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ABSTRACT This paper examines the technological structures of the manufacturing and the ICT sectors in
Korea to examine the potential shift of dominant technological sectors in the era of the Fourth Industrial
Revolution (4IR). By using patent data of Korean firms from 1990 to 2021, we find that the manufacturing
sector has been the dominant technological leader in Korea in terms of both the number of patents and the
diversity of technologies, even in the era of 4IR. Although the ICT sector has shown an increasing focus on
Industry 4.0 (I4) technologies after the 2000s, indicating the potential for a shift in dominance in the future,
the gap between the two sectors is still significant. The study also reveals that the manufacturing sector tends
to diversify technologies, while the ICT sector specializes in several target technologies. Our analysis also
suggests that both sectors exhibit path-dependency, with the ICT sector exhibiting stronger characteristics,
and firms in both sectors shows the tendency of intensive and extensive margin in their patenting activities,
with the manufacturing sector exhibiting the stronger tendency.

INDEX TERMS Economic complexity, industry 4.0, network analysis, patent data, technological network,
the fourth industrial revolution.

I. INTRODUCTION

Technological innovation is the primary driver of economic
development and growth of a country [1]. However, as his-
tory has shown, innovation often happens in groups of sig-
nificant breakthroughs, forming distinct changes that have
the power to transform the socioeconomic system within a
particular time and location. According to Perez [2], every
technological revolution consists of a group of interconnected
technological systems. Dosi [3] emphasized this aspect by
introducing the term ‘“‘technical paradigm,” which refers to
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the implicit agreement among agents regarding what consti-
tutes a valid search direction and what would be considered
an improvement or superior version of a product, service,
or technology, similar to the concept of a paradigm in Kuhn’s
theory. For instance, during the Second Industrial Revolution
from the late nineteenth to the early twentieth century, the
widespread adoption of mass production and its associated
systems enabled economies to undergo significant structural
changes. Similarly, the Third Industrial Revolution, which
took place in the 1970s, was characterized by the emer-
gence and diffusion of information technology. In the 2010s,
we saw the rise of new tech companies in the US, such as
Google, Amazon, and Meta, leading to significant changes
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in our daily lives, production systems, and socioeconomic
structures. A number of scholars argue that we are currently
experiencing a paradigm shift called the Fourth Industrial
Revolution (41IR) [4], [5], [6], [7].

The 4IR is expected to be driven by emerging digital
technologies, such as the Internet of Things (IoT), robotics,
artificial intelligence, and self-driving cars, and is set to have
a profound and pervasive impact on the economy across
various sectors [5], [6]. These technologies are collectively
referred to as Industry 4.0 (I4) technologies by scholars [8],
[9], [10]. The 4IR is distinguished from previous industrial
revolutions in that it involves the large-scale automation of
entire groups of tasks, including both repetitive intellectual
and non-routine tasks, rather than just physical work [11].
As the potential positive and negative impacts of 14 technolo-
gies are being assessed, the 4IR has emerged as a significant
topic in the current industrial structure discourse [12], [13],
[14], [15].

One interesting topic worth noting is the potential for a
shift in the dominant actors of our economy, as technological
revolutions throughout history have brought about changes
in the primary sector of the economy. For instance, during
the industrialization of the 20th century, the manufacturing
sector surpassed other sectors in terms of productivity [16],
[17], [18]. Kuznets [19] emphasized the importance of sec-
toral shifts in modern economic growth, particularly the shift
from agriculture to non-agricultural activities, and later from
industry to services. This view highlights the significance of
the structural shift aspect in economic development.

In line with this, Saviotti and Pyka [20] examine the cre-
ation of new sectors as a driver of economic growth and devel-
opment. They argue that the growth and development of new
sectors are not merely a result of productivity growth within
a sector, but a product of the emergence of new industries.
Therefore, the key question regarding structural shift through
technological revolutions is which sectors or agents hold the
dominant power in a constant set of industries.

One reason why the dominant actor changes during a tech-
nological revolution is that the new sector that emerges often
requires new capabilities and routines from firms to develop
along the trajectory in the new sector. Dosi and Nelson [21]
argue that a paradigm shift such as the 4IR generally implies
a change in the direction of technological advances over
time. These trajectories can shape a firm’s routines [22],
which are patterns of behavior that become established over
time through repeated action and learning [23], [24], [25].
Routines also play a crucial role in shaping the trajectories
of technological development within firms and industries.
In other words, there are appropriate routines and capabilities
for technological trajectories, and it is not easy to shape
them differently because these trajectories are constrained
by the limited rationality and capabilities of the companies
involved [22], [26].

However, when a paradigm shifts, the emergence of a new
sector in the economy can create new trajectories for firms
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and industries. For example, the emergence of the internet
as a new sector in the 1990s created new trajectories for
firms in the technology and communications industries [27].
Many firms in these industries developed new products and
services that capitalized on the opportunities provided by the
internet, such as e-commerce platforms, online advertising,
and digital content [28], [29]. However, during the era of
the internet, several companies struggled to adjust to the
rapid changes, ultimately falling behind. The reason is that
the routines embodied in the firm and the capabilities they
have did not match the trajectories drawn by the new sectors.
Taking into account what we’ve discussed, it can be said that
a new sector that forms a new trajectory requires a new actor
with a suitable routine and capability.

Then, can we expect a new sector to emerge as the dom-
inant player in the economy with the arrival of the 4IR in
the 2010s? To answer the question, we analyze Korean firms
with comparing the manufacturing and the ICT sectors, rather
than covering all countries. The reason why we focus on the
case of Korea is that the socioeconomic context in which
industries are situated can vary between countries, even when
industries of different counties may produce similar products.
Additionally, manufacturing is one of the dominant sectors of
the Second Industrial Revolution and, as mentioned above,
has been responsible for most of the productivity gains of the
20th century [16], [17], [18], [19]. On the other hands, as the
4IR is considered a revolutionary change that occurs when
IT proliferates across all industries and is often referred to as
the horizontal expansion of IT [7], the ICT sector is at the
forefront of the 4IR and provides the foundational technolo-
gies and infrastructure needed for new technologies such as
I4T to be integrated and optimized [5], [6], [7]. In particular,
Korea is a country where both the manufacturing and the
ICT industries are actively developed, and by analyzing the
technological structure of the manufacturing and ICT sectors,
it can be possible to identify the dominant players in the 4IR
in a simple and clearer way.

Specifically, we analyze patent data associated with 14
technologies to determine which sector between the manu-
facturing and the ICT sectors dominates the 4IR era. Patents
provide technical details of new inventions and protect the
exclusive rights of inventors, making patent databases an
excellent source of the latest technological information even
before new technologies are commercialized [11].

To explore the technological dominance of the manu-
facturing and the ICT sectors in Korea, the research will
adopt methodologies from network estimation and economic
complexity research. To construct a network of technology,
we first extract the applicant’s (firm’s) information and tech-
nical capability (e.g., a number of firm’s patent applications
related to a given technology) from the patent data. Using the
firms and their technical capabilities, we construct two tech-
nological networks of the manufacturing and the ICT sectors.
Motivated by the estimation of the gene regulatory network
using the partial correlations in [30], we define an edge
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weight as Kendall’s tau between two technologies, which
measures a tendency for firms to have technical capabilities in
both two technologies, and we identify the significant edges
with the multiple testing procedure [31]. By comparing the
connectivity and network characteristics of two technological
networks, we can answer the question of which sector has
better technological capabilities.

In addition, we use the relatedness measure to trace the
different technological trajectories of innovation between the
two sectors [32], [33], [34]. The metric of relatedness mea-
sure the overall affinity between a specific activity, such as
producing products [32], [35], developing industries [36],
[371, [38], [39], [40], or acquiring technologies [41], [42],
[43], [44], and predicts the future trajectories of them. Since
relatedness metrics explain path dependencies and help to
predict which activities will grow and decline in countries,
regions, or firms, we can explore the direction of technologi-
cal trajectories and the level of path-dependencies of the two
sectors.

We also use the economic complexity measures [34], [45].
The complexity measure originally was discovered by using
world trade data, which is a country level. The economic
complexity index of a country represents that the level of
sophistication of countries’ economy with conserving their
structural characteristics and predicts the future economic
growth. By using patent data, scholars try to predict the future
technological growth of a region and a country as well [46],
[47]. Similarly, this paper use the economic complexity mea-
sures to predict the future technological growth of two sectors
at a firm level.

Il. DATA
A. PATENT DATA
Our primary data set consists of patent data obtained from the
Worldwide Patent Statistical Database (PATSTAT), which is
provided by the European Patent Office (EPO) and updated
biannually. Our data is the most recent version, updated in
spring 2021. The PATSTAT database, which covers over
90% of the world’s patent authorities, contains information
on 100 million worldwide patents. To focus our analysis,
we selected patent data from Korean firms from the United
States Patent and Trademark Office (USPTO), the Korean
Intellectual Property Office (KIPO), and the European Patent
Office (EPO). The PATSTAT dataset includes comprehensive
information on each patent, such as the applicants, inven-
tors, citations, filing countries, and filing dates. Additionally,
it provides Cooperative Patent Classification (CPC) codes,
which represent the associated technologies of the patents.
In this study, we use the CPC code to identify the tech-
nologies associated with patents. The CPC code is an exten-
sion of the International Patent Classification (IPC) jointly
developed by the EPO and the USPTO. It is composed of nine
sections, A-H and Y (1-digit), which are further subdivided
into classes, sub-classes (4-digit), groups, and sub-groups
(6-digit), with approximately 250,000 classification entries.
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To identify the technologies of the 4IR, we examine the group
level of the classification, and we explain how we define the
4IR technologies in Section II-C. We examine all the CPC
codes of patents, not just the representative code, to capture
all the associated technologies. For instance, if a firm has a
patent application with three different CPC codes at time 7,
which it did not have before, we consider the firm to have
developed the three technologies represented by the three
CPC codes. We also consider family patents, such as when
a firm applies the same patent, previously filed in one patent
office, to another patent office with an additional CPC code.
In such cases, we consider the patent to have all the CPC
codes, including the one that was added.

The unique identifier in the patent data is the patent num-
ber, and the applicants or inventors do not have a unique
identifier. Additionally, the written form of the applicant
name on the patent may vary for various reasons such as
typos and abbreviations. For example, while the Interna-
tional Business Machines Corporation is the same as IBM,
they may be regarded as different applicant names in the
patent data. To address this issue, scholars have developed
methods for standardizing applicant names [48], [49], [50].
Kang et al. [51] used the OECD Harmonised Applicants
Names (HAN) database, which includes unique applicant
identifiers, to disambiguate applicants’ names. In this study,
we use HAN-IDs to identify unique applicants. As our focus
is on Korean firms, we match the unique applicants’ IDs to
the unique IDs in the KisValue dataset (that will be explained
in Section II-B), which provides financial information for
Korean listed firms.

As a result, among 81,189,654 patents and 111,116,943
applicants in the PATSTAT database, we select
813,110 patents from Korean manufacturing sectors and
46,117 patents from Korean ICT sectors that are owned
by 1,303 Korean manufacturing firms and 496 Korean ICT
firms, covering from 1990 to 2021.

B. FINANCIAL INFORMATION OF A FIRM

To compare the technological performance of Korean firms
in manufacturing and ICT sectors upon the 4IR, we use
the KisValue data that allow us to figure out the sector the
applicants belong to. Basically, the data provide the financial
information of Korean listed firms on the stock markets.
We look at the three stock markets: First, the Korea Com-
posite Stock Price Index (KOSPI) is the major stock market
mainly for large firms, second, the Korea Securities Dealers
Automated Quotations (KOSDAQ) is the stock market for
small and medium-sized enterprises or venture firms, and
third, the Korea New Exchange (KONEX) is the stock market
for smaller firms. By looking at those three stock markets,
we can cover most Korean-listed firms.

KisValue data is compiled by the National Information &
Credit Evaluation Inc. (NICE) for external audit. it contains
various variables of firms including founding year, the num-
ber of employees, listing dates, income statement, statement
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of cash flow, etc. Our variables of interests, such as debt ratio
and profit ratio, are calculated using the raw data.

Our KisValue data includes 4,431 and 1,497 firms in the
manufacturing and ICT sectors, respectively. Among those
listed firms, 1,303 and 496 firms in the manufacturing and
ICT sectors own, at least, one patent.

C. INDUSTRY 4.0 TECHNOLOGIES

As the dominant technologies in the era of the 4IR, we choose
the I4 technologies. However, 14 technologies can be defined
in various ways without scholarly consensus on the for-
mal classification of 14 activities [6], [52]. For example,
Meéniere et al. [11] argue that being different from the early
days of digitization, we can observe the disruptive features
of the technologies on 4IR and this distinctive nature of
technologies originated from the combined usage of tech-
nologies between technologies associated with the digitiza-
tion and highly effective connectivity, and technologies, such
as cloud computing and artificial intelligence. According to
Meéniere et al. [11], those combined technologies allow the
development of interconnected and autonomously operated
smart objects, which shows the discontinuity of the tech-
nological paradigm. Méniere et al. [11] utilized the defini-
tion of the 4IR to identify inventions related to computing,
connectivity, data exchange, and smart devices as the funda-
mental components of this revolution. The authors classified
4IR technologies into three categories: core technologies,
enabling technologies, and application domains. Each of
these categories is further subdivided into several techno-
logical fields. Core technologies include hardware, software,
and connectivity. Enabling technologies comprise analytics,
security, artificial intelligence, position determination, power
supply, 3D systems, and user interfaces. Application domains
encompass home, personal, enterprise, manufacturing, infras-
tructure, and vehicles.Using this cartography, they can extract
48,069 published and unpublished 4IR patent applications at
the EPO from 1978 and 2016.

On the other hand, Ciffolilli and Muscio [53] analyzed
data from the European region’s collaborative research
project supported by the 7th Framework Programme (FP7)
to determine the relative and absolute technological advan-
tages in enabling technologies of I4. They used expert
peer review to select 14 technologies and focused on R&D
activities. The authors identified eight I4 technology cat-
egories, which include advanced manufacturing solutions
with interconnected and programmable collaborative robots;
additive manufacturing, involving 3D printers linked to digi-
tal development software; augmented reality for production
processes; simulation between interconnected machines to
optimize processes; horizontal and vertical integration tech-
nologies that integrate information along the value chain,
from suppliers to consumers; the industrial internet and cloud
that enable multidirectional communication between produc-
tion processes and products, and facilitate the management of
big data on an open system; cybersecurity, ensuring security
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FIGURE 1. The structure of “firm-technology” bipartite network. The
weight of link x; ; corresponds to the number of technology k that is
owned by firm i.

in network operations and open systems; and big data and
analytics to optimize products and processes. They found
1,092 14 projects financed by the FP7, based on this selection
of 14 technologies.

While Ciffolilli and Muscio [53] focus on the input side
of R&D, Balland and Boschma [52] focus on the output
of R&D activities to select the 14 technologies. Balland
and Boschma [52] analyzing patent data, they categorize
14 technologies into 10 categories: additive manufacturing,
artificial intelligence, augmented reality, autonomous robots,
autonomous vehicles, cloud computing, cybersecurity, quan-
tum computers, machine tools, and system integration. Since
there are approximately 250,000 classification entries in the
CPC classification, they can elaborate on the 14 technologies
by looking at the sub-group level (6-digit) of the CPC code.
Considering that we aim to compare the technological perfor-
mance of manufacturing and that of ICT sectors regarding the
41IR, we follow the Balland and Boschma’s way of technolog-
ical classification in [52], which has 66 CPC classifications
in 6 digit.

Ill. METHODS

A. BUILDING A NETWORK OF TECHNOLOGY

To compare the network structure of technologies between
the manufacturing and the ICT sectors, we first need to build
a “firm-technologies’ bipartite network. Again, technologies
are represented by CPC codes. As depicted in Figure 1A, our
patent data carries the information on the patent of certain
firms, which has several CPC codes. By skipping the patent
number, we can construct the bipartite network consisted
with firm and technology, as you can see in Figure 1B. The
weight of the network, x; , is the number of CPC codes on
technology k owned by a firm i.

From the firm-technologies bipartite networks of the man-
ufacturing and the ICT sectors, we define two adjacency
matrices whose elements are the weights of the bipartite
network, where rows correspond to the firms and columns
correspond to the CPC codes. Henceforth, we call these
adjacency matrices “firm-CPC” matrices. To build a tech-
nological network, we consider the 14T-related CPC codes as
nodes and define edges with Kendall’s tau of two CPC codes
based on the firm-CPC matrix. Specifically, we suppose that
the firm-CPC matrix is given as follows.
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CPC; CPC, CPC,
Firm; X1,1 X1,2 X1,
Firm, X2,1 X220 (X X2.n
Firm,,  xpm,1 Xm,2 c Xm,n

The Kendall’s tau (tz;) of CPCy and CPC; is calculated by
the equation:

_ 2i<jaiibij W
\/(Zi<j a?,-)(Zi<j bi)
where a; = sign(x;x — xjx) and b = sign(x;; — xj ;).

Note that the firm-CPC matrix is usually very sparse (i.e., the
matrix only has a few nonzero elements). Thus, we calculate
Kendall’s tau with the rows (i.e., firms) that do not have zero
elements on both two target columns (i.e., two CPC codes) to
exclude the effect from non-informative zeros. To identify the
significantly related technologies, we conduct the indepen-
dence tests with Kendall’s tau and obtain the corresponding p-
values. In this study, we consider the Benjamini-Hochberg’s
(BH) procedure [31] to control the false discovery rate (FDR)
in the multiple testing, instead conducting each hypothesis
test with a significance level of 0.05. Note that the num-
ber of simultaneous tests is n(n — 1)/2 if we have n CPC
codes, and the falsely rejected cases increase proportionally
to the number of the simultaneous test if we only control
the type-1 error of the single hypothesis test. Among the
identified dependent pairs of technologies, we focus on the
positively correlated technologies, and hence we connect two
CPC codes in the technology network if two CPC codes are
significantly dependent with positive correlation when the
FDR is controlled under 5%.

To compare the estimated two technological networks of
the manufacturing and ICT sectors, we first compare two
node sets and identify the CPC codes that are related to
either the manufacturing sector or the ICT sector only. After
comparing the node differences, we focus on the common
CPC codes that are related to both the manufacturing and
the ICT sectors. With the common CPC codes, we construct
two sub-networks of the manufacturing and the ICT sectors.
For these two sub-networks, we consider comparing overall
network characteristics and edge differences. For the over-
all network characteristics, we compare the distribution of
degrees and betweenness centrality measures. For the edge
differences, we compare the structural difference (i.e., the
existence of edges) and the magnitude difference on the
common edges (i.e., Kendall’s tau on the common edges). For
the magnitude difference between the two common edges, we
consider the permutation test to identify the edges that are sig-

nificantly different between the two sectors. Specifically, let
M M M M M M
M ="y and 1M = ()LL) be kth
and Ith columns of the firm- CPC matrix of the manufacturmg

sector, respectively. Similarly, x; D = (x(l) (1) ) and

Lk
(1) = (x%lg, . ,(,f) l) are deflned for the ICT sector From

(x(M) M)) and (x(l), 11)), we obtain Kendall’s tau values
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7151 ) and t,g) by the equation (1). To conduct the permutation

test, we define the observed test statistic

Db =00 — D, 2)
In the permutation test, the null distribution of the test
statistic Dy is estimated by the permutation of the com-
bined sample under the null hypothesis Hy: r,gm = ,g)
In this study, we permute the rows of the combined firm-CPC
matrix, where the combined firm-CPC matrix is obtained
by merging two firm-CPC matrices along the row direction.
Specifically, we first merge two firm-CPC matrices as fol-
lows.

CPC; CPC, --- CPC,

(M) (M) (M) (M)
I
F1rm x2 1 Xy . Xy
M i Wi

Flrm(([)) r(n 1) xfnz) .-- xr(n n)
) ) [€2)
R
Firm, X1 X35 s X5
1 T o o
Flrm xm’ 1 xm’ 2 T xm’ n

Then, for a (k,[) pair, we define two combined vectors
% = (x,EM),xIEI)) and z7 = (xl(M) xl(l)). For exam-
ple, the combined vector zz is represented as z; =
(Th,15 Zh,25 + -+ » Thums Zhmtls - oo Zk,m+m’)’ and z is simi-
larly expressed. Let 1 = (mwy,...,7Tuyy) be a per-
muted index vector of (1, ..., m + m’). Then, the permuted
combined vectors zxr and z;, are defined as zx, =
(G4 Zk,ﬂn1+m/) and 717 = @Umys - Zl,nm+,,l/): respec-
tively. With the permuted vectors zx » and z; », the permuted

vectors (x(M) r (M) "y and (xy (.= (1) " are defined as fol-
lows.
M),
( )77 = (Zk \TT] "‘7zk,ﬂ,m)9
I
x]i )T[ (Zk sSTTm+1° .."Zk’nm+m/)’
M
x[( ) (Zl IR Zl,n,m)a
),m
xl (Zl SThp419 =+ * Zl,ﬂm+m/)- (3)
With (x(M) 4 (M) ) and (x(l) T (1) ), we calculate
Kendall’s tau Values r(M) T and ‘((I) T by the equation (1), and

the permuted test statistic D7, is defined as D}, = 1, —
rlgll) . We repeat the permutation B times and calculate the
permuted statistics D ™ Dy ®) The null distribution in
the permutation test is estimated by the permuted statistics.
The p-value py; of the permutation test is estimated by the

following equation.

m——ZmN%>m%) “)

where I(-) is the indicator function. Then, we identify the
significantly different edges in terms of Kendall’s tau if the
p-value py is less 0.05.
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B. MEASURING DENSITY OF THE RELATED
TECHNOLOGIES

Next, we also calculate the proximity among CPC codes by
looking at the co-occurrence of CPC codes within the same
applicants and the density of related technologies by using the
firm-CPC matrix, following the method of Hidalgo et al. [32]
and Proximity ¥ ; measures the minimum value of pairwise
conditional probability that two CPC codes have a compara-
tive advantage within the same firm:

Ve = min{Pr (RTAy | RTA;) , Pr (RTA; | RTAY)}  (5)

where RTA represents the revealed technological advantage:

Xi k.t
RTAj = —22 ©)

Z,’ Xik,t

D 2k Kikt

where x; is the number of CPC code k of firm i at
time ¢ [54]. RTA, ;. ; represents the comparative advantage of
firm i regarding the CPC code k representing a technology
by measuring the share of the technology in the firm com-
pared with the share of the technology in the entire market.
We regard the firm i has the technological comparative advan-
tage in the CPC code k as its value is greater than 1.

To examine the level of path-dependency of firms in their
technological diversification [43], [44], we further calculate
the density and check whether its effect is similar between
the manufacturing and the ICT sectors by using the proximity
Y.1. The density of related technology of a firm at time ¢ is
given by

DuVkiiUins

7
Z[ 1s”k,l,z ( )

Wi k.t =

where v ; ; is the proximity between CPC code k and / and
U, 1 takes 1 if firm i has an RTA in technology / in year ¢ and
0 otherwise.

C. MEASURING ECONOMIC COMPLEXITY OF FIRMS AND
TECHNOLOGICAL COMPLEXITY OF TECHNOLOGIES

In order to compare the structural characteristics of tech-
nology and firms between the manufacturing and ICT sec-
tors, we calculate the economic complexity index of a firm
and the technological complexity index of technology, using
the method developed by Hidalgo and Hausmann [55]. The
authors constructed a ‘“‘country-product” bipartite network
based on world trade data, which revealed that countries pro-
ducing complex products also engage in complex activities,
and vice versa. They used an iterative approach to solve this
observation as an eigenvalue problem, resulting in the devel-
opment of two new indices: the economic complexity index
for countries and the product complexity index for products.
We apply these indices to capture the complexity of firms
and technology in our study. They write their observation
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FIGURE 2. The cumulative number of patents (dotted lines) and that of 14
patents (lines) of the manufacturing and the ICT sectors.

formally as following [55]:

1
Kiy = — > MiiKin-1 ®)
Kio <

1
Kin = — ZMi,kKi,N—l ©)]
K0 G

for N > 1, where M; is the matrix composed of firms
and CPC codes with RCA above 1, which is calculated from
equation 6. With initial conditions given by the number of
links of firms and technologies:

Kio = ZMi,k (10)
k

Kio= Y My, (11
i

Ki o and K o represent, respectively, the observed levels of
technological diversification of a firm (the number of tech-
nologies owned by that firm) and the ubiquity of a technol-
ogy (the number of firms possessing that technology). Over
the iterative solving of Equation 8 and 9 with given initial
conditions, we can get the value of “‘economic complexity
of firm (ECI)” and “‘technological complexity of technology
(TCI)” as iterative averages. Those metrics of complexity
measures preserve the identity of the firm and the technology
by using dimensionality reduction technique, being different
from other methods, such as aggregation or distributions [34].

IV. RESULTS

A. DESCRIPTIVE STATISTICS OF TECHNOLOGIES IN THE
MANUFACTURING AND THE ICT SECTORS

To compare the technological performance of the Korean
manufacturing and ICT sectors in the 4IR era, we begin
by examining some simple quantitative facts about the two
sectors. Figure 2 shows the cumulative number of patents for
both sectors, with dotted lines representing the overall num-
ber of patents, and solid lines representing patents specifically
related to 14 technologies. The graph reveals that, overall, the
manufacturing sector has a greater number of patents for both
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FIGURE 3. The cumulative number of patents per firm (dotted lines with
y-axis on left side) and the share of 14 technologies among applied
patents (blue and red lines with y-axis on right side) for the
manufacturing and the ICT sectors.

types of technologies. However, this disparity may be partly
attributed to the fact that there are more listed firms in the
manufacturing sector (4,431) than in the ICT sector (1,497).
Despite this, it is clear from Figure 2 that the manufacturing
sector has consistently outperformed the ICT sector in terms
of technological performance, including during the 4IR era.

To compare the technological performance of the Korean
manufacturing and ICT sectors while controlling for their
different sizes, we present Figure 3. The graph shows the
cumulative number of patents per firm (dotted lines) and the
share of 14 technologies among applied patents (blue and red
lines) for both sectors over time. Despite the normalization
for firm size, the manufacturing sector still demonstrates a
higher number of patents per firm, which continues to grow
over time. The ICT sector has also shown an increase in
patents per firm, with a significant jump around 2004. How-
ever, it remains behind the manufacturing sector. We attribute
this difference in part to the presence of large firms in the
manufacturing sector, such as Samsung, LG, and Hyundai,
which benefit from in-house R&D capabilities and greater
financial resources for R&D.

Asiillustrated by the blue and red lines in Figure 3, the share
of 14 technologies in the patents of the ICT sector was almost
non-existent but experienced a sudden surge around the mid-
1990s. In contrast, the manufacturing sector has demonstrated
a consistent and slightly increasing trend in the share of 14
technologies. The higher share of 14 technologies in the ICT
sector from the mid-1990s can be attributed to the IT boom
during that time. From the late 1990s to the early 2000s,
Korea experienced a surge in venture ICT companies. For
instance, well-known firms such as NAVER and KAKAO
were established in 1998 and 1995, respectively. Although
the manufacturing sector outperforms the ICT sector in terms
of the number of patents, the ICT sector has shown a higher
share of 14 technologies in their patents since the IT boom
era.

Based on Figures 2 and 3, we can observe that the manufac-
turing sector has consistently outperformed the ICT sector in
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terms of both overall patent numbers and 14 technologies until
the 4IR era. However, after the IT boom of the mid-1990s,
patents filed by ICT firms have been increasingly focused on
14 technologies compared to the manufacturing sector.

B. COMPARISON OF TECHNOLOGICAL NETWORKS
In this section, we depict the results of the independence tests
with Kendall’s tau from the firm-CPC matrices, which aim
to compare two technological networks of the manufacturing
and ICT sectors. Before constructing two networks, we first
compare the two node sets of the manufacturing and the ICT
sectors, where the elements of the node sets are defined as the
I4T-related CPC codes. There are 65 and 38 I4T-related CPC
codes in the manufacturing and ICT sectors, respectively.
Among the 38 I4T-related CPC codes of the ICT sector,
the 37 I4T-related CPC codes reported in Table 2 are also
contained in the [4T-related CPC codes of the manufacturing
sector, and the CPC code “B33Y 99: Additive manufactur-
ing (subject matter not provided for in other groups of the
subclass B33Y)” is only contained in the ICT sector. We also
report the 28 I4T-related CPC codes contained only in the
manufacturing sector in Table 1. Most of the 28 CPC codes
in Table 1 are related to the machine tools or equipment for
the manufacturing process rather than the computer program
or algorithms. On the other hand, the 37 common CPC codes
in Table 2 are more related to the communications, computer
programs, and algorithms, including “B25J 9: Programme-
controlled manipulators” and “GO6T 7: Image analysis™.
Here, we focus on the comparison of the two technological
networks of the manufacturing and the ICT sectors on the
37 common nodes to identify the differences in the connec-
tivity of the common technologies based on the relatedness
of the technologies at the firm level. In Figure 4, we depict
two technological networks of the manufacturing and ICT
sectors with 37 common nodes, where the size of the node
denotes the degree of a node and the thickness of an edge
represents the magnitude of the connection (i.e., the mag-
nitude of Kendall’s tau). In the two technological networks,
the 169 edges are connected to 35 nodes for the manufac-
turing sector and the 21 edges are connected to 12 nodes
for the ICT sector, where the edges are identified by the
independence tests with the BH procedure to control the
FDR under 5%. To compare the network characteristics of
the two networks, we also depict the distributions of the
degree and the betweenness centrality measures in Figure 5.
As shown in Figures 4 and 5, the technological network of the
manufacturing sector has more nodes having a higher degree
and betweenness centrality measures. These observations
show that the technological network of the manufacturing
sector has higher overall connectivity than that of the ICT
sector on the common 37 technologies. This higher overall
connectivity of the technologies of the manufacturing sector
supports that the firms in the manufacturing sector tend to
have a wider technological portfolio than the firms in the ICT
sector.
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TABLE 1. List of the CPC codes contained only the manufacturing sector.

No. CPC Description
1 B23Q 1 General build-up of a form of machine, particularly relatively large fixed members
2 B23Q 7 Arrangements for handling work
3 B23Q9 Arrangements for supporting or guiding portable metal-working machines or apparatus
4 B23Q 11 Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work
5 B23Q 15 Automatic control or regulation of feed movement, cutting velocity or position of tool or work
6 B23Q 16 Equipment for precise positioning of tool or work into particular locations
7 B23Q 23 Arrangements for compensating for irregularities or wear
8 B23Q 35 Control systems or devices for copying directly from a pattern or a master model
9 B23Q 37 Metal-working machines, or constructional combinations
10 B23Q2003  Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
11 B23Q2005  Driving or feeding mechanisms; Control arrangements
12 B23Q2011  Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work
13 B23Q2017  Arrangements for Measurement or correction of run-out or eccentricity indicating or measuring on machine tools
14 B23Q2039  Metal-working machines incorporating a plurality of sub-assemblies, each capable of performing a metal-working operation
15 B23Q2210  Machine tools incorporating a specific component
16 B23Q2220  Machine tool components
17 B23Q2230  Special operations in a machine tool
18 B23Q2240  Machine tools specially suited for a specific kind of workpiece
19 B23Q2701  Members which are comprised in the general build-up of a form of the machine
20  B23Q2707  Automatic supply or removal of metal workpieces
21 B23Q2716  Equipment for precise positioning of tool or work into particular locations
22 B23Q2717  Arrangements for indicating or measuring
23 B23Q2735  Control systems or devices for copying from a pattern or master model
24 B33Y 40 Auxiliary operations or equipment
25 B33Y 70 Materials specially adapted for additive manufacturing
26 B33Y 80 Products made by additive manufacturing
27 GO5B 19 Programme-control systems
28 Y10T 82 Turning

TABLE 2. List of the CPC codes contained both the manufacturing and ICT sector.

No. CPC Description
1 B23Q3 Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
2 B23Q5 Driving or feeding mechanisms
3 B23Q 17 Arrangements for Detection or prevention of collisions indicating or measuring on machine tools
4 B23Q 39 Metal-working machines incorporating a plurality of sub-assemblies
5 B23Q 41 Combinations or associations of metal-working machines
6 B23Q2703  Work clamping
7 B23Q2705  Driving working spindles or feeding members carrying tools or work
8 B25J9 Programme-controlled manipulators
9 B29C 64 Additive manufacturing
10 B33Y 10 Processes of additive manufacturing
11 B33Y 30 Apparatus for additive manufacturing
12 B33Y 50 Data acquisition or data processing for additive manufacturing
13 B60T2201  Particular use of vehicle brake systems
14 B60W 30 Purposes of road vehicle drive control systems not related to the control of a particular sub-unit
15 GO1S 17 Systems using the reflection or reradiation of electromagnetic waves other than radio waves
16 GO05B2219  Program-control systems
17 GO5D 1 Control of position, course or altitude of land, water, air, or space vehicles
18 GO6F 9 Arrangements for program control
19 GO6F 21 Security arrangements for protecting computers, components, programs against unauthorised activity
20 GO6N 3 Computing arrangements based on biological models
21 GO6N 5 Computing arrangements using knowledge-based models
22 GO6N 7 Computing arrangements based on specific mathematical models
23 GO6N 10 Quantum computing
24 GO6N 99 Computing arrangements based on specific computational models (etc.)
25 GO6T 7 " Image analysis"
26 GO6T 19 Manipulating 3D models or images for computer graphics
27 HOIL 27 Devices consisting of a plurality of semiconductor or other solid-state components
28 HO4L 9 Cryptographic arrangements for secret or secure communications; Network security protocols
29 HO4L 63 Network architectures or network communication protocols for network security
30 HO4W 4 Services specially adapted for wireless communication networks
31 HO04W 12 Security arrangements; Authentication; Protecting privacy or anonymity
32 YO02P 10 Technologies related to metal processing
33 Y04S 10 Systems supporting electrical power generation, transmission or distribution
34 YO04S 20 Management or operation of end-user stationary applications or the last stages of power distribution
35 YO04S 30 Systems supporting specific end-user applications in the sector of transportation
36 Y04S 40 Systems for electrical power generation, transmission, distribution or end-user application management
37 Y04S 50 Market activities related to the operation of systems integrating technologies
From the network centrality measures, we can also iden- and the ICT sectors among the 37 common technologies.

tify the main I4T-related technologies of the manufacturing We report the top-5 ranked technologies of the manufacturing
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TABLE 3. List of the CPC codes having the top-5 degree rank in the
technological networks of the manufacturing and the ICT sectors. The
common technologies of two networks are highlighted in gray.

Rank Manufacturing ICT
CPC Degree CPC Degree
1 B60T2201 23 GO6F 21 7
HO4L 9 5
2 HO4W 4 20 HO4W 12 5
Y04S 50 5
HO4L 63 4
3 GO6N 5 18 GOG6F 9 4
HO04W 4 4
GO6N 7 17
4 GoeNgo 17 GOONT 3
B23Q 41 15
> GO6N 10 15 GOSD 1 2

TABLE 4. List of the CPC codes within the top 5 rank of the betweenness
centrality in the technological networks of the manufacturing and the ICT
sectors.

Rank Manufacturing ICT
CPC Betweenness CPC Betweenness
1 B60T2201 89.02 GO6F 9 25.25
2 B23Q3 32.66 GO6N 7 19.00
3 GOO6N 99 31.42 GO6F 21 14.58
4 GO6N 5 30.23 Y04S 50 10.67
5 HO04W 4 29.15 HO04W 4 6.67

and the ICT sectors in terms of the degree and the between-
ness centrality measures in Tables 3 and 4, respectively. For
the degree centrality, the two technologies “GO6N 7: Com-
puting arrangements based on computational models” and
“HO4W 4: Services specially adapted for wireless commu-
nication” have higher degrees in both the manufacturing and
the ICT sectors, which means that the firms in the manufac-
turing and the ICT sectors tend to have these technologies
in their technological portfolio. In addition, with the top-5
ranked betweenness centrality, we can identify the main tech-
nologies that bridge the other two technologies. For example,
the technology “B60T2201: Particular use of vehicle brake
systems”’ has the highest betweenness centrality, and it also
has the highest degree centrality in the manufacturing sector.
This shows that the technology “B60T2201 has its own
technological importance and importance on the connectiv-
ity of the other technologies in the manufacturing sector.
Moreover, we can see that the technologies related to the
arrangements (“GO6N 99, “GO6N 5, “GO6F 9, “GO6N
77, “GO6F 21”) and the wireless communication network
service (““HO4W 4”) play a central role to connect the other
technologies in both the manufacturing and the ICT sectors.

To distinguish the differences between the two technolog-
ical networks, we categorize the difference into the struc-
tural difference between the two networks and the magnitude
difference on the common edges of two networks. First,
we depict the difference in the connectivity of two networks
in Figure 6 (a), where the edges connected only in either the
manufacturing or the ICT sector are highlighted in blue or red,
respectively. Overall, the number of edges only connected in
the manufacturing sector (156 edges) is quite larger than the
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FIGURE 4. Technological networks of the manufacturing and ICT firms
with the partial CPC codes.

number of edges only connected in the ICT sector (8 edges).
This observation also supports that the technologies of the
manufacturing firms have been diversified and ICT firms tend
to specialize in several technologies, including computing
arrangements and communication network services. In addi-
tion, the technology of the market activities related to the
operation of systems integrating technologies (‘“Y04S 50”)
has five edges among eight edges only in the technological
network of the ICT sector while the technology “Y04S 50
does not have any edges in the technological network of the
manufacturing sector.

To compare the common edges between two technological
networks depicted in Figure 6, we first calculate the dif-
ference between Kendall’s tau values of 13 common edges.
We report the 13 common edges and corresponding Kendall’s
tau values of the two technological networks in Table 5.
As described in Section III-A, we apply the permutation
test procedure to identify the significantly different edges
in terms of the magnitude at the significance level of 0.05.
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TABLE 5. Summary of the permutation tests for the common edges of the technological networks of the manufacturing and the ICT sectors. The
significantly different edge by the permutation test is highlighted in gray.

Edge No. Edge A Edge B (M) 7D 7)) Perm. p-value
1 HO4L 9 HO4L 63 0.2872  0.3862 -0.0990 0.3241
2 HO4L 9 GO6F 21 02763  0.4837 -0.2074 0.0733
3 HO4L 9 HO4W 12 0.2352  0.3588 -0.1236 0.2970
4 HO4L 9 HO4W 4 0.3480 0.3347 0.0132 0.9251
5 HO4L 63 GO6F 21 02121  0.4219 -0.2098 0.1306
6 HO4L 63  H04W 12 0.1966  0.3898 -0.1932 0.0898
7 GO6F 21  HO4W 12 0.1698  0.3655 -0.1957 0.2820
8 GOG6F 21 HO4W 4  0.2924  0.3382 -0.0458 0.5977
9 GO6F 9 GO6N 7 0.4276  0.3290 0.