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ABSTRACT This paper examines the technological structures of the manufacturing and the ICT sectors in
Korea to examine the potential shift of dominant technological sectors in the era of the Fourth Industrial
Revolution (4IR). By using patent data of Korean firms from 1990 to 2021, we find that the manufacturing
sector has been the dominant technological leader in Korea in terms of both the number of patents and the
diversity of technologies, even in the era of 4IR. Although the ICT sector has shown an increasing focus on
Industry 4.0 (I4) technologies after the 2000s, indicating the potential for a shift in dominance in the future,
the gap between the two sectors is still significant. The study also reveals that the manufacturing sector tends
to diversify technologies, while the ICT sector specializes in several target technologies. Our analysis also
suggests that both sectors exhibit path-dependency, with the ICT sector exhibiting stronger characteristics,
and firms in both sectors shows the tendency of intensive and extensive margin in their patenting activities,
with the manufacturing sector exhibiting the stronger tendency.

INDEX TERMS Economic complexity, industry 4.0, network analysis, patent data, technological network,
the fourth industrial revolution.

I. INTRODUCTION
Technological innovation is the primary driver of economic
development and growth of a country [1]. However, as his-
tory has shown, innovation often happens in groups of sig-
nificant breakthroughs, forming distinct changes that have
the power to transform the socioeconomic system within a
particular time and location. According to Perez [2], every
technological revolution consists of a group of interconnected
technological systems. Dosi [3] emphasized this aspect by
introducing the term ‘‘technical paradigm,’’ which refers to
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the implicit agreement among agents regarding what consti-
tutes a valid search direction and what would be considered
an improvement or superior version of a product, service,
or technology, similar to the concept of a paradigm in Kuhn’s
theory. For instance, during the Second Industrial Revolution
from the late nineteenth to the early twentieth century, the
widespread adoption of mass production and its associated
systems enabled economies to undergo significant structural
changes. Similarly, the Third Industrial Revolution, which
took place in the 1970s, was characterized by the emer-
gence and diffusion of information technology. In the 2010s,
we saw the rise of new tech companies in the US, such as
Google, Amazon, and Meta, leading to significant changes
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in our daily lives, production systems, and socioeconomic
structures. A number of scholars argue that we are currently
experiencing a paradigm shift called the Fourth Industrial
Revolution (4IR) [4], [5], [6], [7].

The 4IR is expected to be driven by emerging digital
technologies, such as the Internet of Things (IoT), robotics,
artificial intelligence, and self-driving cars, and is set to have
a profound and pervasive impact on the economy across
various sectors [5], [6]. These technologies are collectively
referred to as Industry 4.0 (I4) technologies by scholars [8],
[9], [10]. The 4IR is distinguished from previous industrial
revolutions in that it involves the large-scale automation of
entire groups of tasks, including both repetitive intellectual
and non-routine tasks, rather than just physical work [11].
As the potential positive and negative impacts of I4 technolo-
gies are being assessed, the 4IR has emerged as a significant
topic in the current industrial structure discourse [12], [13],
[14], [15].

One interesting topic worth noting is the potential for a
shift in the dominant actors of our economy, as technological
revolutions throughout history have brought about changes
in the primary sector of the economy. For instance, during
the industrialization of the 20th century, the manufacturing
sector surpassed other sectors in terms of productivity [16],
[17], [18]. Kuznets [19] emphasized the importance of sec-
toral shifts in modern economic growth, particularly the shift
from agriculture to non-agricultural activities, and later from
industry to services. This view highlights the significance of
the structural shift aspect in economic development.

In line with this, Saviotti and Pyka [20] examine the cre-
ation of new sectors as a driver of economic growth and devel-
opment. They argue that the growth and development of new
sectors are not merely a result of productivity growth within
a sector, but a product of the emergence of new industries.
Therefore, the key question regarding structural shift through
technological revolutions is which sectors or agents hold the
dominant power in a constant set of industries.

One reason why the dominant actor changes during a tech-
nological revolution is that the new sector that emerges often
requires new capabilities and routines from firms to develop
along the trajectory in the new sector. Dosi and Nelson [21]
argue that a paradigm shift such as the 4IR generally implies
a change in the direction of technological advances over
time. These trajectories can shape a firm’s routines [22],
which are patterns of behavior that become established over
time through repeated action and learning [23], [24], [25].
Routines also play a crucial role in shaping the trajectories
of technological development within firms and industries.
In other words, there are appropriate routines and capabilities
for technological trajectories, and it is not easy to shape
them differently because these trajectories are constrained
by the limited rationality and capabilities of the companies
involved [22], [26].

However, when a paradigm shifts, the emergence of a new
sector in the economy can create new trajectories for firms

and industries. For example, the emergence of the internet
as a new sector in the 1990s created new trajectories for
firms in the technology and communications industries [27].
Many firms in these industries developed new products and
services that capitalized on the opportunities provided by the
internet, such as e-commerce platforms, online advertising,
and digital content [28], [29]. However, during the era of
the internet, several companies struggled to adjust to the
rapid changes, ultimately falling behind. The reason is that
the routines embodied in the firm and the capabilities they
have did not match the trajectories drawn by the new sectors.
Taking into account what we’ve discussed, it can be said that
a new sector that forms a new trajectory requires a new actor
with a suitable routine and capability.

Then, can we expect a new sector to emerge as the dom-
inant player in the economy with the arrival of the 4IR in
the 2010s? To answer the question, we analyze Korean firms
with comparing the manufacturing and the ICT sectors, rather
than covering all countries. The reason why we focus on the
case of Korea is that the socioeconomic context in which
industries are situated can vary between countries, even when
industries of different counties may produce similar products.
Additionally, manufacturing is one of the dominant sectors of
the Second Industrial Revolution and, as mentioned above,
has been responsible for most of the productivity gains of the
20th century [16], [17], [18], [19]. On the other hands, as the
4IR is considered a revolutionary change that occurs when
IT proliferates across all industries and is often referred to as
the horizontal expansion of IT [7], the ICT sector is at the
forefront of the 4IR and provides the foundational technolo-
gies and infrastructure needed for new technologies such as
I4T to be integrated and optimized [5], [6], [7]. In particular,
Korea is a country where both the manufacturing and the
ICT industries are actively developed, and by analyzing the
technological structure of the manufacturing and ICT sectors,
it can be possible to identify the dominant players in the 4IR
in a simple and clearer way.

Specifically, we analyze patent data associated with I4
technologies to determine which sector between the manu-
facturing and the ICT sectors dominates the 4IR era. Patents
provide technical details of new inventions and protect the
exclusive rights of inventors, making patent databases an
excellent source of the latest technological information even
before new technologies are commercialized [11].

To explore the technological dominance of the manu-
facturing and the ICT sectors in Korea, the research will
adopt methodologies from network estimation and economic
complexity research. To construct a network of technology,
we first extract the applicant’s (firm’s) information and tech-
nical capability (e.g., a number of firm’s patent applications
related to a given technology) from the patent data. Using the
firms and their technical capabilities, we construct two tech-
nological networks of the manufacturing and the ICT sectors.
Motivated by the estimation of the gene regulatory network
using the partial correlations in [30], we define an edge
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weight as Kendall’s tau between two technologies, which
measures a tendency for firms to have technical capabilities in
both two technologies, and we identify the significant edges
with the multiple testing procedure [31]. By comparing the
connectivity and network characteristics of two technological
networks, we can answer the question of which sector has
better technological capabilities.

In addition, we use the relatedness measure to trace the
different technological trajectories of innovation between the
two sectors [32], [33], [34]. The metric of relatedness mea-
sure the overall affinity between a specific activity, such as
producing products [32], [35], developing industries [36],
[37], [38], [39], [40], or acquiring technologies [41], [42],
[43], [44], and predicts the future trajectories of them. Since
relatedness metrics explain path dependencies and help to
predict which activities will grow and decline in countries,
regions, or firms, we can explore the direction of technologi-
cal trajectories and the level of path-dependencies of the two
sectors.

We also use the economic complexity measures [34], [45].
The complexity measure originally was discovered by using
world trade data, which is a country level. The economic
complexity index of a country represents that the level of
sophistication of countries’ economy with conserving their
structural characteristics and predicts the future economic
growth. By using patent data, scholars try to predict the future
technological growth of a region and a country as well [46],
[47]. Similarly, this paper use the economic complexity mea-
sures to predict the future technological growth of two sectors
at a firm level.

II. DATA
A. PATENT DATA
Our primary data set consists of patent data obtained from the
Worldwide Patent Statistical Database (PATSTAT), which is
provided by the European Patent Office (EPO) and updated
biannually. Our data is the most recent version, updated in
spring 2021. The PATSTAT database, which covers over
90% of the world’s patent authorities, contains information
on 100 million worldwide patents. To focus our analysis,
we selected patent data from Korean firms from the United
States Patent and Trademark Office (USPTO), the Korean
Intellectual Property Office (KIPO), and the European Patent
Office (EPO). The PATSTAT dataset includes comprehensive
information on each patent, such as the applicants, inven-
tors, citations, filing countries, and filing dates. Additionally,
it provides Cooperative Patent Classification (CPC) codes,
which represent the associated technologies of the patents.

In this study, we use the CPC code to identify the tech-
nologies associated with patents. The CPC code is an exten-
sion of the International Patent Classification (IPC) jointly
developed by the EPO and the USPTO. It is composed of nine
sections, A-H and Y (1-digit), which are further subdivided
into classes, sub-classes (4-digit), groups, and sub-groups
(6-digit), with approximately 250,000 classification entries.

To identify the technologies of the 4IR, we examine the group
level of the classification, and we explain how we define the
4IR technologies in Section II-C. We examine all the CPC
codes of patents, not just the representative code, to capture
all the associated technologies. For instance, if a firm has a
patent application with three different CPC codes at time t ,
which it did not have before, we consider the firm to have
developed the three technologies represented by the three
CPC codes. We also consider family patents, such as when
a firm applies the same patent, previously filed in one patent
office, to another patent office with an additional CPC code.
In such cases, we consider the patent to have all the CPC
codes, including the one that was added.

The unique identifier in the patent data is the patent num-
ber, and the applicants or inventors do not have a unique
identifier. Additionally, the written form of the applicant
name on the patent may vary for various reasons such as
typos and abbreviations. For example, while the Interna-
tional Business Machines Corporation is the same as IBM,
they may be regarded as different applicant names in the
patent data. To address this issue, scholars have developed
methods for standardizing applicant names [48], [49], [50].
Kang et al. [51] used the OECD Harmonised Applicants
Names (HAN) database, which includes unique applicant
identifiers, to disambiguate applicants’ names. In this study,
we use HAN-IDs to identify unique applicants. As our focus
is on Korean firms, we match the unique applicants’ IDs to
the unique IDs in the KisValue dataset (that will be explained
in Section II-B), which provides financial information for
Korean listed firms.

As a result, among 81,189,654 patents and 111,116,943
applicants in the PATSTAT database, we select
813,110 patents from Korean manufacturing sectors and
46,117 patents from Korean ICT sectors that are owned
by 1,303 Korean manufacturing firms and 496 Korean ICT
firms, covering from 1990 to 2021.

B. FINANCIAL INFORMATION OF A FIRM
To compare the technological performance of Korean firms
in manufacturing and ICT sectors upon the 4IR, we use
the KisValue data that allow us to figure out the sector the
applicants belong to. Basically, the data provide the financial
information of Korean listed firms on the stock markets.
We look at the three stock markets: First, the Korea Com-
posite Stock Price Index (KOSPI) is the major stock market
mainly for large firms, second, the Korea Securities Dealers
Automated Quotations (KOSDAQ) is the stock market for
small and medium-sized enterprises or venture firms, and
third, the Korea New Exchange (KONEX) is the stock market
for smaller firms. By looking at those three stock markets,
we can cover most Korean-listed firms.

KisValue data is compiled by the National Information &
Credit Evaluation Inc. (NICE) for external audit. it contains
various variables of firms including founding year, the num-
ber of employees, listing dates, income statement, statement
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of cash flow, etc. Our variables of interests, such as debt ratio
and profit ratio, are calculated using the raw data.

Our KisValue data includes 4,431 and 1,497 firms in the
manufacturing and ICT sectors, respectively. Among those
listed firms, 1,303 and 496 firms in the manufacturing and
ICT sectors own, at least, one patent.

C. INDUSTRY 4.0 TECHNOLOGIES
As the dominant technologies in the era of the 4IR, we choose
the I4 technologies. However, I4 technologies can be defined
in various ways without scholarly consensus on the for-
mal classification of I4 activities [6], [52]. For example,
Ménière et al. [11] argue that being different from the early
days of digitization, we can observe the disruptive features
of the technologies on 4IR and this distinctive nature of
technologies originated from the combined usage of tech-
nologies between technologies associated with the digitiza-
tion and highly effective connectivity, and technologies, such
as cloud computing and artificial intelligence. According to
Ménière et al. [11], those combined technologies allow the
development of interconnected and autonomously operated
smart objects, which shows the discontinuity of the tech-
nological paradigm. Ménière et al. [11] utilized the defini-
tion of the 4IR to identify inventions related to computing,
connectivity, data exchange, and smart devices as the funda-
mental components of this revolution. The authors classified
4IR technologies into three categories: core technologies,
enabling technologies, and application domains. Each of
these categories is further subdivided into several techno-
logical fields. Core technologies include hardware, software,
and connectivity. Enabling technologies comprise analytics,
security, artificial intelligence, position determination, power
supply, 3D systems, and user interfaces. Application domains
encompass home, personal, enterprise, manufacturing, infras-
tructure, and vehicles.Using this cartography, they can extract
48,069 published and unpublished 4IR patent applications at
the EPO from 1978 and 2016.

On the other hand, Ciffolilli and Muscio [53] analyzed
data from the European region’s collaborative research
project supported by the 7th Framework Programme (FP7)
to determine the relative and absolute technological advan-
tages in enabling technologies of I4. They used expert
peer review to select I4 technologies and focused on R&D
activities. The authors identified eight I4 technology cat-
egories, which include advanced manufacturing solutions
with interconnected and programmable collaborative robots;
additive manufacturing, involving 3D printers linked to digi-
tal development software; augmented reality for production
processes; simulation between interconnected machines to
optimize processes; horizontal and vertical integration tech-
nologies that integrate information along the value chain,
from suppliers to consumers; the industrial internet and cloud
that enable multidirectional communication between produc-
tion processes and products, and facilitate the management of
big data on an open system; cybersecurity, ensuring security

FIGURE 1. The structure of ‘‘firm-technology’’ bipartite network. The
weight of link xi,k corresponds to the number of technology k that is
owned by firm i .

in network operations and open systems; and big data and
analytics to optimize products and processes. They found
1,092 I4 projects financed by the FP7, based on this selection
of I4 technologies.

While Ciffolilli and Muscio [53] focus on the input side
of R&D, Balland and Boschma [52] focus on the output
of R&D activities to select the I4 technologies. Balland
and Boschma [52] analyzing patent data, they categorize
I4 technologies into 10 categories: additive manufacturing,
artificial intelligence, augmented reality, autonomous robots,
autonomous vehicles, cloud computing, cybersecurity, quan-
tum computers, machine tools, and system integration. Since
there are approximately 250,000 classification entries in the
CPC classification, they can elaborate on the I4 technologies
by looking at the sub-group level (6-digit) of the CPC code.
Considering that we aim to compare the technological perfor-
mance of manufacturing and that of ICT sectors regarding the
4IR, we follow the Balland and Boschma’s way of technolog-
ical classification in [52], which has 66 CPC classifications
in 6 digit.

III. METHODS
A. BUILDING A NETWORK OF TECHNOLOGY
To compare the network structure of technologies between
the manufacturing and the ICT sectors, we first need to build
a ‘‘firm-technologies’’ bipartite network. Again, technologies
are represented by CPC codes. As depicted in Figure 1A, our
patent data carries the information on the patent of certain
firms, which has several CPC codes. By skipping the patent
number, we can construct the bipartite network consisted
with firm and technology, as you can see in Figure 1B. The
weight of the network, xi,k , is the number of CPC codes on
technology k owned by a firm i.

From the firm-technologies bipartite networks of the man-
ufacturing and the ICT sectors, we define two adjacency
matrices whose elements are the weights of the bipartite
network, where rows correspond to the firms and columns
correspond to the CPC codes. Henceforth, we call these
adjacency matrices ‘‘firm-CPC’’ matrices. To build a tech-
nological network, we consider the I4T-related CPC codes as
nodes and define edges with Kendall’s tau of two CPC codes
based on the firm-CPC matrix. Specifically, we suppose that
the firm-CPC matrix is given as follows.
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CPC1 CPC2 · · · CPCn
Firm1 x1,1 x1,2 · · · x1,n
Firm2 x2,1 x2,2 · · · x2,n
...

...
... · · ·

...

Firmm xm,1 xm,2 · · · xm,n

The Kendall’s tau (τkl) of CPCk and CPCl is calculated by
the equation:

τkl =

∑
i<j aijbij√

(
∑

i<j a
2
ij)(

∑
i<j b

2
ij)
, (1)

where aij = sign(xi,k − xj,k ) and bij = sign(xi,l − xj,l).
Note that the firm-CPC matrix is usually very sparse (i.e., the
matrix only has a few nonzero elements). Thus, we calculate
Kendall’s tau with the rows (i.e., firms) that do not have zero
elements on both two target columns (i.e., two CPC codes) to
exclude the effect from non-informative zeros. To identify the
significantly related technologies, we conduct the indepen-
dence tests with Kendall’s tau and obtain the corresponding p-
values. In this study, we consider the Benjamini-Hochberg’s
(BH) procedure [31] to control the false discovery rate (FDR)
in the multiple testing, instead conducting each hypothesis
test with a significance level of 0.05. Note that the num-
ber of simultaneous tests is n(n − 1)/2 if we have n CPC
codes, and the falsely rejected cases increase proportionally
to the number of the simultaneous test if we only control
the type-I error of the single hypothesis test. Among the
identified dependent pairs of technologies, we focus on the
positively correlated technologies, and hence we connect two
CPC codes in the technology network if two CPC codes are
significantly dependent with positive correlation when the
FDR is controlled under 5%.

To compare the estimated two technological networks of
the manufacturing and ICT sectors, we first compare two
node sets and identify the CPC codes that are related to
either the manufacturing sector or the ICT sector only. After
comparing the node differences, we focus on the common
CPC codes that are related to both the manufacturing and
the ICT sectors. With the common CPC codes, we construct
two sub-networks of the manufacturing and the ICT sectors.
For these two sub-networks, we consider comparing overall
network characteristics and edge differences. For the over-
all network characteristics, we compare the distribution of
degrees and betweenness centrality measures. For the edge
differences, we compare the structural difference (i.e., the
existence of edges) and the magnitude difference on the
common edges (i.e., Kendall’s tau on the common edges). For
the magnitude difference between the two common edges, we
consider the permutation test to identify the edges that are sig-
nificantly different between the two sectors. Specifically, let
x(M )
k = (x(M )

1,k , . . . , x
(M )
m,k ) and x

(M )
l = (x(M )

1,l , . . . , x
(M )
m,l ) be kth

and lth columns of the firm-CPCmatrix of the manufacturing
sector, respectively. Similarly, x(I )k = (x(I )1,k , . . . , x

(I )
m′,k ) and

x(I )l = (x(I )1,l , . . . , x
(I )
m′,l) are defined for the ICT sector. From

(x(M )
k , x(M )

l ) and (x(I )k , x
(I )
l ), we obtain Kendall’s tau values

τ
(M )
kl and τ (I )kl by the equation (1). To conduct the permutation
test, we define the observed test statistic

Dobskl = τ
(M )
kl − τ

(I )
kl . (2)

In the permutation test, the null distribution of the test
statistic Dkl is estimated by the permutation of the com-
bined sample under the null hypothesis H0: τ

(M )
kl = τ

(I )
kl .

In this study, we permute the rows of the combined firm-CPC
matrix, where the combined firm-CPC matrix is obtained
by merging two firm-CPC matrices along the row direction.
Specifically, we first merge two firm-CPC matrices as fol-
lows.

CPC1 CPC2 · · · CPCn
Firm(M )

1 x(M )
1,1 x(M )

1,2 · · · x(M )
1,n

Firm(M )
2 x(M )

2,1 x(M )
2,2 · · · x(M )

2,n
...

...
... · · ·

...

Firm(M )
m x(M )

m,1 x(M )
m,2 · · · x(M )

m,n

Firm(I )
1 x(I )1,1 x(I )1,2 · · · x(I )1,n

Firm(I )
2 x(I )2,1 x(I )2,2 · · · x(I )2,n
...

...
... · · ·

...

Firm(I )
m′ x(I )m′,1 x(I )m′,2 · · · x(I )m′,n

Then, for a (k, l) pair, we define two combined vectors
zk = (x(M )

k , x(I )k ) and zl = (x(M )
l , x(I )l ). For exam-

ple, the combined vector zk is represented as zk =

(zk,1, zk,2, . . . , zk,m, zk,m+1, . . . , zk,m+m′ ), and zl is simi-
larly expressed. Let π = (π1, . . . , πm+m′ ) be a per-
muted index vector of (1, . . . ,m + m′). Then, the permuted
combined vectors zk,π and zl,π are defined as zk,π =

(zk,π1 , . . . , zk,πm+m′ ) and zl,π = (zl,π1 , . . . , zl,πm+m′ ), respec-
tively. With the permuted vectors zk,π and zl,π , the permuted
vectors (x(M ),π

k ,x(M ),π
l ) and (x(I ),πk , x(I ),πl ) are defined as fol-

lows.

x(M ),π
k = (zk,π1 , . . . , zk,π,m),

x(I ),πk = (zk,πm+1 , . . . , zk,πm+m′ ),

x(M ),π
l = (zl,π1 , . . . , zl,π,m),

x(I ),πl = (zl,πm+1 , . . . , zl,πm+m′ ). (3)

With (x(M ),π
k ,x(M ),π

l ) and (x(I ),πk , x(I ),πl ), we calculate
Kendall’s tau values τ (M ),π

kl and τ (I ),πkl by the equation (1), and
the permuted test statistic Dπkl is defined as Dπkl = τ

(M ),π
kl −

τ
(I ),π
kl . We repeat the permutation B times and calculate the
permuted statisticsDπ,(1)kl , . . . ,Dπ,(B)kl . The null distribution in
the permutation test is estimated by the permuted statistics.
The p-value pkl of the permutation test is estimated by the
following equation.

pkl =
1
B

B∑
i=1

I (|Dπ,(i)kl | > |Dobskl |), (4)

where I (·) is the indicator function. Then, we identify the
significantly different edges in terms of Kendall’s tau if the
p-value pkl is less 0.05.
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B. MEASURING DENSITY OF THE RELATED
TECHNOLOGIES
Next, we also calculate the proximity among CPC codes by
looking at the co-occurrence of CPC codes within the same
applicants and the density of related technologies by using the
firm-CPCmatrix, following the method of Hidalgo et al. [32]
and Proximity ψk,l measures the minimum value of pairwise
conditional probability that two CPC codes have a compara-
tive advantage within the same firm:

ψk,l = min{Pr (RTAk | RTAl) ,Pr (RTAl | RTAk)} (5)

where RTA represents the revealed technological advantage:

RTAi,k,t =

xi,k,t∑
k xi,k,t∑
i xi,k,t∑

i
∑

k xi,k,t

(6)

where xi,k,t is the number of CPC code k of firm i at
time t [54]. RTAi,k,t represents the comparative advantage of
firm i regarding the CPC code k representing a technology
by measuring the share of the technology in the firm com-
pared with the share of the technology in the entire market.
We regard the firm i has the technological comparative advan-
tage in the CPC code k as its value is greater than 1.
To examine the level of path-dependency of firms in their

technological diversification [43], [44], we further calculate
the density and check whether its effect is similar between
the manufacturing and the ICT sectors by using the proximity
ψk,l . The density of related technology of a firm at time t is
given by

ωi,k,t =

∑
l ψk,l,tUi,l,t∑

l ψk,l,t
(7)

where ψk,l,t is the proximity between CPC code k and l and
Ui,l,t takes 1 if firm i has an RTA in technology l in year t and
0 otherwise.

C. MEASURING ECONOMIC COMPLEXITY OF FIRMS AND
TECHNOLOGICAL COMPLEXITY OF TECHNOLOGIES
In order to compare the structural characteristics of tech-
nology and firms between the manufacturing and ICT sec-
tors, we calculate the economic complexity index of a firm
and the technological complexity index of technology, using
the method developed by Hidalgo and Hausmann [55]. The
authors constructed a ‘‘country-product’’ bipartite network
based on world trade data, which revealed that countries pro-
ducing complex products also engage in complex activities,
and vice versa. They used an iterative approach to solve this
observation as an eigenvalue problem, resulting in the devel-
opment of two new indices: the economic complexity index
for countries and the product complexity index for products.
We apply these indices to capture the complexity of firms
and technology in our study. They write their observation

FIGURE 2. The cumulative number of patents (dotted lines) and that of I4
patents (lines) of the manufacturing and the ICT sectors.

formally as following [55]:

Ki,N =
1
Ki,0

∑
k

Mi,kKk,N−1 (8)

Kk,N =
1

Kk,0

∑
f

Mi,kKi,N−1 (9)

for N ≥ 1, where Mi,k is the matrix composed of firms
and CPC codes with RCA above 1, which is calculated from
equation 6. With initial conditions given by the number of
links of firms and technologies:

Ki,0 =

∑
k

Mi,k (10)

Kk,0 =

∑
i

Mi,k , (11)

Ki,0 and Kk,0 represent, respectively, the observed levels of
technological diversification of a firm (the number of tech-
nologies owned by that firm) and the ubiquity of a technol-
ogy (the number of firms possessing that technology). Over
the iterative solving of Equation 8 and 9 with given initial
conditions, we can get the value of ‘‘economic complexity
of firm (ECI)’’ and ‘‘technological complexity of technology
(TCI)’’ as iterative averages. Those metrics of complexity
measures preserve the identity of the firm and the technology
by using dimensionality reduction technique, being different
from other methods, such as aggregation or distributions [34].

IV. RESULTS
A. DESCRIPTIVE STATISTICS OF TECHNOLOGIES IN THE
MANUFACTURING AND THE ICT SECTORS
To compare the technological performance of the Korean
manufacturing and ICT sectors in the 4IR era, we begin
by examining some simple quantitative facts about the two
sectors. Figure 2 shows the cumulative number of patents for
both sectors, with dotted lines representing the overall num-
ber of patents, and solid lines representing patents specifically
related to I4 technologies. The graph reveals that, overall, the
manufacturing sector has a greater number of patents for both
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FIGURE 3. The cumulative number of patents per firm (dotted lines with
y-axis on left side) and the share of I4 technologies among applied
patents (blue and red lines with y-axis on right side) for the
manufacturing and the ICT sectors.

types of technologies. However, this disparity may be partly
attributed to the fact that there are more listed firms in the
manufacturing sector (4,431) than in the ICT sector (1,497).
Despite this, it is clear from Figure 2 that the manufacturing
sector has consistently outperformed the ICT sector in terms
of technological performance, including during the 4IR era.

To compare the technological performance of the Korean
manufacturing and ICT sectors while controlling for their
different sizes, we present Figure 3. The graph shows the
cumulative number of patents per firm (dotted lines) and the
share of I4 technologies among applied patents (blue and red
lines) for both sectors over time. Despite the normalization
for firm size, the manufacturing sector still demonstrates a
higher number of patents per firm, which continues to grow
over time. The ICT sector has also shown an increase in
patents per firm, with a significant jump around 2004. How-
ever, it remains behind themanufacturing sector.We attribute
this difference in part to the presence of large firms in the
manufacturing sector, such as Samsung, LG, and Hyundai,
which benefit from in-house R&D capabilities and greater
financial resources for R&D.

As illustrated by the blue and red lines in Figure 3, the share
of I4 technologies in the patents of the ICT sector was almost
non-existent but experienced a sudden surge around the mid-
1990s. In contrast, themanufacturing sector has demonstrated
a consistent and slightly increasing trend in the share of I4
technologies. The higher share of I4 technologies in the ICT
sector from the mid-1990s can be attributed to the IT boom
during that time. From the late 1990s to the early 2000s,
Korea experienced a surge in venture ICT companies. For
instance, well-known firms such as NAVER and KAKAO
were established in 1998 and 1995, respectively. Although
the manufacturing sector outperforms the ICT sector in terms
of the number of patents, the ICT sector has shown a higher
share of I4 technologies in their patents since the IT boom
era.

Based on Figures 2 and 3, we can observe that themanufac-
turing sector has consistently outperformed the ICT sector in

terms of both overall patent numbers and I4 technologies until
the 4IR era. However, after the IT boom of the mid-1990s,
patents filed by ICT firms have been increasingly focused on
I4 technologies compared to the manufacturing sector.

B. COMPARISON OF TECHNOLOGICAL NETWORKS
In this section, we depict the results of the independence tests
with Kendall’s tau from the firm-CPC matrices, which aim
to compare two technological networks of the manufacturing
and ICT sectors. Before constructing two networks, we first
compare the two node sets of the manufacturing and the ICT
sectors, where the elements of the node sets are defined as the
I4T-related CPC codes. There are 65 and 38 I4T-related CPC
codes in the manufacturing and ICT sectors, respectively.
Among the 38 I4T-related CPC codes of the ICT sector,
the 37 I4T-related CPC codes reported in Table 2 are also
contained in the I4T-related CPC codes of the manufacturing
sector, and the CPC code ‘‘B33Y 99: Additive manufactur-
ing (subject matter not provided for in other groups of the
subclass B33Y)’’ is only contained in the ICT sector. We also
report the 28 I4T-related CPC codes contained only in the
manufacturing sector in Table 1. Most of the 28 CPC codes
in Table 1 are related to the machine tools or equipment for
the manufacturing process rather than the computer program
or algorithms. On the other hand, the 37 common CPC codes
in Table 2 are more related to the communications, computer
programs, and algorithms, including ‘‘B25J 9: Programme-
controlled manipulators’’ and ‘‘G06T 7: Image analysis’’.

Here, we focus on the comparison of the two technological
networks of the manufacturing and the ICT sectors on the
37 common nodes to identify the differences in the connec-
tivity of the common technologies based on the relatedness
of the technologies at the firm level. In Figure 4, we depict
two technological networks of the manufacturing and ICT
sectors with 37 common nodes, where the size of the node
denotes the degree of a node and the thickness of an edge
represents the magnitude of the connection (i.e., the mag-
nitude of Kendall’s tau). In the two technological networks,
the 169 edges are connected to 35 nodes for the manufac-
turing sector and the 21 edges are connected to 12 nodes
for the ICT sector, where the edges are identified by the
independence tests with the BH procedure to control the
FDR under 5%. To compare the network characteristics of
the two networks, we also depict the distributions of the
degree and the betweenness centrality measures in Figure 5.
As shown in Figures 4 and 5, the technological network of the
manufacturing sector has more nodes having a higher degree
and betweenness centrality measures. These observations
show that the technological network of the manufacturing
sector has higher overall connectivity than that of the ICT
sector on the common 37 technologies. This higher overall
connectivity of the technologies of the manufacturing sector
supports that the firms in the manufacturing sector tend to
have a wider technological portfolio than the firms in the ICT
sector.
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TABLE 1. List of the CPC codes contained only the manufacturing sector.

TABLE 2. List of the CPC codes contained both the manufacturing and ICT sector.

From the network centrality measures, we can also iden-
tify the main I4T-related technologies of the manufacturing

and the ICT sectors among the 37 common technologies.
We report the top-5 ranked technologies of the manufacturing
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TABLE 3. List of the CPC codes having the top-5 degree rank in the
technological networks of the manufacturing and the ICT sectors. The
common technologies of two networks are highlighted in gray.

TABLE 4. List of the CPC codes within the top 5 rank of the betweenness
centrality in the technological networks of the manufacturing and the ICT
sectors.

and the ICT sectors in terms of the degree and the between-
ness centrality measures in Tables 3 and 4, respectively. For
the degree centrality, the two technologies ‘‘G06N 7: Com-
puting arrangements based on computational models’’ and
‘‘H04W 4: Services specially adapted for wireless commu-
nication’’ have higher degrees in both the manufacturing and
the ICT sectors, which means that the firms in the manufac-
turing and the ICT sectors tend to have these technologies
in their technological portfolio. In addition, with the top-5
ranked betweenness centrality, we can identify the main tech-
nologies that bridge the other two technologies. For example,
the technology ‘‘B60T2201: Particular use of vehicle brake
systems’’ has the highest betweenness centrality, and it also
has the highest degree centrality in the manufacturing sector.
This shows that the technology ‘‘B60T2201’’ has its own
technological importance and importance on the connectiv-
ity of the other technologies in the manufacturing sector.
Moreover, we can see that the technologies related to the
arrangements (‘‘G06N 99’’, ‘‘G06N 5’’, ‘‘G06F 9’’, ‘‘G06N
7’’, ‘‘G06F 21’’) and the wireless communication network
service (‘‘H04W 4’’) play a central role to connect the other
technologies in both the manufacturing and the ICT sectors.

To distinguish the differences between the two technolog-
ical networks, we categorize the difference into the struc-
tural difference between the two networks and the magnitude
difference on the common edges of two networks. First,
we depict the difference in the connectivity of two networks
in Figure 6 (a), where the edges connected only in either the
manufacturing or the ICT sector are highlighted in blue or red,
respectively. Overall, the number of edges only connected in
the manufacturing sector (156 edges) is quite larger than the

FIGURE 4. Technological networks of the manufacturing and ICT firms
with the partial CPC codes.

number of edges only connected in the ICT sector (8 edges).
This observation also supports that the technologies of the
manufacturing firms have been diversified and ICTfirms tend
to specialize in several technologies, including computing
arrangements and communication network services. In addi-
tion, the technology of the market activities related to the
operation of systems integrating technologies (‘‘Y04S 50’’)
has five edges among eight edges only in the technological
network of the ICT sector while the technology ‘‘Y04S 50’’
does not have any edges in the technological network of the
manufacturing sector.

To compare the common edges between two technological
networks depicted in Figure 6, we first calculate the dif-
ference between Kendall’s tau values of 13 common edges.
We report the 13 common edges and corresponding Kendall’s
tau values of the two technological networks in Table 5.
As described in Section III-A, we apply the permutation
test procedure to identify the significantly different edges
in terms of the magnitude at the significance level of 0.05.
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TABLE 5. Summary of the permutation tests for the common edges of the technological networks of the manufacturing and the ICT sectors. The
significantly different edge by the permutation test is highlighted in gray.

FIGURE 5. Distributions of the degree and betweenness centralities of the
technological networks of the manufacturing (MFG) and the ICT sectors.

We consider the number of permutations B as 100,000 to
estimate the null distribution of the test statisticDkl defined in
the equation (2). To describe the estimated null distributions
by the permutation, we depict the estimated null distributions
for the six common edges among the 13 common edges in
Figure 7. With the estimated null distribution, we calculate
the p-values of the permutation test by the equation (4)

FIGURE 6. Common and different edges between the technological
networks of the manufacturing and the ICT sectors. In (a), the blue edges
and red edges denote the edges only in the MFG and the ICT, respectively.

and report the p-value in the last column of Table 5. From
Table 5, there is no significantly different edge if we consider
a significant level as 0.05. Although there is no significant
difference between the common edges of the manufacturing
and the ICT sectors, the signs of the difference show a pattern
that the magnitudes of the common edges of the ICT sector
tend to be larger than those of the manufacturing sector.
To test this pattern, we apply the sign test with the null
hypothesis H0 : Median(τ (M )

− τ (I )) = 0, where the sign
test is one of the non-parametric hypothesis tests, and the null
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FIGURE 7. Estimated null distributions of Dkl by the permutation for 6 common edges (Edge No. 2, 4, 6, 8, 10, 12) among 13 common edges
of the technological networks of the manufacturing and the ICT sectors.

distribution of the sign test follows the binomial distribution
regardless of the distribution of the observation. As a result,
the possibility that two negative values are observed among
13 binary random samples of {−1,+1} is significantly rare
if the positive and negative values have the same probability.
Thus, the magnitudes of the common edges of the ICT sector
tend to be stronger than that of the manufacturing sector. This
result weakly supports that the firms of the ICT sector take a
strategy to specialize in several target technologies rather than
the diversification of the technologies.

In summary, we construct two technological networks of
the manufacturing and the ICT sectors based on the firm-
CPC matrices. From the estimated networks, the comparison
results support that the firms in the manufacturing sector tend
to diversify the technologies and the firms in the ICT sector
tend to specialize in several target technologies. Note that we
only use the firm-technology bipartite network information to
construct the networks. Thus, this comparison shows that the
overall tendency of the firms in two sectors for the technolo-
gies. To investigate the effect of the time-dependent variables,
including the financial variables of the firms and other factors,
we consider the regression analysis in the following sections.

C. PATH-DEPENDENT EMERGENCE OF NEW
TECHNOLOGY IN THE MANUFACTURING AND THE ICT
SECTORS
In this section, we compare the two sectors focusing on
the technological and the financial factors of a firm that affect
the emergence of new I4 technologies in the firm. To examine

the different effect of factors, we construct the following
model:

Jumpi,k,t+2 = β0 + β1ωi,k,t + β2ECIi,t + β3TCIk,t
+ β4Patentk,t + β5tenurei,t + β6debti,t
+ β7labori,t + β8profiti,t
+ θt + µk + ϵi,k,t (12)

where i denotes a firm, k indicates a technology, and t means
time. The dependent variable, Jumpi,k,t+2, is 1, when a firm i
successfully develops a new technology k at time t+2, and 0,
otherwise. Since Jumpi,k,t+2 is a binary variable, we estimate
the effects on the emergence of new technologywith a logistic
model. Our main explanatory variables that are associated
with the technological structure are ωi,k,t , ECIi,t , and TCIk,t .
The first variable covering the technological structure of a
firm’s technology,ωi,k,t , is the density of the related technolo-
gies of a firm i’s technology k at time t , indicating the level of
path-dependency in the firm’s technological diversification.
Second, ECIi,t is the economic complexity index of a firm i
at time t , and, last, TCIi,t is the technology complexity index
of a technology k at time t .

We also include Patentk,t , which represents the number
of firms that possess technology k at time t . This variable
captures both the competitiveness of the market and the per-
vasiveness of the technology. Additionally, we incorporate
other firm-level information, such as the number of employ-
ees, which reflects the size of the firm; the debt ratio, which
is the total liabilities to total assets; the profit ratio, which
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TABLE 6. The effects of relatedness, firm complexity, and technological
complexity on the emergence of new I4 technologies in the
manufacturing and the ICT sector.

is the share of profit to sales; and the tenure of the firm i at
time t since its establishment. In cases where a firm’s patent
applicationwas filed before its listing year, the tenure variable
may be negative. Finally, we include time-fixed effects (θt )
and technology-fixed effects (µk ) to account for the national
time trend and time-invariant characteristics of technology
within large classifications.1

Table 6 shows our results of econometric models. Col-
umn (1) and (2) depict the results of the logistic model,
which estimate the effect of structural factors of technology
on the emergence of new I4 technology in a firm and ask
whether there exists a difference in the effects between the
manufacturing and the ICT sector. Our analysis confirms the
findings of Kim et al. [43], [44] that the density of related
technologies, wi,k , has a positive and significant effect on the
firm’s probability of success in entering a new I4 technology.
Moreover, we find that this effect is stronger in the ICT sector
than in the manufacturing sector. This suggests that firms in
the ICT sector have a higher probability of success in enter-
ing a new I4 technology when they already possess related
technologies, compared to manufacturing firms. On the other

1The summary statistics of variable is in Table 7 and the correlation of
among variable is in Table 8. All the explanatory variables are normalized.

TABLE 7. Summary of descriptive statistics of exploratory variables.

hand, the results indicate that path-dependency plays a more
significant role in the ICT sector when it comes to entering a
new I4 technology. While the coefficient of manufacturing
firms’ omegai,k,t remains positive, indicating the presence
of path-dependent characteristics, interestingly, the accumu-
lated knowledge on I4 technologies benefits ICT firms more.
This could be because established manufacturing firms have
access to other resources for technological diversification
compared to ICT firms.

Second, regarding the effect of ECI of a firm on the emer-
gence of new I4 technology, we can see the significant and
positive effect consistently in column (1) and (2). Again, the
effect of the ECI in ICT sector is larger than that of the
manufacturing sector. We implies that complex firms with
respect to their technological portfolio is more likely to enter
a new I4 technologies. Since the ECI value can be bigger
either their portfolio is more diverse or their technologies are
rarer, this result implies that ICT firms jumping into the new
I4 technology tend to have a rare technology.

When examining the effect of TCI on the emergence of new
I4 technology, we observe significant and negative effects of
TCI on firms’ ability to enter a new I4 technology. This result
suggests that the probability of successfully entering a new I4
technology is lower for firms that aim to acquire a complex
technology. The negative effect is stronger for the ICT firms.

The number of firms that possess a technological advan-
tage in the same technology k also increases the probability
of a firm’s success in entering a new technology, indicating
that patentk serves as a learning opportunity for firms rather
than a source of competition. Another interesting finding is
that older firms are more likely to enter I4T technologies in
the manufacturing sector, while the age of the firm has no
effect in the ICT sector. Furthermore, larger firms are more
likely to enter a new I4 technology, while the size of the firm
has no effect in the ICT sector.

D. INTENSIVE AND EXTENSIVE MARGIN OF FIRM’s
TECHNOLOGY IN MANUFACTURING AND ICT FIRMS
Next, we examine the effect of a firm’s factors on both the
intensive and extensive margins of its technology. For the
factors that represent a firm’s technological structure, we only
consider the effect of ECIi,t since other variables, such as
ωi,k,t and TCIk,t , have larger and different dimensions com-
pared to the dependent variable,ECIi,t .We calculateECIi,t by
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TABLE 8. Correlation matrix of the exploratory variables.

examining the accumulated technologies of a firm at time t ,
and the complexity only increases when a firm adds a technol-
ogy that is above its current average [34].While the economic
complexity index at the country or regional level has been
explored as a factor of economic growth [55], [56], [57], [58],
[59], [60], income inequality [61], and sustainability [62],
[63], [64] of a country or region, it has rarely been explored
at the firm level. Therefore, this paper aims to explore the
factors that affect technological performance and compare
the manufacturing and ICT sectors. We examine the effect of
ECI on the technological performance, which includes both
the intensive and extensive margins of a firm’s technology.
Factors on the firm’s capital structure, profiti,t and debti,t , and
the age of the firm, tenurei,t , are also explored. Therefore, the
empirical specification is following:

patenti,t+2 = β1ECIi,t + β2ECIi,t · ICT

+ β3patenti,t + β3patenti,t · ICT

+ β4tenurei,t + β4tenurei,t · ICT

+ β5debti,t + β5debti,t · ICT

+ β6labori,t + β6labori,t · ICT

+ β7profiti,t + β7profiti,t · ICT + θt + ϵi,k,t

(13)

cpci,t+2 = β1cpci,t + β2patenti,t · ICT

+ β3ECIi,t + β4ECIi,t · ICT

+ β5tenurei,t + β6tenurei,t · ICT

+ β7debti,t + β8debti,t · ICT

+ β9labori,t + β10labori,t · ICT

+ β11profiti,t + β12profiti,t · ICT + θt + ϵi,k,t

(14)

where patenti,t+2 is the number of applied patent of a firm i
at time t + 2 and cpci,t+2 is the number of cpc that are added
to a firm i at time t + 2, indicating the intensive margin and
extensive margin of the firm’s technology, respectively. Also,
we control for the patenti,t and cpci,t , which are the number
of newly applied patent and cpc code in a firm i at time t . The
interaction terms are added to capture the difference between
the manufacturing and the ICT sector.

Table 9 reports the results of our firm level analysis. Col-
umn (1) and (2) is the results on the intensive margin, while

TABLE 9. Summary of the firm level analysis for intensive and extensive
margin of firm’s technology.

column (3) and (4) shows the results on the extensive margin
of the firm’s technology. Also, column (1) and (3) shows the
results of all the firms and column (2) and (4) shows the
results of firms that possess I4 technologies. According to our
results, the firm’s technological performance at time t is the
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most critical for the intensive and extensive margin of firm’s
technology at time t + 2, indicating a firm that performs well
at time t is likely performwell again at time t+2. This implies
that the creating of new technologies are not just one time
event, but something that is affected by embedded capabilities
of the firm. Interestingly, although ICT sector still shows the
positive and significant effects of patenti,t and cpci,t , as seen
in the interaction terms, patenti,t · ICT and cpci,t · ICT , the
effects become smaller that those of the manufacturing sector
for all technologies, as we can notice from its negative sign.

Firm’s economic complexity, age, and profit ratio do not
affect the firm’s technological intensive and extensive margin
and we cannot observe the significant difference between the
two sectors. On the other hands, debt ratio of firms in the
manufacturing sector gives a positive and significant effect
on the intensive and extensive margin of their technology and
there is no difference between the two sectors. Regarding
the number of employees, which indicates the size of the
firm, has a positive and significant effect on the intensive
and extensive margin and the effect on the extensive margin
becomes smaller for the ICT firms as shown in column (3).

V. CONCLUSION
Our analysis suggests that the manufacturing sector has been
the dominant technological leader in Korea in terms of both
the number of patents filed and the diversity of technologies
pursued even in the era of 4IR. Although, the ICT sector has
shown an increasing focus on I4 technologies after the 2000s,
indicating the potential for a shift in dominance in the future,
the gap between the two sectors is still significant.

Additionally, our network estimation and relatedness anal-
ysis reveal that the manufacturing sector tends to diversify
technologies while the ICT sector specializes in several target
technologies. Moreover, our analysis found that both sectors
exhibit path-dependency in their technological diversifica-
tion, with the ICT sector exhibiting stronger path-dependent
characteristics. Finally, we found that firms in both sectors
exhibit the tendency of intensive and extensive margin in their
patenting activities, but this tendency is stronger for firms in
the manufacturing sector.

Upon initiating this study, we initially expected a rapid
catch-up by the ICT sector in Korea, in light of the emergence
of new tech companies in the US. However, the study’s find-
ings reveal the continued dominance of the manufacturing
sector in the I4 technologies, and the gap between the two
sectors remains significant. One possible explanation for this
disparity could be attributed to the differing financial institu-
tions that support the growth of ICT firms in the US versus
Korea. While the US has a well-developed venture capital
industry that supports ICT firms, Korea’s financial market for
these firms is still in its nascent stages compared to that of the
US, limiting their access to financial resources. In contrast,
manufacturing firms in Korea, often represented by chaebols,
large industrial conglomerates, are not as constrained in their
financial availability.

Another possible explanation for our results is the differing
product characteristics between the two sectors. The manu-
facturing sector’s primary product is typically physically tan-
gible, while that of the ICT sector tends to be intangible ser-
vices. As a result, manufacturing firms can embed their tech-
nologies in their products, pushing them to apply for more
patents than the ICT sector. Furthermore, the geographically
limited market for ICT services can constrain their growth
and development, whereas Korean manufacturing firms have
a broader reach, resulting in their dominance in patenting
performance in Korea.

Although our study compared the technological structures
of two sectors, it is limited in capturing other aspects of
technological dominance, such as the quality of IT services
or the market share of online platforms. For example, online
platforms are another type of capital associated with techno-
logical dominance that patent data cannot capture.

Despite these limitations, our research sheds light on the
potential shift in dominant technological sectors in the 4IR
era and emphasizes the importance of ongoing monitoring of
technological trends in Korea. While the increasing focus of
the ICT sector on I4 technologies suggests the possibility of
its emergence as the dominant sector in the future, our anal-
ysis demonstrates that there is still a significant quantitative
gap between the two sectors.

REFERENCES
[1] J. A. Schumpeter, The Theory of Economic Development: An Inquiry Into

Profits, Capital, Credit, Interest, and the Business Cycle. Cambridge, MA,
USA: Harvard Univ. Press, 1934.

[2] C. Perez, Technological Revolutions and Financial Capital. Cheltenham,
U.K.: Edward Elgar, 2003.

[3] G. Dosi, ‘‘Technological paradigms and technological trajectories: A
suggested interpretation of the determinants and directions of technical
change,’’ Res. Policy, vol. 11, no. 3, pp. 147–162, 1982.

[4] K. Schwab, The Fourth Industrial Revolution. Cologny, Switzerland:
World Economic Forum, 2016.

[5] Y. Lu, ‘‘Industry 4.0: A survey on technologies, applications
and open research issues,’’ J. Ind. Inf. Integr., vol. 6, pp. 1–10,
Jun. 2017.

[6] Y. Liao, F. Deschamps, E. D. F. R. Loures, and L. F. P. Ramos,
‘‘Past, present and future of industry 4.0—A systematic literature review
and research agenda proposal,’’ Int. J. Prod. Res., vol. 55, no. 12,
pp. 3609–3629, Jun. 2017.

[7] M. Lee, J. Yun, A. Pyka, D. Won, F. Kodama, G. Schiuma, H. Park,
J. Jeon, K. Park, K. Jung, M.-R. Yan, S. Lee, and X. Zhao, ‘‘How to
respond to the fourth industrial revolution, or the second information
technology revolution? Dynamic new combinations between technology,
market, and society through open innovation,’’ J. Open Innov., Technol.,
Market, Complex., vol. 4, no. 3, p. 21, Jun. 2018.

[8] M. Ghobakhloo, ‘‘The future of manufacturing industry: A strategic
roadmap toward industry 4.0,’’ J. Manuf. Technol. Manage., vol. 29, no. 6,
pp. 910–936, 2018.

[9] H. Kagermann, ‘‘Recommendations for implementing the strategic ini-
tiative industrie 4.0: Final report of the industrie 4.0 working group,’’
Forschungsunion, Berlin, Germany, Tech. Rep., 2013.

[10] F. Shrouf, J. Ordieres, and G. Miragliotta, ‘‘Smart factories in
industry 4.0: A review of the concept and of energy management
approached in production based on the Internet of Things paradigm,’’
in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage., Dec. 2014,
pp. 697–701.

[11] Y. Ménière, I. Rudyk, and J. Valdes, Patents and the Fourth Industrial Rev-
olution: The Inventions BehindDigital Transformation. Munich, Germany:
European Patent Office, 2017.

VOLUME 11, 2023 28503



B. Jun et al.: Technological Leadership in Industry 4.0

[12] D. Horváth and R. Z. Szabó, ‘‘Driving forces and barriers of indus-
try 4.0: Do multinational and small and medium-sized companies have
equal opportunities?’’ Technol. Forecasting Social Change, vol. 146,
pp. 119–132, Sep. 2019.

[13] J. Vacek, ‘‘On the road: From industry 4.0 to society 4.0,’’ Trends Bus.,
vol. 7, no. 4, pp. 43–49, 2017.

[14] M. Brettel, N. Friederichsen, M. Keller, and M. Rosenberg, ‘‘How virtu-
alization, decentralization and network building change the manufacturing
landscape: An industry 4.0 perspective,’’ Int. J. Mech. Ind. Sci. Eng., vol. 8,
no. 1, pp. 37–44, 2014.

[15] J. Basl, ‘‘Pilot study of readiness of Czech companies to implement the
principles of industry 4.0,’’Manage. Prod. Eng. Rev., vol. 8, no. 2, pp. 3–8,
Jun. 2017.

[16] A. G. B. Fisher, ‘‘Production, primary, secondary and tertiary,’’ Econ. Rec.,
vol. 15, no. 1, pp. 24–38, Jun. 1939.

[17] S. Fabricant, The Output of Manufacturing Industries, 1899-1937.
Cambridge, MA, USA: NBER, 1940.

[18] C. Clark, The Conditions of Economic Progress. New York, NY, USA:
Macmillan, 1940.

[19] S. Kuznets, ‘‘Modern economic growth: Findings and reflections,’’ Amer.
Econ. Rev., vol. 63, no. 3, pp. 247–258, 1973.

[20] P. P. Saviotti and A. Pyka, ‘‘Economic development by the creation of new
sectors,’’ J. Evol. Econ., vol. 14, no. 1, pp. 1–35, Jan. 2004.

[21] G. Dosi and R. R. Nelson, ‘‘Technical change and industrial dynamics
as evolutionary processes,’’ Handbook Econ. Innov., vol. 1, pp. 51–127,
Jan. 2010.

[22] R. R. Nelson and S. G.Winter, ‘‘In search of a useful theory of innovation,’’
in Innovation, Economic Change and Technology Policies: Proceedings of
a Seminar on Technological Innovation Held in Bonn, Berlin, Germany:
Springer, Apr. 1977, pp. 215–245.

[23] J. G. March, ‘‘Exploration and exploitation in organizational learning,’’
Org. Sci., vol. 2, no. 1, pp. 71–87, 1991.

[24] I. Nonaka, ‘‘A dynamic theory of organizational knowledge creation,’’
Organ. Sci., vol. 5, no. 1, pp. 14–37, 1994.

[25] D. J. Teece, ‘‘Explicating dynamic capabilities: The nature and microfoun-
dations of (sustainable) enterprise performance,’’ Strategic Manage. J.,
vol. 28, no. 13, pp. 1319–1350, Dec. 2007.

[26] B. J. Loasby, ‘‘The organisation of capabilities,’’ J. Econ. Behav. Org.,
vol. 35, no. 2, pp. 139–160, 1998.

[27] E. Brynjolfsson and B. Kahin, Understanding the Digital Economy: Data,
Tools, and Research. Cambridge, MA, USA: MIT Press, 2002.

[28] H. R. Varian, J. Farrell, and C. Shapiro, The Economics of Information
Technology: An Introduction. Cambridge, U.K.: Cambridge Univ. Press,
2004.

[29] S. S. Srinivasan, R. Anderson, and K. Ponnavolu, ‘‘Customer loyalty
in e-commerce: An exploration of its antecedents and consequences,’’
J. Retailing, vol. 78, no. 1, pp. 41–50, Mar. 2002.

[30] J. Schäfer and K. Strimmer, ‘‘An empirical Bayes approach to inferring
large-scale gene association networks,’’ Bioinformatics, vol. 21, no. 6,
pp. 754–764, 2005, doi: 10.1093/bioinformatics/bti062.

[31] Y. Benjamini and Y. Hochberg, ‘‘Controlling the false discovery rate:
A practical and powerful approach to multiple testing,’’ J. Roy. Stat. Soc.,
B Methodol., vol. 57, no. 1, pp. 289–300, 2019.

[32] C. A. Hidalgo, B. Klinger, A.-L. Barabási, and R. Hausmann,
‘‘The product space conditions the development of nations,’’ Science,
vol. 317, no. 5837, pp. 482–487, Jul. 2007. [Online]. Available:
https://science.sciencemag.org/content/317/5837/482

[33] C. A. Hidalgo, P.-A. Balland, R. Boschma, M. Delgado, M. Feldman,
K. Frenken, E. Glaeser, C. He, D. F. Kogler, A. Morrison, F. Neffke,
D. Rigby, S. Stern, S. Zheng, and S. Zhu, ‘‘The principle of relatedness,’’
in Unifying Themes in Complex Systems IX, A. J. Morales, C. Gershenson,
D. Braha, A. A.Minai, and Y. Bar-Yam, Eds. Cham, Switzerland: Springer,
2018, pp. 451–457.

[34] C. A. Hidalgo, ‘‘Economic complexity theory and applications,’’
Nature Rev. Phys., vol. 3, pp. 92–113, Jan. 2021, doi: 10.1038/
s42254-020-00275-1.

[35] B. Jun, A. Alshamsi, J. Gao, and C. A. Hidalgo, ‘‘Bilateral relatedness:
Knowledge diffusion and the evolution of bilateral trade,’’ J. Evol. Econ.,
vol. 30, no. 2, pp. 247–277, 2020.

[36] J. Gao, B. Jun, A. S. Pentland, T. Zhou, and C. A. Hidalgo, ‘‘Spillovers
across industries and regions in China’s regional economic diversifica-
tion,’’ Regional Stud., vol. 55, no. 7, pp. 1311–1326, Jul. 2021.

[37] R. Boschma and S. Iammarino, ‘‘Related variety, trade linkages, and
regional growth in Italy,’’ Econ. Geography, vol. 85, no. 3, pp. 289–311,
Apr. 2009.

[38] F. Neffke, M. Henning, and R. Boschma, ‘‘How do regions diversify over
time? Industry relatedness and the development of new growth paths
in regions,’’ Econ. Geography, vol. 87, no. 3, pp. 237–265, Jul. 2011.
[Online]. Available: https://www.tandfonline.com/doi/abs/10.1111/j.
1944-8287.2011.01121.x

[39] Q. Guo and C. He, ‘‘Production space and regional industrial evolution in
China,’’ GeoJournal, vol. 82, no. 2, pp. 379–396, Apr. 2017.

[40] C. He, S. Zhu, X. Hu, and Y. Li, ‘‘Proximity matters: Inter-regional knowl-
edge spillovers and regional industrial diversification in China,’’ Tijd-
schrift Voor Economische Sociale Geografie, vol. 110, no. 2, pp. 173–190,
Apr. 2019.

[41] P.-A. Balland, R. Boschma, J. Crespo, and D. L. Rigby, ‘‘Smart specializa-
tion policy in the European union: Relatedness, knowledge complexity and
regional diversification,’’ Regional Stud., vol. 53, no. 9, pp. 1252–1268,
Sep. 2019, doi: 10.1080/00343404.2018.1437900.

[42] D. F. Kogler, D. L. Rigby, and I. Tucker, ‘‘Mapping knowledge space and
technological relatedness in US cities,’’ Eur. Planning Stud., vol. 21, no. 9,
pp. 1374–1391, Sep. 2013, doi: 10.1080/09654313.2012.755832.

[43] S. H. Kim, B. Jun, and J.-D. Lee, ‘‘Technological relatedness: How do
firms diversify their technology?’’ SocArXiv 47ank, Center Open Sci.,
2021.

[44] S. H. Kim, J. H. Jeon, A. Aridi, and B. Jun, ‘‘Factors that affect the
technological transition of firms toward the industry 4.0 technologies,’’
IEEE Access, vol. 11, pp. 1694–1707, 2023.

[45] R. Hausmann, C. A. Hidalgo, S. Bustos, M. Coscia, and A. Simoes,
The Atlas of Economic Complexity: Mapping Paths to Prosperity.
Cambridge, MA, USA: MIT Press, 2014.

[46] P.-A. Balland and D. Rigby, ‘‘The geography of complex knowledge,’’
Econ. Geography, vol. 93, no. 1, pp. 1–23, Jan. 2017.

[47] S. Petralia, P.-A. Balland, and A. Morrison, ‘‘Climbing the ladder of
technological development,’’ Res. Policy, vol. 46, no. 5, pp. 956–969,
Jun. 2017.

[48] B. H. Hall, A. B. Jaffe, and M. Trajtenberg, ‘‘The NBER patent citation
data file: Lessons, insights and methodological tools,’’ Nat. Bureau Econ.
Res., Cambridge, MA, USA,Working Paper no. 8498, Oct. 2001. [Online].
Available: http://www.nber.org/papers/w8498

[49] G. Thoma and S. Torrisi,Creating Powerful Indicators for Innovation Stud-
ies With Approximate Matching Algorithms: A Test Based on PATSTAT and
Amadeus Databases. Milan, Italy: Università commerciale Luigi Bocconi,
2007.

[50] T. Julius and G. De Rassenfosse, ‘‘Harmonising and matching IPR holders
at ip Australia,’’ Melbourne Inst., Melbourne, VIC, Australia, Work. Paper
15/14, 2014.

[51] T. Kang, C. Baek, and J.-D. Lee, ‘‘Effects of knowledge accumulation
strategies through experience and experimentation on firm growth,’’ Tech-
nol. Forecasting Social Change, vol. 144, pp. 169–181, Jul. 2019.

[52] P.-A. Balland and R. Boschma, ‘‘Mapping the potentials of regions
in Europe to contribute to new knowledge production in industry 4.0
technologies,’’ Regional Stud., vol. 55, nos. 10–11, pp. 1652–1666,
Nov. 2021.

[53] A. Ciffolilli and A. Muscio, ‘‘Industry 4.0: National and regional compara-
tive advantages in key enabling technologies,’’Eur. Planning Stud., vol. 26,
no. 12, pp. 2323–2343, Dec. 2018.

[54] B. Balassa, ‘‘Trade liberalisation and ‘revealed’ comparative advantage,’’
Manchester School, vol. 33, no. 2, pp. 99–123, 1965.

[55] C. A. Hidalgo and R. Hausmann, ‘‘The building blocks of economic com-
plexity,’’ Proc. Nat. Acad. Sci. USA, vol. 106, no. 26, pp. 10570–10575,
Jun. 2009.

[56] V. Stojkoski, Z. Utkovski, and L. Kocarev, ‘‘The impact of services on eco-
nomic complexity: Service sophistication as route for economic growth,’’
PLoS ONE, vol. 11, no. 8, Aug. 2016, Art. no. e0161633.

[57] A. Tacchella, D. Mazzilli, and L. Pietronero, ‘‘A dynamical systems
approach to gross domestic product forecasting,’’ Nature Phys., vol. 14,
no. 8, pp. 861–865, Aug. 2018.

[58] J. C. Chávez, M. T. Mosqueda, and M. Gómez-Zaldívar, ‘‘Economic
complexity and regional growth performance: Evidence from the Mex-
ican economy,’’ Rev. Regional Stud., vol. 47, no. 2, pp. 201–219,
Jun. 2017.

28504 VOLUME 11, 2023

http://dx.doi.org/10.1093/bioinformatics/bti062
http://dx.doi.org/10.1038/s42254-020-00275-1
http://dx.doi.org/10.1038/s42254-020-00275-1
http://dx.doi.org/10.1080/00343404.2018.1437900
http://dx.doi.org/10.1080/09654313.2012.755832


B. Jun et al.: Technological Leadership in Industry 4.0

[59] M. Cristelli, A. Tacchella, and L. Pietronero, ‘‘The heterogeneous dynam-
ics of economic complexity,’’ PLoS ONE, vol. 10, no. 2, Feb. 2015,
Art. no. e0117174.

[60] S. J. P. Balsalobre, C. L. Verduras, and J. D. Lanchas, ‘‘Measuring the
economic complexity at the sub-national level using international and
interregional trade,’’ in Proc. 19th Annu. Conf. Eur. Trade Study Group,
2017, pp. 1–36.

[61] D. Hartmann, M. R. Guevara, C. Jara-Figueroa, M. Aristarán, and
C. A. Hidalgo, ‘‘Linking economic complexity, institutions, and income
inequality,’’World Develop., vol. 93, pp. 75–93, May 2017.

[62] O. Neagu and M. Teodoru, ‘‘The relationship between economic complex-
ity, energy consumption structure and greenhouse gas emission: Hetero-
geneous panel evidence from the EU countries,’’ Sustainability, vol. 11,
no. 2, p. 497, Jan. 2019.

[63] M. Can and G. Gozgor, ‘‘The impact of economic complexity on carbon
emissions: Evidence from France,’’ Environ. Sci. Pollut. Res., vol. 24,
no. 19, pp. 16364–16370, Jul. 2017.

[64] J. P. Romero and C. Gramkow, ‘‘Economic complexity and greenhouse gas
emissions,’’World Develop., vol. 139, Mar. 2021, Art. no. 105317.

BOGANG JUN received the Ph.D. degree in eco-
nomics from Seoul National University. She is an
Associate Professor with the Department of Eco-
nomics and an Adjunct Professor at the Depart-
ment of Data Science, Inha University. She is also
the Director of the Research Center for Small
Businesses Ecosystem, funded by the National
Research Foundation of Korea. Before joining
Inha University, she was a Postdoctoral Associate
at MIT Media Lab for three years. Her research

interests include spans economic complexity, computational social science,
economic geography, and economic development. Using big data on popu-
lation flow, trade flow, and labor flow, she has examined the development
strategies for firms, regions, and countries.

SEUNG HWAN KIM received the dual bache-
lor’s degree in civil and environmental engineering
and nuclear and quantum engineering from the
Korea Advanced Institute of Science and Tech-
nology (KAIST). He is currently pursuing the
Ph.D. degree with Seoul National University. His
research interests include the economics of innova-
tion, patent disambiguation, economic complexity,
and the knowledge accumulation strategy of firms.

HYOJI CHOI received the bachelor’s and mas-
ter’s degrees in materials engineering from Seoul
National University. She is currently pursuing the
Ph.D. degree in economics. She worked as a
Research Engineer at Samsung Electronics. Her
research interests include the economics of innova-
tion, economic geography, economic complexity,
industrial clusters, and network economics.

JEONG HWAN JEON (Member, IEEE) received
the B.S. degree in mechanical and aerospace engi-
neering from Seoul National University, Seoul,
South Korea, in 2007, and the S.M. and Ph.D.
degrees in aeronautics and astronautics from the
Massachusetts Institute of Technology (MIT),
Cambridge, MA, USA, in 2009 and 2015, respec-
tively. He is currently an Assistant Professor of
electrical engineering with the Ulsan National
Institute of Science and Technology (UNIST),

Ulsan, South Korea. He has been with nuTonomy (Aptiv Company, since
2017) as a Senior/Principal Research Scientist, before joining the UNIST.
His current research interests include algorithmic, computational, data-
based, and control-theoretic approaches to the decision-making, planning,
and control architectures for autonomous systems and future mobility and
self-driving cars.

DONGHYEON YU (Member, IEEE) received the
B.S. degree in systems management engineer-
ing from Sungkyunkwan University, South Korea,
in 2008, and the master’s and Ph.D. degrees
in statistics from Seoul National University, in
2010 and 2013, respectively. He is currently an
Associate Professor with the Department of Statis-
tics, Inha University. His research interests include
graphical models and parallel computation using
graphics processing units.

VOLUME 11, 2023 28505


