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ABSTRACT The interest in performing scientific computations using commercially available cloud
computing resources has grown rapidly in the last decade. However, scheduling multiple workflows in cloud
computing is challenging due to its non-functional constraints and multi-dimensional resource requirements.
Scheduling algorithms proposed in literature use search-based approaches which often result in very high
computational overhead and long execution time. In this paper, a Deadline-Constrained Cost Minimisation
(DCCM) algorithm is proposed for resource scheduling in cloud computing. In the proposed scheme,
tasks were grouped based on their scheduling deadline constraints and data dependencies. Compared to
other approaches, DCCM focuses on meeting the user-defined deadline by sub-dividing tasks into different
levels based on their priorities. Simulation results showed that DCCM achieved higher success rates when
compared to the state-of-the-art approaches.

INDEX TERMS Cloud computing, deadline constraints, resource scheduling, scientific workflow,
optimisation.

I. INTRODUCTION
Over last decade, there has been a large body of studies
on scheduling problems in scientific workflows. This is
due to the increase in the execution of scientific workflows
in cloud computing platforms. Although this trend is
advantageous, it is difficult for users to select resource
configurations that are suitable for their applications [1], [2].
The focus on traditional workflow scheduling is at min-
imising the execution time of the workflow, using cluster,
list and duplicate scheduling techniques as described in [3]
and [4]. Recent surveys [5], [6] have shown that two
main categories of workflow scheduling (budget-constrained
and deadline-constrained) have been used frequently for
resource scheduling in cloud computing in addition to
multi-objective workflow scheduling. Budget-constrained
scheduling strategies focus on the reduction in the time of
execution of workflows while deadline-constrained strategies

The associate editor coordinating the review of this manuscript and
approving it for publication was Fan-Hsun Tseng.

focused on the optimisation of the scheduling cost of the
workflow [6], [7].

One of the main benefits of cloud computing is its
scalability when applied to distributed systems. However,
this often results in optimisation problems that are complex,
in particular for tasks that are inter-dependent. One such
problem is how to minimise cost. When cost and execution
time are taken into consideration at the same time, the
problem of optimising cost can be solved [8], [9], [10],
[11], [12], [13]. This approach is very attractive as it can
efficiently provide cost reductions for deadline-sensitive
applications, as well as others such as disaster recovery,
weather forecasting etc. However, a major drawback in
this approach is the inconsistency in system requirements
such as the acquisition delay which is the time taken for
initialisation of a leased virtual machine [8], [9], instance
heterogeneity [5], or the varying levels of performance in
cloud systems [14], [15].

Complex systems like future networks rely increasingly on
distributed intelligence for their management and as network
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functions are increasingly pushed towards the network edge,
cloud scheduling and management solutions are necessary.
We propose a dynamic resource scheduling strategy for cloud
computing. To reduce processing cost, identical tasks were
grouped together based on their priorities and constraints.
This was done to reduce overheads from queuing, then
the deadline of the entire workflow was sub-distributed
across multiple groups of tasks. We implemented a resource
scheduling strategy for Virtual Machines (VMs) that were
dynamic and scalable. Extensive simulations were carried
out to evaluate the performance of the proposed scheme.
The simulation results showed that our proposed algorithm
performs better than other existing task scheduling algorithms
in terms of success rate at meeting the deadline and mean
load.

The rest of the paper is organised as follows. We reviewed
related work in Section II and presented the system model
in Section III. The proposed algorithm is presented in
Section IV and compared with existing schemes using
scientific workflows in Section V. The paper was concluded
in Section VI where future work was also discussed.

II. RELATED WORK
The problem of scheduling scientific workflows has been
well studied in the literature. Several strategies have been
proposed for effective resource provisioning and scheduling
of scientific workflows [16]. These algorithms are based on
heuristics, meta-heuristics and search-based techniques [10].
Generally, resource scheduling algorithms focus on the
reduction in execution time of workflows with two main fac-
tors in consideration, monetary cost and deadline. Resource
allocation in cloud computing comprises of two phases,
resource provisioning and scheduling. Resource provisioning
is responsible for the determination of resources required
for the execution of workflows. Resource scheduling pays
attention to the scheduling, placement and execution of tasks.
Although most scheduling algorithms in cloud computing
systems propose resource provisioning and scheduling algo-
rithms for cloud computing systems. Prior research shows
that much attention has been paid to resource scheduling
strategies [17], [18].

One of the widely used approaches in resource scheduling
is Particle Swarm Optimisation (PSO) which was introduced
by the authors in [19]. PSO is a self-adaptive optimisation
technique that relies on a particles’ social behaviour to solve
task allocation and resource scheduling problems [2]. In [20],
the authors proposed a resource scheduling strategy based on
PSO. The proposed algorithm was aimed at reducing the cost
of a single workflow execution and load balancing of task
based on available resources. In [21], authors proposed Dead-
line Constrained Level Based (DCLB)which uses Level Load
Balancing to refine deadline distribution as well as attaining
lower communication cost. Wu et al. [22] also proposed a
PSO algorithm to minimise cost and execution time, whilst
considering budget and deadline constraints. The proposed
algorithm focused on continuous optimisation problems
that have no prior information. Rodriguez and Buyya [10]

propose a static PSO algorithm for resource scheduling
in complex scientific workflows. They introduced several
characteristics of cloud services including heterogeneity of
virtual machines, lease time interval, pricing model, and
acquisition delay. Their algorithm effectively reduced the
execution cost and met the deadline defined by the user using
a global optimisation technique. One major disadvantage
common to the highlighted PSO algorithmwas their ability to
manage heterogeneous resources. However, these algorithms
are not suitable for deployment in Infrastructure as a Service
(IaaS) as they do not consider the order of execution of task
and the number and type of resources to be leased. The static
PSO in [10] assigned tasks to instances randomly, thereby
neglecting the characteristics and structure of the workflow.

In [8], the authors developed an IaaS Cloud Partial Critical
Paths (IC-PCP) for the IaaSmodel. IC-PCP scheduled all task
to the same VM instance which must be the cheapest instance
that must meet the deadline given by the user. In IC-PCP, the
critical path or set of tasks that is related to the exit node
must first be found, then scheduled on the same VM. IC-
PCP does not add additional overhead to the critical paths.
However, the algorithm does not consider the boot time of
VMs. Such shortcomings were identified by Calheiros and
Buyya [23] who extended the algorithm Enhanced IC-PCP
Algorithm with Replication (EIPR), by replicating task using
idle instances and surplus in budgets. These enhancements
show the possibility of meeting user defined deadlines by
an increase in the replication of tasks. Such replicated
computation resulted in a very high computational overhead.
Although EIPR showed promising results in the mitigation of
variable performance effects by the exploitation of the billing
schemes and cloud elasticity. Is performance is low when the
task execution time is near the billing period.

A. BUDGET-CONSTRAINED SCHEDULING ALGORITHM
In this section, we discussed the resource scheduling tech-
niques proposed for scientific workflows in cloud computing.
In [24], a budget constrained algorithm was proposed to deal
with optimisation in workflow scheduling. In this approach,
the total budget as defined by the user was proportionally
distributed to each task based on the average time of execu-
tion. Arabnejad and Barbosa [9] introduced the concept of
worthiness as an attribute in scientific workflow applications.
In this approach, worthiness was used for resource selection
and were determined based on cost and time of execution.
Wu et al. [25] propose a budget-constrained algorithm
PCB-B2. This approach used a binary search method to
execute its budget distribution. In [26], the authors proposed
a task swapping strategy for scientific workflows. In this
approach, tasks with smaller execution time were executed
before others, which lowered the optimisation cost. In [21],
the authors proposed a level based (DCLB) scheduling
algorithm for cloud computing. DCLB is aimed at reducing
the makespan of a workflow while meeting the user-defined
deadline at the same time. The authors divided the workflow
into logical levels using parallelism strategy while achieving
load balancing at the same time. However, the context of
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the logical level partitioning is not really clear and the task
completion of the parent task is a prerequisite to the initiation
of the child task. In [27], the authors proposed an algorithm
for scheduling scientific workflows based on deadline
distribution factor. The proposed algorithm (Just-in-time JIT-
C) was developed to mitigate performance issues in VMs.
This algorithm focused on three main objectives including;
the variation in the performance of VMs, heterogeneity in
cloud systems and resource acquisition delay. Although, the
authors [27] claimed that this method was very effective for
deadline, it was computationally expensive to the generate
schedules when the deadline factor is low. Hadiri et al., [28],
highlighted acquisition delay as a significant barrier in
workflow scheduling. To optimise the total execution time
required to complete a workflow task, they suggested a cost-
effective technique (CEDA) for minimising task execution
time while meeting deadlines. CEDA, on the other hand,
is not ideal for large workflows.

Topcuoglu et al. [3] propose some of the earliest resource
scheduling algorithms for heterogeneous computing. Their
two algorithms aimed at achieving fast scheduling time
and high performance simultaneously. Heterogeneous Ear-
liest Finish Time (HEFT) and Critical-Path-On-a-Processor
(CPOP) are the two algorithms proposed by these authors.
HEFT focuses on minimising the earliest finish time with
a novel strategy called incentive-based task. On the other
hand, CPOP pays attention to the prioritisation of tasks based
on upward and downward ranks. One major disadvantage
of HEFT is that load balancing is not considered and
workflows are scheduled one at a time. In [29], the authors
proposed a budget-aware algorithm (BDAS) for resource
scheduling in heterogeneous e-scientific workflows. The
study showed that high attention has been paid to optimisation
in scientific workflows, with particular focus on time and
cost constraints. BDAS approach tries to satisfy deadline
and budget constraints by the introduction of heterogeneous
instances on cost and time. Budget and Deadline HEFT
(BDHEFT) was proposed by Verma and Kaushal [30].
BDHEFT is another extension of HEFT with emphasis on
budget and deadline. The BDHEFT algorithm used a ranking
mechanism for the identification of tasks, which is done
in descending order. BDHEFT has shown promising results
with reduction in makespan and execution cost of workflows.
However, BDHEFT’s dependence on prior information limits
its static global point of view.

In this paper, we look at the grouping of tasks based on
their related dependencies such as control data and user data
to reduce computation overhead. We developed a deadline-
constrained algorithm to minimise cost and meet the user
defined deadlines. The system model is presented in the next
section, followed by the algorithm description.

III. SYSTEM MODEL
In this section, we describe the system and cloud models
used in this paper. As described in [31], workflow models
are generally represented by directed acyclic graphs (DAG).
We define the abstraction of the workflow as W = (T ,E)

FIGURE 1. A Sample Workflow with 9 Tasks.

TABLE 1. Notation Description.

where T represents a set of tasks {t1, t2, . . . ., tn} and E
represents the task dependencies ei,j ∈ E . As shown in
Fig. 1, the directed arc between the two tasks ti and tj where
ti, tj ∈ T . This implies that tj starts when the execution of ti
is completed and ti is the parent task of tj. In Fig. 1, a sample
workflow is presented where each node represents a task. The
arcs denote the time (seconds) period during which data is
transferred between tasks.

A. CLOUD MODEL
This paper considers cloud service providers with different
capabilities. The instance type consist of compute resources
including CPU, bandwidth, and storage. The cloud services
are represented by C = {c1, c2, . . . ., cn} where cn represents
the number of instances. The total processing time of a
workflow which is the task completion time is referred to as
the makespan (MS). This is the time elapsed from execution
of the entry task tentry to the exit of the last task texit .
These are tasks without predecessors and successors. For
scientific workflows, a task is ready to be executed when the
predecessor tasks have been successfully executed. The task
completion time is represented in Eqn.6. Task completion
time is a measure of the time it takes to complete or perform
a task (from start to finish).
Definition 1: Data transfer time is the time taken to

transfer data between endpoints. The data transfer time DTij
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is represented in Eqn. 1:

DTij =
Mti

βVM
(1)

where Mti is the data size of ti and βVM is the available
bandwidth of the VM .
Definition 2: The estimated time of computation is the

overall time it takes to compute the end-to-end task.
The estimated time for computation (ETC) for task ti is

computed as shown in Eqn. 2:

ETCti =
Sti

ρ(1− PvVM )
(2)

where St1 represents the size of the task ti, ρ represents the
VM ’s processing capacity and PvVM represents the variation
in performance of the VM such as CPU, memory and network
degradation in real cloud environments.
Definition 3: Execution time of task is the time used by

the system to execute the task, including run-time. Execution
Time of task ti is computed as shown in Eqn. 3

ETti = ETCti + max
ti∈pred(ti)

DTij + δ (3)

where δ represents the provisioning delay in the allocation of
VM as a result of time zone differences, OS, VM migration
delay, software setup, location of the data centre and many
other factors.
Definition 4: Earliest start time is the earliest time in the

schedule at which a task can begin. Earliest Start Time (EST)
is the time for task ti to be executed on the VM. This is
computed as shown in Eqn. 4

ESTti = AvailVMDTij + ETti (4)
Definition 5: Earliest finish time represents the earliest

time a task can possibly finish, if all predecessors and
successors also finish on their respective early finish time.
The earliest finish time (EFT) is computed as shown
in Eqn. 5

EFTti = ETCti + max
ti∈predtj

(DTij + ESDp) (5)

where ESDp is the estimated sub-deadline for predecessor tj.
Definition 6: Finish time of the last task ti represents the

completion time of the last task. The finish time (FTti ) is
computed as shown in Eqn. 6

FTti = ETti + ESTti (6)
Definition 7: Task completion time is ameasure of the time

it takes to complete or perform a task (from start to finish) as
shown in Eqn. 7.

TCms = TFtcom (7)
where TFtcom is the completion time of the last task.
Definition 8: We assume that the each cloud provider

c1 has compute resources with X dimension (memory, CPU,
or network) and the Mean Load is computed as shown in
Eqn. 8

MLc1ti = (
cm1(ti)
cm1
+
cB1(ti)
cB1

)/X (8)

where MLc1ti represents the mean load of ti on c1, cm1(ti) and
cB1(ti) represent the used memory and bandwidth by ti on c1.

IV. PROPOSED ALGORITHM
The main objective of the proposed algorithm is to minimise
cost while meeting budget and deadline constraints. The
proposed scheme is made up of three main phases which
include, partitioning of the workflow, deadline distribution,
selection of task and resource scheduling algorithm.

A. PARTITIONING OF WORKFLOW
In workflow partitioning, the main aim is to prioritise and
group tasks on the same level with similar functionalities
and dependencies. First, tasks are prioritised based on
dependencies. For task ti, we assign a priority based on the [3]
upward rank UR as proposed in in Eqn. 9

URti = ETCti + max
ti∈predtj

DTij + URtj (9)

we consider this approach very effective because it computes
the length of the critical path from the entry task to the
exit task by using a ranking process where the ranks are
computed recursively by traversing the DAG to the entry
node. We compute the degree of dependency in Eqn. 10

Lti =
∑

ti∈predtj

E iti +
∑

ti∈predtj

Eoti (10)

where
∑

ti∈predtj E
i
ti and

∑
ti∈predtj E

i
ti represent the internal

and external edges as shown in fig. 1. These tasks are grouped
based on similar functionalities. Each group of tasks consist
of single or multiple tasks.

B. TASK SELECTION
In the proposed scheme, tasks are held in the execution
queue until their predecessors are executed. For tasks grouped
together, their execution can be carried out simultaneously.
Before this was done, we considered the deadline distribution
of tasks which ensured that global deadline of tasks was
achieved by distributing deadline among different levels.
As described in Eqn 1, the data transfer timeDTij is computed
using available VM instances. To guarantee that the overall
deadline wasmet, sub-level deadline which is the deadline for
each sub task was implemented. We first find the available
time AT which is the elapsed time between the workflow’s
deadline and the estimated makespan. The available time AT
is computed as shown in Eqn. 11.

ATW = DW − TCms (11)

where DW is the deadline of the workflow and TCms
represents the makespan. To meet with the overall deadline,
we also compute the available time for group level task ATGL
in Eqn. 12.

ATGL =
ETCGL

tn

ETCW
tn

× ATW (12)

whereETCGL
tn represents all the task at group level andETCW

tn
represents all the task in the workflow. The sub-deadline of
task ti is represented as shown in eqn. 13;

Dtisub = max
ti∈predtn

(DTij + ETC + ATGL) (13)
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C. GROUPING OF TASKS
Tasks are integrated into a group of tasks using the horizontal
grouping strategy adopted by the authors in [6]. This means
that tasks in the same group have same capabilities and same
depth to enable parallel processing. Rodriguez and Buyya et.
al. [6] described how tasks were grouped horizontally using
the same colour. A group of tasks can be made up of single
or multiple tasks. A single immediate processor is shared by
tasks that are homogeneous which form part of a group of task
with similar attributes in terms of data size, input/output size,
and computing cost, have the same data distribution pattern
and are of the same type.

D. DEADLINE DISTRIBUTION
The deadline distribution strategy is presented inAlgorithm 1,
the cheapest VM is selected from the VM instances available.
This ensures that the estimated makespan for every task is
less than the user-defined deadline. The next non-expensive
VM is chosen if the deadline is by the makespan estimated
until the completion time of the workflow is less than the
user-defined deadline. ATW is then distributed proportionally
across all levels of task based on the task duration usingATGL .
The estimated sub-deadline is computed for each task using
Dtisub. This implies that tasks that form a group of tasks
are given the same sub-deadline which will be equivalent
to start time of a successor task. Algorithm 2, describes
the dynamic scheduling of task grouping using sub-deadline
distribution which is computed used upward rank and degree
of dependency. The task are sorted based on descending
order of priorities for each level. Once the group of task are
identified, they are placed in priority queue and sorted based
on relevance and placed in the execution queue.

Algorithm 1 Deadline Distribution
1: Workflow W , Deadline D, Estimated time for Computa-

tion of tasks ETC
2: VMcheap←, obtain cheap VM where TCms > Dw
3: if VMcheap = null then
4: while VMcheap ̸= null do
5: VMcheap← next VMcheap type TCms > Dw
6: end while
7: end if
8: Compute Available Time ATw according to Equation (11)
9: Proportionally allocate ATw on all levels
10: Proportionally allocate ATw on all task on each level
11: For each task, compute estimated sub-deadline
12: For each group level task, update sub-deadline as finish

time

V. PERFORMANCE EVALUATION
In this section, the performance of the proposed algorithm
was compared with [30], [32], and [3]. For this comparison,
we used CloudSim [33] to conduct these experiments. The
simulation environment was configured as an IaaS provider
cloud with a single data centre and six different types

Algorithm 2 Sub-Task Distribution
Require: A connected graphW = (T ,E)
1: Add tentry and texit with interrelated edges
2: for all ti ∈ T do
3: Compute URti according to Equation (9)
4: Compute Lti according to Equation (10)
5: end for
6: Classify task based on relevance
7: Identify all group level task
8: Compute group level task based on dependencies
9: for all Group level task do

10: Prioritise based on relevance
11: Place group level task in priority queue
12: Place group level task ready in execution queue
13: end for

TABLE 2. VM Instance Specifications.

of VMs. The configurations of the VM types which were
based on the Amazon EC2 cloud offering was presented
in Table 2.

The Pegasus workflow generator was used in the gener-
ation of different sizes of synthetic workflow application.
The evaluation of the proposed scheme with other algorithms
is evaluated using four scientific workflows (Cybershake,
Epigenomics, Montage and LIGO) which have been widely
used in literature. These workflows are well explained
in [34] and [35].

A. PERFORMANCE METRICS
To evaluate the performance of the proposed scheme and the
compared approaches, we considered the following metrics:
• Success Rate (SR): The success rate of a resource
scheduling algorithm is computed as the percentage of
valid schedules that are obtained in an experiment. This
is calculated as in Eqn. 14

SR =
Ws

Wt
× 100 (14)

where Ws represents the number of successful work-
flows and Wt represents the total workflows in the
experiment.

• Cost Ratio: Cost Ratio is defined as the ratio of total
monetary cost and the cost of the cheapest workflow
schedule. The monetary cost is computed as shown in
Eqn. 15

MC =
MCW
VMcheap

(15)
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FIGURE 2. Performance comparison of success rate for Montage, Ligo, Cybershake and Epigenomics.

B. EXPERIMENTAL RESULTS
1) PERFORMANCE COMPARISON FOR SUCCESS RATE
The success of DCCM, BDAS, HEFT and BDHEFT obtained
for the four scientific workflows are presented in Fig. 2(a),
(b), (c), (d). The results show that the proposed scheme
performs better than the compared approaches. We consider
the deadline factor for the scientific workflows used in
the experiments as discussed in the Budget-Constrained
Scheduling Algorithm section. Figure 2(a) shows the results
obtained from simulations for montage workflow. DCCM
and BDAS perform better than HEFT and BDHEFT even
with lower deadline factors. Although all the algorithms show
an increase in trend, DCCM performs better than BDAS
as the deadline factor increases and outperforms HEFT and
BDHEFT with more than 20% when the DF = 16.
In Fig. 2(b), the results obtained from the experiment with

LIGO are presented. It was observed that DCCM and BDAS
achieve above 65% in terms of their planning success rate
with the lowest deadline factor when compared with HEFT

and BDHEFT which have about 25% and 40% success rate
respectively. However, with an increase in the factor, there is
a significant improvement with all the algorithms as DCCM,
BDAS, HEFT and BDHEFT achieve 99%, 99%, 90%, and
95%, respectively. In Fig. 2(c) and (d), the results obtained
from Cybershake and Epigenomics workflows are presented.
For the compared approaches, the algorithms achieved more
than 80% success rate at DF = 16. DCCM performed better
than the compared approaches. HEFT had the lowest success
rate at DF = 4 when compared with other algorithms. It was
observed that DCCM and BDAS achieve similar results but
DCCM performs better than BDAS by 5-15% success rate.

2) PERFORMANCE COMPARISON FOR COST RATIO
In the previous subsection, the success rate of the proposed
algorithm was compared with other approaches. This sub-
section highlighted the performance comparison of monetary
cost ratio. Fig. 3 (a), (b), (c), (d) shows the cost ratio
of DCCM, BDAS, HEFT and BDHEFT under the same
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FIGURE 3. Performance comparison of cost ratio for Montage, Ligo, Cybershake and Epigenomics.

deadline actor used for the comparison of their success rate.
It was observed that the cost ratios of all the workflows
decrease as the deadline factor increases. In Fig. 3 (a) and (b),
the results obtained from Montage and LIGO scientific
workflows are presented. The proposed scheme and BDAS
outperform HEFT and BDHEFT algorithms. Although
BDAS performs better than DCCM when DF ≤ 4, DCCM
performs better than BDAS as the deadline increases. DCCM
performance can be attributed to the sub-deadline division
which reduces the number of instances. Similar results are
also observed in Fig. 3(c) and (d) for Cybershake and
Epigenomics workflows. DCCM performs better than the
compared algorithms while HEFT and BDHEFT algorithms
have very high cost ratio which affect the schedule length
of the workflows. From the results, it can be seen that
DCCM and BDAS have very close results in terms of
performance. This is because both schemes utilise minimum

budget. However, DCCM categorises task into different sub-
levels by the distribution of deadline using a deadline top level
approach.

C. PERFORMANCE COMPARISON FOR MEAN LOAD
In Fig. 4 (a), (b), (c) and (d), the performance comparison for
the mean load of DCCM and BDAS are presented. From the
results earlier presented in Fig. 2. and 3, a close observation
shows that BDAS and DCCM are very close results in terms
of the cost ratio and success rate. As shown in Fig. 4 (a)
Montage, (b) Ligo, (c) Cybershake and (d) Epigenomics,
DCCM performs better than BDAS in terms of the mean
load in all the scientific workflows compared. It is observed
that the mean load increases as the number of task increases.
DCCM performs better than BDAS dues to its pre-selection
phase whose goal is to always to choose the provider with the
least execution time.
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FIGURE 4. Performance Comparison of Mean Load.

VI. CONCLUSION
This paper proposes an algorithm (DCCM) for scheduling of
resources in cloud computing environments. DCCM focuses
on the reduction of cost in a deadline defined by the
user. DCCM is evaluated and compared with four scientific
workflows well-known in the literature. Experimental results
show that the proposed scheme performs 16 − 25% higher
than the compared approaches in terms of the planning
success rate and makespan cost ratio. In our future work,
we plan to build a dual-objective scheduling model that
minimises both the makespan and the overall monetary
service cost at the same time.
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