deviation(SD). The standard deviation of the
portfolio variance can be calculated as the square root of the
portfolio variance.

•Average turnover(AT).Average turnover represents the
average level of change in portfolio weight, which is defined
in Eq.(29).

AT = 1/(2tf)
tf −1∑
t=0

l∑
i=1

| wt+1,i − wt,i | (29)

where tf is the investment horizon,wt,l denote weight param-
eter of asset i in investment period t.

C. BENCHMARK MODELS
To analyze the effectiveness of the proposed strategy, some
benchmark strategies, summarised hereafter, are selected for
comparison.

• Buy and hold(B&H). B&H is used as a benchmark
strategy by many researchers to compare with their proposed
strategies. Suppose that the holding proportion of all five
assets is 20% in the B&H strategy and remains unchanged
throughout the investment period.

• Sell and hold(S&H). S&H is also widely used as a
benchmark strategy. Assuming that in the S&H strategy,
the holding proportion of all four risky assets is -25%, the
proportion of risky-free assets is 200%, all of which remain
unchanged throughout the investment period.

• Random selected(RN). According to the efficient mar-
ket hypothesis (EMH), all valuable information has been
timely, accurate, and fully reflected in the stock price trend,
including the current and future value of the enterprise. With-
out market manipulation, investors cannot obtain excess prof-
its higher than the market average by analyzing past prices.
Any trading strategy based on historical data differs from the
randomly selected strategy.

• Mean − variance model. The mean-variance model,
introduced by Markowitz in 1952, aims to find the best
portfolio only by the first two moments of cumulative return.

TABLE 2. Summary of hyper-parameters.

Suppose there are n kinds of assets, R = (r1, . . . rn)T repre-
sents the expected return of a portfolio, W = (W1, . . .Wn)T

is the weight vector, 6 is the covariance vector of return, ζ is
risk aversion coefficient, 1 represents n× 1 dimensional unit
vector, we establish the following optimization model based
on utility maximization:

max U = W TR− ζW T6W (30)

s.t.1TW = 1 (31)

D. TECHNIQUE DETAIL
We obtain time window size and other hyper-parameters,
including replay buffer size, batch size, and discount factor,
through several tuning rounds. In addition, we need to set
some other hyper-parameters before training. Suppose the
risk-free rate of return is 2%, and the equivalent weekly return
is 0.038%. The transaction cost of buying and selling an asset
is set to 0.02%. The risk aversion parameter(ζ) and short
selling parameter(δ)are set to 0.5 and 3; because these two
parameters have significant impacts on investment decisions
and portfolio returns, we perform sensitivity analysis for
them in subsection V-E. The networks were trained through
the ADAM optimization procedure with a learning rate
of 10−5. The activation function is the Leaky Relu func-
tion. All parameters are summarised in Table 2. Finally,
the algorithms proposed in the paper are implemented in
python3.7.11 using pytorch1.10.2 and were run on a PC that
contains a sixteen-core 2.50GHz CPU with 16GB RAM and
NVIDIA Geforce RTX 3060 GPU.

E. RESULT AND DISCUSSION
The first detailed analysis concerns the execution of the pro-
posed algorithm on the ETFs portfolio. Fig.6 illustrates the
portfolio value trend when applying the proposed algorithm
and benchmark strategies in the testing set. We observe that
the final portfolio value of the proposed algorithm is 19.51%
higher than the S&H strategy, 18.0% higher than the RN
strategy, 8.1% higher than the MV strategy, and 7.9% higher
than the B&H strategy.

Table 3 further presents output performance measures
results when using the R3L algorithm and the benchmark
strategies. The R3L algorithm is optimal regarding risk,
return, and overall performance. The Sharpe ratio of the
proposed algorithm is 19.51% higher than the S&H strategy,
18.0% higher than the RN strategy, 8.1% higher than the MV

VOLUME 11, 2023 28929

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

FIGURE 6. Profit curves of different models on each portfolio.

TABLE 3. Main result.

strategy, and 18.0% higher than the B&H strategy. In addi-
tion, as the stock market was primarily bullish throughout the
test period, the B&H strategy outperformed other benchmark
strategies most of the time, while the performance of the S&H
strategy was the worst. The performance of the RN strategy
could be better. Since we did not consider the company’s
financial and internal non-public information, it does not
mean that the efficient market hypothesis is not tenable.

The same detailed analysis is performed on the stock port-
folio, which shows different characteristics compared to the
ETFs portfolio. Fig.6 illustrates the portfolio value trend of
different strategies. Similar to the ETFs portfolio, the R3L
strategy has the highest cumulative value at the end of the
investment period. Table 3 presents output performance mea-
sures results when using different trading strategies. It can
be noticed that from the perspective of the Sharpe ratio,
Sortino ratio, and VaR, the R3L algorithm is also optimal.
In this study, the critical parameters delta (delta) and zeta
(zeta) significantly impact the suggested algorithm’s overall
performance. Delta refers to the maximum permitted short
selling ratio; the higher the delta, the greater the potential for
profit for investors during a bad market. Zeta is a measure of
an investor’s risk attitude; the larger it is, the more risk-averse
the investor is, and the more daring their investment plans are
likely to be. The ability to extract features from various net-
work structures vary, as indicated in subsection IV-B. In order
to choose the optimum algorithm, it is vital to examine how
network architecture affects algorithm performance. On the
R3L strategy, we perform the sensitive analysis of the delta,

FIGURE 7. Profit curves of different δ on each portfolio.

TABLE 4. Sensitive analyse of delta.

theta, and network structure. Regarding various values, the
proposed model’s performance is assessed.

• Sensitive analysis of delta. Fig.7 illustrates the port-
folio value trend when applying the R3L algorithm with
a different delta. Portfolio value shows an upward trend
over time for the ETFs and stock portfolios when delta
equals 1 and 3. In this case, investors can obtain positive
returns at the end of the investment period. In contrast,
in other cases, the portfolio value shows significant volatility
over time, and investors receive negative returns at the end
of the investment period. Table 4 further shows the overall
performance of the proposed strategy concerning different
delta values. From the perspective of total return, Sharpe
ratio, and Sortino ratio, δ = 3 is optimal for the ETFs
portfolio, and δ = 1 is optimal for the stock portfolio.

It can be seen that the maximum amount of short selling
allowed is not the bigger, the better, which is explained by
the fact that, although short selling can provide investors with
profit opportunities in a bear market, it also brings more risks.
Therefore, it is essential to control the scale of short selling
appropriately.

• Sensitive analysis of zeta. Fig.8 illustrates the port-
folio value trend when applying the R3L algorithm with
different zeta. Table 5 further shows the overall performance
of the proposed strategy. It can be noticed that the change
in portfolio value over time is similar for different theta.
At the end of the investment period, the portfolio value is
the greatest for the ETFs portfolio when theta equals 3. From
the Sharpe and Sortino ratios perspective, ζ = 3 is also

28930 VOLUME 11, 2023

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

FIGURE 8. Profit curves of differentθ on each portfolio.

TABLE 5. Sensitive analyse of zeta.

FIGURE 9. Profit curves of different network structure on each portfolio.

optimal. The portfolio value is the greatest for the stock
portfolio when theta equals 4. From the standpoint of the
Sharpe ratio and Sortino ratio, ζ = 4 is also optimal. Nev-
ertheless, the VaR is the lowest when theta equals 2 for the
ETFs and stock portfolios.

From the above analysis, it can be seen that a higher risk
aversion coefficient does not necessarily lead to lower risk
and returns, which contradicts the classical portfolio theory.
One possible explanation is that our algorithm can predict the
stock based on historical data, so the algorithm proposed in
this article can enhance portfolio returns and reduce risk.

• Sensitive analysis of network structure. Fig. 9 illus-
trates the portfolio value trend when applying the R3L algo-
rithm with a different network structure. It can be observed

TABLE 6. Sensitive analyse of network.

that the changing trend of portfolio value is consistent under
different network structures, and only the final cumulative
value is slightly different. GRU and RNN obtained the max-
imum cumulative value for the ETFs and stock portfolios.
Table 6 further shows the overall performance. We find that
GRU performs best in the ETFs portfolio from the perspective
of the Sharpe ratio and Sortino ratio, and RNN performs best
in the stock portfolio from the perspective of the Sortino ratio.
In contrast, GRU performs best from the perspective of the
Sharpe ratio.

VI. CONCLUSION AND FUTURE WORK
We propose a novel deep reinforcement learning algorithm
called risk-return reinforcement learning(R3L) to derive a
portfolio trading strategy. Compared with previous studies,
the main innovations in this paper include three aspects:First,
we build a portfolio optimization model solved by an
enhanced deep reinforcement learning algorithm based on
actor-critic architecture.Second we implement portfolio short
selling through a linear transformation.Third, we use the
Ape-x algorithm to accelerate training. Experiments carried
out on the performance of the R3L algorithm demonstrate
that the proposed R3L is superior to the traditional bench-
mark strategies, such as buy-and-hold, sell-and-hold, ran-
dom select, and mean-variance strategies. Based on the total
return, Sharpe ratio, VaR and Sortino ratio results in the
one-year investment period, the R3L is more profitable with
lower risk than other benchmark strategies. In addition, based
on the results for the average turnover rate, the R3L algorithm
is more suitable for application in the real world than the
benchmark strategies are. In addition, although short selling
allows investors to profit in a bear market, the maximum short
selling permitted ratio is not the bigger, the better. Therefore,
investors should choose optimal short-selling parameters
according to investment objectives, asset types, and other fac-
tors to maximize portfolio return. Similarly, we must choose
appropriate risk attitude parameters and network structure to
optimize the portfolio’s overall performance.

Future research can be carried out from the following
aspects: First, according to to [50], VaR is not a coherent
risk measure, so we could consider using other risk mea-
surements, such as conditional value at risk(CVaR), to con-
struct the portfolio optimization problem in future research;
Second, this paper assumes that the trading volume is small

VOLUME 11, 2023 28931

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

compared to the market size, so the trading behaviour of
a single agent does not affect the market environment and
stock prices. However, the trading behaviour, even with a
small volume, still has a subtle impact on the stock price
and market environment. How to model the market envi-
ronment is one of the future research directions; Third,
the decision-making process of algorithmic trading can be
divided into two parts: selecting asset types and determining
optimal portfolio weight. Therefore, subsequent research can
be used hierarchical deep reinforcement learning(HDRL) to
handle portfolio optimization problems; Fourth, Our pro-
posed paper applies a model-free RL algorithm that is sample
inefficient and does not account for the stability issues caused
by the non-stationary financial market environment. In the
following work, we could construct a model-based RL archi-
tecture, which uses an architecture consisting of a prediction
module(e.g. [52]) and RL.

REFERENCES
[1] A. F. Perold, ‘‘The implementation shortfall: Paper versus reality,’’ J. Port-

folio Manag. vol. 14, no. 3, p. 4, 1988.
[2] A. Robert and J. Lorenz, ‘‘Adaptive arrival price,’’ Trading vol. 2007, no. 1,

pp. 59–66, 2007.
[3] S. A. Berkowitz, D. E. Logue, and E. A. Noser, ‘‘The total cost of transac-

tions on the NYSE,’’ J. Finance, vol. 43, no. 1, pp. 97–112, Mar. 1988.
[4] A. N. Madhavan and V. Panchapagesan, ‘‘The first price of the day,’’

J. Portfolio Manage., vol. 28, no. 2, pp. 101–111, Jan. 2002.
[5] P. N. Kolm and L. Maclin, Algorithmic Trading, Optimal Execution, and

Dyna Mic Port Folios. 2011.
[6] M. Kritzman, ‘‘Are optimizers error maximizers?’’ J. Portfolio Manage.,

vol. 32, no. 4, pp. 66–69, Jul. 2006.
[7] T. Hendershott and R. Riordan, ‘‘Algorithmic trading and the market

for liquidity,’’ J. Financial Quant. Anal., vol. 48, no. 4, pp. 1001–1024,
Aug. 2013.

[8] E. Elina and A. Swartling, ‘‘UCD guerrilla tactics: A strategy for imple-
mentation of UCD in the Swedish Defence,’’ in Human Work Interaction
Design-HWID. 2012.

[9] M. S. Tovarnov andN. V. Bykov, ‘‘Reinforcement learning reward function
in unmanned aerial vehicle control tasks,’’ 2022, arXiv:2203.10519.

[10] M. Tommaso, ‘‘Safe online robust exploration for reinforcement learning
control of unmanned aerial vehicles,’’ Tech. Rep., 2017.

[11] S. Bär, F. Bär, S. Pol, and T. Meisen, ‘‘Skalierung der online-job-shop-
planung durch reinforcement learning: In flexiblen fertigungssystemen für
verschiedene produkte,’’ atp magazin, vol. 63, no. 5, pp. 52–59, May 2022.

[12] B. Ryu, A. An, Z. Rashidi, J. Liu, and Y. Hu, ‘‘Towards topology aware
pre-emptive job scheduling with deep reinforcement learning,’’ in Proc.
30th Annu. Int. Conf. Comput. Sci. Softw. Eng., Nov. 2020, pp. 83–92.

[13] M. Yuan, J. Shan, and K. Mi, ‘‘Deep reinforcement learning based game-
theoretic decision-making for autonomous vehicles,’’ IEEE Robot. Autom.
Lett., vol. 7, no. 2, pp. 818–825, Apr. 2022.

[14] J. Laserna, A. Otero, and E. D. L. Torre, ‘‘A multi-FPGA scalable frame-
work for deep reinforcement learning through neuroevolution,’’ in Proc.
Int. Symp. Appl. Reconfigurable Comput. Cham, Switzerland: Springer,
Cham, 2022, pp. 47–61.

[15] G. Gil and F. Axel, ‘‘A very brief introduction to deep reinforcement
learning,’’ B.S. thesis. Universitat Politècnica de Catalunya, Barcelona,
Spain, 2017.

[16] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, ‘‘Deep direct reinforcement
learning for financial signal representation and trading,’’ IEEE Trans.
Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.

[17] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
‘‘Dueling network architectures for deep reinforcement learning,’’ in Proc.
Int. Conf. Mach. Learn., 2016, pp. 1995–2003.

[18] D. Fengqian and L. Chao, ‘‘An adaptive financial trading system using deep
reinforcement learning with candlestick decomposing features,’’ IEEE
Access, vol. 8, pp. 63666–63678, 2020.

[19] M. R. Alimoradi and A. Husseinzadeh Kashan, ‘‘A league championship
algorithm equipped with network structure and backward Q-learning for
extracting stock trading rules,’’ Appl. Soft Comput., vol. 68, pp. 478–493,
Jul. 2018.

[20] T. Fischer and C. Krauss, ‘‘Deep learning with long short-term memory
networks for financial market predictions,’’ Eur. J. Oper. Res., vol. 270,
no. 2, pp. 654–669, 2018.

[21] Z. Zihao, S. Zohren, and S. Roberts, ‘‘Deep reinforcement learning for
trading,’’ J. Data Sci. vol. 2, no. 2, pp. 25–40, 2020.

[22] X. Wu, H. Chen, J. Wang, L. Troiano, V. Loia, and H. Fujita, ‘‘Adaptive
stock trading strategies with deep reinforcement learning methods,’’ Inf.
Sci., vol. 538, pp. 142–158, Oct. 2020.

[23] Z. Liang, H. Chen, J. Zhu, K. Jiang, and Y. Li, ‘‘Adversarial deep reinforce-
ment learning in portfolio management,’’ 2018, arXiv:1808.09940.

[24] C. Betancourt andW.-H. Chen, ‘‘Deep reinforcement learning for portfolio
management of markets with a dynamic number of assets,’’ Exp. Syst.
Appl., vol. 164, Feb. 2021, Art. no. 114002.

[25] S. Portfolio, ‘‘HarryMarkowitz,’’ J. Finance, vol. 7, no. 1, pp. 77–91, 1952.
[26] A. S. Krishna, ‘‘Death of portfolio diversification,’’ Guidelines Authors,

2013.
[27] S. Rajgopal and T. Shevlin, ‘‘Empirical evidence on the relation between

stock option compensation and risk taking,’’ J. Accounting Econ., vol. 33,
no. 2, pp. 145–171, Jun. 2002.

[28] G. Lucarelli and M. Borrotti, ‘‘A deep Q-learning portfolio management
framework for the cryptocurrency market,’’ Neural Comput. Appl., vol. 32,
no. 23, pp. 17229–17244, Dec. 2020.

[29] W. Dabney, M. Rowland, M. Bellemare, and R. Munos, ‘‘Distributional
reinforcement learning with quantile regression,’’ in Proc. AAAI Conf.
Artif. Intell., vol. 32, no. 1, 2018, pp. 1–10.

[30] E. Asodekar, A. Nookala, S. Ayre, and A. V. Nimkar, ‘‘Deep reinforcement
learning for automated stock trading: Inclusion of short selling,’’ in Proc.
Int. Symp. Methodologies Intell. Syst. Cham, Switzerland: Springer, 2022,
pp. 187–197.

[31] X. Du, J. Zhai, and K. Lv, ‘‘Algorithm trading using Q-learning and
recurrent reinforcement learning,’’ Positions vol. 1, no. 1, pp. 1–7, 2016.

[32] L. Chen and Q. Gao, ‘‘Application of deep reinforcement learning on
automated stock trading,’’ inProc. IEEE 10th Int. Conf. Softw. Eng. Service
Sci. (ICSESS), Oct. 2019, pp. 29–33.

[33] C. Y. Huang, ‘‘Financial trading as a game: A deep reinforcement learning
approach,’’ 2018, arXiv:1807.02787.

[34] H. Park,M.K. Sim, andD.G. Choi, ‘‘An intelligent financial portfolio trad-
ing strategy using deep Q-learning,’’ Exp. Syst. Appl., vol. 158, Nov. 2020,
Art. no. 113573.

[35] D. Horgan, J. Quan, D. Budden, G. Barth-Maron, M. Hessel,
H. Van Hasselt, and D. Silver, ‘‘Distributed prioritized experience
replay,’’ 2018, arXiv:1803.00933.

[36] H. Van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learning with
double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., vol. 30, no. 1, 2016,
pp. 1–7.

[37] G. Jeong andH. Y. Kim, ‘‘Improving financial trading decisions using deep
Q-learning: Predicting the number of shares, action strategies, and transfer
learning,’’ Exp. Syst. Appl., vol. 117, pp. 125–138, Mar. 2019.

[38] D. Vezeris, I. Karkanis, and T. Kyrgos, ‘‘AdTurtle: An advanced turtle
trading system,’’ J. Risk Financial Manage., vol. 12, no. 2, p. 96, Jun. 2019.

[39] Z. Jiang, D. Xu, and J. Liang, ‘‘A deep reinforcement learning
framework for the financial portfolio management problem,’’ 2017,
arXiv:1706.10059.

[40] P. C. Pendharkar and P. Cusatis, ‘‘Trading financial indices with reinforce-
ment learning agents,’’ Exp. Syst. Appl., vol. 103, pp. 1–13, Aug. 2018.

[41] M. Schnaubelt, ‘‘Deep reinforcement learning for the optimal placement
of cryptocurrency limit orders,’’ Eur. J. Oper. Res., vol. 296, no. 3,
pp. 993–1006, Feb. 2022.

[42] F. Soleymani and E. Paquet, ‘‘Deep graph convolutional reinforcement
learning for financial portfolio management – DeepPocket,’’ Exp. Syst.
Appl., vol. 182, Nov. 2021, Art. no. 115127.

[43] M. Taghian, A. Asadi, and R. Safabakhsh, ‘‘Learning financial asset-
specific trading rules via deep reinforcement learning,’’ Exp. Syst. Appl.,
vol. 195, Jun. 2022, Art. no. 116523.

[44] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, ‘‘Continuous control with deep reinforcement learning,’’
2015, arXiv:1509.02971.

28932 VOLUME 11, 2023

B. Jin: Mean-VaR Based Deep Reinforcement Learning Framework for Practical Algorithmic Trading

[45] S. Fujimoto, H. Hoof, and D. Meger, ‘‘Addressing function approximation
error in actor-critic methods,’’ in Proc. Int. Conf. Mach. Learn., 2018,
pp. 1587–1596.

[46] M. G. Bellemare and W. D. R. Munos, ‘‘A distributional perspective
on reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 449–458.

[47] S. Carta, A. Corriga, A. Ferreira, A. S. Podda, and D. R. Recupero,
‘‘A multi-layer and multi-ensemble stock trader using deep learning and
deep reinforcement learning,’’ Int. J. Speech Technol., vol. 51, no. 2,
pp. 889–905, Feb. 2021.

[48] S. Barra, S. M. Carta, A. Corriga, A. S. Podda, and D. R. Recupero, ‘‘Deep
learning and time series-to-image encoding for financial forecasting,’’
IEEE/CAA J. Autom. Sinica, vol. 7, no. 3, pp. 683–692, May 2020.

[49] W. F. Sharpe, ‘‘The Sharpe ratio,’’ J. Portfolio Manage., vol. 21, no. 1,
pp. 49–58, Oct. 1994.

[50] R. T. Rockafellar and S. Uryasev, ‘‘Optimization of conditional value-at-
risk,’’ J. Risk, vol. 2, pp. 21–42, Feb. 2000.

[51] F. Bertoluzzo and M. Corazza, ‘‘Testing different reinforcement learning
configurations for financial trading: Introduction and applications,’’ Proc.
Econ. Finance, vol. 3, pp. 68–77, Jan. 2012.

[52] P. Mantalos, A. Karagrigoriou, L. Stelec, P. Jordanova, P. Hermann,
J. Kisel’ák, J. Hudák, and M. Stehlík, ‘‘On improved volatility modelling
by fitting skewness in ARCH models,’’ J. Appl. Statist., vol. 47, no. 6,
pp. 1031–1063, Apr. 2020.

[53] M. Hussonnois and J.-Y. Jun, ‘‘End-to-end autonomous driving using the
Ape-X algorithm inCarla simulation environment,’’ inProc. 13th Int. Conf.
Ubiquitous Future Netw. (ICUFN), Jul. 2022, pp. 18–23.

[54] S. Xu, H. Kuang, Z. Zhi, R. Hu, Y. Liu, andH. Sun, ‘‘Macro action selection
with deep reinforcement learning in starcraft,’’ in Proc. AAAI Conf. Artif.
Intell. Interact. Digit. Entertainment, vol. 15, no. 1, 2019, pp. 94–99.

[55] M. Hussonnois and J.-Y. Jun, ‘‘End-to-end autonomous driving using the
Ape-X algorithm inCarla simulation environment,’’ inProc. 13th Int. Conf.
Ubiquitous Future Netw. (ICUFN), Jul. 2022, pp. 18–23.

[56] A. Namdari and T. S. Durrani, ‘‘A multilayer feedforward perceptron
model in neural networks for predicting stock market short-term trends,’’
Oper. Res. Forum. vol. 2, no. 3, p. 38, 2021.

[57] R. Kim, C. Ho So, M. Jeong, S. Lee, J. Kim, and J. Kang, ‘‘HATS:
A hierarchical graph attention network for stock movement prediction,’’
2019, arXiv:1908.07999.

BOYI JIN was born in Xi’an, Shanxi, China,
in 1979. He received the Ph.D. degree in manage-
ment from the Shanghai University of Finance and
Economics, China, in 2011.

Since 2011, he has been a Research Assistant
with the Shandong University of Finance and Eco-
nomics. He is the author of three books and more
than 30 articles. His research interests include
portfolio optimization and risk management.

VOLUME 11, 2023 28933

