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ABSTRACT Prognosis is a challenging technology that aims to accurately predict and estimate the remaining
useful life of a component or system in order to enhance its reliability and performance. Although prognosis
research for predictive maintenance is a well-researched topic, practical examples of successful prognostic
applications remain scarce. This is due to the lack of available run-to-failure data to build the prediction
model as maintenance is usually conducted regularly to avoid significant defects. This paper proposes a novel
prognosis method that can be applied to real-world railway maintenance planning without employing run-
to-failure data. The key idea is that the fault severity assessment and approximate remaining time prediction
are often all that is needed in order to plan maintenance. Firstly, using motor current signals, a degradation
indicator on railway door systems is generated based on the dynamic time warping method to measure
similarity between typical normal and faulty behaviour. Then, the K-means algorithm is applied to assess
fault severity, followed by the representative time estimation for each level of fault severity. This estimation
thus allows the remaining time prediction until reaching the critical fault severity level without using run-
to-failure data. As a result, the proposed method enables predictive maintenance planning for railway door
systems. In addition, the fault severity threshold can be updated by additional operational data, enabling
the remaining time prediction to be more reliable. Furthermore, the proposed method can be applied to
conventional railway assets and other electro-mechanical actuators as motor current signals are primarily
available from the controller or motor drive without additional sensors.

INDEX TERMS Fault detection, prognosis, prognostics and health management, PHM, signal processing,
remaining useful life, railway, door systems, linear actuator, electro-mechanical actuators, EMAs.

I. INTRODUCTION

Prognostics and Health Management (PHM) is an all-
encompassing technology that enables engineers to turn data
and health states into information that can be used to increase
the knowledge of a system and provide a strategy to maintain
the system in its originally intended function. Whilst PHM
originated in the aerospace industry, it is now being explored
in many applications in industries such as manufacturing,
automotive, railway, and heavy industry [1]. There are many
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benefits to employing PHM, such as significantly reducing
support and operating costs. For example, an unexpected
one-day stoppage in the machinery industry may incur costs
as high as up to 100,000 to 200,000 euros [2]. Furthermore,
PHM also significantly increases safety as devastating acci-
dents are more likely to occur from inadequate maintenance.
One example of this is an incident on 10" May 2002 when
a train travelling from London to Norfolk in the UK derailed
at Potters Bar railway station, causing seven deaths and
injuring over 70 people. The derailment was due to a points
failure; one of the main factors being that the points had been
poorly maintained [3]. This incident demonstrates the fatal
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FIGURE 1. Typical conventional prognosis method based on data-driven approaches.

consequences that can arise from insufficient and inappro-
priate maintenance as well as the likely loss of public trust
in the industry.

Prognosis is a challenging technology that aims to accu-
rately predict and estimate the remaining useful life (RUL)
of a component or system in order to enhance its reliability
and performance [4]. RUL is the duration between the current
time and the time at which the forecasted health level reaches
a predefined failure threshold, which is when the system can-
not continue fulfilling its intended functions. During the early
stages of health monitoring technology, traditional applied
technologies focussed on detecting and isolating failures.
As the demand for Condition-Based Maintenance (CBM)
increased, the idea of using RUL as a prognostic failure
prediction technique grew in popularity.

Current prognostic approaches can be categorised into two
major categories, namely physics-based models and data-
driven approaches. A typical physics-based models’ prog-
nostic strategy consists of dynamic models to perform the
prediction function of the system’s future state. Physics-based
approaches provide technically comprehensive solutions that
have been used widely to understand the failure progres-
sion [4]. These models assume that an accurate mathemati-
cal model for degradation can be constructed from the first
principle [5]. Additionally, model parameters may be identi-
fied using empirical data obtained from specifically designed
experiments [6]. Then, the physics-based models can be used
to determine the system’s life usage by calculating the physics
parameters for the system at that particular time. Once the
current physics parameters have been identified, the model
can predict future conditions based on historical conditions
using stochastic techniques. Some of the most-used exam-
ples include fatigue crack propagation modelling [7], battery
capacity modelling [8], centrifugal pump degradation mod-
elling [9], thermal processing unit degradation [10], pneu-
matic valve modelling [11], and DC-DC converter system
level degradation model [12]. However, physics-based mod-
els largely rely on employing expert domain knowledge, and
the models are also component-specific or system-specific,
which means that they cannot be applied to other types of
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components or systems where the physics of failure mecha-
nism differs. Moreover, industrial machinery systems contain
many components interconnected with various uncertainties,
which makes the physics-based modelling approach of lim-
ited value in predictive maintenance.

On the other hand, data-driven approaches use histori-
cal run-to-failure (RTF) data to build a statistical, machine
learning, or deep learning model. Data-driven approaches are
divided into two categories: statistical models and machine
learning models.

Statistical approaches construct models by fitting a proba-
bilistic model to the data without any engineering or physical
principle knowledge. These approaches rely on statistical
models and the observed data to support the prediction of
the RUL. X.S. Si et al comprehensively reviewed the statis-
tical approaches for RUL estimation [13]. On the contrary,
machine learning models attempt to recognise complex pat-
terns and make a prediction based on key historical degrada-
tion information. Machine learning approaches are adaptable
to situations where expert domain knowledge is unavailable.
A typical prognosis method based on data-driven approaches
is described in Figure 1. Firstly, a prediction model is built
with RTF training samples acquired during machinery oper-
ations. Then, a future degradation curve is estimated by the
prediction model. Once a failure threshold can be determined,
the RUL can also be estimated with the predicted curve and
the failure threshold. Prognosis studies have been conducted
based on machine learning and deep learning, including neu-
ral network [14], [15], logistic regression [16], deep neural
network [17], [18], autoencoder [19], [20], deep belief net-
work [21], long short-term memory [22], [23], [24] and gen-
erative adversarial network [25]. The significant advantage
of data-driven approaches is that it does not require expert
domain knowledge and understanding of the failure mech-
anism of the complex machinery behaviour if a sufficient
amount of RTF dataset is available. Therefore, this approach
has gained attention with academic researchers and industrial
engineers as the amount and availability of data increases.

However, the serious limitation of the data-driven approach
is the lack of available RTF training samples to build a
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prediction model as maintenance is usually conducted reg-
ularly to avoid significant defects in order to meet customer
demand and social responsibility. In addition, it is also diffi-
cult to determine the failure threshold, which is described in
Figure 1, as the end-of-life of machinery is hardly observ-
able due to the conservative maintenance upkeep. Thus,
the RUL with the conventional data-driven approaches is
unpredictable during the model training phase until enough
RTF data is available and the failure threshold can be deter-
mined. In other words, conventional prognosis methods can
be impractical due to insufficient RTF data. This is a major
challenge, and few studies can be found that attempt to over-
come this hurdle.

To tackle the issue, this paper proposes a novel prognosis
method that can be applied to real-world railway maintenance
planning without employing RTF data. The key idea is that
the fault severity assessment and approximate remaining time
prediction are often sufficient for decision making in main-
tenance planning, such as scheduling work, ordering parts
and other specialised resources, and withdrawal from service.
Therefore, this research aimed to establish a practical progno-
sis methodology instead of estimating accurate RUL. Firstly,
a degradation indicator on railway door systems is gener-
ated using motor current signals based on the dynamic time
warping (DTW) method to measure the similarity between
typical normal and faulty door systems behaviour. Then,
the K-means algorithm is applied to assess fault severity,
followed by the representative time estimation for each level
of fault severity. This estimation enables the remaining time
prediction until critical fault severity to be calculated without
using RTF data. It should be noted that although methods
exist to calculate fault severity and diagnosis by using the
DTW method and K-means algorithm [26], [27], this paper’s
proposed prognosis method is novel as it is the first method
that does not use RTF data. The main contributions of the
paper are summarised as follows:

1. This paper proposes a novel prognosis method that can
be applied to real-world railway maintenance planning
that does not use RTF data.

2. The fault severity threshold can be updated by including
additional operational data, enabling the remaining time
prediction to be more reliable.

3. The proposed method can be applied to conventional
railway assets and other EMAs as motor current signals
are primarily available from the controller or motor
drive without additional sensors.

The remainder of this article is organised as follows:
section II provides a brief background of relevant previous
research; the proposed methodology, result, and discussion
regarding fault severity assessment and prognosis are given
in sections III and IV; and section V concludes the paper’s
findings.

II. LITERATURE REVIEW
The major challenge related to the lack of RTF data to build
RUL prediction models remains to be overcome. Although
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there are a few studies that attempt to solve this issue, all
still require a certain amount of RTF data. This is not a
complete solution and still poses elements of impracticality.
For instance, some research proposes data augmentation tech-
niques by using historical suspension condition monitoring
data to increase training data in order to address the lack
of RTF data [28], [29], [30]. Suspension data refer to con-
dition monitoring data acquired from the very beginning of
an engineered system’s lifetime until planned inspection or
maintenance when the system is taken out of service [30].
For example, the training data is augmented as virtual RTF
data created by using obtained RTF data and suspension data
with the DTW method [28]. Z. Tian et al and C. Hu et al
propose artificial neural networks [29] and semi-supervised
co-training approaches [30], respectively. These proposed
methods are used to increase labelled training datasets with
suspension historical data and RTF data. Even though they
show extremely accurate RUL, a certain amount of RTF data
is still required to build initial data-driven models to amplify
training datasets. That requirement makes practical prognosis
application still challenging at the initial stage as little RTF
data is available in many engineered systems. In another
example, the prognostic approach utilising the accelerated
life testing (ALT) degradation data is proposed to convert
the ALT data to field loading conditions [31]. However,
this approach requires ALT data acquisition under different
loading conditions to obtain actual field condition data from
them in advance, which requires significant experiments and
is therefore not practical. Thus, the major challenge related to
the lack of RTF data remains to be addressed, particularly at
the initial stage of practical prognosis application where RTF
data is unavailable.

Furthermore, there is lacking prognosis research on door
systems and electro-mechanical actuators (EMAs). This
paper uses operational railway door system datasets as an
example. The railway door systems use electric linear actu-
ators. For example, the diagnosis and prognosis method
with a particle filter for EMAs was presented, focusing
on a windings fault by using physics-based dynamic mod-
els [32]. However, the developed model is a component-
specific model and hence cannot be applied to other types
of components or faults in which the physics of failure
mechanism differs, such as door systems. C. S. Byington
et al propose a data-driven methodology to estimate the
state of health and predict the remaining useful life of
aircraft actuator components with fuzzy logic [33], which
requires a predefined set of rules based on expert engi-
neering knowledge and Kalman filters. E. Balaban et al
have conducted experiments with a flyable electromechani-
cal actuator testbed (FLEA) and predicted RUL with Gaus-
sian process regression (GPR) using motor temperature
[34], [35]. Y. Zhang et al demonstrated another RUL predic-
tion example with weighted bagging GPR (WB_GPR) based
on data-driven approaches by using the experimental dataset
by NASA [36]. P. C. Berri et al established a RUL predic-
tion workflow with support vector machine (SVM) using
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FIGURE 2. The proposed prognosis method to predict the remaining time.

health status estimation with multi-layer perceptron (MLP)
[37], [38]. J. Yan et al also developed a logistic regression-
based approach for degradation evaluation and RUL predic-
tion of elevator door open-close cycles [16]. More recently,
A. Caliwag et al applied deep neural network techniques for
fault occurrence prediction on the entire train system, includ-
ing door systems [39]. Despite the successful outcomes of
these approaches, the proposed RUL predictions still require
enough RTF data to build the model. Thus, a deficiency of
RTF data limits its application for practical purposes.

ill. PROPOSED METHODOLOGY

A. PROPOSED WORKFLOW

The proposed method and workflow to predict the remaining
time are shown in Figure 2 and Figure 3. The workflow is
divided into two procedures: offline and online. In the offline
procedure, current signals acquired from railway assets are
used as training datasets to build an unsupervised cluster-
ing model to assess the fault severity level and estimate
the remaining time. In this paper, the remaining time refers
to the duration from the certain fault severity stage to the
critical fault severity stage. Critical fault severity is when
a system has reached a point where maintenance cannot be
delayed; it is the last warning point for planning maintenance
before failure. In this approach, time-series current signals
are pre-processed to be aligned and eliminate noise using a
low pass filter. Then, pre-processed data is used to create a
typical normal current profile by averaging a hundred normal
profiles, followed by the generation of degradation indicators
with the DTW method. Then, the K-means unsupervised
machine learning algorithm is trained with the degradation
indicators to create fault severity clusters. If maintenance
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records were available, whose information is unavailable in
this research, the critical fault severity stage could be iden-
tified using created fault severity clusters and maintenance
records. For example, suppose a fault severity cluster A is
equivalent to the cluster just before door maintenance activity
based on maintenance history. In that case, the fault severity
cluster A becomes the critical fault severity stage. The median
time of training data belonging to each fault severity stage
with the K-means method is calculated. This calculation
enables the remaining time prediction, details of which are
described in Section IV.

The clustering model created offline is implemented in
the online procedure to assess the fault severity and predict
remaining time in real-time. First, the current signals are pre-
processed and the degradation indicator is generated in the
online with the DTW method. The typical normal current
profile created offline is employed in the online procedure to
calculate the DTW distances. Then, the online fault severity
assessment is executed with the K-means clustering model
built offline once one door operation is completed, followed
by the remaining time prediction that thus helps machinery to
be maintained before it breaks down.

The proposed workflow offers significant advantages in
terms of practical real-time prognostics and health man-
agement. Firstly, the proposed method can be applied to
real-world railway maintenance planning as the remaining

28727



IEEE Access

M. Shimizu et al.: Real-Time Prognostics and Health Management Without Run-to-Failure Data on Railway Assets

[Iloor SPeed apd Cur‘rent ‘

30 T T T
Door Speed 14
‘f“ Current
25 1| l\. |
\ 112
L U
2 [ Meoacdn L
% 20 ; i o, 1 41
§ <‘ I“, ‘ R - _,J\I‘ ‘ g
e “ 4 08 T
i | ‘ S
g =]
N e e {08 O
810 1[ ‘
= |
‘ ‘ \ 0.4
. |
i [| 402
J i
0 I H‘ L L I J\ I I\ I \‘ L
0 2 4 6 8 10 12 14 16 18

time(sec)

FIGURE 4. Door speed and current signals.

time can be predicted in real-time without using RTF data.
This solves the current issue of needing sufficient RTF data
to build a prediction model. Secondly, the fault severity
threshold can be updated by using additional operational data.
The fault severity threshold refers to the critical fault sever-
ity stage, meaning that maintenance should be conducted
before reaching that severity level. As a result, the remain-
ing time can be more reliable. Additionally, the proposed
method can also be applied to conventional railway assets and
other EMAs as motor current signals are primarily available
from the controller or motor drive without additional sensors,
which is also beneficial for practical prognostic health man-
agement systems.

B. SEVERITY ASSESSMENT

1) DATA ACQUISITION

This study uses large real-world datasets of door systems
in railway assets to build a prediction model. Specifically,
this paper focuses on electric doors, composed of a voltage
power source, a DC motor, a door control unit (DCU), a trans-
mission, and door leaves. In short, a DC motor, powered
by a voltage source and controlled by a DCU, can output
the specified shaft angular velocity and torque, which are
transmitted to transmission so that the door leaves can move
in a pre-designed manner [40]. The door data, which consists
of current and encoder signals, is collected through the com-
munication port from the DCU at a frequency of 50 Hz. The
data is acquired from one specific door of a train during actual
railway service operation and include 6,039 door-opening and
closing operations. A time lag is often observed between the
motion profile and the current. To align the time series, the
DTW method is used for the first alignment. The low pass
filter is applied on a window of 0.25 seconds, representing
five consecutive measurement time intervals to reduce the
noise carried by both current and encoder signals.

2) AN EXAMPLE OF THE SIGNAL PROFILE
An example of the signal profile of the opening and closing
operations is shown in Figure 4. In the opening profile, the
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speed and current increase steadily up to a maximum, fol-
lowed by a slight curve, and then decrease to zero. The closing
profile follows a similar pattern but has two main differences
in the current. The first main difference is that the peak in
the closing profile is lower than the opening. The second key
difference is that there is an abrupt change at the end of the
closing profile, followed by a slight bump in the speed, which
promotes pushing the door to its maximum reachable position
where a locking process can be triggered [41].

In this research, current signals in the closing operation
are used for fault severity classification and prediction of the
remaining time. The example of the normal and faulty current
signal is shown in Figure 5. The normal current signal has flat
curves from 2.6 sec to 3.7 sec, while there are negative peaks
and fluctuations in the dataset of the faulty current signal.

3) DYNAMIC TIME WARPING METHOD

The DTW method is applied to generate a condition indicator
by using a typical normal current profile. The average of
100 normal profiles is calculated and used in order to create
the typical normal current profile, as shown in Figure 6.
It should be noted that an average is taken from normal
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current profiles from 0 sec to 4.5 sec to create the typical
normal current profile as faulty characteristics can emerge
in this range, as shown in Figure 5. In addition, the profiles
over 4.5 sec slightly differ from each other despite the dif-
ference having no correlation with fault, so it is essential to
eliminate these profiles over 4.5 sec in this example dataset.
Afterwards, a degradation indicator on railway door systems
is generated based on the DTW method to measure similarity
between two temporal sequences: a typical normal current
profile and an operation of door systems.

The DTW method is one of the most widely-used algo-
rithms for measuring the similarity between two temporal
sequences that may vary in time [42], which was originally
used in speech recognition [43].

Given are the two time series of length N and M:

X = {xl,xz,...,xi...

Y= {yl,yz,...

,xnY, forie[l:N] (1)
Vj--ooym). forje[l:M] (2)

The x; and y; represent values at the point i and j of X and Y,
respectively. In this research, these two sequences represent
time-series data, such as the current signals of door systems.
To compare two time series, N-by-M cost matrix is defined,
and its element is the distance between x; and y;, which is
expressed by:

C(n,m)=c (x,', yj) 3)
¢ (xi,yj) = |xi — il “4)

Generally, c(x;, y;) becomes small if x; is similar to y;, how-
ever if they are not similar to each other, c(x;, y;) becomes
large. In this research, Euclidean distance is chosen to calcu-
late the cost, as shown in equation (4). Then, the goal is to
minimise overall cost and find an optimal match between X
and Y. An (N, M)-warping path means a sequence p = (p1,
D2y s Pls .., pL) With py = (ng, my) € [1: N] x [1: M] for
I € [1: L], which meets the following three constraints [44].

1. Boundary constraint: p; = (1, 1) and p;, = (N, M)

2. Monotonic constraint: n; < np < ... < ny and m; <

my <...<my
3. Step size constraint: p;1 — p; € {(1, 0), (0, 1), (1, 1)}
forl e [1: L —1]

The boundary constraint enforces that the first and last ele-
ment of X must be the first and last element of Y. This
means that the sequence of X needs to be aligned with the
entire sequence of Y. The monotonicity constraint is the
requirement of the appropriate match between two sequences
as an essential pattern of time-series sequence is continuity.
The third step’s size restriction requires that all elements in
X and Y need to be used and that there are no duplications in
the alignment.

The total cost ¢, (X, Y) of a warping path p is calculated by
accumulating each costs c(x;;, yny) along the path as follows:

L
cp (X, Y) = D" c(at, ymi) 5)
=1
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Suppose a warping path p* is an optimal warping path
between X and Y, having minimal total cost among all pos-
sible warping paths, then the DTW distance DTW(X, Y)
between X and Y is defined as the total cost of p*:
DTW (X,Y) = ¢p» X, Y)
= min{c,(X, Y)lpisan (N, M)
— warping path} (6)

The optimal path p* can be selected based on the cumu-

late cost matrix D € RV*M  which satisfies the following

identities:
n

D, 1)= > c(.y) fornell:N] 7
k;ll

D(l,m)y= D c(xi.y) formel[l:M] 8)
k=1

D (n,m) = ¢ (xn, ym)
+minfDn—1,m—1),D(n—1,m),
Dn,m—1)} forl<n<Nand1l <m<M

)

The first row and column of matrix D are calculated with the
cumulative cost along the row and column, respectively. The
D(n,m)for1l <n <N and 1 < m < M are calculated with
the sum of c(x,, y,,) and the smallest cumulated cost among
adjacent elements, which are D(n—1, m—1), D(n—1, m), D(n,
m — 1). Once the cumulative cost matrix D is calculated with
the above equation, the optimal path p* can be determined
recursively starting from p;, = (N, M) to p1 = (1, 1), which
are from end to start of sequences. Next, when p; = (n, m) has
been computed, the next point p;_; can be determined as:

(1,m—1) if n=1

n—1,1 ifm=1
pra=1"bD f (10)

argmin{fD(n — 1,m — 1),

Dn—1,m),D(n,m— 1)} otherwise

As a result, the optimal path p*, which can be the best align-
ment between two time-series sequences, is found with DTW.
Furthermore, the optimal path offers minimal total distance
among all possible warping paths, which can be used as a
similarity between two time series data.

In this research, the degradation estimation is carried out
based on the DTW distance between the typical normal pro-
file described in Figure 6 and the current signals of closing
operations, which has the same range as that of a typical
normal profile, from O sec to 4.5 sec.

4) K-MEANS CLUSTERING

K-means clustering is one of the most well-known unsuper-
vised partitional clustering algorithms because of its easy-to-
implement nature, simplicity, efficiency, and empirical suc-
cess [45]. The K-means assigns »n training feature vectors to
exactly one of the k clusters. This method has been used in
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a lot of previous research as industrial data usually contains
both normal and abnormal data in high-dimensional space,
making it difficult to manually segregate it [41], [46]. The
steps for K-means clustering are the following [47]:

1. Choose k centroid (initial cluster centre) and use the
K-means ++ algorithm for cluster centre initializa-
tion [48].

2. Compute distances between cluster centres and training
feature vectors.

3. Assign each training feature vector to the cluster with
the closest centre (this step is called a Batch update).

4. Compute the average of the training feature vectors in
each cluster to obtain k new cluster centres.
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5. Repeat steps 2, 3, and 4 until the centres do not change
their values.

6. Repeat steps from 1 to 5 ten times. The clustering
result with the lowest sum of squared distances between
cluster centres and training feature vectors is selected.

In this research, the K-means algorithm is employed for

fault severity classification based on the degradation estima-
tion calculated by the DTW method.

IV. RESULT AND DISCUSSION
This section presents the outcomes of fault severity assess-
ment and the remaining time prediction.

A. FAULT SEVERITY ASSESSMENT RESULT

This research first gathers and analyses datasets from a rail-
way asset. Then, four clusters are created using the K-means
clustering algorithm with the DTW distance, which means
that the operational data is separated into four clusters. Four
degradation levels are typically used in the railway industry,
which are, for instance, normal (green), moderate (amber),
severe (orange), and extreme (red). As shown in Figure 7,
in which the average signals for each level are drawn in bold
and red, current signals for level 1 have relatively flat curves
from 2.0 sec to 3.8 sec, while there are large fluctuations and
negative peaks for levels 2, 3, and 4. These represent normal
and faulty characteristics, as described in Figure 5.

It is worth noting that the fluctuations and magnitude of
negative peaks become more extensive as the severity assess-
ment level rises. To analyse the normal and high severity
level characteristics, level 1 and level 4 are assumed to be
normal and high severity levels, respectively. As described in
Figure 8, the number of observations of the normal severity
level per week, which is from level 1, steadily decreases over
time, while the high severity level, level 4, rises continuously,
as shown in Figure 9. The component should degrade over
time; this is reflected in the trend in Figure 8 and Figure 9.
Thus, this result reveals that levels created by the K-means
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algorithm with DTW distance can represent the level of fault
severity.

The above result is also intuitively rational as the DTW dis-
tance also demonstrates how far off a door systems operation
is from normal behaviour. Hence, the DTW distance can rep-
resent fault severity. In this research, the DTW method can be
applied to generate a degradation indicator on door systems
since current signals of normal and abnormal behaviour have
similar trends, except for the depth and width of fluctuations
and negative peaks. Therefore, DTW distance is susceptible
to those characteristics and can be a good representative of
degradation. As a result, the DTW distance and K-means
clustering algorithm can be used together for degradation esti-
mation and fault severity assessment on railway door systems.

Certainly, one might argue that the explanation given
in above is qualitative. However, this research does not
utilise maintenance records. The way of fault severity assess-
ment could be validated quantitatively with that information.
Besides, the main contribution of the proposed method is
a novel prognosis method without using RTF data, not a
way of assessing faulty severity. Therefore, the K-means
and the DTW are examples of fault severity assessment in
the research, which means another method of fault severity
assessment could be employed if that is more suitable.

B. THE REMAINING TIME PREDICTION

For the purpose of the remaining time prediction, ten severity
stages are created by K-means instead of four stages, which
is described and explained in Section IV-A. The ten stages in
Section I'V-B differ from the four levels used in Section IV-
A. For the sake of clarity, the terminology stage is used
in Section IV-B instead of the level to differentiate them.
Certainly, it might be argued that ten stages of degradation
are not well justified from an industrial point of view because
it might be too many severity stages to be easily identified
in practice. However, E. Balaban et al have presented an
extensive analysis of the critical failure modes for EMAs
and used ten stages as relative criticality [49]. Therefore,
we used ten stages in order to predict the remaining time
leading to critical fault severity level from each stage in this
research. The critical fault severity is when a system has
reached a point where maintenance cannot be delayed. The
number of observations per week from stages 5 to 10 is
described in Figure 10. Samples of stages 5, 6, and 7 are
observable during the whole period, while those of stages 8,
9, and 10 cannot be detected before 3,653, 4,350, and 6,028
hours, respectively. Furthermore, the observation distribution
looks to be moderately sliding from left to right over time
through stages 5 to 10. If the time of each stage is determined
with the median of observations belonging to each stage,
the time of each stage is positively correlated with the stage
numbers, as shown in Figure 11. If stage 10 is assumed to be
critical fault severity level, the remaining time is estimated
by subtracting the median time of each stage from that of
stage 10, as shown in Figure 12. The result reveals that the
remaining time can be predicted once the current severity
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FIGURE 10. The number of observations from stages 5 to 10 per week.

stage can be assessed during operation. For instance, given
that the current severity stage is considered stage 8, then the
remaining time can be predicted as 995 hours.

Indeed, it might be argued the accuracy of the remain-
ing time prediction needs to be verified. If maintenance
records were available, the predicted remaining time could
be validated quantitively, whose information is unavailable in
this research. However, this research insists that data-driven
prognosis methods have no validated input for end-of-life
of individual assets in the real-world industry. Hence, the
remaining useful life remains an estimate even though the
gradient of the remaining time prediction is well monitored,
as shown in Figure 12.

C. PREDICTIVE MAINTENANCE CAPABILITY

The proposed method could be a significant tool for real-
world railway maintenance planning. The key idea is that
the fault severity assessment and approximate remaining
time prediction are often sufficient for decision making for
maintenance planning. In this research, for instance, the ten
stages can be classified into different alarm levels, which
are normal (green), moderate (amber), severe (orange) and
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FIGURE 13. Severity assessment level (Normal, Moderate, Severe and
Extreme), stages and remaining time.

extreme (red) based on the predicted remaining time as
described in Figure 13. Operations can be continued at the
normal (green) alarm level without any maintenance. In the
case of a moderate (amber) level, railway companies can
still keep their operations going, but condition degradation
indicators must be monitored carefully. They would need
to start maintenance planning at the severe (orange) level,
taking into account the remaining time before reaching an
extreme (red) level because a certain amount of time would
be required to plan maintenance. Maintenance can also be
scheduled depending on a company’s maintenance lead time
and capability; for example, some companies need to sched-
ule maintenance in stage 7 due to their maintenance ability.
On the other hand, other companies might be able to conduct
maintenance in stage 9 if they have enough resources. Once
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the alarm level reaches extreme (red), the assets need to be
maintained immediately. Simply put, this means that mainte-
nance can be scheduled and conducted with prognostic infor-
mation before a catastrophic incident without using RTF data.

In addition, the fault severity threshold can be updated
by using additional operational data, enabling the remaining
time prediction to be more reliable. The fault severity thresh-
old refers to the maximum fault severity stage. As an example,
stage 10 can be assumed to be the fault severity threshold in
Figure 13. The fault severity assessment model can be trained
with the additional data, then, the model can generate more
severity stages during operational data acquisition. This train-
ing enables the fault severity threshold to be updated and the
remaining time prediction to be more reliable. In addition, the
RUL can also be predicted using the proposed method once
enough RTF data has been gathered during the operation.

Lastly, another advantage of the proposed method is that it
can also be applied to conventional railway assets and other
EMAs as motor current signals are primarily available from
the controller or motor drive without additional sensors. That
is also beneficial for practical prognostic health management
systems.

V. CONCLUSION

This novel prognosis method that does not require RTF data
is an applicable and useful tool for real-world railway mainte-
nance planning. The key idea is that fault severity assessments
and approximate remaining time predictions are often all
that is needed in order to plan maintenance. Therefore, this
paper established a practical prognosis methodology that uses
fault severity assessments and approximate remaining time
predictions instead of RTF data to estimate accurate RUL.

Firstly, a degradation indicator on railway door systems
is generated using motor current signals based on the DTW
method to compare the behaviour of typical normal and faulty
door systems. Then the K-means algorithm is applied to
assess fault severity, followed by the time estimation of each
fault severity level. To be concise, this estimation allows the
remaining time until reaching the critical fault severity level
to be predicted without using RTF data.

The proposed method offers significant advantages in
terms of practical real-time prognostics and health man-
agement. Firstly, the proposed method can be applied to
real-world railway maintenance planning as the remaining
time can be predicted in real-time without using RTF data,
which has previously been a great setback to building a
prediction model. Secondly, the fault severity threshold can
be updated by including additional operational data, enabling
the remaining time prediction to be more reliable. The RUL
can also be predicted using the proposed method once enough
RTF data has been gathered during the operation. Addition-
ally, the proposed method can also be applied to conventional
railway assets and other EMAs as motor current signals are
primarily available from the controller or motor drive with-
out additional sensors, which is also beneficial for practical
prognostic health management systems.
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Determining a confidence level in the prediction was out
of this paper’s scope, however future research into this would
be fruitful. Next steps in this research journey could be to
acquire operational data from different assets to generate a
probability possibility density function in order to estimate a
confidence level.
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