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ABSTRACT Pan-tilt (PT) camera is an indispensable part of the video surveillance systems due to its
rotatable property and low cost. As the primitive output of the PT camera limits its practical applications,
an accurate calibration method is required. Previous single point calibration method (SPCM) was presented
to estimate angles Pan and Tilt via single control point. For the more intuitive geometric interpretation and
more robust performance, we propose a novel single point calibration method (novel SPCM). In this scheme,
a nonlinear PT camera function (PT function) is established via a normalization approach. With PT function,
calibration problem is converted as the intersection situation of two circles formed by Pan and Tilt. Solutions
can be regarded as the intersection points of two circles in 3D space. Theoretical analysis shows that novel
SPCM is stable to measurement noise, for it still finds the least-square solutions even if two circles have no
intersection. In the simulation experiments, reprojection error of novel SPCM is 32.4% smaller than SPCM
for the large noise situation. It is 25.1% faster than SPCM. With the angle smooth strategy, novel SPCM
achieves accurate and stable performance in the real data experiment.

INDEX TERMS Calibration, pan-tilt camera, control point, video surveillance.

I. INTRODUCTION
Video surveillance system has wide industrial applications
in video contents analysis, objects segmentation, and visual
events detection [1], [2]. Pan-tilt (PT) camera is an indis-
pensable part of the surveillance system due to its rotatable
property and low cost. In order to extract the accurate object
information from the image sequence, PT camera should be
calibrated with high precision in real time.

PT camera is a special type of pan-tilt-zoom (PTZ) cam-
era without zooming. It rotates horizontally and vertically.
Angles Pan and Tilt denote the horizontal and vertical
angles [3], respectively. Although the platform of PT camera
can measure Pan and Tilt , these measurements are not accu-
rate enough for some industrial applications [4]. Therefore,
the intrinsic and extrinsic parameters of PT camera need
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to be calibrated carefully. In the actual applications, some
PT cameras have the small field of view (FOV) and do not
cover sufficient control points, thus making it difficult for
both intrinsic and extrinsic parameters estimation [5]. For PT
camera, the intrinsic parameters and lens distortion coeffi-
cients are constants over frames. So, these parameters could
be off-line calibrated with high precision [6]. Positions of PT
camera and control points can bemeasured precisely by hand-
hold global position systems (GPS) in advance. Therefore,
only Pan and Tilt need to be calibrated in actual application.

Traditional calibration method estimates intrinsic and
extrinsic parameters with at least two images or at least four
control points [4], [6], [7], [8]. However, it fails to work for
the extreme case that insufficient control points are found
in the FOV of the camera. To deal with the extreme cases,
some methods are proposed. Chen et al. [9] presented a
method to estimate the focal length, Pan, and Tilt with two
control points. A fast random forest method is exploited to
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predict Pan and Tilt without image-to-image feature match-
ing for online calibration. Li et al. [5] proposed a single point
calibration method (SPCM) to estimate Pan and Tilt using
only one control point in one image. Pan is solved with a
standard quadratic equation. Tilt is then estimated via anti-
trigonometric function. However, the geometric interpreta-
tion of SPCM is complex. And it fails to work if the quadratic
equation of Pan has no solution.
For more intuitive geometric interpretation and more

robust calibration performance, we propose a novel single
point calibration method (novel SPCM). In this scheme,
we exploit a vector normalization approach to establish a
nonlinear PT camera function (PT function). With using PT
function, calibration problem is converted as the intersection
of two circles formed by Pan and Tilt , marked as CP and CT
in 3D space, respectively. Calibration solutions are regarded
as the intersection points of CP and CT . In the extreme
situation that CP and CT have no intersection, novel SPCM
can still find the least-square solution. It means that novel
SPCM is stable to large measurement noise. We also discuss
the degenerated cases of novel SPCM and propose a trick
to avoid them. Using PT function, our method is 25.1%
faster than SPCM. Angle smooth strategy is used for the case
that more than one control points are provided. Simulation
experiments demonstrate that at the large noise situation, our
method is 32.4% accurate than SPCM. Real-data experiments
show that angle smooth strategy works for the multi-point
case. Hence, we consider that novel SPCM is suitable for
accurate calibration on high-speed PT cameras.

II. RELATED WORKS
PT camera is a special type of the optical camera. PT camera
calibration can be referred to the general calibration methods.
Most of current camera calibration methods can be clas-
sified as three categories: (i) traditional methods, (ii) self-
calibration methods, and (iii) active vision methods.

Traditional method establishes the camera projection
model to describe the relation of control points in world
coordinate system and their corresponding 2D pixels in pixel
coordinate system [6]. 3D-2D point correspondences pro-
vide constraints for intrinsic and extrinsic parameters estima-
tion [10]. Chen et al. [9] proposed a calibrationmethod for the
PTZ camera to estimate Pan, Tilt , and the focal length using
at least two control points. These parameters are refined with
Levenberg-Marquardt (LM) non-linear optimization algo-
rithm. Self-calibration method requires multi-view images
registration to establish 2D-2D pixel correspondences for
the intrinsic parameter estimation [7], [11], [12], [13], [14],
[15], [16]. It does not need any 3D control points. Active
vision method needs the camera to move at specific poses
with capturing multiple images, but the camera postures and
positions should be measured in high accuracy [17], [18],
[19], [20], [21].

For the extreme case that camera cannot observe suffi-
cient control points, there exist several calibration methods
using only one control point [5], [22], [23]. Gatla et al. [22]

FIGURE 1. Projection model of the PT camera.

estimates Pan and Tilt of industrial robot hand-eye systems
using single control point in at least 60 images. Li et al. [23]
proposed a method for star sensor calibration with single
control point in at least 81 images. It estimates the intrinsic
parameters and lens distortion coefficients via LM non-linear
optimization algorithm. Li et al. [5] presented SPCM for PT
camera calibration with only one control point in one image.
SPCM builds a linear model with respect to Tilt where each
element in the augmented coefficient matrix is a function of
the single variable Pan. The closed-form solution of Pan is
computed by solving a quadratic equation. After that, the
closed-form solution of Tilt is obtained. Recently, based on
the previous work [5], some works [9], [24] also studied the
methods to calibrate the focal length and rotation matrix of
PTZ camera using two control points.

III. PT CAMERA MODEL
Parameters of PT camera include intrinsic matrix K, lens
distortion coefficients 0, angles Pan, Tilt , and the optical
center of the PT camera Oc. K is presented as:

K =

 fu fs u0
0 fv v0
0 0 1

 (1)

where fu and fv denote the focal length along the u-axis and
the v-axis in pixels respectively. fs represents the skewness of
the two image axes. The pixel coordinate of principle point is
(u0, v0, 1)T . In actual application, it is safe to assume that
K and 0 of PT camera are constant [5], [9]. Thus K and
0 can be carefully calibrated with Zhang method [6]. Oc is
measured via GPS. It means that only Pan and Tilt need to be
estimated in the practical application. Distortion-free image
is generated with 0 [6]. In the following analysis, pixel image
coordinates are all ideal and distortion-free.

Let Pw denote the coordinates of the control point in the
world coordinate system Ow − XwYwZw. Camera coordinate
system is Oc − XcYcZc. I denotes the corresponding image
homogeneous coordinates in the image plane c−uv.Oc is the
optical center of PT camera in Ow−XwYwZw. The projection
model of PT camera is presented in Fig. 1. Zc − axis is the
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optical axis. Xc−axis and Yc−axis are parallel to the vertical
and horizontal axes of the image plane, respectively. Rotation
matrix R denotes the rotation relation of Ow − XwYwZw and
Oc−XcYcZc. Pinhole model of PT camera is presented as [6]:

zI = K · R(Pw − Oc) (2)

where z is the third element of vector KR(Pw − Oc).
Considering that the control point is in the FOVof the camera,
z in Eq. (2) must be positive. As PT camera can rotate only
vertically and horizontally with embedded step motors,R has
two degree-of-freedom. Horizontal angle is Pan marked as
Pgt , and the vertical angle is Tilt marked as Tgt . They are
ground truth angles. Thus, R can be decomposed as [5]:

R = R(Xw, −90◦)R(Xw,Tgt )R(Zw,Pgt ) (3)

where the rotation matrix R(r, s) is a 3 × 3 rotation matrix
describing rotating s angle around r axis. From the I/O ports
of the platform of the PT camera, angle measures of step
motors inside the platform can be obtained, and then the
measurements of Pan and Tilt are computed as P0 and T0,
which are not accurate enough. Relations between the true
values and measurements are given as:{

Pgt = P0 + 1P,

Tgt = T0 + 1T ,
(4)

where 1P, 1T are measurement errors of Pan and Tilt .
|1P| < ε and |1T | < ε. ε is the maximum angle mea-
surement error of the platform of PT camera. In this paper,
1P and 1T need to be calibrated as 1Pest and 1Test . With
Eq. (4), angles Pan and Tilt . are estimated as Pest and Test .

IV. CALIBRATION METHOD
In this section, we first introduce SPCM [5]. For more intu-
itive geometric interpretation and more robust performance,
novel SPCM is proposed as presented in Fig. 2. We also
analyze the degenerated case of proposedmethod and provide
a simple trick to avoid it.

A. SPCM
We briefly introduce the calibration procedure in work [5].
Let cθ and sθ denote cos(θ) and sin(θ ), respectively. Substi-
tuting Eqs. (3) and (4) into Eq. (2), we have

z

U
H
1

 =

 c1P s1P 0
−sT s1P sT c1P − cT
−cT s1P cT c1P sT

X
Y
Z

 (5)

where

(U ,H , 1)T = K−1I

(X ,Y ,Z )T = R(Z ,P0)(Pw − Oc)

Vector product of the two sides of Eq. (5) is zero vector so
that z is eliminated. After that, a linear equation of matrices
related to cT and sT is obtained as:

(E1P F1P)

 cT
sT
1

 = 02×1

E1P =

(
UYc1P − UXs1P ZU
HXs1P−HYc1P−Z Yc1P−HZ − Xs1P

)
F1P =

(
F11
F12

)
=

(
−Xc1P−Ys1P

0

)
(6)

According to Eq. (6), sT and cT are computed as [5]:{
cT = −(Yc1P − HZ − Xs1P) · F11det(E1P)−1

sT = −(Z + HYc1P − HXs1P) · F11det(E1P)−1 (7)

where det(A) is the determinant of matrix A. As c2T +

s2T = 1, we obtain a standard quadratic equation of tan(1P),
presented as:

a · tan(1P)2 + b · tan(1P) + c = 0
a = (H2

+ 1)Y 2
− U2(X2

+ Z2),
b = 2XY (U2

+ H2
+ 1),

c = (H2
+ 1)X2

− U2(Z2
+ Y 2)

(8)

1P is solved from Eq. (8) if 1 = b2 − 4ac ≥ 0 [5]. With
P0 and 1P, P is computed via Eq. (4). Substituting 1P into
Eq. (7), T is obtained. However, the geometric interpretation
in SPCM [5] is complex. Besides, SPCM has no solution of
1P if 1 < 0. It means that SPCM might not be robust to the
measurement noise. Based on these facts, SPCM still needs
some improvements.

B. NOVEL SPCM
For the clear geometric explanation and robust calibration
performance, we proposed novel SPCM in this paper. Sub-
stituting Eqs. (3) and (4) into Eq. (2) leads to a different form
unlike Eq. (5), presented as:

z

 U
V
W

 = R(X , 1T )R(Z , 1P)

X
Y
Z

 (9)

where

(U ,V ,W )T = R(X ,T0 − 90◦)T (U ,H , 1)T

where 1P and 1T need to be estimated. Let A = (u, v,w)T

and B = (x, y, z)T be the normalization results of vectors
(U ,V ,W )T and (X ,Y ,Z )T , respectively. As z > 0, after the
normalization of the two sides of Eq. (9), we have

R(X , −1T )A = R(Z , 1P)B (10)

Due to the noise disruption, Eq. (10) might not hold in
the practical application. Therefore, we attempt to solve 1P
and 1T by minimizing the following non-negative function
f (1P, 1T ):

f (1P, 1T ) = ∥R(X , −1T )A− R(Z , 1P)B∥
2
2

= (xp − u)2 + (yp − vt )2 + (z− wt )2

(u, vt ,wt )T = R(X , −1T )A

(xp, yp, z)T = R(Z , 1P)B (11)

As the lower bound of f (1P, 1T ) is zero, 1P and 1T
should be selected to make sure that xp, yp, z are closed to
u, vt ,wt , respectively. f (1P, 1T ) has a core role to estimate
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FIGURE 2. Flowchart of proposed calibration method novel SPCM. It takes information of the i-th control point and PT
camera as inputs, and estimate angles Pan and Tilt as Pest and Test .

1P and1T of the PT camera, thus we name it as PT function.
In Eq. (11), the trajectories of R(Z , 1P)B and R(X , −1T )A
form two circles. Solutions of 1P and 1T are related to
the intersection situations of these circles, which is discussed
with detail in Sec. IV-C. As A and B are unit vectors, we have

x2 + y2 + z2 = u2 + v2 + w2
= 1

It can be converted as:

x2 + y2 − u2 = v2 + w2
− z2 (12)

PT function are discussed in three cases:

1) Case one : x2
+ y2

− u2 > 0
From Eq. (12), the condition of case one is converted as:{

x2 + y2 = x2p + y2p > u2

v2 + w2
= v2t + w2

t > z2
(13)

From inequation (13), to minimize f (1P, 1T ), xp, yp, vt
and wt can be set as Eq. (14), in which f (1P, 1T ) reaches
the lower bound as zero.

xp = u
yp = vt = ±(1 − u2 − z2)1/2

wt = z
(14)

2) Case two : x2
+ y2

− u2
= 0

From Eq. (12), the condition of case two is converted as:{
x2 + y2 = x2p + y2p = u2

v2 + w2
= v2t + w2

t = z2
(15)

From Eq. (15), to minimize f (1P, 1T ),xp, yp, vt and wt
can be set as Eq. (16), in which f (1P, 1T ) reaches the lower
bound as zero. 

xp = u
yp = vt = 0
wt = z

(16)

3) Case three : x2
+ y2

− u2 < 0
From Eq. (12), the condition of case three is converted as:{

1 − z2 = x2 + y2 = x2p + y2p < u2 ⇒ |xp| < |u|
1 − u2 = v2 + w2

= v2t + w2
t < z2 ⇒ |wt | < |z|

(17)

where xp = u and wt = z cannot be established so that
f (1P, 1T ) cannot reach the lower bound. It means that
the exact solution cannot be found from Eq. (10). Hence,
we attempt to find the least-square solution of 1P and 1T .
From inequation (17), to minimize f (1P, 1T ), xp and wt are
selected as Eq. (18) to make sure that xp, yp,wt are closest to
u, vt , z, respectively.

xp = (1 − z2)1/2 · sign(u)
yp = vt = 0
wt = (1 − u2)1/2 · sign(z)

(18)

where sign(·) is the sign function. After obtaining xp, yp,
vt and wt in above three cases, s1P, c1P, s1T and c1T are
computed from Eqs. (19) and (20). Derivation is presented
in Appendix A. After that, 1P and 1T can be directly
calculated from these triangular functions. With P0 and T0,
Pan and Tilt are finally estimated from Eq. (4).{

c1P = (xpx + ypy) · (1 − z2)−1,

s1P = (xpy− ypx) · (1 − z2)−1,
(19){

c1T = (vtv+ wtw) · (1 − u2)−1

s1T = (wtv− vtw) · (1 − u2)−1 (20)

According to the sign in Eq. (14), two groups of solutions
exist in the first case, marked as (1Pi, 1Ti)(i = 1, 2). Under
the conditions |1P| < ε and |1T | < ε, we choose the
solution which has smaller |1Pi| + |1Ti|.

C. GEOMETRIC INTERPRETATION OF NOVEL SPCM
Novel SPCM has been discussed with three cases in
Sec. IV-B. These cases have clear geometric interpretation,
presented in Fig. 3. For arbitrary 1P and 1T , the trajectories
of R(Z , 1P)B and R(X , −1T )A form the circles of Pan and
Tilt , marked asCP andCT . They lie on the unit sphere. Points
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FIGURE 3. Geometric interpretation of novel SPCM in three cases. (a) Case one. (b) Case two. (c) Case three.

O1 = (0, 0, z)T and O2 = (u, 0, 0)T are the centers of CP
andCT . For a point p in 3D space, let px , py, and pz denote the
element of p at X −axis, Y −axis, and Z −axis, respectively.
Geometric interpretation of novel SPCM are discussed in the
following.

1) Case one : x2
+ y2

− u2 > 0
According to Eq. (12), we have x2 + y2 > u2 and v2 + w2 >

z2 in this case. Let Ax denote the element of A at X-axis.
It means that the radius of CP is larger than Ax , thus CP and
CT intersect at points Ci(i = 1, 2), presented in Fig. 3(a).
From Eq. (14), the coordinates of points C1 and C2 are given
in Eq. (21). As B and A can rotate to Ci, angles ̸ CiO1B and
̸ AO2Ci represent 1Pi and 1Ti(i = 1, 2), respectively.{

C1 = (u, (1 − u2 − z2)1/2, z)T ,

C2 = (u, −(1 − u2 − z2)1/2, z)T ,
(21)

2) Case two : x2
+ y2

− u2
= 0

According to Eq. (12), we have x2 + y2 = u2 and v2 + w2
=

z2 in this case. It means that the radius of circle CP is equal to
Ax , thus circles CP and CT are tangent at point C , presented
in Fig. 3(b). From Eq. (16), the coordinates of point C are
given in Eq. (22). ̸ CO1B and ̸ AO2C represent 1Pi and
1Ti(i = 1, 2), respectively.

C = (u, 0, z)T , (22)

3) Case three : x2
+ y2

− u2 < 0
According to Eq. (12), we have x2 + y2 < u2 and v2 + w2 <

z2 in this case. It means that the radius of circle CP is smaller
than Ax , thus circles CP and CT do not intersect, presented
in Fig. 3(c). f (1P, 1T ) can be minimized if and only if 1P
and 1T are selected to satisfy that points R(Z , 1P)B and
R(X , −1T )A coincides with pointsD1 andD2. It is discussed
in Appendix B. From Eq. (18), the coordinates of points D1,
D2 are given in Eq. (23). ̸ D1O1B and ̸ AO2D2 denote 1P
and 1T , respectively.{

D1 = ((1 − z2)1/2sign(u), 0, z)T ,

D2 = (u, 0, (1 − u2)1/2sign(z))T ,
(23)

D. ANGLE SMOOTH STRATEGY FOR MULTI-POINT CASE
Novel SPCM can extend for the case with N > 1 control
points. For the i-th point, angles1P(i) and1T (i) are obtained
from Eqs. (19) and (20), which are not accurate enough.
Angle smooth (AS) strategy is applied to optimize Pan and
Tilt by minimizing the following reprojection errors:

Ecalib(1P, 1T ) =

N∑
i=1

∥I (i) − Iest(i; 1P, 1T )∥22 (24)

where I (i) is the pixel coordinates of the i-th control point.
With 1P(i) and 1T (i), Iest(i; 1P, 1T ) is computed from
Eq. (2), which is depended on 1P and 1T . Levenberg-
Marquardt (LM) nonlinear optimization [25] is exploited to
minimize Eq. (24). It requires the initial values. Initial values
of 1P, 1T in Eq. (24) are 1P0, 1T0, presented as:

1P0 =
1
N

N∑
i=1

1P(i), 1T0 =
1
N

N∑
i=1

1T (i) (25)

E. DEGENERATED CASE OF NOVEL SPCM
From Sec. IV-B, novel SPCM cannot work if z2 = 1 or
u2 = 1, causing that the denominators of Eqs. (19) and
(20) are zero. Two degenerated cases are discussed in the
following.

1) DEGENERATED CASE ONE : z2
= 1

As (x, y, z)T is the normalization result of (X ,Y ,Z )T ,
z2 = 1 happens only if X ,Y are both zero. In this case,
we have

Pw − Oc = R(Z , −P0)(0, 0,Z )T = (0, 0,Z )T (26)

It means that Pw −Oc is at Zw − axis, which indicates that
the control point is exactly on the top or bottom of PT camera.
In actual applications, we can avoid this case because it is
uncommon to select the control point which is set on the top
or bottom of a PT camera.

VOLUME 11, 2023 34179



J. Zhang et al.: Novel Geometric Calibration Method for PT Camera With Single Control Point

FIGURE 4. Reprojection errors, absolute errors of Pan and Tilt versus noise level. (a) Comparison results of only one control point. (b) Comparison
results of ten control points with angle smooth (AS) strategy.

2) DEGENERATED CASE TWO : u2
= 1

As(u, v,w)T is the normalization result of (U ,V ,W )T ,
u2 = 1 happens only if V , W are both zero. In this case,
we have

(U , 0, 0)T = R(X , 90◦
− T0)(U , 0, 0)T = K−1I (27)

From the right-hand term of Eq. (27), according to Eq. (1),
it can be found that the third element of K−1I is one. How-
ever, from the left-hand term of Eq. (27), the third element of
vector (U , 0, 0)T is zero. Then Eq. (27) has contradiction so
that the case u2 = 1 would never happen.

F. ADVANTAGES OF NOVEL SPCM
Technically speaking, the core difference of these methods
is the approaches of eliminating z in Eq. (2). Due to this
difference, novel SPCM has three advantages:

(i) Novel SPCM has more intuitive geometrical interpre-
tation, presented in Fig. 3. Solutions of 1P and 1T are
regarded as the intersection points of CP and CT .
(ii) Novel SPCM has more robust calibration performance,

as verified in Sec. V-A2, for the normalization in Eq. (10)
reduces the damage of measurement noise. For the large
measurement noise, Eq. (10) might not be established strictly,
meaning that CP and CT have no intersection. In this case,
novel SPCM still has least-square solution while SPCM fails
to work. It is verfied in Sec. V-A6.
(iii) Novel SPCM is more time-efficiency. From

Table 1, addition and multiplication operations of novel
SPCM are both less than SPCM. It is also verified
in Sec. V-B3.

TABLE 1. Number of computation operations for calibration.

TABLE 2. Parameters of the virtual PT camera.

V. EXPERIMENTS AND RESULTS
In this section, simulation and real data experiments are
conducted to evaluate the performance of novel SPCM.

A. COMPUTER SIMULATIONS
1) CONFIGURATION OF EXPERIMENT
A virtual PT camera is used for simulation. Its intrinsic
parameters, Pan, Tilt , and position are presented in Table 2.
The size of the image plane is 1024 pixels × 1024 pixels.
125 control points block-like distributed inside the FOV are
generated as the experimental dataset. In each trial, one con-
trol point is selected for parameter estimation and the rest of
the control points for cross-validation. The following experi-
ments are based on the basic configuration above. According
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FIGURE 5. Calibration errors versus posture of PT camera.(a) Absolute error of Pan. (b) Absolute error of Tilt . (c) Reprojection error.

FIGURE 6. Calibration errors versus location of pixel. (a) Absolute error of Pan. (b) Absolute error of Tilt . (c) Reprojection error.

to different experimental requirements, only part of these con-
ditions change. In the following experiments, three metrics
are exploited to evaluate the calibration performance, such as
absolute errors ofPan, Tilt , and the reprojection error, marked
as EPan, ETilt , and Eproj. Eproj is computed via Eq. (24).

2) PERFORMANCE WITH RESPECT TO NOISE LEVEL
This experiment investigates the performance with respect to
the noise level. In the practical applications, position mea-
sures of camera and control points are not accurate. Due to
the image noise, pixels of control points are also not precise.
Thus it is essential to test the stability of calibration method.
From Eq. (2), it is noted that the position measurement errors
are converted as the pixel errors. In this experiment, Gaussian
noise with zero mean and σ standard deviation is added to
the ground truth position of the control point in the pixel.
The noise level, represented as σ , is varied from 0.0 pixels
to 10.0 pixels. 500 independent trials are preformed, and the
average results of our method and SPCM [5] are presented
in Fig. 4. It is found that calibration error curves increase
nearly linearly with fluctuation. From Fig. 4(a), calibration
error of our method is smaller than SPCM. When σ = 10
pixels, reprojection error of our method is nearly 3.8 pixels
(≈ 32.4%) smaller than SPCM. We also test the proposed
method for multi-point situation. In this case, average cali-
bration results of all control points are used for evaluation.
Current methods, such as method 1 [10] and method 2 [9],
are used for comparison. From Fig. 4(b), it is found that
our method outperforms SPCM and other methods. Average

reprojection error is reduced by 26.4% than SPCM. With
the angle smooth strategy, the calibration accuracy is also
improved. It means that novel SPCM is more robust to differ-
ent noise level than compared methods, for the normalization
in Eq. (10) reduces the damage of pixel and position measure-
ment noises.

3) PERFORMANCE WITH RESPECT TO THE POSTURE OF PT
CAMERA
This experiment investigates the performance with respect to
the posture of the PT camera. Pan is varied from−90◦ to 90◦,
Tilt from−45◦ to 45◦. Images of simulated control points are
taken under each posture of the PT camera. For each posture,
500 trials of independent noise with zero mean and standard
deviation of 0.5 pixels are added. Results are presented in
Fig. 5. Eproj fluctuates in a range smaller than 0.2 pixels.
Absolute error ofPan and Tilt is smaller than 3×10−3 degree.
Therefore, novel SPCM is available for all postures of the PT
camera under the condition that the control point is in FOV
of the PT camera.

4) PERFORMANCE WITH RESPECT TO LOCATION OF PIXEL
This experiment investigates the performance regarding the
location of pixel in the image plane. As the size of the stim-
ulative image plane is 1024 pixels × 1024 pixels. We obtain
104 pixel points in total and sample at 10 pixels interval. For
each posture, 500 trials of independent noise with zero mean
and standard deviation of 0.5 pixels are added. From Fig. 6,
it is found that Eproj is less than 0.2 pixels. Average of Eproj
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FIGURE 7. Calibration performance of angle smooth strategy.

TABLE 3. Comparison results in the extreme calibration case.

is 0.0082 pixels. Absolute error of Pan and Tilt is smaller
than 5 × 10−3 degree. Hence, novel SPCM is available for
the whole image plane.

5) PERFORMANCE WITH RESPECT TO ANGLE SMOOTH
STRATEGY
This experiment investigates the performance regarding the
angle smooth strategy. Number of control points N ranges
from 1 to 10. Pixel noise with σ = 10 pixels is added. Repro-
jection errors are presented in Fig. 7. With N increasing, the
calibration performance with angle smooth strategy is more
accurate, for the optimization in Eq. (24) is robust to noise.

6) PERFORMANCE WITH RESPECT TO THE EXTREME
SITUATION
This experiment investigates the performance regarding the
extreme situation. Pixel and position errors are added to the
pixel and position of the control point, to satisfy the case three
in Sec. IV-B. In this situation,CP andCT do not intersect, and
1P in Eq. (8) is negative. For SPCM [5], 1P and 1T cannot
be solved, and have to set as zero. While our method can still
compute 1P and 1T via Eqs. (18)-(20). Reprojection errors
are presented in Table 3. It is found that our method is more
stable in the extreme calibration case.

B. REAL DATA EXPERIMENTS
1) CONFIGURATION OF EXPERIMENT
Industrial PT camera is exploited in the real data experiment.
Its intrinsic parameters and distortion coefficients have been
calibrated by method [6] in advance. With lens distortion
coefficients, distortion-free image is generated [6]. Thus pixel
image coordinates are all ideal and distortion-free. Intrinsic
parameters of PT camera are presented in Table 4. From
the I/O port of the platform of PT camera, P0 and T0 are

TABLE 4. Parameters of PT camera in real data experiment.

TABLE 5. Positions of control points and PT camera. X-axis, Y-axis, and
Z-axis denote the coordinate of the control point at the corresponding
axis in Ow − Xw Yw Zw (Unit: meters). u-axis and v-axis denote the
coordinate of the control point at the corresponding axis in the image
coordinate system (Unit: pixels). Oc is the position of PT camera.

measured as 178◦ and −10◦, respectively. The size of the
image plane is 1024 pixels× 1024 pixels. In this experiment,
ten control points are fallen into the FOV of PT camera.
Positions of control points and PT camera are presented in
Table 5 measured by a hand-hold GPS in high precision.
In this experiment, raw GPS measures are first converted to
WGS-84 (World Geodetic System-1984 Coordinate System)
coordinates, and then converted to the coordinates in the local
geodetic coordinate system. In the following experiments, the
local geodetic coordinate system is considered as the world
coordinate system. It is noted that Oc cannot be measured
directly. In this paper, Oc is estimated by measuring the
position of camera lens, with the prior information of camera
size. Measurement errors of optical center and control points
are existed for all compared methods. Ground truths of Pan
and Tilt are unknown. Thus, reprojection error is used to
evaluate the calibration performance.

2) MODEL COMPARISONS
Calibrationmethod is applied to the dataset on Table 5, to esti-
mate Pan and Tilt . Compared with novel SPCM, SPCM [5],
method 1 [10] and method 2 [9] are selected for model
comparisons. Although different methods require different
numbers of points, ten control points satisfy all requirements.
In SPCM, ten control points are used in turn for angles esti-
mation and the average value is taken as the final calibration
result. With more than one control points, angle smooth strat-
egy is exploited for novel SPCM. Inmethods 1 and 2, ten con-
trol points are used together for parameter estimation in one
trial. For method 1, ten control points can be used to compute
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FIGURE 8. Reprojection errors of different methods in real data experiment. AS denotes the angle smooth strategy.

the least-square solution of the projection matrix of the PT
camera via direct linear transformation (DLT) method [10].
In method 2, ten control points are used to compute Pan, Tilt
and the focal length using the LM non-linear minimization
algorithm. In each trial, Reprojection error are measured
between the actual pixel values of test point and its estimated
pixel value. Comparison results are presented in Fig. 8. The
horizontal axis is the ID of the control point and the vertical
axis is reprojection error of the corresponding control point.
The green bars denote the results of Novel SPCM with angle
smooth strategy; the deep blue bars denote the results of novel
SPCM; the light blue bars denote the results of SPCM; the
pink bars denote the results of method 1; the yellow bars
denote the results of method 2; the red bars denote the results
without using any calibration methods. It is found that novel
SPCM has smaller reprojection errors than SPCM [5] for
all control points, especially for the first and third control
points. The reason has been discussed in Sec. V-A2. From
Fig. 8, Novel SPCM and SPCM are both superior to other
methods and the initial output results. Novel SPCM is better
in accuracy because method 1 estimates the 3 × 4 projection
matrix without using the known information, such as the
intrinsic parameters of the PT camera. Method 2 assumes
that fs is zero and fu = fv, which may not be true in the
actual application. It is also found that angle smooth strategy
can improve the accuracy of calibration when more than one
control points are provided.With angle smooth strategy,mean
RMS error of our method is 0.380 pixels, 9.21% and 6.68%
smaller than SPCM and novel SPCM. Therefore, with angle
smooth strategy, our method is superior to current methods
for the case with more than one control point.

3) TIME CONSUMING TEST
For further comparison of novel SPCM and SPCM [5],
we design an experiment for time-consuming test. Novel
SPCM and SPCM are both implemented with
MATLAB 2017a on an Intel i7 − 4810MQ 2.80GHz CPU,
16.0GB memory Windows 2012 64-bit operating system.
With the same information of the control points and the PT
camera provided in Tables 4 and 5, 500 independent trials are
performed, and the average times of these methods are com-
puted. Results are presented in Table 6. The operation time

TABLE 6. Results of time-consuming test.

FIGURE 9. RMS errors of cross-validation in real data experiment.

of novel SPCM is decreased by nearly 25.1% than SPCM,
which is verified the conclusion in Sec. IV-F. Therefore, novel
SPCM is suitable for calibrating high-speed PT camera.

4) CROSS-VALIDATION
In order to further study the stability of novel SPCM, it is
applied to the dataset on Table 5 to do cross-validation.
Each of the ten control points is used in turn for parameter
estimation and the remaining nine control points as the test
points for cross-validation. In each trial, we compute the RMS
error between the actual pixel values of the test points and its
estimated pixel values, and then calculate the average of the
errors of nine test points to get the final result. Results are
presented in Fig. 9. The mean and deviation of novel SPCM
are 0.5699 pixels and 1.68×10−4 pixels, respectively. Small
deviation and average means that novel SPCM is stable.

VI. CONCLUSION
We propose novel SPCM as an improvement of SPCM [5].
In this scheme, with PT function, calibration problem is
converted as the intersection situation of two circles CP and
CT . 1P and 1T are regarded as the intersection points of CP
and CT . Simulations demonstrate that our method is 32.4%
accurate than SPCMat the noise situation with σ = 10 pixels.
Our method is also 25.1% faster than SPCM. Therefore,
we believe that the proposed method contributes to the indus-
trial camera calibration.
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APPENDIX
A. DERIVATIONS OF EQS. (19) AND (20)
(u, vt ,wt )T = R(X , −1T )A and (xp, yp, z)T = R(Z , 1P)B
can be converted as:(

xp
yp

)
=

(
c1P s1P

−s1P c1P

)(
x
y

)
(28)(

vt
wt

)
=

(
c1T −s1T
s1T c1T

)(
v
w

)
(29)

Eq. (28) can be transformed as the linear equation of two
unknowns related to c1P, s1P. c1P and s1P are solved as Eq.
(19). Eq. (29) is also converted as the linear equation related
to c1T , s1T . c1T and s1T are solved as Eq. (20).

B. ILLUSTRATION OF POINTS D1 AND D2 IN CASE THREE
The coordinates of points E1, E2, as presented in Fig. 10,
are R(Z , 1P)B and R(X , −1T )A, respectively. For arbitrary
angles 1P and 1T , the trajectories of E1, E2 form two
circles CP (on plane 1) and CT (on plane 2). The geometric
interpretation of minimizing f (1P, 1T ) is to find parameters
1P and 1T to minimize the distance between E1 and E2.
The coordinates of points D1 and D2 are shown as:{

D1 = ((1 − z2)1/2sign(u), 0, z)T ,

D2 = (u, 0, (1 − u2)1/2sign(z))T ,
(30)

We would illustrate that compared with the distance between
any points E1 and E2,where E1 is a point on the circle CP,
E2 is a point on the circle CT , the distance between points
D1 and D2 is the shortest, which means inequation (31) is
always right.

|D1D2| ≤ |E1E2| (31)

From Fig. 10, it is found that line L is the intersection of
the plane 1 and plane 2 while plane 1 is perpendicular to
plane 2. Point D3 lies on line L and the line segment D1D3 is
perpendicular to D2D3. Points E3 and E4 both lie on line
L. Line segment E2E3 is perpendicular to plane 1. And line

FIGURE 10. Geometric interpretations in case three.

segment E1E4 is perpendicular to the plane 2. After that,
we have,

|D1D2|
2

= |D1D3|
2
+ |D2D3|

2
≤ |E4E1|2 + |E2E3|2 (32)

As |E3E4|2 ≥ 0, it can be converted as:

|D1D2|
2

≤ |E4E1|2 + |E2E3|2 + |E3E4|2 = |E1E2|2 (33)

Finally, the inequation (31) is obtained.
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