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ABSTRACT Brain-computer interfaces (BCI) can help people with motor disorders to regain their ability
to communicate and interact with the surrounding environment. The majority of studies in this field pursue
the development of BCI systems to enhance or restore the movement functionality of people with disability.
Although the studies on the development of BCIs to restore hindlimb movements have shorter backgrounds
compared to forelimb, several studies have investigated hindlimb BCIs and their results were promising.
In the present study, we systematically reviewed the studies investigating the decoding of hindlimbmovement
parameters using intracortical signals. Three scientific databases (PubMed, Scopus, and Embase) were used
to extract the articles and the experiment, recording, processing methods, and results of the included studies
were discussed. Although several studies on upper-limb intracortical BCIs have been conducted on human
subjects, almost all studies in hindlimb intracortical BCI field were performed on animal subjects. The most
investigated task was walking on a treadmill, and the position of hindlimb joints and gait phase were the most
studied continuous and discrete parameters, respectively. The included studies have mainly used spikes and
linear decoders, which leaves the question of the effectiveness of using local field potentials and nonlinear
decoders in this field unanswered. Although the results imply that hindlimb movement decoding using brain
signals is feasible in laboratory conditions, further investigations are required to examine the hindlimb BCIs
in real-life conditions.

INDEX TERMS Brain–computer interface, motor cortex, hindlimb, neural decoding, intracortical.

I. INTRODUCTION
Neural circuits continuously process various sensory signals
and generate motor commands and cognitive functions, e.g.,
thoughts and decision-making, producing a mental feeling
of consciousness and free will. Unfortunately, neurological
disease or trauma might create significant disorders in such
neural mechanisms whereby an individual cannot feel, move
or communicate. However, most neurological diseases like
Amyotrophic Lateral Sclerosis (ALS), Stroke, and Spinal
Cord Injury (SCI), cannot be cured completely. In most
neuro-motor disorders, spinal neural circuits generating
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locomotor patterns for standing and walking remain intact.
Even after an abrupt disconnection between spinal and
supraspinal circuits by SCI, cortical and spinal circuits signif-
icantly maintain the capability of controlling prostheses [1].
Accordingly, embedded neural networks in the lumbosacral
segments maintain the ability to create complex locomotor
behaviors [2], [3], [4], [5], [6]. Thereby, one of the developing
solutions for such patients rehabilitation is Brain-Computer
Interface (BCI) based neural prostheses, which can lead to
restoring the partial or complete movement of the body
[7], [8], [9], [10].

BCI connects neural circuits to external devices like arti-
ficial limbs, communication devices, computers, functional
electrical stimulation systems, and even other central nervous
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FIGURE 1. Schematic of principal BCI components: (1) data acquisition, (2) preprocessing, (3) feature extraction, (4)
feature selection, (5) feature translation to classification/regression and device.

system parts [11]. As an illustration, the BCI approach to SCI
includes a direct connection of effective regions of the brain,
e.g., the sensory-motor cortex, to limb prosthesis [12], [13].
Fig 1 presents a schematic of the principal BCI components.
The components involve data acquisition, preprocessing,
feature extraction, feature selection, classification/regression,
and an application interface. BCIs can connect the brain
to a cursor, a robotic prosthesis, such as a robotic arm
[14], [15], [16], exoskeletons for walking [17], [18],
Wheelchairs [19], [20], drones [21], and automobiles [22].
In this regard, due to their importance in life quality
improvement for individuals with movement disability, the
development of BCIs focusing on the movement of arms
and legs have special importance and has made significant
progress [14], [23], [24].

Developing these systems requires a deep understanding
of the way movement parameters are encoded in different
regions of the brain and also the development of neural
decoding algorithms. Improvement of our understanding in
these areas can lead to BCI systems with higher degrees of
freedom.

Among various brain signals, intracortical signals
have been the main base of BCI systems development
[25], [26], [27]. Also, invasive recording techniques, e.g.,
recording by microelectrode arrays inside the cortex,
have a greater signal-to-noise ratio (SNR), providing
the possibility of accurately identifying patterns or the
continuous decoding of locomotor variables. Nevertheless,
the pertinent risks to experimenting with these systems for
human applications prevent invasive BCIs development for
lower limb applications. Thereby, the development of BCI
systems in lower limbs is being done on animals so that
by developing algorithms and examining their feasibility,
it is used for human applications in the future. According
to evidence, intracortical recording during normal walking
indicates distinct characteristics compared to when walking

on stairs or on a treadmill [28]. More importantly, the
walking cycle and related parameters to locomotion like the
Electromyography (EMG) of leg muscles and gait phase can
be decoded via the processing of recorded signals from the
brain cortex [29], [30], [31], [32], [33], [34]. For this purpose,
only intracortical studies have been examined in this review.

Although most of the studies in BCI have focused on
upper-limb movement and manipulation tasks so far, some
studies investigated the decoding of hindlimb movement
parameters with promising results for the rehabilitation of
people with movement disabilities. These studies revealed
that the neural circuits controlling forelimb movements are
different from hindlimb controlling circuits [35], [36]. Thus,
the current review focuses on studies investigating the role
of brain cortical signals in decoding hindlimb movement
information which was conducted to develop movement BCI
systems.

Several reviews exploring the decoding of movement
parameters from brain signals have been conducted. For
example, Fatima et al. [37] systematically reviewed the
studies which used intracortical brain-machine interface
(BMI) to control upper limb robotic systems or functional
electrical stimulation of muscles. They assessed 15 studies
with human subjects which used brain-controlled robotic or
functional electrical stimulation (FES) devices, which make
body movements by electrically stimulating the muscles
that are involved in producing the intended movement,
to perform upper limb tasks and reported information about
their subjects, robotic/FES device, BMI, and performances.
Khaliq Fard et al. [38] performed a meta-analysis on
11 electroencephalogram (EEG)-based studies continuously
decoding upper limb kinematic parameters. He et al. [39]
compiled studies on BMI to control lower limb robotic sys-
tems. Their systematic review, which included 11 studies on
robotic systems for lower limb movement controlled by BMI,
reported the subjects, robotic devices and their performance,
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FIGURE 2. PRISMA flow chart of literature search procedures.

BMI structure (tasks, decoder, output commands, etc.), and
the performance of the system in reviewed studies. Most of
the included studies in the aforementioned review (10 out
of 11) used EEG signals as the input to the BMI system.

In this review, we systematically explored the studies
which used intracortical signals for decoding hindlimb
movement-related parameters and no restrictions on subjects,
movement parameters, or the presence/absence of a robotic
systems were considered and task, recorded signals, subjects,
decoders, features, and decoded parameters were summa-
rized. This study aims to briefly investigate the currently
available BCI systems for decoding hindlimb movement
parameters and controlling robotic limbs and identifica-
tion of the challenges and opportunities of this emerging
field.

In section II, the methods for setting up this systematic
review are presented. In section III, the results of the
following items are presented: general results of the search in
section III-A; subjects used in studies (III-B); signal type (III-
C); recording area (III-D); tasks and experiments in section
(III-E); kinetic and kinematic parameters (III-F); decoding

methods in section (III-G). Finally, in sections IV and V the
discussion about the results and conclusion is presented.

II. METHOD
A. DATA SOURCE AND SEARCH STRATEGY
The articles in this review were searched and screened
based on Preferred Reporting Items for Systematic Review
and Meta-Analyses (PRISMA) [40] as depicted in Fig 2.
Scientific literature databases are generally classified into two
major groups; Academic Citation Databases (ACDB) includ-
ing traditional Boolean string-based search engines such as
Scopus and PubMed, and Academic Citation Search Engines
(ACSE) such as google scholar and search engines operating
based on semantic/natural language such as Microsoft
Academic Search and semantic scholar [41]. In this review,
three items of the first class of databases (ACDB) (PubMed,
Scopus, and Embase) were considered. Two authors (AM
and MG) searched the three mentioned databases (without
using MeSH terms) through advanced search considering a
vast set of keywords (Table 1). The last search took place
on September 1st, 2021. The papers containing the selected
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TABLE 1. Keywords used to search in the Scopus database and the
results were 328 articles (see Fig. 2). Similar keywords are used for other
databases.

keywords in title, abstract, or keywords were extracted. Only
the papers of journals published in English were included.
Science Direct database was excluded as the recent update
of this framework limited us in entering all the keywords in
the search keyword input section. However, since Science
Direct and Scopus use the same database [42], this did not
affect the comprehensiveness of our literature review. IEEE
Xplore was not used as its search keywords were limited to
15 terms which were far lower than the number of keywords
considered in this study (see Table 1). This also does not
influence the comprehensiveness of our study as the papers
in IEEE are also indexed in Scopus. ACSE was not taken into
account due to the deficient repeatability and reproducibility
of the search results [43], [44].

To set up an appropriate search phrase and make the
decision-making less subjective and biased, a pre-search step
was carried out by collecting a keyword list used by the
lower limb BCI researchers, and to find optimum keywords
we analyzed keyword combinations by taking the conducted
search results (recorded from Scopus) to a metadata analysis
software to have a greater picture from the nature of search
engine results. To this aim, we used VOS-viewer [45] which
performs clustering of search results based on title, keywords,
and abstract and illustrates the results graphically (see Fig 3).
The node size indicates the relative relevance based on
the occurrence frequency of keywords and colors indicate

FIGURE 3. Word cloud showing the most frequent keywords in results
(recorded from Scopus), visualized by the software VOS-Viewer.

the cluster to which a node belongs. This procedure was
iterated and refined several times before arriving at the
final search phrase listed in Table 1. Overall 903 papers
were investigated in this review and 901 articles of which
were retrieved from the three mentioned databases. Two
articles were manually added. Fig 2 presents the PRISMA
flow diagram which demonstrates the followed screening
procedure. Any disagreement on the exclusion of studies
between the authors (i.e. those placed on the borderline of
the exclusion criteria) was resolved by mutual discussion and
decision.

B. ELIGIBILITY CRITERIA
This review only addressed the studies which used intra-
cortical signal recording using microelectrodes to decode
the motor parameters or the BCI-controlled prosthesis. The
following eligibility criteria were considered:

1) This study is specifically focused on the research
works directly related to the decoding of hindlimb
kinetic/kinematic parameters using cortical signals.
The studies not focusing on decoding as an outcome,
as well as those concentrating on cortex stimulation,
were excluded.

2) The intracortical brain signals must be recorded from
the sensorimotor cortex area.

3) The subject species was not specified (Table 1),
however, as only intracortical signals were investigated,
the included studies (except one) are all on animal
subjects.

4) This review article did not exclude any studies based
on the type of the recorded intracortical neural signal
(spike/ field potentials).

5) No specific task was determined for hindlimb move-
ments and all the studies decoding the kinetic/kinematic
parameters of hindlimb motor tasks (walking, pedal
pressing, squat, foot movements) were included.

The main exclusion criteria are mentioned in PRISMA flow
diagram (Fig 2). Studies that did not address the decoding
of the hindlimb parameters, those not including decoding by
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TABLE 2. Information of subjects and type of signal recorded in each study.

intracortical data, and those that did not record the cortical
signals were directly eliminated.

C. DATA EXTRACTION AND PRESENTATION
Data were extracted based on a structured template form; the
following information was extracted:

1) Subject (species, strain, gender, and number of sub-
jects)

2) Recorded signal (type of signal, number of the recorded
channels, recording area, and laterality)

3) Experiment design (including task type and experiment
conditions)

4) Data analysis (decoded parameters, neural features, and
decoder)

5) Major findings.
All the identified studies and some of the main properties
related to the type of recording and subjects are summarized
in Table 2. Table 3 also lists the information regarding the
tasks and their corresponding decoder. Decoded parameters
are also presented in Table 4. In this review, ‘‘identified
studies’’ and ‘‘included studies’’ refer to the selected studies.

III. RESULTS
A. LITERATURE SEARCH
The flow diagram is plotted in Fig 2 based on PRISMA
[57]. 901 papers were retrieved from PubMed, EMBASE,
and Scopus. Two other articles, which were related but did

not appear in search results, were also added manually. From
the 903 papers, 309 items were omitted due to duplication;
341 papers were excluded due to their irrelevance to the
decoding ofmotor parameters.Moreover, by investigating the
abstract and full text of the papers, 169 cases were excluded
due to signal type and recording. 18 papers were excluded as
they recorded data from other brain regions. 4 articles were
excluded due to their irrelevancewith the hindlimbmovement
and 38 were omitted as they did not address decoding.
Fig 2 illustrates the details of the papers. Finally, 18 papers
[28], [29], [30], [31], [32], [33], [34], [46], [47], [48], [49],
[50], [51], [52], [53], [55], [56], [58], [54] were included in
this systematic review.

B. SUBJECTS
Except for one study which decoded human movement
parameters [56], all other papers addressed various species
and strains of animals. In total, 76 rats (50% of the papers,
n = 9), 24 monkeys (38.88% of the papers, n = 7), 2 humans
(5.56% of the papers, n = 1), and 3 guinea pigs (5.56%
of the papers, n = 1) were used as subject. Fig 4A shows
the percentage of each species (by considering the number
of subjects in each study) in included studies. The studied
rats belonged to Long Evans (34.21% n = 26), Sprague
Dawley (36.84%, n = 28), and Lewis (28.95% n = 22)
strains. Considering the studies using rat subjects, except
for [29] in which the gender of subjects was not mentioned,
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TABLE 3. Task and neural decoding methods were used in each study.

other studies on rats investigated 63.89% female (n = 46)
and 36.11% (n = 26) male rats. Male rats were only used
in studies with Long Evans strain, while studies that used
other two strains, merely worked with female rats. All studies
addressing monkey subjects, used rhesus macaque species
(n = 24); 20.83% female (n = 5) and 79.17% male (n = 19).
Fig 4B illustrates the number and subject type of each study.
The precise information on the animal type, species, gender,
and number can be found in Table 2.

C. INPUT TO THE BRAIN-COMPUTER INTERFACE
Following an extensive search for post-SCI neuro-
regenerative strategies, three decades of progression in
neural engineering have led to alternatives to replace
the lost sensory-motor functions. The development of
high-density neuronal recording devices [59], [60], along
with high-performance computation capacity, has resulted

in the identification of the principles through which the
brain cortex can contribute to movement coordination [61].
Various neural recording methods are developed to be used
in the fabrication of BCI systems, each of which can deliver
different temporal and spatial resolutions depending on their
biological and physical principles. Invasive brain signal
recording methods deliver higher SNR as microelectrodes
directly record neural signals from a small area in the vicinity
of neurons. Depending on the task type and the aim of study,
microelectrode arrays can be implanted in various regions
of the brain cortex. In this study, only intracortical recording
methods were assessed which can be divided into three major
classes: a) single-unit activity (SUA), b) multi-unit activity
(MUA), and c) local field potentials (LFP). Table 2 lists
the type of neural data in the studied articles. As can be
observed, except for one case [34], other studies recorded and
used spike signals (single-unit or multi-unit activity). In [34],
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TABLE 4. Decoded parameters in each study.

FIGURE 4. Visualization of Subjects information among the identified studies. (A) The Percentages of type and strain of subjects. (B) The number and type
of subjects.

however, LFP and epidural field potential (EFP) data were
used in addition to MUA to decode kinematic and kinetic
parameters related to walking. Over time, SUA and MUA
data vanishes gradually which is one of the main challenges
in the application of long-term BCIs based on spike activities.

On the other hand, the stability of LFP signals over
time, has attracted attentions in recent years and many
studies have examined the feasibility of using these signals

in BCIs. In particular, LFP has gained attentions and
has been used in studies on forelimb BCI in animals,
in which the informativeness of these signals and their
stability over time were investigated [24], [62]. In hindlimb
BCI, however, LFP signals have been less noticed. The
limited number of studies in this area indicated that useful
information can be extracted from LFP signals of the primary
motor cortex (M1) regarding various walking parameters
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FIGURE 5. Tasks used to decode Hindlimb movement parameters.

[34], [63], [64], [65]. Comparison of the walking parameter
information contained in various brain signals of rats walking
on a treadmill showed that MUA signals encompassed
more information than LFP signals [34]. The results of
this study show that EFP does not provide any information
about the kinetic and kinematic parameters of hindlimb,
whereas LFPs deliver comparable results for decoding these
parameters toMUA [34]. A comparison of the previousworks
using EFP data for decoding movement parameters with the
aforementioned study showed that the decoding accuracy was
far lower which the authors claimed that it can be assigned
to the smaller size of the epidural electrodes. Overall, the
type of brain signal plays an important role in the feasibility,
accuracy, and lifetime of a BCI system.

D. RECORDED CORTICAL AREA
In this review, the studies which decoded hindlimb motor
parameters using intracortical neural signals are investigated.
In all the addressed studies, recording electrodes were
invasively implanted in the cortex and the brain signals of
subjects were recorded simultaneously with the hindlimb
movement task. The motor cortex consists of several regions,
each of which is related to the movement of a specific part
of the body. Thus, electrodes were implanted in different
areas of the motor cortex based on the body part being
investigated. Table 2 presents the investigated region in each
study. The recorded areas included the hindlimb/trunk area
of M1, premotor cortex, and hand knob area of the premotor
cortex. Moreover, some papers mentioned the sensorimotor
cortex as the recorded region and some of the assessed studies
recorded the signals of S1 in addition to the motor cortex but
only used motor cortex signals in decoding.

As reported in Table 2, all studies had the signal recording
from the contralateral hemisphere to the investigated limb
in their recording areas. In addition, in several studies [33],
[46], [47], [49], [52], [54], the electrode arrays were
bilaterally implanted. Also in two studies [28], [56] the
electrode arrays were implanted only on one hemisphere,
and the decoding of movement parameters was investigated

for both ipsi- and contralateral limbs. Rigosa et al. [28]
recorded brain signals only from one hemisphere and tried
to use the recorded cortical signals to decode movement
parameters of both hindlimbs. Willett et al. [56] also recorded
one hemisphere and decoded the motions of both sides of the
body.

The number of recorded channels and the type of recorded
signal were also investigated in this review. Only one of
the included studies [50] used acute recording to decode the
motor parameters. In the rest of the included articles, the
lowest and highest channels were 7 [31] and 576 [49], [54],
respectively. Table 2 lists the number of recording channels in
the included studies as well as the information related to their
subjects and recording area. 88.89% of the studies considered
more than (or equal to) 16 channels, and 50% and 33.33%
of the studies used more than 32 and 96 channels for neural
signal recording, respectively. As mentioned before, all the
studies, except for one [34], recorded and analyzed spike data.

E. EXPERIMENT DESIGN AND TASKS
Movement parameters can be decoded by analyzing brain
activities. The decoding ability is basically due to a corre-
lation between the brain activities, firing rate of neurons, and
motor parameters [66]. Studies in this field have shown that
intracortical signals recorded from the cortex are related to
movements of the fore and hindlimbs. Decoding algorithms
of BCI systems convert these neuromodulations into desired
output signals (cursor motion or determining the spatial
position of a prosthetic limb). Decoding algorithms are often
developed and validated offline using previously recorded
neural data and the final experiment can be conducted in real-
time in such a way that the subject can directly control the
actions of the external device by their brain activities. The
type of the decoded parameter and the degree of freedom
of the developed system have a direct relationship with
the designed task and its implementation. Therefore, this
systematic review investigated and compared the type of
the implemented tasks to finally evaluate the parameters
investigated by these tasks. Table 3 demonstrates the type
of task in the reviewed papers for decoding the hindlimb
movement parameters. The studies in which the condition
of performing tasks were not as similar as normal were
indicated under ‘‘intervention’’ column in Table 3. Four
types of intervention are specified: (a) spinal cord injury
(SCI) indicates studies in which the subject has performed
the task after SCI, (b) assisted walking (AW) indicates
studies in which the subject performed walking task using a
robotic device, (c) tetraplegia (TG), and (d) exoskeleton (EX)
indicates performing the task using exoskeleton. The type of
tasks in the included studies is also depicted in Fig 5.

Based on Table 3, 61% of the included papers used
locomotion-related tasks to decode hindlimb movement
parameters. Using treadmill to force the subjects to walk,
is one of the highly used tasks for decoding hindlimb
movement parameters (used in 58% of the studies addressing
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FIGURE 6. The contribution of different tasks in decoding the movement parameters, left shows the different types
of tasks. The right side shows the different walking tasks.

the movement parameters during walking tasks). Studies on
decoding the hindlimb movement parameters during walking
on a treadmill addressed this task in two ways: a) walking
on a treadmill with some sort of intervention in the normal
walking of the subjects (for instance, by attaching a robotic
arm to the animal), in which the bipedal or quadrupedal
walking of the subjects was investigated [28], [29], [30],
[48] and b) freely walking on a treadmill [31], [32], [33],
[34], [49], [51], [55] in which subjects stepped normally on
the treadmill. The latter task provides data under conditions
closer to natural circumstances for walking which may result
in better generalization. Bipedal locomotion, however, has
some advantages (compared with quadrupedal walking) in
investigating the decoding of hindlimb movements using
cortical activities. This posture allows for separating the
contributions of the brain activities related to forelimb and
hindlimb and by eliminating the movements of forelimb
resolves one of the major uncertainties in decoding the
hindlimb movements. This is important as there is a
correlation (with a relatively constant time lag) between the
movements of forelimb and hindlimb during quadrupedal
walking, which may raise the question of whether the BCI
decodes the movements of hindlimb or forelimb with a
specific time lag. Moreover, the robotic interface helps the
subject in maintaining its balance, making it possible to
record under various conditions and tasks [28]. However,
robot-assisted walking or bipedal locomotion walking is
different from the natural walking of the animal and possibly
alters the contribution of various central nervous system
regions in coordinating the movements. Therefore, brain
activities during freely walking on a treadmill may be more
similar to the ones during natural walking.

In addition to walking on a treadmill which could be free
or robot-assisted in bipedal and quadrupedal form, walking
on a ladder has been also regarded as one of the tasks

in this field [32], [55]. In comparison with previous tasks,
this task requires more attention and care. As mentioned
before, one of the hypotheses about the motor cortex
expresses that the main role of this region is the production
and coordination of precise and complex movements [67].
Previous studies have indicated that in locomotion, precise
control of stepping requires specific functions of the motor
cortex [68], [69]. This conclusion was based on the results
of studies which used lesion and inactivation of cortical
areas that revealed the essential role of the motor cortex
for accurate stepping [70], [71]. Recording experiments also
indicated a significant correlation between the motor cortex
function and the required position of the feet on confined
surfaces during passing a series of obstacles or walking
on a horizontal ladder [69], [71]. Studies on rats and cats
demonstrated the prominent role of the motor cortex in the
voluntary adjustment of movements [32].

Walking on a flat surface is another task which has been
used to investigate decoding locomotion-related information
[28], [32], [55]. Compared to walking on a treadmill, this task
is more similar to the natural walking condition as there is no
force for walking, and walking is done volitionally, usually
to receive a reward. Although the studies experimenting on
the walking of rats on a flat surface were only conducted with
robotic arm assistance [28], [32], this task was investigated on
monkeys without a robotic arm and in a completely volitional
mode [55]. Fig 6 shows the percentage of various tasks as well
as the walking-related tasks in the included studies.

Walking under abnormal conditions (force application on
body) is another task that confirms the role of the cortex
in regulating motor parameters under abnormal conditions.
Song et al. [29] compared walking in two different states
(without and with force application by a robot) and revealed
that the presence of load can slightly improve movement
decoding. In their subsequent study [30] they investigated
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the adaptation of the motor cortex to different locomotion
conditions. They have examined the motor cortex neural
activities in normal locomotion, under an elastic field applied
to the pelvis and under an elastic field in which the force
is determined by neural activities (BMI with elastic load)
and observed that rats could manage to maintain their
pelvic height in BMI control condition without significant
difference with the natural condition. When subjects faced
new conditions, the cortex becomes more activated, initially
and after a period of time the cortical activity decreases. They
concluded that the use of BMI in the period of confrontation
with new conditions can change the adaptation of cortical
activities [30].

For a better understanding of the role of M1 in various
hindlimb movement tasks, Rigosa et al. [28] investigated
the prediction of detail hindlimb movement parameters
under various behavioral conditions and indicated that the
prediction of hindlimb kinematics and EMG of hindlimb
muscles during bipedal walking along a runway or staircase
is significantly less accurate than walking on a treadmill.
They concluded that the prediction of hindlimb movement
parameters is not robust under various behavioral conditions;
although it is not clear why these predictions are less precise
during complex tasks which require voluntary adjustment of
the walking patterns [28], which is believed to increase the
contribution of cortex in coordinating movements.

In addition to the mentioned tasks which were focused on
walking parameter decoding using intracortical recordings
from the motor cortex, some studies have also decoded
hindlimb parameters using movement tasks other than
walking. Among these tasks, pedal pressing by hindlimb [46],
[47], [52], and squat [50], [53] tasks can be mentioned.
As listed in Table 3, three studies used pedal pressing to
decode hindlimb movement parameters. All these studies
considered rat subjects and this task was not investigated
with monkey subjects. Knudsen andMoxon [47] investigated
whether the duration of pedal pressing is encoded by the
hindlimb area of sensory-motor cortex neurons and whether
the brain activities of animals pressing a pedal for a
specific duration to receive a reward are different from those
pressing it with no duration condition. Manohar et al. [46]
investigated the neural activities of rat sensorimotor cortex
during behavioral and neural control of a pedal before spinal
cord injury. After spinal cord injury, although the neural
activity of the motor cortex was reduced, they still managed
to control a BCI by neural activities of this area and their
performance in doing the task increased gradually. This study
also revealed that the activity of neurons in the hindlimb
area of the sensorimotor cortex is related to more than one
movement parameter, suggesting that the cortical cells of
the hindlimb can simultaneously encode several kinematic
parameters. These findings were in line with previous studies
on encoding forelimb/arm and hindlimb movements. The
limitation of this study was that the muscular activities were
not recorded; therefore, after removing the pedal, the extent
of the rats’ muscles involvement in the movement is not

clear (i.e. neural activity was due to the movement or not).
Knudsen et al. [52] resolved the mentioned limitation and
repeated pedal pressing by rats (normal and SCI) with neural
and EMG recording.

The squat is another task employed for decoding hindlimb
movement parameters. Ma et al. [50] conducted visually
guided stand and squat tasks and acutely recorded the spikes
of hindlimb area in M1 to examine the neural modulation
during various movement phases. They also tried to estimate
the EMG of six muscles of monkeys’ leg using neural data
recorded from a limited number of neurons. The same group
[53] also attempted to decode EMGs recorded from eight leg
muscles of each monkey with the help of spike data recorded
by 16-channel arrays. Vouga et al. [54] also designed the
real-time control of a continuous virtual tracking task by
which a trained monkey could control a cursor on a display
to track a target.

In addition to the above-mentioned tasks on animals,
Willet et al. [56] conducted a study to decode movement
parameters using neural data of the hand knob area of
two human subjects. They employed various tasks including
different movements of face, hands, legs, and head versus
doing nothing to classify these tasks. They finally showed that
the hand knob area could be used for decoding the movement
parameters on both sides of the body. As mentioned before,
the task of a BCI system plays an important role in studies
or in the practical applications of the system and can have a
significant impact on decoding parameters, generalizability
and even on the contribution of cortex in performing it.
Table 3 lists the tasks of the included studies.

F. Hindlimb KINETIC AND KINEMATIC PARAMETERS
Hindlimb-related movement parameters can be divided into
two major groups: low level parameters and high level
ones, which different decoding techniques must be used
for each group. High level parameters provide a general
description of the movement and often decode the parameters
using a classifier (or discrete decoder). The high level
parameters that were investigated in the included studies
are as follows: 1) gait phase or foot contact with the
treadmill is one of the most basic and important high level
parameters which indicates the stance/swing phase of one
foot [28], [30], [31], [33], [55]. 2) The walking direction
(discrimination between forward and backward walking)
which was addressed in [14]. 3) The intention to move
[28], [31], [48], [51], which is defined in this study as
the onset of hindlimb movement. Studies decoding this
parameter can be found in Table 4 in the ‘‘intention’’ section.
Studies differentiating the instant stance/swing phase are
also included in this group, as the onset of swing phase is
equivalently the onset of target hindlimbmovement. Note that
in gait phase decoding, a gait phase (e.g. stance) is assigned
to a period of time (e.g. 100 ms), whereas in decoding the
intention to move, time is divided into small time bins (e.g.
20 ms bins) and each time bin is assigned to either onset
of movement or otherwise. 4) The performed task also falls
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into this category. For example, Rigosa et al. [28] decoded
different tasks (walking tasks on a treadmill, on a flat surface,
and climbing stairs) using intracortical signals recorded from
the M1. Moreover, in [56] various tasks such as moving the
hands, feet, and head were also decoded using intracortical
signals.

Low level parameters such as position and speed of
limb joints generally describe the details of movement and
these parameters are continuous in nature. As mentioned
before, many studies have used walking tasks to investigate
decoding hindlimb movement parameters. The continuous
parameters examined in hindlimb tasks will be introduced in
the following. The position of the hindlimb parts such as toe,
iliac crest, hip, ankle, knee, and metatarsal-phalangeal joints
are the most important parameters that have been decoded
in different studies using brain signals [28], [29], [30],
[33], [34], [55]. Another evaluated parameter is the angle of
the joints such as hip, ankle, knee, as well as some other
angles defined by the authors [28], [29], [32], [33], [34], [55].
Velocity and acceleration of hindlimb joints [29], step length,
step frequency, and instant speed of walking [33] were the
other decoded parameters. EMG and muscle synergies are
also decoded in some of the previous studies [28], [32],
[33], [34]. Table 4 lists the decoded parameters in each
article. In the velocity and acceleration column, studies
which decoded the first (velocity) and second (acceleration)
derivative of joints position are marked, respectively. In pedal
pressing tasks the position of paw while pressing a pedal is
investigated, which is also marked under the position column
in Table 4.

G. DECODING ALGORITHMS
This section describes the decoding algorithms used in
the reviewed studies in detail. These algorithms resemble
EEG/ECoG-based decoders that have been evaluated in
several review articles [72], [73]. Here only the literature
on hindlimb movement decoding using intracortical signals
will be reviewed. Decoding of movement parameters from
intracortical signals is achievable as the modulation of
neuronal activities is consistently related to tasks and changes
in movement parameters [66].

Recording usingmultichannel arrays provides neural activ-
ities of several neurons or regions around each electrode (very
small spheres around each electrode with a maximum radius
of a few hundred micrometers), which in comparison with
single electrode recording, can enhance the performance of
decoders with richer inputs. A decoder takes the intracortical
data as the input and estimates the desired parameters
(including, but not limited to, presence/absence ofmovement,
type of movement, position of a limb, joint angle) as the
output. Thus, many machine learning methods can be used
for this purpose. The signal processing for neural decoding
consists of several steps, which are shown in Fig 1. After
recording brain signals, the raw data is processed and several
features are extracted from the processed signal, which
may contain information about the BCI task or desired

parameters. The extracted features may be redundant or not
related to the desired parameters which may be omitted from
further processes in feature selection step. Next, a training
algorithm fits a model to solve the problem of classification
or regression. Classification algorithms solve the problem of
matching the input with one of the predefined discrete classes,
while the regression algorithms continuously match the
input signals with the outputs. As an example, swing/stance
identification is a classification problem, whereas knee joint
trajectory decoding is a regression problem.

Preprocessing and denoising play a vital role in the
development of intracortical BCIs. The preprocessing tech-
niques (e.g. filtering, and artifact removal) used in BCIs
can significantly affect the accuracy of BCI systems in
decoding user’s intent via intracortical neural signals. All
of the included studies used frequency filtering to extract
the spike/LFP signal from recorded neural activities. Spike
detection was done using thresholding [29], [30], [31],
[33], [34], [46], [47], [53], [55], [56], and a continuous
wavelet-based method [28] presented in [74]. Several studies
used Plexon online and offline spike sorting sorter softwares
to obtain single-unit activities [29], [30], [46], [49], [52],
[53], [56]. In addition, Barroso et al. [34] used a weighted
common average reference method to denoise the LFP and
EFP signals, and Rigosa et al [28] used wavelet filter bank to
reduce the coupling between electrodes.

Depending on the type of the recorded signal (spikes or
LFP), the considered features of the included studies are
different. The features extracted from the recorded spikes
include firing rate [28], [29], [30], [31], [32], [33], [34],
[46], [47], [48], [49], [50], [51], [53], [55], [56], [54]
(94.44% of included studies, n = 17), peri-stimulus time
histogram (PSTH) [52] (5.56% of included studies, n = 1),
and inter-spike interval (ISI) [47] (this study also used FR as
feature, 5.56% of included studies, n = 1). Spike information
was used in all of the included studies. However, Barroso et al.
[34], in addition to spike data, analyzed LFP signals and used
the power of LFP in several frequency bands (8-19, 20-69,
70-129, 130-199, 200-300 Hz) to decode the movement-
related parameters. The features used in included studies
are summarized in Table 3. Various decoding schemes were
employed in the included studies which can be divided
into two categories depending on the discrete/continuous
nature of the decoded parameters: A) Discrete decoding,
for discriminating several states. Methods such as Gaussian
Naïve Bayes [56], PSTH-based classifier [52], rLDA [51],
thresholding [48], [52], support vector machine (SVM)
[28], [49], expectation maximization (EM) [49], and k-means
[49] are examples of these decoders. B) Continuous decoding,
for estimating a continuous parameter, such as studies that
have continuously reconstructed the trajectory of a joint
movement. In this section, different methods such as Wiener
Filter [33], [34], [46], [55], Kalman Filter [53], Unscented
Kalman Filter [49], [53], linear regression [54], multiple
linear regression [29], [50], least-square [32], RNN [34], and
support vector regression (SVR) [28] have been employed.
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TABLE 5. Achievements of included studies.

The decoding methods of each study are tabulated in Table 3.
Regarding the differences in species of subjects and the tasks
in the assessed studies, it is not possible to directly compare
the results and the decoding performances.

IV. DISCUSSION
This systematic review summarizes the studies on the use of
intracortical signals in decoding the hindlimb movements for
BCI systems. To the best of the authors’ knowledge, this is the
first systematic examination of intracortical BCIs focusing
on lower limb movements. 18 studies were included in this
study and the subjects, recorded signal, experiment design,
decoding method, movement parameters, and major findings
of these studies were summarized.

Table 5 summarizes some of the achievements of included
studies that are mostly related to this review. These studies
have investigated hindlimb neural decoding from different
perspectives. However, there are several questions that
need to be investigated more deeply. Decoding hindlimb

high-level and low-level movement parameters has been
investigated in several studies and it is necessary to develop
strategies for using important parameters, that can be
accurately decoded, in online systems for patients. Although
Barroso et al. [34] investigated the amount of information that
can be extracted fromMUA, LFP, and EFP of rat motor cortex
about locomotion, more studies are needed to investigate
this issue in monkeys and humans. The subject’s balance
while standing or walking, due to its importance for the
subject’s safety, is also one of the issues that needs to be
further investigated in BCI studies. This issue may affect
the generalizability of the results obtained by studies on
animal models. In addition, during daily life walking, some
actions such as obstacle avoidance or change in direction
may be necessary which can be investigated more deeply
in future studies. Examining the performance of different
preprocessing, feature extraction, dimensionality reduction,
and decoding methods - as examined in upper limb studies -
as well as investigating the performance of deep neural
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networks can provide a clearer picture of the amount of
information that can be extracted from brain signals about
hindlimb movements. Finally, more studies on online BMI
systems with human subjects are needed to investigate the
performance of these systems on their end-users or cases with
similar conditions as them.

The results of this study indicated the appropriate possibil-
ity of decoding numerous kinematic and kinetic parameters
of hindlimb movements using intracortical signals of the
sensorimotor cortex. Some of these parameters were decoded
online; by receiving feedback, the subjects managed to better
control a BCI system consisting of an exoskeleton [54].
In another study, after spinal cord injury, the subjects could
conduct pedal pressing tasks by brain control to receive the
reward and control the BCI system [46]. Moreover, online
brain control can result in functional plasticity in neuronal
networks [14], [46], [75]. Additionally, the use of advanced
BCI technology can offer a better understanding of the
neural representation of various motor parameters which may
improve the efficiency of these systems.

The type of signal used and the temporal stability of
the BCI systems are among the significant parameters in
the development of these systems. Although other issues
such as computational costs and sampling rate, availability
of the required technology, and costs are also among the
determining features of the signal type, time stability of the
signal has been one of themain challenges in the development
of these systems. Today, various recording methods have
been developed to record brain data and use them in the
fabrication of BCI systems. Each of these methods can offer
different spatial and temporal resolutions depending on their
underlying biological and physical principles. The recording
methods vary from single/multi-unit recording techniques,
involving microelectrode insertion into the brain, to non-
invasive approaches such as EEG, magnetoencephalography
(MEG), functional near-infrared spectroscopy (fNIRS), and
functional magnetic resonance imaging (fMRI). One of
the clinically important factors in the development of
neural prostheses is the durability of the recording method.
Implanted multi-electrode arrays measure the brain activities
at high spatial (single neuron level) and temporal (at spike
level) resolutions. Multi-electrode array (MEA) based BCIs
have been investigated on rats [29], [62], [76], non-human
primates [75], [77], [78], and humans [13], [79], [80]. The
degree of freedom presented by such BCIs is continuously
growing [81], [82].

This review only addressed BCIs based on intracorti-
cal signals which can be categorized into three groups:
A) single-unit recording which is the basis for the studies
in the field of neuroscience and the majority of the
developments in BCIs rely on these signals and the results
and knowledge obtained by them. SUA is obtained from
the axon output near the recording electrode [83]; except
for some cases [84], such information may be degraded or
disappeared only several months post electrode implantation

[85], [86]. B) multi-unit activities which originate from
neural outputs of several neurons placed in the vicinity of
the tip of the implanted electrode. It has been shown that
multi-unit activities have higher resistance by passing of
time as compared to SUA [85], [87], [88]. C) LFP which
is indicative of the firing of several neural cells which are
sustained as time passes [85], [89]. The amount of obtainable
information about movement from LFPs, compared to spikes,
is not well investigated. Some studies have reported lower
decoding accuracy of LFPs [24], [87], [90]; while some others
indicated higher or similar precision [91], [92]. Although
several studies have used LFP signals for decoding various
kinematic and kinetic parameters of the forelimb with very
good outcomes [93], [94], [95], [96], only one paper [34] has
addressed the movement of hindlimb considering the poten-
tial of this type of signal. Therefore, decoding of kinematic
and kinetic parameters of the hindlimb using LFP signals is
one of the topics requiring further investigation as there is no
comprehensive answer concerning the applicability of these
signals in BCIs. Some studies have revealed that LFP signals
can manage to maintain their stability at longer periods as
compared with SUA and MUA; thus they are more suitable
for long-term applications [62], [95]. Moreover, regarding the
smaller frequency range of LFP compared to spike, signal
sampling and transfer from the implanted arrays to the BCI
signal processing system will be more cost-effective in terms
of energy consumption and bandwidth. The lower energy
consumption can significantly contribute to the development
of portable BCIs. Regarding the higher noise susceptibility
of LFP signals compared to spikes, LFP-based BCI systems
should employ artifacts and noise elimination techniques
[97], [98].

Preprocessing is one of the most important steps in
analyzing neural signals. As neural signals are affected
by different noises and artifacts, it is very important to
preprocess these data before any further analysis. Several
preprocessing methods have been developed and are widely
used in BCI systems. Signal filtering in the frequency domain
is widely used to remove high and low-frequency noise,
and powerline artifacts, and to obtain the signal in the
desired frequency range (spike/LFP). Other preprocessing
methods include re-referencing methods such as common
average referencing (CAR) [62], weighted CAR [34], [98],
and Laplacian filtering [99], [100] and spatial filtering
methods such as common spatial patterns (CSP) [65], [101],
and regularized CSP [102], [103]. As EEG, ECoG, and
LFP signals are usually contaminated by noise, several
denoising methods have been developed such as wavelet
denoising [65], [97], and minimum noise estimation [97].
However, as spike signals are less susceptible to noise and
artifacts, using denoising methods in BCIs which use MUA
or SUA is not as critical as in EEG, ECoG, and LFP-
based BCIs. Frequency filtering and thresholding is done to
detect multi-unit activities and in order to obtain single-unit
activity, spike sorting methods are used. Although studies
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that use single or multi-unit activities do not usually use
other preprocessingmethods, denoising and/or re-referencing
methods are needed if high-frequency noise and artifacts
are present in the recorded signal. Frequency filtering [28],
[29], [30], [31], [32], [33], [34], [46], [47], [48], [49], [50],
[51], [52], [53], [55], [56], [58], [54], spike detection [29],
[30], [31], [33], [34], [46], [47], [53], [55], [56], and [28],
spike sorting [29], [30], [46], [49], [52], [53], [56], coupling
reduction between electrodes [28], and weighted common
average reference-based artifact rejection [34] were used in
the preprocessing stage of the included studies. The impact of
using other preprocessing methods in intracortical hindlimb
studies can be investigated in future studies.

The goal of feature extraction is to find the informative
and low dimensional patterns in the signal which are related
to the investigated target variables. Feature extraction is one
of the most important steps in BCI, as the informativeness
and interpretability of features are very important in making
accurate and reliable BCIs. Several groups of features are
used in different BCI systems, depending on the signal
being used (EEG, MEG, ECoG, LFP, MUA, or SUA), type
of BCI (discrete/continuous), and task. Features such as
band power [104], time domain features [105], canonical
correlation [17], [106], connectivity indices [107], the
envelope of signal [62], firing rate (SUA [28], and MUA
[34]), peri-stimulus time histogram [52], and inter-spike
interval [47] have been shown to be informative and result
in accurate BCIs. However, in the included studies focusing
on decoding hindlimb movements, firing rate [28], [29],
[30], [31], [32], [33], [34], [46], [47], [48], [49], [50],
[51], [53], [55], [56], [54], PSTH [52], ISI [47], and the
statistical moments (mean, standard deviation, and skewness)
of the distribution of the entire population firing rate [28]
of the spike data and band power of LFP signals [65]
have been used as feature (see Table 3). The previously
mentioned feature groups can also be investigated in LFP-
based intracortical hindlimb BCIs which can provide useful
knowledge about the expected accuracy of BCIs with LFP
signals.

The features extracted from neuronal signals are high
dimensional, which may lower the accuracy of BCI systems
and their interpretability. In addition, the number of data
points needed for training the decoding algorithms without
overfitting is directly related to the dimension of features.
This issue is more critical if non-linear decoding algorithms
are used. Thus, several methods were proposed to reduce the
dimensionality of features before training the final decoding
model. These methods, called dimensionality reduction
methods, aim to obtain a set of features with lower dimension,
either by transforming features into a different space or
by selecting a subset of features, in order to prevent
overfitting and lower the computational cost. Several dimen-
sionality reduction methods such as principal component
analysis (PCA) [46], [52], [108], mutual information [109],
statistical dependency [65], and neighborhood component

analysis [110] have been used in BCI studies. In the included
studies, Rigosa et al. [28] selected and analyzed the stable
single units, determined by spike shape and ISI distribution,
Willet et al. [56], excluded electrodes with less than 1 Hz
firing rate from analysis, Knudsen and Moxon [52], used
PCA/ICA to obtain a low dimensional representation of
neural activities which are mostly related to the task, and
Xing et al. [55] used Poisson linear dynamical system
to reduce dimensionality and compared it with PCA and
predictive subsampling (PSS) presented by [111]. It is worth
noting that selecting the best time-window and an optimized
combination of narrow and broad frequency bands in LFP,
ECoG, and EEG-based BCIs can significantly affect the
system performance [109], [112].

The development of BCI systems for hindlimb requires the
decoding of parameters related to this limb under different
conditions and movement types. Various tasks have been
developed to assess decoding accuracy using diverse brain
signals and algorithms. Among the hindlimb-related tasks,
the treadmill walking task has been the most popular one,
followed bywalking on a flat surface. However, daily walking
includes various movements such as crossing obstacles,
walking on different slopes, changing direction to both
sides, as well as walking at different paces. Tasks covering
these items have been neglected in decoding studies. As an
instance, several studies have examined the encoding of
hindlimbmovement while walking and obstacle avoiding, but
the decoding of movements in these tasks has been neglected.
Kinetic parameters such as joint torque and endpoint force
have not been directly addressed in hindlimb-related studies
and only the decoding of EMG of hindlimb muscles has
been studied. Decoding parameters such as joint torque
can be very useful in the development of hindlimb-related
BCIs, leading to BCI systems that allow the user to control
the machine/prosthesis better and with higher precision
in different walking conditions. In forelimb studies, these
parameters have been examined with acceptable decoding
results [62], [113]. Concerning hand-related BCIs, some
studies were focused on the torque decoding of the wrist
joints [114], [115] but this group of kinetic parameters were
not considered in hindlimb-related BCIs.Moreover, decoding
kinetic and kinematic parameters in tasks requiring higher
attention, such as walking on a horizontal ladder, has not been
conducted.

There are two general approaches concerning BCIs. The
first approach involves accurate decoding of low-level kinetic
and kinematic parameters using brain signals and the precise
control of machine/prosthesis by these decoded parameters.
The aim of the second approach is, however, decoding
the high-level movement describing parameters, such as
the type of task and the intention to start motion. These
high-level parameters are used to determine the details of task
execution using already developed algorithms. To achieve
BCIs with high accuracy and stability applicable to daily
activities, the second approach can be used in the case of
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low decoding accuracy of some low-level parameters (such
as 3D joint position). Therefore, accurately decoding high-
level parameters is important for designing high-performance
BCIs.

Concerning hindlimb movement tasks, high-level param-
eters such as gait phase, intention to step, and type of task
(walking under different conditions, moving the hindlimb in
a certain direction) have been assessed in some studies [28],
[30], [31], [32], [56]. Schwarz et al. [49] reported that all
employed discrete decoding methods (EM, K-means, SVM
with linear kernel, and SVM with RBF kernel) had good
decoding performance classifying the movements performed
by subjects. SVM and Gaussian naïve Bayes classifiers were
also used to decode gait phase and task in [28] and the
intended limb tomove and themovement in [56], respectively
with high accuracies. Capogrosso et al. [51] have used rLDA
classifier to decode gait phase and the movement initiation of
the limb affected by unilaterally spinalized monkeys during
walking and could efficiently alleviate walking deficits in
these subjects. Moreover, in [47] and [52], classifying pedal
press duration was done using ISI-based and PSTH-based
classifiers respectively and had high and relatively similar
true positive rates. However, although promising results have
been obtained using deep neural networks in discrete BCIs
[116], [117], [118], none of the included studies used these
methods for hindlimb high-level movement parameters.

Walking can be regarded as the most important use of
the hindlimb, therefore attempts to apply BCI to restore the
walking ability can be considered more important than other
uses. To this end, the ability to predict the swing onset of one
leg during the walking task can be of crucial importance. In a
study [51], researchers succeeded in restoring the walking
ability of monkeys by accurate estimation of the onset of
the movement of one leg, paralyzed by unilateral spinal
cord injury, and stimulating the spinal cord with an optimal
pattern. However, this type of walking was restricted and
differed from the normal gait of a healthy monkey which can
be investigated further to develop brain-spinal cord interfaces
with higher degrees of freedom.

Studies in this field often considered rat (50% of studies)
and monkey (38.88% of studies) subjects. Many preliminary
studies have been conducted on the walking of cats consid-
ering the coding of walking data in different tasks such as
walking on a treadmill, in lateral slopes (to the left or right),
and also walking on a treadmill with obstacle. However,
no study was found concerning decoding this data of cats’
movement. Concerning the frequency, SpragueDawley, Long
Evans, and Lewis breeds weremore frequently used in studies
on rat subjects, respectively while Wistar rats have not been
considered in any of these studies. Rhesus macaque was the
only studied monkey breed. Male monkeys (79.17%) and
female rats (59.375%) were more considered.

This review is limited to invasive BCI systems which
are generally conducted on animal subjects. Except for one
article [56], all studies were performed on animal subjects.

Due to the invasive nature of intracortical recordings, the
possibility of performing experiments on humans is very
limited. The very limited human candidates often have
disabilities failing in performing the movements completely
and accurately. This is one of the challenges hindering
the development of invasive human BCIs for hindlimb
control. The BCI development studies are thus performed
on animals until reaching the minimum desired accuracy.
During the article search, studies related to motor, pre-
motor, and sensory-motor cortex were included. However,
no mapping was found in these studies concerning the data
of different parts of the motor cortex to decode kinetic and
kinematic parameters of the hindlimb to make it possible, in a
comprehensive investigation, to investigate the possibility of
decoding these parameters using signals of various cortical
areas and determine the available data applicable to BCI
systems in various brain parts such as M1 and pre-motor
cortex. Most studies on decoding of hindlimb parameters are
limited to M1, which may not be a correct approach. For
example, Willet et al. [56] showed that high-level movement
parameters can be decoded at high accuracy by recording
from the hand knob area in the premotor cortex. These studies
can provide a more comprehensive insight into the potentials
for achieving accurate and functional BCIs.

As mentioned before, upper limb intracortical BCIs are
well advanced and several studies have been conducted to
assess the performance of these systems in human subjects
with movement disabilities [24], [119]. In comparing the
results of upper and lower limb BCIs, several factors can
affect the results of comparison and it is important to consider
them. Upper limb and hindlimb tasks are different as the main
functions of upper limb are doing precise actions such as
reaching, grasping, and holding which need accurate control
strategies with several degrees of freedom; while the main
function of hindlimb is locomotion, which, although complex
in nature, is a stereotypic and repetitive movement. So the
considerations in one BCI type may not be applicable to the
othe. Hindlimb BCIs are mainly for people who lost their
ability to move and control their feet and need assistance in
balance and locomotion. One of the challenges in hindlimb
BCIs is that these systems must provide solutions for weight-
bearing and balance as well as locomotion, which may
make the development of these BCIs for human subjects
more complex and limit these studies. Several standard tasks
are being used for upper limb BCIs such as center-out
and reaching tasks, which makes the results of different
studies comparable. Also, in hindlimb BCIs the treadmill
walking task is used in several studies, but the conditions of
walking (bipedal/quadrupedal, freely walking/robot assisted
walking) are different in these studies.Moreover, the assessed
movement-related parameters are also different. Because of
the aforementioned factors, a direct comparison between the
performance of upper and hindlimb BCIs may not represent
their progress. Although, in general, as a result of the
promising results that upper limb BCIs have obtained in
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human subjects, these BCI systems are in more advanced
stages than hindlimb ones.

As the main goal of developing BCIs is increasing
the quality of life of people with movement disabilities,
it is very important to evaluate BCI systems on human
subjects to obtain a clear understanding of the shortcomings
and potential applications of these systems for patients.
To address these issues, several studies have focused on
using intracortical BCIs for human subjects with movement
disabilities and their results were very promising. These
studies focused on decoding the subjects’ intention to move
their upper limb. Studies have shown that people with
tetraplegia can use an intracortical BCI to control computer
cursor [84], [120], prosthetic limbs [13], robotic arm [1],
FES-based wrist and finger control [12], and FES-based
whole arm control [121] with high accuracy. The results of
these studies show that the idea of using BCI systems for
human subjects is feasible and can significantly increase the
quality of life for people with movement disabilities. Some
studies used EEG signals to decode gait speed change during
treadmill walking [122], hindlimb kinematic parameters
during robot-assisted walking [123], and freely walking on
a treadmill [124] in human subjects. However, as a result of
lower attention to hindlimb intracortical BCIs, to the best of
our knowledge, only one study [56] investigated the human
hindlimb movement decoding using intracortical signals.

Most studies have considered linear decoding methods.
However, studies such as [34] and [53] compared the
performance of linear and nonlinear decoding methods
and showed that nonlinear models offered higher accuracy,
highlighting the significance of nonlinear algorithms in BCI
studies. Ma et al. [53] showed that unscented Kalman
filter significantly outperformed standard Kalman filter in
decoding hindlimb EMG and kinematics in terms of the
correlation coefficient. Barrosso et al. [34] also showed that
recurrent neural network can decode the hindlimb EMG
and kinematics with significantly higher accuracy in terms
of variance accounted for (VAF) by MUA, LFP, and EFP.
Noteworthy, many reviewed articles did not explicitly report
the decoding results, making it difficult to compare the results
of different investigations. Furthermore, the wide variety of
movement tasks, subjects, and decoded parameters made it
practically impossible to compare the results in most cases.

Recently, researchers reported that using deep neural net-
works (DNN) for decoding can improve decoding accuracy.
Studies have used Restricted Boltzmann machine [125], long
short-term memory (LSTM) [126], [127], [128], convolu-
tional neural network (CNN) [129], [130], temporal convolu-
tional network (TCN) [131], recurrent neural network (RNN),
QuasiRNN [132], multiplicative RNN (MRNN) [133], gated
recurrent unit network (GRU) [134], and combination of
CNN and LSTM [117], [135] for discrete and continuous
movement-related parameters decoding. DNN models need
to be trained by large-scale datasets in order to avoid over-
fitting and obtain high accuracies [136], [137]. In addition

to recording more data, which may not be possible or cost
effective in some cases, data augmentation methods can also
be employed to address this issue [137], [138], [139].

The emergence and development of wireless recording
systems in intracortical signal-based BCI studies of the
hindlimb which can offer a comprehensive understanding
concerning the role of the brain cortex in various hindlimb
tasks [49], [51], [55] is remarkable and noteworthy. It is
important for both neuroprosthetic applications and research
studies, as the mobility of subject can be considerably
improved. Several groups have worked, and currently are
working, on developing wireless recording wearable sys-
tems [140]. Experiments in conditions closer to daily life
with higher complexity than laboratory tests can lead to the
development of BCIs with higher generalizability. Thus, the
data collected using this recording method can significantly
broaden our knowledge and increase the development speed
of BCIs for clinical and real-life use.

Previously, researchers have shown that it is possible to
control FES system by analyzing the residual activity of
muscles or residual limb movements and using the analyzed
data to control a set of switches to animate the upper
limb [141], [142]. Recently, several studies investigated
the possibility of using brain signals to control the FES
systems for upper limb movement in paralyzed people.
Bouton et al. [12] demonstrated that using intracortical
BCI to control FES device on hand, can enable people
with tetraplegia to perform daily life upper limb tasks.
Ajiboye et al. [121] showed that people with tetraplegia can
move their whole arm to perform reach and grasp using FES
controlled by intracortical BCI.

Animating hindlimb by BCI-controlled FES system to per-
form complexmovements such as walking can be challenging
as several muscles must be stimulated with an appropriate
and complex protocol. In addition, the contribution of motor
cortex in coordinating hindlimb movements is not well
investigated and the rhythmic and stereotypic patterns of
hindlimb movements during walking are believed to be
produced by central pattern generator (CPG) circuits in
spinal cord [143]. Garasimenko et al. [144] showed that cats
can walk quadrupedally by epidural electrical stimulation
(EES) of spinal cord after complete spinal cord transection.
Noteworthy, the stimulation was not triggered by the cat’s
intention or brain signals in this work. Studies have also
shown similar results in rats [6] and human [145] subjects.
These studies used externally controlled EES to animate
hindlimb. However, several studies used BCI-controlled EES
system to reanimate hindlimb after spinal cord transection.
Alam et al. [31] used intracortical signals to decode gait
phase and stimulate hindlimb muscles of spinalized rats
during treadmill forelimb walking. Li et al. [48] used motor
cortex spikes to detect the hindlimb movement intention of
guinea pigs in order to trigger the spinal cord stimulation
system to produce movement. Knudsen andMoxon [52] used
motor cortex signals to stimulate the spinal cord to produce
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long/short pedal press by hindlimb of completely spinalized
rats. Capogrosso et al. [51] developed a BMI-controlled EES
system to stimulate the spinal cord of unilaterally spinalized
monkeys with an optimized protocol to animate the paralyzed
hindlimb during walking on a treadmill and over ground. The
results of this study are promising, which suggest that the
brain-spinal cord interfaces can be considered as a practical
solution for alleviating gait deficits for people with hindlimb
movement disabilities.

V. CONCLUSION
In the present work, we systematically reviewed the studies
decoding hindlimb movement parameters using intracortical
signals and summarized subjects, type and specifications of
the recorded signal, task, decoding algorithms, movement
parameters, and major findings of included studies. The
results of reviewed studies show that it is possible to
decode several movement parameters of hindlimb from
intracortical signals which can be used in brain-machine
interface systems to help people with hindlimb movement
disabilities. However, further investigations are required to
determine which types of movement parameters and to what
extent can be reliably decoded from intracortical signals to be
used as commands, because of the small sample pool, lack of
clinical trials in real-world conditions as well as laboratory
conditions for human subjects and safety challenges.
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Primary motor cortex; MEA: Multi-electrode array; MEG:
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neural network; MUA: multi-unit activity; PCA: principal
component analysis; PSS: Predictive Subsampling; PSTH:
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