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ABSTRACT The higher the vehicle autonomy level is, the more the problems that need to be solved by
engineers designing its sensors and control systems. Apart from the mechanical, electrical, algorithmic and
validation challenges, such projects require to efficiently gather, store and handle the very large amounts of
data logged from the vehicles. This is because the key functionalities of the control system in automated
vehicles are based on data that is collected from a variety of sources, processed and analyzed to generate
actuation signals. The article goes through the challenges, opportunities as well as solutions associated with
data logging, collection, storage, annotation, reprocessing and evaluation. It highlights that effective and
efficient data handling is an essential element for obtaining the required performance, reliability, safety and
quality capabilities that would allow the mass production of automated vehicles. In terms of the safety of
passengers and other road users, the behavior of a mass-produced automated vehicle must be predictable
and more reliable than that of an ordinary driver. The multitude of variants that test sequences must cover is
practically endless. Therefore, shortening the time-to-market to an acceptable length is only possible if you
use the right methods of working with data.

INDEX TERMS Automated vehicles, automotive sensors, big data, smart data logging, system validation.

I. INTRODUCTION
Automated vehicles combine a variety of sensors to perceive
their surroundings, including cameras, radars, lidars, GPS,
ultrasonic sensors and others. These sensors interpret sensory
information to identify navigation paths, avoid obstacles and
read relevant markers, like road lanes and signs. Sensors are
the base for vehicle perception and without good information
about the car’s surroundings it will not be possible to achieve
higher levels of automation. This can be compared to a human
driver with a visual impairment driving a car without glasses.
In such a situation, their confidence level of surroundings
interpretation is reduced and does not allow them to steer
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the car safely. In order to improve the performance of the
vehicle perception system, car manufacturers and designers
increase either the number of sensors mounted on the vehicle
or their resolution. In both cases, the amount of raw data
generated by the sensory system is drastically rising. Looking
at both the modern and future concepts of vehicle system
architecture [65], [66], there is a straightforward conclusion
that big data is transforming the automotive industry. The key
factor that will decide if and when cars with higher level of
automationwill enter into serial production is howwe are able
to process this data and analyze it in real time.

The vehicle system architecture for lower levels of
autonomy is usually based on separate intelligent sensors,
such as radars or cameras. This is because the final decision
is rather simple: either to warn the driver or execute lateral
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FIGURE 1. New concept of vehicle architecture with Advanced Safety and
Automated Driving Domain Controller. The controller integrates unique
Artificial Intelligence (AI) functionality allowing to leverage information at
the machine level in real time.

and/or longitudinal steering actions within a limited scope
of driving scenarios. This decision is based mainly on
the analysis of the zone in front of the vehicle. Fig. 1
describes a future concept of vehicle system architecture
for advanced safety and automated driving functionalities.
In this architecture, the multi-domain controllers [68] (body,
powertrain, infotainment, advanced safety and automated
driving) are connected to other vehicle systems via Ethernet
as a backbone communication network. Sensors can either
provide raw and unprocessed data to these units or have some
intelligence embedded to allow data pre-processing.

Multi-domain controllers emerged on the market due to
several challenges, which are hard to solve by intelligent
sensor architecture [45], [68]. The most important are the
increased computational complexity of fusion algorithms,
which are needed for perception of the environment around
the vehicle (360 degrees) and advanced path planning. It is
also much easier to prepare heat dissipation mechanisms (e.g.
water cooling) for one unit [41].

The development process of both smart sensors and
domain controllers requires the cross competency effort of
mechanical, thermal, electrical, software, algorithm, verifi-
cation, system and manufacturing engineers. For function
development and verification, data is collected during vehicle
test drives in order to create a dataset that can resemble
real-world situations as closely as possible. The data flow
in a typical automotive project related to automated function
development is presented in Fig. 2. First of all, a virtual
simulation or real-world vehicle fleet is required to collect
data, which can later be used by the project team. The
data needs to be physically transferred from the vehicles
to the data storage. At this point, it can be accessed by
the developers, verification engineers and HPCC (High
Performance Computing Clusters). As simple as it might
seem, every icon on the diagram means that there is a huge
amount of data and along with that comes a long list of
technical issues [63].

As the number of different road scenarios is infinite, one
of the challenges is how to choose representative data and

FIGURE 2. Data flow diagram in the development process of automated
driving systems.

TABLE 1. Most common automotive sensors and their average data
rates [2], [40], [43].

a second is how much of this data should be collected [46].
Calculation of the maximum rate of data that should be
logged leads to another issue related to the design of data
loggers that would be able to log all data in a vehicle.
The next problem is related to the transfer of the data
to the data centers. Besides these problems, others such
as data annotation, data reprocessing and data evaluation
become real challenges for the development of vehicle
control systems intended for series production. The following
sections provide more insights on current challenges related
to these problems, as well as possible directions for solving
them.

II. DATA LOGGING
Depending on the autonomy level [34] that has to be
implemented in a given project, different sensor setups must
be used (e.g. cameras, radars [47]) in the car [32]. Along
with the production sensor set, additional reference sensors
(e.g. lidar) must be used that are at least orders of magnitude
more precise in order to make testing and validation
effective. Depending on the sensor’s type, different data
is generated. The following sections contain, in summary,
the characteristics of data logged by the most common
automotive sensors.

A. RADARS
Radars analyze the reflections of transmitted electromag-
netic waves in order to extract detections from different
objects [48]. A single detection carries information not only
about the position of a reflection point but also a number of
other interesting parameters, such as target speed (from the
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doppler effect) etc. [28]. Radar data can be logged on several
levels [62]. The first is raw ADC (analog-digital converter)
values captured from the antennas. The second is data cube
(DC) representation obtained after applying the Fast Fourier
transform (FFT) to raw data. The third is detection – point
cloud of extracted reflections. The final is the object level
– aggregated information about detected objects, such as
cars, pedestrians etc. In general, the higher the abstraction
level is, the lower the amount of data generated by radar.
As for now, the most common level of radar data logging is
the detection level. Two interfaces are usually used for this:
CAN (Controller Area Network) [25], where the number of
detections is limited to 32-64 entries, and Ethernet with the
number of detections usually above 128. The estimated data
rates for DC, CAN and Ethernet streams [43] are presented
in Table 1.

B. CAMERAS
In the production vehicle, the images from the camera are
captured and transferred directly to an embedded processing
system which outputs only high-level information about
detected objects [20]. This means that the video itself is not
available in the production vehicle (except parking systems,
e.g. rear-view camera). For project development purposes
(algorithm training dataset, electronic control unit (ECU)
validation, in-the-loop verification), the raw video must be
recorded as well. Camera video stream data size is a function
of image resolution, dynamic range bit depth and frame
rate [40]. Every pixel has a single value that is usually
encoded in 12 to 16 bits (high dynamic range imagers are
used). The frame rate ranges usually from 20 to 40 Hz. The
three most common image resolutions used in automotive
Advanced Driver Assistance Systems (ADAS) are listed
in Table 1. The data is usually logged using differ-
ent proprietary LVDS (Low-Voltage Differential Signaling)
solutions [77].

C. LIDARS
Lidar technology [44] is still not mature enough (both in cost
per unit as well as lifetime durability) to be mounted on a
mass scale onto vehicles. There are, however, some examples
of successful projects using solid state lidar technology [29].
Nevertheless, in most cases, lidars are used as a reference
sensor to enable the precise labeling and positioning of
objects around vehicle that is logging the data. The most
popular due to the quality vs. price factor are still the rotating
devices [54]. The amount of data generated by lidar is related
to angular resolution, the number of vertical beams and
rotation rate [2]. It is often described in points per second
(PPS) [50]. For 32 beam lidars, the number of points received
per second is about 1.3M reaching about 6M for high-end
128 beam units. For every point, the distance and reflectivity
is returned (usually encoded on 3 or 4 bytes). The estimated
data bandwidth is presented in Table 1. Ethernet is most
commonly used for data transmission.

TABLE 2. Estimated daily data rates depending on the assumed number
of sensors in different project types.

D. OTHER SENSORS AND DATA SOURCES
There are also other sensors, such as ultrasonic [76] or precise
Global Navigation Satellite System (GNSS) receivers [37],
but their data rate is usually in the range of a few kilobytes
per second; thus, they can be excluded from logger data band-
width requirement computation. The vehicle, however, gen-
erates a lot of inter ECU traffic (body, engine, steering) that
often needs to be recorded as well. In particular, information
about the car state, such as speed or power mode etc., is nec-
essary in order to re-simulate the car environment. The band-
width is usually in the range of a few megabytes per second
and requires the logging of multiple LIN (Local Interconnect
Network), CAN, FlexRay and BroadR-Reach channels [57].

E. FULL SETUP
The data bandwidths presented in Table 1 are for single sen-
sors only. Depending on the project complexity (autonomy
level ), multiple sensor configurations are commonly used.
In Table 2, a short comparison is given between different
Society of Automotive Engineers (SAE) level vehicles [34]
for a common sensor setup. The numbers for level 2+ are
estimated based on sensor setup from [11]. For level 3+,
the estimation was done by the authors based on marketing
materials of companies such as Lucid Motors (32 sensors,
14 cameras) [8] and 5th-generation Waymo Driver (29
cameras) [10].

In order to carry out project development successfully, all
data needs to be logged. It is important to understand the
complexity of such an endeavor.

The first problem is related to the amount of data
that is generated by the vehicle. In most cases, the data
(including camera images) captured and saved during logging
campaigns can only be compressed by lossless codecs to
ensure that no data is lost [27], [58]. This is necessary
because only raw unmodified data can be used for training
new algorithms and computing performance indicators. This
requirement implies that the recorded data size is large.

Based on the numbers presented in Table 2, it is clear that
the requirements towards automotive data loggers are quite
high. The logger must also support a wide range of different
input interfaces, such as LVDS, Ethernet, CAN, FlexRay [57]
etc. When it comes to data storage requirements, it is worth
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mentioning that often special SSD (solid-state drive) arrays
must be used to ensure that no data is lost during recording.

The next issue is that with so many sensors, variable
frame rates and multiple data busses, accurate timestamping
becomes crucial to enable the proper re-use of logged
information. This is not a trivial undertaking due to the
different principles of operations, latency in data processing
and transmission, as well as other factors. Therefore time
stamping of data packets at the logger side is not accurate
and is considered not good enough for most applications (e.g.
data fusion). The solution to this problem is to distribute the
master clock to all sensors in order to synchronize them and
enable time stamping at the sensor end. But this requires
special hardware and software solutions as for example lidars
are synchronized with GPS, radars with CAN master clock
frames, cameras with trigger signals and there is no simple
way to synchronize all sensors.

Another problem which needs to be tackled in order to
enable data usage is related to the movement of the vehicle
used for logging. For example, a rotating lidar on the roof
rack of a moving car will change its origin with every firing
sequence. With 10Hz rotation and 60km/h vehicle speed, the
displacement will be more than 1.5m for a single scan. Thus,
the points sampled at the beginning of the scan cannot be
simply merged with points at the end of the scan without
compensating for the car movement.

The final challenge related to the logging setup is its
power requirements. With every additional reference sensor
and logging device, the entire system’s power requirements
increase as well. In passenger cars, as well as in light
commercial vehicles with 12V electrical installations, it is
quite easy to exceed the standard serial production alternator
capabilities because of the additional equipment. This means
the vehicle electric power generation and distribution system
might require major rework.

One solution to the problems mentioned in this chapter
is the shift towards Ethernet (1Gb/10Gb) universal loggers.
With special gateways, switches and multiple 10Gb Ethernet
ports in one logger, it is possible to cope with the
problem of logging huge amounts of data from so many
sources. Unfortunately, the problem of synchronization is
still not entirely solved by the Ethernet-based logging setup
(especially due to the variety of sensors). As such, it could
possibly be an interesting field for new standards definition
and normalization. It should be emphasized that standard
Ethernet is used for test vehicles in the signal logging
setup. In the serial production of vehicles, the BroadR-Reach
standard is used, which differs from Ethernet in its physical
layer [13].

F. SMART DATA LOGGING
The problem with enormous amount of data generated
during logging campaigns can be solved by an additional
system that would analyse the recorded data either in the
logging vehicle and/or in the data center [24], [74]. The
general idea is presented in Fig. 3. In the vehicle it requires

FIGURE 3. Intelligent logging concept.

additional computer or embedded device that is able to
analyze (preferably with Artificial Intelligence algorithms)
the content of the data that is recorded. It can either use
the original sensors mounted in the vehicle (from the system
that is developed) or additional sensor (e.g. lidar, camera,
radar etc.). Once the system knows what is in the logs it can
be used to delete (in the vehicle) the portion of logs which
does not contain new (e.g. 1h drive on an motorway with
only one vehicle in front) or not relevant (e.g. dark road)
sequences. The algorithm that is making the decision has to
take into consideration not to remove all the negative samples
(random negative logs can be stored) in order to preserve
the correct positive to negative logs ratio. In literature, this
approach is called event-based data collection [72]. The
vehicle is equipped with a detection system and before
data collection starts, a list of events that triggers storage
is defined. The list contains signals from many sources:
speed, yaw rate, acceleration, number of visible objects, class
of objects, interactions between objects, radar detections,
type of environment, weather conditions etc. Since some of
the events are computationally complex and data recording
triggered by a specific event needs to cover information a few
seconds before the event occurs (this problem is discussed in
the section about re-processing), the logging system needs
to be equipped with a cyclic buffer that is large and fast
enough to handle and store all sensor data without any frame
drops. Unfortunately, even in the case of perfect logging
equipment, it is impossible to eliminate entirely the risk of
missing important events not previously defined on the list of
events.

Online log analysis in the vehicle can save a lot of
logger disk space and lower the amount of data that needs
to be transferred to the data storage (for more details on
data storage see Section III-C). The same analysis can be
performed again in the data storage center. All the logs can
be analyzed with the Machine Learning (ML) algorithm to
extract the number of objects and other interesting metadata.
It can be used both to tag the recordings and to make a
decision if some logs can be removed.

III. DATA COLLECTION
It would seem that smart data logging solves the problem of
collecting and analyzing large amounts of data - unfortunately
not in all cases. One such case is re-simulation, described later
in this article. Introducing the re-simulation to the appropriate
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FIGURE 4. Estimated data size growth for various projects.

initial condition takes time, so practically speaking, the re-sim
must be fed with data at least several seconds before the event
appears. In the case of logs with a lot of events (and these
are the most interesting from an engineering point of view),
event-based logging turns into continuous logging. A data
collection campaign aims to collect data from representative
road scenarios. As the number of different road scenarios is
practically infinite, selecting a subset of those that can be
considered as representative is a really challenging task.

A. REAL WORLD USER PROFILE (RWUP) DATA
In current projects intended to develop system components
for series production, the data collection process is performed
in actual road traffic. This is called RWUP (Real-World User
Profile) scenarios [59]. At the initial stages of the project, this
involves a ride in so-called open-loop settings. In this case,
the system is installed in a car and its outputs are logged but
are not set on the actuators. Closed-loop tests are conducted
in a controlled environment on a dedicated test field area.
As the data has to be collected over a short time (usually a
few months), in the test campaign, a car fleet of a dozen up
to several dozens of cars is involved. Each car is driven by
a driver and a technician who monitors whether the logging
system works correctly. The cars collect the data in two or
three 8-hour shifts. Based on the amount of data generated
by one vehicle per day (16h of logging), which is presented in
Table 2, it is possible to estimate the numbers for the vehicle
fleet (the reasonable fleet size of 20 vehicles is assumed).
Within four months, the amount of generated data ranges
from a few (for radar-only projects) to hundreds of petabytes
(for more complex projects – Level 3 and above) which is
presented in Fig. 4.

B. VIRTUAL WORLD USER PROFILE (VWUP) DATA
Although increasingly more advanced tools are available
that allow the generation of virtual test scenarios [33], still
the ratio of using such data in the development process of
advanced safety and automated driving systems is small.
Car manufacturers still require having data collected from

FIGURE 5. Data logging setup in a vehicle trunk.

real test drives. The main reason for this might be the fact
that synthetic data does not allow the proper evaluation of
the performance of perception systems. The need to change,
however, is noticeable [31], [64].

C. DATA STORAGE
A cursory analysis of the requirements for data logging
and collection gives a picture of the complexity of data
handling [17]. Under an optimistic assumption to log all
sensor data with total bandwidth far above the data rate
on a single hard drive and to deliver and upload all data
(hundreds of thousands of kilometers of driving) to a data
center on time, the total size of collected data will be around
30PB (according to calculations shown on Fig. 4). As it is
difficult to imagine how much 30PB of data is, we can check
how many typical data carriers should be used to save the
required amount of data. If we use single-layer DVD discs
(capacity 4.7GB) to store RWUP, wewould need 6.6 millions
of them. If we use 2 TB hard disks, we would need about 15k
units. Another challenge is to transfer such a large amount
of data to a computing center (private storage or cloud).
Handling 15,000 hard drives, setting up a dedicated fiber
optic connection or using dedicated media for copying data
to a cloud is a huge and costly logistical challenge.

D. TRUNK VOLUME
Test cars drive in many countries, on several continents and
collect data. Due to the high data rate from the logger,
the physical dimensions of the vehicle become a challenge.
It turns out that, especially on longer routes, the size of the
trunk is of great importance (see Fig. 5). Storage, plus a
logger, plus two drivers can easily exceed the permissible
load value. Badweight distribution can seriously affect sensor
calibration and an overloaded vehicle has different motion
physics, which can make the logged data worthless. It is also
necessary to find a smart way to unload a car from recorded
data: copy to a cloud, data truck etc. [73].

E. DATA AVAILABILITY
Another important factor is the time that passes fromwhen the
test is performed until the data is ready for analysis. The driver
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of the vehicle does not have the time and competence to verify
that a recording is correct (correct scenario, exhaustive set of
signals, correct calibration of sensors etc.). It should be noted
that a single missing signal may necessitate the repetition of
the entire data collection. In order to avoid situations like this,
some preventive measures should be implemented, such as:

• Artificial Intelligence based real-time anomaly detection
in a logger (to avoid missing signals) [18];

• on-the-fly analysis of metadata (to maintain planned
RWUP distribution);

• possibility of uploading 1% of logs to a data center on
the same day they are recorded (for manual analysis of
the recording by an experienced engineer) [49].

F. SAFETY BACKUP
As the car fleet is driving worldwide, an average driving time
for each car may be 16h per day. In the remaining 8h, all data
from the car should be copied and sent to a data center. This
means that the copy rate must be at least twice as fast as the
recording rate [9]. In order to minimize the risk of data loss,
two copies of the data should be made. This again doubles the
expected copy data rate.

G. DATA EXCHANGE MEDIUM
Reading and copying data from the vehicle in order to
release the vehicle’s buffer and enable the continuation of
data logging, requires the use of appropriate data carriers.
Remembering that the data destination is the Data Center,
an appropriate data exchange medium needs to be used [3],
[12]. Direct upload to a cloud is not an option due to limited
bandwidth and lack of network in the vehicle. Dedicated data
exchange boxes can be used obtained from Cloud providers,
as well as regular hard disk drives (HDD) but:

• they should be fast enough to copy all data in less than
8h;

• they should be large enough to accommodate all data;
• they should be delivered every day to different destina-
tions and picked up after 8h;

• there should be enough of them to cover a fleet of
20 vehicles.

Here is a rough estimation: 2 boxes per vehicle every day,
1 day to deliver boxes to the data hub, 1 day for copy, 1 day
to deliver empty boxes, at least 8 storage boxes per car (160
boxes for a 20-car fleet). On top of this, we should also make
provisions for a backup copy (which simply doubles storage
needs).

H. DATA MANAGEMENT SYSTEM
The correct logging of data, synchronization and delivery to
a data center does not guarantee their optimal use. As the
fleet of cars are driving worldwide, hundreds of petabytes of
recorded data are received daily and are delivered safely and
reliably to our data center. In order to ensure the continuity
of the flow of data boxes, we must be sure that every day we
upload everything and empty the source carrier. This is not a
trivial task. In order to upload 1PB of data (250HDDs of 4TB

each) weekly, we need to copy the data in parallel (the copy
of a single 4 TB drive lasts over 10h). Proper data indexing is
a critical issue, as reviewing the collected data repeatedly is
completely unjustified economically. To that effect, we need
to use a Data Management System (DMS) [23], [46].
DMS consists of stored data and corresponding metadata
with information about speed, yaw rate, country of origin,
license plate of vehicle etc. DMS should be able to add
further metadata at a later time. A very valuable source of
metadata, available later in the project, can be the output
data from the re-simulation. This data contains information
about detections (pedestrians, vehicles), as well as weather
conditions and road profile estimations. Due to the amount
of collected data and limitations of local area network
bandwidth, it is not possible to work with raw data. Raw data
is necessary for resimulation (see Section V for more details)
but, especially for manual analysis, it is more convenient to
work with data extract. The development team needs to work
withmetadata plus extracted and compressed streams that can
be queried according to that metadata.

I. DATA RETENTION
Another significant challenge is data retention. From a data
perspective, the project consists of the following phases:
sensors and logger development, data collection, software
and hardware development of processing unit, start of series
production and maintenance of the product. By default,
data should be available for analysis for a period of ten
years from the end of production. This means that the total
duration of data storage can be up to 15 years. There are
two basic ways to store data: Hot Storage, where the data
is immediately available, and Cold Storage, where the data
is stored externally, usually on magnetic tapes, and one
must wait several days for it to be copied back to the
hot storage [35]. The cost of storing petabytes of data for
such a long period of time on Hot Storage (high-speed and
high-bandwidth file system) is significant. Therefore, it is
necessary to consider storing the data externally on magnetic
tapes (Cold Storage). In the data collection phase, around
20% of total space required to store RWUP data is needed to
be onHot Storage (for all newfiles, which automatically, after
a few weeks, go to Cold Storage) and 80% on Cold Storage.
In the system development phase, 100% of storage is required
to be on Hot Storage. When series production starts, all data
can be moved to Cold Storage and, in addition, 20% of Hot
Storage should be available for the maintenance phase.

J. DATA PRIVACY
Another challenge with data storage and handling is related
to data privacy acts, which have been established around
the globe (see also [61]). In Europe, GDPR (General Data
Protection Regulation) [6] is in effect; China proposed
PDPL (Personal Data Protection Law) [5] and in California,
USA there is CCPA (California Consumer Privacy Act) [4].
Unfortunately, data collected by autonomous vehicles (i.e.
cameras) contains personal identification data (license plates,
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faces etc.), which requires special handling. Due to the fact
that a single project requires data collection inmany countries
with different data privacy regulations, it makes it extremely
hard for the project team and function owners to be able
to access and reprocess data in a single location. There
are approaches with video anonymization (blurring sensitive
areas like in popular navigation applications) but this heavily
impacts the results of video reprocessing.

K. ACCESSING DATA
With petabytes of data in local data centers or remote cloud
storage, one of the biggest issues is to ensure that the project
team will be able to use data efficiently. There are several
activities that require data access: labeling, log re-simulation,
algorithm development, data analysis and functional analysis.
This means that the data needs to be accessed on a daily basis
(not entire datasets though) by more than one hundred people
in different geographical locations, as well as HPCC (most
of the dataset) in one or several locations. Unfortunately,
the truth is that there is no network that could withstand
working with raw logs on a daily basis. One of the solutions
to this problem is for engineering teams to work with
compressed logs (rather than raw logs), whenever possible
(for example for labeling and data analysis), and ensure a
high bandwidth link between the data center and HPCC (re-
simulation requires raw uncompressed logs). With so much
data, it becomes crucial to pick the logs which are most
interesting and contain objects and situations from as many
perception modules as possible [60]. This approach allows
to label and re-simulate a smaller number of logs but test all
required functions and modules at the same time.

L. DATA DISTRIBUTION SPECIFICATION
Datasets that are used in the automotive field are specific
in terms of their size, properties and diversity [38]. The
description of the datasets should take the form of metadata
characterizing scenes and scenarios. The metadata should
reflect not only static but also dynamic aspects in the recorded
video sequences. The data collection process is carried out
in the majority of the countries where car manufacturers
intend to sell their cars. A graphical illustration of the
data collection campaign can be found in Fig. 6. Table 3
illustrates an example of data collection specification for
validation of an acceptable false alarm rate in Automatic
Emergency Braking (AEB) system according to the Safety
of the intended functionality norm [56]. Although this
specification contains a set of quantified parameters, it is
not clear how the recommended distribution of the values
of these parameters can guarantee the unambiguous and
comprehensive description of the dataset.

M. GRID BASED CONCEPT FOR DATA COLLECTION
SPECIFICATION
A possible approach for the formal description of the
automotive datasets is based on the grid concept [42].

FIGURE 6. Illustration of country distribution in data collection campaign.
Areas marked in blue represent the primary scope (around 80%) of test
drives and those marked in dark blue the secondary scope (around 20%),
which have been calculated based on new car sales in 2019 [1].

TABLE 3. Example of data collection specification (2019 – ISO/PAS
21448:2019 Road vehicles – Safety of the intended functionality).

According to this concept, the sensor’s field of view is
represented by a 2D or 3D grid, whose size can be set based
on the sensor accuracy (see Fig. 7). As a first step, a set of the
measurable properties characterizing the scene (or scenario),
which are important from a developed function perspective,
should be identified. Then, every property can be considered
as a random variable, which is defined on a space containing
grid elements. In addition, a probability distribution function
should be assigned to every random variable. The distribution
function gives the cumulative probability of the occurrence of
a specific event on the grid elements. During data collection,
the histogram or heatmap of occupied grid cells by recorded
sequences can be compared with the expected distribution
in order to verify the representativeness of the dataset.
Illustrating this concept, the heatmap of grid occupancy
by tracks provided by a 360-degree surround radar-based
perception has been calculated and is shown in Fig. 8 [42].
The presented grid approach falls into the category of

scenario-based approaches [52] where certain situations
experienced while driving are assigned to the list of
predefined scenarios [22], [70]. The scenarios may represent
maneuvers of the objects on the scene and interactions
between them [69], [71]. However, the grid approach does

VOLUME 11, 2023 32067



M. Komorkiewicz et al.: Intelligent Data Handling in Current and Next-Generation Automated Vehicle Development

FIGURE 7. A sensor’s field of view is represented by a 2D grid. Object
tracks are selected as the property characterizing the scenarios. The
picture presents grid occupancy by one track.

FIGURE 8. Heatmap representing grid occupancy by tracks in a radar
system with 360-degree field of view. The size of a grid element is
1m × 1m.

not require a catalog of the scenarios and by adding to
the grid an additional dimension representing the speed,
the dynamics of the scenario can be included to this
concept. Another application of the scenario-based approach
is described in [24] where predefined events of interest
represent anomalies in video data. As the scenarios are
characterised by some parameters, so a set of the performance
indices calculated per scenario can be also used to evaluate
the collected data [23].

IV. DATA LABELING (ANNOTATION)
Manual labeling is a very important yet tedious task, which
requires a special approach. This can range from simple
2D bounding box drawing on camera images and 3D
bounding box marking on lidar point clouds to multi-point
line marking, image segment annotation [67] and full-point
cloud segmentation labeling [75]. Drawing a 2D bounding
box rectangle around objects like cars or pedestrians on
camera images might seem well defined. There are, however,
situations when it is hard to decide, even for an algorithm
developer, if and how the object should be marked. For
example, if a vehicle or pedestrian is 20% occluded by
another vehicle, should it be marked only in a visible area or
as a whole object? It is not obvious how to annotate vehicles
with a roof rack, a pedestrian with headgear or one whose
torso or legs are only visible.

Each task requires different effort, which is usually
expressed in time of labeling per one second of recorded data.
Of course, this might vary from frame to frame (e.g. different
number of objects on the motorway versus in the city) but
it can be somehow averaged over a long labeling campaign.

Even if marking a 2D bounding box in a camera image takes
1 second (choose object class, double-click over object etc.)
and on average there are 30 objects on a scene (vehicles,
traffic signs, pedestrians), 30 seconds are needed to label one
image frame.With 30 fps cameras, this results in 900 seconds
of labeling for 1 second of recorded data, which is 15minutes.
With a recording fleet of 20 cars, recording for 16h per day
for 1 month (20C-16C-30C-3600), it can be computed that
labeling all data would take 8.6million hours, which is almost
1000 years!

The above result brings into question the issue of labeling
scalability. It is very hard for a human to focus on such a
task for more than a few hours. Due to human exhaustion
and carelessness, manual labeling is plagued with errors [30].
This is why labeling needs to be distributed between hundreds
of labelers. Another challenge is the verification of labeling
work, which also requires manpower. Finally, the more
labelers are working on one project, the bigger the number of
data annotation differences and errors that will be introduced
to the dataset. In general, it is not so simple to scale the
labeling effort and keep the quality of reference data on a par.

A lot of effort nowadays is put into preparing Artificial
Intelligence (AI) based auto-labeling algorithms, which
can either replace or augment the manual labeling effort
[21], [53]. This is important because even a small reduction
in the time required to label one second of logged data results
in huge savings in project time and money. The problem
with this approach, however, is that it is hard to use AI
to train another AI and expect that the trained algorithm
will be better than the teacher. Of course, some techniques
can be used to improve the auto-labeling results (e.g. log
forward/backward pass) [36] but, in general, the expectation
of vehicle manufacturers is that every auto-labeled frame
needs to be verified and corrected by a human labeler. The
final question is whether applying corrections makes labeling
faster than labeling from scratch.

Instead of labeling the entire log, one can only mark
the most interesting parts based on detected events. Event-
based labeling consists in saving the state of the sensors and
their detections from the moment of the event occurrence
for a specified time forward, to the memory, only in case
one of the defined sequences of events has occurred. This
approach significantly reduces the workload, but it should be
remembered that the event does not come out of nowhere and,
in a way, it requires prior labeling. In addition, resimulation,
Software in the Loop (SiL) or Hardware in the Loop
(HiL) [16] require entering the initial state (or rather close
to the initial state, as it is not possible to modify the values
of local variables in the tested device), which means that a
sufficient amount of data (frames) should be injected into the
device before the event; labels assigned prior to this event
cannot be used to count Key Performance Indicators (KPIs).

V. DATA USAGE—RESIMULATION
Vehicular systems that process data captured by the vehicle’s
sensors (radar, camera, lidar, ultrasonic) and provide signals
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FIGURE 9. Data reprocessing strategies in ReSim and XiL (MiL, SiL, PiL,
HiL, ViL) modes for XuT (Model under Test, Software under Test, Device
under Test, Vehicle under Test).

to drive the vehicle, are very complex. They utilize multiple
different algorithms and neural networks, and implement a
variety of perception and planning modules (e.g. Traffic Sign
Recognition, Lane Detection, Path Planning etc.). The effort
needed to test such a complex system is significant. Assuming
that the design team provides new software releases every
two weeks, the entire testing procedure should be completed
between two consecutive project sprints. Tests should cover
the full distribution of the expected road scenarios and
weather conditions, in which the final product is going to
operate. This corresponds to hundreds of thousands of km
of distance that should be covered between the releases.
In order to reduce the need for repetition of test drives for
each software release, a common approach is to record data
only once and reuse it later virtually. The technique to use
RWUP for incoming software releases is called re-simulation
(ReSim) [59].

RWUP data is injected to ReSim (see Fig. 9), and ReSim
acts as a model of recently released software. After closing
the testing loop (by virtual scenario or human interaction),
ReSim can be performed on different abstraction levels:
MiL (Model in the Loop), SiL (Software in the Loop), PiL
(Processor in the Loop), HiL (Hardware in the Loop) and ViL
(Vehicle in the Loop). In general, the lower the description
level, the higher computation effort is needed to process the
same distance. HiL and ViL need to process in real time,
while MiL, SiL and PiL do not. Due to this, MiL, SiL and PiL
are easy to scale, with relatively low cost, on HPCC. Please
note that the overall test procedure consists of a combination
of the above-mentioned abstraction levels. Some features
have to be tested in HiL and the vehicle (with the highest cost
and lowest scalability) but the majority may be covered by
MiL, SiL and PiL.

It is worth mentioning that RWUP is only used for open
loop ReSim. Therefore, with this data we can only compare
detections between a real vehicle and a software model.
In order to analyze the impact of detections on the behavior
of a vehicle, we need to close the simulation loop. To that
effect, we need to replace RWUP with a virtually created
environment that has the ability of beingmodified in response
to the vehicle’s behavior.

Nowadays, most of the testing tasks related to the veri-
fication of advanced safety and automated driving systems,
is executed with SiL and HiL [19]. SiL integrates third-
party libraries and takes control of feeding themwith relevant
data (RWUP or virtual environment). The SiL binary is
encapsulated into containers (Docker or Singularity). Many
containers may be initiated in parallel on HPCC to re-
simulate separate logs. This feature makes it possible to re-
simulate thousands of kilometers in reasonable time. Unfor-
tunately, target software needs to be exported to SiL libraries
and what causes that behavior of SiL is slightly different
than the behavior of HiL and ViL – not all HW features
are used or properly modeled in SiL libraries. Moreover, the
development of the SiL environment is permanently delayed
to the target software release, as additional time to create
libraries and integration, plus testing are needed.

SoC (System on Chip) is much bigger and much more
complex than processors of HPCC [14]. As a result, SiL
for recent SoC is significantly slower than real time. In the
near future, this difference will become large enough that
using SiL will become pointless. HiL uses final hardware
flashed with the recent software version. This solution is the
most accurate and closest to the behavior of the vehicle. HiL,
by default, works in real time, which is its big advantage,
since it is as close as possible to a real vehicle. Since HiL
works in real time, input data has to be delivered continuously
without any delays or interruptions. This is a big challenge for
scalability because of storage bandwidth where RWUP data
is kept. HiL is also much more expensive than SiL. A single
HiL devicemay cost a few hundred thousands of dollars. Both
SiL and HiL are created for certain projects and their re-use
of hardware/software for other projects is strongly limited.
In summary, SiL is a good approach to simulate large amounts
of data in reasonable time but in the next few years it will
become obsolete due to the complexity difference between
HPCC processors and dedicated SoC. HiL is more akin to
the real world but is very expensive, and the scalability of
HiL devices is limited by storage bandwidth and the virtual
environment. Both SiL and HiL are designed for certain
projects, so their re-use is not possible.

VI. DATA EVALUATION
The ability to verify the performance of the ADAS or
Autonomous Driving (AD) system under development is
crucial from both the development team and vehicle
manufacturer perspectives. This is why, in every project,
evaluation metrics called Key Performance Indicators (KPIs)
are defined [55].

Although it might seem that it should be rather straightfor-
ward to use mathematical formulas and statistics to compute
KPIs and obtain information about system performance, the
reality is much more complex.

First of all, in order to compute KPIs the ground truth must
be available. This, in most cases, requires the manual labeling
of reference sensor data. In real projects, only a small fraction
of recorded data is used for evaluation. It will simply take too
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long to label all data, and without proper labeling the metrics
cannot be computed.

This generates a problem of how to choose the right
subset for labeling. It turns out that selecting data by random
sampling is not the best solution. This is because when a
logging campaign is planned and executed, the differentiation
in scenarios is made purely based on kilometers of recording
with a given set of parameters, such as road type, weather,
lighting conditions etc. Thus, with random sampling, the
system will be verified against the most common road
conditions (few cars on the motorway / traffic jam in
a city etc.) but not against the most problematic corner
cases.

As it was mentioned in Section IV even manual labeling
is not ideal. The most commonly used evaluation metrics are
based on intersection over union (IOU) of 2D or 3D bounding
boxes (marking objects) [39]. The labelling inaccuracy (e.g.
one or two pixel bounding box position shift) affect the
bounding box size and the final IOU value.

It is also worth mentioning that well-established academic
techniques for measuring the accuracy of objects detection
and tracking (e.g. [15]) are in fact evaluating only the
statistical performance of perception ADAS/AD system [51].
They still do not answer the question of whether the system
will be able to use this knowledge to react properly (e.g.
perform emergency braking). This is because the statistics
does not take into consideration that missing an object in front
of the vehicle in 1% of cases can be deadly, whereasmissing it
10% of cases on the rear does not really affect vehicle safety.

Thus, the evaluation should be done not only on the sensor
perception level but also on the system level. For example,
authorities in California, USA require the reporting of AD
systems’ disengagement per miles driven to be prepared for
all AD cars tested in the state [7].

But the more KPI metrics are introduced, the harder it
is to use them to define the final system performance and
to use it to compare different software/hardware releases.
Usually, one checklist is prepared with pass/fail results for
all KPIs (with an acceptance threshold set by the customer).
If every point has a pass status, this is binary information
indicating that everything is fine. Unfortunately, during
product development that is not true. In such a case, it is not
so simple to decide whether a new update is beneficial when
it improves one metric but exacerbates another.

Some of these problems are addressed by the new Safety
of the Intended Functionality standard (ISO/PAS 21448:2019
Road vehicles – Safety of the intended functionality) [26].
SOTIF proposes how to define a risk and validation strategy
in order to evaluate end function safety. It proposes to split
scenarios into four different categories: known safe, known
unsafe, unknown unsafe, unknown safe. The goal of the
project development team is to reduce the number of unsafe
scenarios at the end of the project, as well as to define a
statistical approach to ensure that the number of unknown
unsafe scenarios is acceptably low compared to the known
safe and unsafe scenarios.

VII. CONCLUSION
The finding of this study suggested multiple challenges
in data processing research area that are needed to be
solved for automated vehicles intended for series production.
The development and verification of such complex systems
require large datasets, where properties such as volume,
velocity, variety, variability and veracity can be formally
defined. Formal description of the datasets shall include
qualitative and quantitative measures characterizing both
static and dynamics aspects of the recorded test scenarios.
Having such measures, the completeness and adequacy of the
datasets can be evaluated.

Data is the only way to prove the acceptable level of
safety, reliability, robustness, performance, security and other
system properties required for the vehicles. The exponential
growth of raw data generated by the sensors’ suite dictates
that only representative test scenarios may be collected in
an already pre-processed format. In this context, event based
(or selective) data recording seems to be more appropriate
comparing to continuous data logging. The research activities
should be then focused on intelligent data loggers. Improved
lossless data or video codecs can also result in less data to
be stored. In addition, as the data collection campaign is an
extremely time-consuming task in the system development
process, the use of data from one project in others should be
a common practice.

Data annotation using automatic tools is absolutely
necessary. However, the quality of such tools must be
comparable to the manual annotation performed by human-
experts. Moreover, annotation of single scans without taking
into account preceding and following scans will not give
full picture on what is happening on the scene. Thus the
process should evaluate towards video classification and
characterization.

The ratio of using VWUP versus RWUPmust be increased
and it should not be set arbitrarily but should follow on from
the distribution of a set of properties in the dataset. In order
to increase usage of the virtual simulation data, good models
of the sensors should be developed. This can be considered
as the key element missing in the race for automated
driving.

The last but not least issue is that the whole development
and verification process of the automotive control system
relies on supervised approaches. Consequently, huge effort is
required to get sufficient amount of ground truth information
(reference data). Therefore, the application of self-supervised
or unsupervised techniques could revolutionize the way how
the automated vehicle are designed and verified.
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