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ABSTRACT South African livestock farmers face major challenges in the form of livestock theft and
predation. In response to these concerns, farmers started using a collar that monitors the acceleration of
an animal and, when specific parameters are met, triggers an alarm which transmits GPS data to the user’s
mobile application. Typically, a collar is placed on one animal per flock or herd. In this work, we aim to
classify the GPS trajectories captured by these devices into four categories: theft, predation, own-handling
and other. We lay particular emphasis on distinguishing theft alarms since these have direct implications for
the safety and financial sustainability of farmers. To date, just over one million of these alarms have been
recorded. Unfortunately, these trajectories are not labelled with the four categories. Therefore, we start by
collecting labelled data sets that can be used for training classificationmodels.We then investigate supervised
and semi-supervised approaches for classifying the trajectories. Our semi-supervised approach shows the
best results with performance comparable to human performance. The approach consists of three parts.
First, an autoencoder and classifier are jointly trained to produce fixed-dimensional embeddings from GPS
trajectories. Second, these embeddings are clustered to produce cluster labels. And lastly, the cluster labels
are added to human-engineered features and used to train a final classifier. Our semi-supervised approach
achieves an overall classification accuracy of 69%, with an F1 score of 56% for theft events (4% lower than
human performance) and an F1 score of 90% for own-handling events (slightly outperforming a human).
This model can be deployed to aid farmers in terms of safety and security by providing them with critical
information in emergency situations.

INDEX TERMS Animal behavioral classification, GPS trajectory, IoT, machine learning.

I. INTRODUCTION
A. CONTEXT AND MOTIVATION
South Africa is experiencing high rates of farm murders
[1] and livestock theft [2]. Livestock farmers also have to
deal with the crippling cost of predator animals hunting
livestock, estimated to amount to an annual loss of 13%
for production animals [3]. In an attempt to alleviate these
issues, FarmRanger developed an internet-of-things (IoT)
device in 1999 that thousands of farmers now use to protect
their livestock from theft and predation. A single device is
attached to one animal per flock or herd. The unit monitors the
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animal’s acceleration and when certain conditions are met,1

it triggers an alarm that transmits GPS data to the owner’s
mobile application. To date, just over a million of these GPS
trajectories have been recorded. However, it is unknown what
happened during each of these events. It could have been
theft, predation or one of several other possibilities that can
cause rapid movement of the animals.

Figure 1 shows two examples of what a user would typi-
cally see on their mobile application. From these two exam-
ples, the reader can already imagine that a farmer would
respond differently to each event depending on what is dis-
turbing the animal. The implications on the safety of a farmer

1For intellectual property purposes, the exact details of the alarm trigger
algorithm cannot be disclosed in this paper, but all the relevant details of the
captured GPS trajectories can and are discussed in this work.
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FIGURE 1. The GPS data points of two examples, one showing a predation event (a) and the other a theft event (b). In
(a) there is seemingly random movement without a sense that the animal is moving in a certain direction. On the other hand,
in the case of (b), deliberate movement in one direction can be seen. Note that these are carefully selected examples, and
not necessarily representative of the rest of the data, i.e. in many cases, it is much more difficult to make an easy
classification between predation and theft.

due to armed theft versus that of a sheep being attacked by
a jackal are drastically different — the first being a life-
threatening situation, while the latter mainly has financial
implications. With this in mind, we ask the question: is it
possible to utilise livestock movement data in order to dis-
tinguish theft, predation, own-handling, and other events2

from one another? Doing so would equip a farmer with the
necessary knowledge to properly prepare for an emergency
and ultimately help keep farmers safe. Concretely, our goal is
the four-class classification problem with a special emphasis
on the theft class.

B. METHODOLOGY
We investigate a supervised and semi-supervised approach
for classifyingGPS trajectories. To evaluate these approaches,
a small labelled validation data set is developed on which
cross-validation classification performance is reported.
Figure 2 shows a condensed overview of the approaches
covered in this paper and how they relate to one another.

1) SUPERVISED LEARNING
At the bottom of Figure 2, we follow a standard supervised
machine learning approach. The raw data is processed to
create a human-engineered, fixed-dimensional feature vector
for each trajectory. For the supervised approach, we train and
evaluate different classifier models on this feature vector.

2) UNSUPERVISED LEARNING
In our previous work [4], we showed by means of clustering
metrics that classes can be distinguished to some degree in a
purely unsupervised approach as shown at the top of Figure 2.
In short, the unsupervised model consists of an autoencoder

2Other movement alarms can be events like playing, lightning strikes, etc.

FIGURE 2. An overview of the methodology covered in this paper.
Ultimately, we are only interested in classification performance metrics.
However, since we use clustering as part of our semi-supervised
approach, intermediate clustering metrics provide insights into how well
we are extracting information from the abundant unlabelled data.

which is trained to reconstruct its trajectory input with the aim
of capturing valuable features in its fixed, low-dimensional
latent embedding. This latent embedding can then be used to
distinguish events from one another. This model forms the
foundation for our semi-supervised approach.

3) SEMI-SUPERVISED LEARNING
Our semi-supervised approach, as illustrated in the middle of
Figure 2, extends the unsupervised model by jointly training
a classifier alongside the autoencoder. The latent embed-
ding is then clustered with K-means to produce a cluster
label for each trajectory. Finally, the cluster labels are con-
catenated to the human-engineered feature vector used in
the supervised approach before it is used to train classifier
models.
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4) EVALUATION
To evaluate the classification performance of the super-
vised and semi-supervised approaches, we perform cross-
validation and report quantitative metrics. We find that
the semi-supervised approach outperforms the supervised
approach, especially in classifying theft events.

II. RELATED WORK
Literature directly related to our work is very limited and
there are no other studies with which we can compare our
performance directly. However, there are some similarities
between our work, mode-of-transport classification, acoustic
word embeddings and animal behaviour classification. Below
we review these studies, but in every case also indicate how
the data used in these types of studies differ from ours.

1) MODE-OF-TRANSPORT CLASSIFICATION
One other machine learning problem that also utilises GPS
trajectories for classification, is the task of classifying mode-
of-transport. This involves feeding GPS data points to a
model that predicts whether a person is walking, driving,
riding a bicycle etc. Various methods have achieved scores
of up to 75% in classification accuracy [5]. One major dif-
ference in the context of mode-of-transport classification is
that there is typically much more labelled data available.
In the case of Microsoft’s Geolife data set [6], there are
24 109 GPS trajectories labelled with a mode-of-transport
and and 72 506 unlabelled trajectories. This is vastly more
labelled data compared to our data set, which only con-
tains a few hundred labelled trajectories. In addition, the
time interval between data points is relatively small (1 to
5 seconds), in comparison to our data set (30 seconds). One
approach proposed to classify mode-of-transport incorpo-
rates a convolutional-deconvolutional autoencoder to extract
features from unlabelled data to assist in the supervised
classification task [5]. In this model, an autoencoder and a
classifier are trained jointly with weighted losses.We follow a
similar route for our semi-supervised approach in Section VI.

2) ACOUSTIC WORD EMBEDDINGS
Our unsupervised trajectory embedding model discussed in
Section I-B2 is heavily inspired by models from the area of
speech processing, referred to as acoustic word embedding
models [7], [8]. These models are similar to our model in the
sense that they produce a fixed-dimensional representation of
a time series — in the case of speech processing, the embed-
ding is produced for a spoken utterance. The aim of these
models is to produce embeddings where similar-sounding
words are close to one another in the embedded space and
dissimilar words are far from one another. Acoustic word
embeddings precede the work in mode-of-transport classi-
fication mentioned above. Although we follow a similar
methodology, the data used for acoustic word embeddings
is fundamentally different from GPS trajectories in that the
former involves acoustic time series.

3) ANIMAL BEHAVIOUR CLASSIFICATION
There are many studies related to animal behaviour classi-
fication. These studies use various sources of data in order
to classify various animal activities. However, no studies
attempt to classify threats to livestock animals directly. We
elaborate on a few relevant studies here to contrast our work
to existing research in the literature.

Le Roux et al. [9] used accelerometry data in a super-
vised setting to predict whether an animal is either lying
down, standing, grazing, walking or running. They achieve
a cross-validated classification accuracy of 86%. This study
is different from ours in terms of the data they use (100 Hz
accelerometry), the amount of labelled data (over 4000) and
the type of classification they perform.

Schreven et al. [10] studied nesting behaviour in Arctic-
breeding geese. They propose a method for inferring nesting
cycle stages (migration, pre-nesting, nesting and post-
nesting) and the number of nesting days using a combination
of accelerometer and GPS data. They achieve a near-perfect
accuracy of 99%. Thiebault et al. [11] studied Cape gannets
using acoustic data in a supervised setting to predict whether
a bird is flying, floating on water or diving. They also achieve
a near-perfect accuracy of 98%.

One study [12] also proposes a procedure for deriving
trajectory embeddings from a jaguar movement data set [13].
This study uses long-term GPS data (with an average span of
9.8 months) with various intervals of between 0.5 to 24 hours,
but they do not perform any form of classification. Rather
their goal is to analyse unstructured data. This is different
from our context in the sense that we only consider a few
minutes of high-activity GPS data.

III. THE DATA
The data used in this work is generated by a collar fixed
on an animal’s neck. These collars continuously measure
acceleration and, when certain parameters are met, an alarm
is triggered which transmits GPS data via GSM mobile
communication.

A. GPS TRAJECTORIES AND CLASSES
In our setting, a GPS trajectory refers to a time series of lati-
tude and longitude values with a 30-second interval between
points. These trajectories are recorded directly after an alarm
is triggered by the device. Alarms are triggered based on
onboard accelerometer data, which is not recorded. An alarm
can be caused by a myriad of reasons, ranging from theft
to Scrapie disease [14]. For this work, we define four main
classes:

1) Theft: humans trying to steal livestock.
2) Predation: predator animals hunting livestock. These

are mainly jackals but also include wild dogs, lynxes
and leopards.

3) Own-handling: workers on the farm handling the live-
stock in day-to-day operations.
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FIGURE 3. An example of all available data for a single unit, shown on a
Google Maps satellite view. The red dots are GPS points reported each
day and are not part of a trajectory. The blue trajectories are alarms that
were previously recorded. The red trajectory is the trajectory that is
currently being considered for classification.

4) Other: miscellaneous reasons which do not fall in the
categories above. These alarms are uncommon and
non-emergency phenomena such as an animal fright-
ened by lightning strikes.

Figure 3 shows an example of all available data for a single
unit. In addition to GPS trajectories resulting from alarms,
we have access to a daily GPS data point that the units
transmit, illustrated as red dots in Figure 3. This data point is
transmitted at some predetermined time each day, irrespective
of whether an alarm has been triggered.

B. AVAILABLE DATA SETS
Currently, it is difficult to acquire ground truth labels for
events. The farmer must be contacted relatively soon after an
alarm occurred and asked what happened. Not only is this
a tedious and human-intensive task, but the acquired labels
are not necessarily ground truth. A farmer might report a
non-emergency when an alarm occurred, but in fact, thieves
or predators could have been on the scene unknowingly,
causing the alarm. Nevertheless, acquiring a small labelled
data set with which the models can be evaluated is still
possible. Therefore, we have three available data sets: a large
unlabelled set, a small labelled validation set and a small
hand-labelled training set.

TABLE 1. The class distributions of the labelled data sets.

1) UNLABELLED DATA
A total of approximately 800 000 trajectories without labels
are available. These trajectories have been captured from
2016 to the end of 2021. Roughly 500 new alarm trajectories
are captured every day.

2) VALIDATION DATA
The validation data set is composed of 176 trajectories with
its class distribution shown in Table 1. These labels were
acquired by calling farmers within one day of the event. This
data set is used for cross-validating the classifier models in
the sections to come. We refer to this set as ‘‘validation data’’
since it is used in this work as a means to decide on a final
model (other studies might have simply referred to this as the
test set).

3) HAND-LABELLED TRAINING DATA
This data set was developed by a human expert hand-labelling
trajectories by looking at the data as seen in Figure 3, without
calling the farmers.We consider this data set to be too noisy to
train on directly in a conventional purely supervised learning
approach. However, we show that when using this data in a
semi-supervised approach, by jointly training an autoencoder
and classifier, performance is improved. One major advan-
tage of developing a hand-labelled data set is the speed at
which labels can be acquired. The class distribution of this
data set is shown in Table 1.

C. HUMAN PERFORMANCE
In order to get an idea of to what extent classification is pos-
sible, we evaluate the performance of the same human expert
that labelled the data set in Section III-B3. The expert is asked
to classify the whole validation data set described in Sec-
tion III-B2. The expert is allowed to view all available data,
including a Google Maps satellite view, as shown in Figure 3.
The resulting confusion matrix between the true labels and
the expert’s predicted labels is shown in Figure 4. We see
that classification is in fact possible to some degree, with a
total accuracy score of 73%. The class-specific scores are
compared to the supervised and semi-supervised approaches
in Sections IV and VI, respectively. From the confusion
matrix, it is also clear that it is difficult to distinguish between
predation and theft.

D. OBSTACLES
As in any real-world setting, the data can be highly irregular
and unpredictable. In this context, the following factors have
a major influence on the quality of the data and cannot be
avoided in any obvious way.

1) GPS SENSOR
The GPS sensor has an accuracy of approximately 5 to
20 meters and is heavily influenced by signal strength and the
position of the unit on the animal. Poor signal strength can
result in unpredictable jumps in a trajectory. All other GPS

27752 VOLUME 11, 2023



U. J. D. Swardt, H. Kamper: Semi-Supervised Machine Learning for Livestock Threat Classification Using GPS Data

FIGURE 4. A horizontally normalised confusion matrix of human
performance on the validation data, as described in Section III-B2.

obstacles apply as well, such as dilution of precision. Due
to this lack of accuracy and the onboard acceleration data,
it is quite possible that it may seem as if an animal is moving
around when in fact, it is standing still.

2) GSM SIGNAL
The device uses GSM mobile communication to transmit
data. Some data points are lost when GSM signal strength is
insufficient, resulting in time jumps in the trajectory. A reduc-
tion of data points in an already sparse trajectory results in a
reduction of important information. Farms can have excellent
signal in one area, but poor signal in another area. Remember
that these devices are typically used in remote areas.

3) TIME INTERVAL
Time irregularity is almost certain for each trajectory. As pre-
viously mentioned, time jumps (often up to a few minutes)
occur if GSM signal strength is poor. In addition, by design,
a new data point is transmitted immediately when the condi-
tions for a new trigger are met. This results in a time series
with compact and sparse parts in the same sequence, making
it even more difficult to compare similar trajectories.

E. PROCESSING RAW DATA
The GPS values are processed to produce a distance, time,
speed and angle channel for each trajectory. By design, accel-
eration is not included since the low sampling frequency
won’t allow for accurate values. More formally, we have
a sequence of GPS points p1,p2, . . . ,pT , with each pi =

[lat, lng, t] where lat is longitude, lng is longitude and t is
the timestamp. Such a sequence is illustrated in Figure 3
as the red line with its yellow dots representing the GPS
points. From this sequence we produce a new feature time
series z1, z2, . . . , zT . As illustrated in Figure 5, each of these

features within zi is determined according to the following
equations:

FIGURE 5. An example of GPS points in a trajectory.

zi =


di
1ti
si

1θi

 (1)

di = GeoDist(pi[lat, lng],pi−1[lat, lng]) (2)

1ti = pi[t] − pi−1[t] (3)

si =
di
1ti

(4)

1θi = θi − θi−1 (5)

Here di denotes the geographical distance between two GPS
points, 1ti is the difference in consecutive timestamps, si is
the speed between twoGPS points and1θi is the difference in
angle between two consecutive points. The result is a vector
time series with T data points. Each trajectory x(n) is then
denoted as

x(n) =
[
z1 z2 . . . zT

]
(6)

with the superscript (n) indicating the nth item in a data set.
In Section III-F (directly below) we use this vector time
series to derive a single fixed-dimensional feature vector
representation for an entire sequence. In Section V we use
this vector time series as input to an autoencoder which then
learns to produce a latent fixed-dimensional representation of
a sequence.

F. FEATURE ENGINEERING
One approach that we can follow in order to apply machine
learning techniques to the data, is to manually produce a
fixed-dimensional representation of each variable-length tra-
jectory. The following is an exhaustive list of features that we
derive from the available data:

1) Total distance: The total distance travelled during an
alarm.

2) Peak speed: The peak speed between two consecutive
points in a trajectory.
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3) Peak angle change: The peak change in angle 1θ

between two consecutive points in a trajectory.
4) Duration: The total duration of an alarm in minutes.
5) Average speed: The average speed between data points

in a trajectory.
6) Average angle change: The average change in angle

1θ between data points in a trajectory.
7) Displacement: The distance between the start and the

end of a trajectory.
8) Velocity: The velocity of a trajectory is the displace-

ment divided by the duration.
9) Straightness: Straightness can be calculated as the

total displacement divided by the total distance trav-
elled. A value of 1 is a perfectly straight trajectory.

10) Time of day: The time of day at which the alarm
occurred. This is a float value, meaning that a time of
6:30 would be represented as 6.5.

11) Cosine time of day: Applying the cosine function to
the time of day allows for continuous indication of the
time of day. Suppose one alarm occurs at 23:59 and
another alarm at 00:01. Numerically these values are
very far from one another, when in fact they are only
2 minutes apart. Formally this is expressed as tcos =

cos(2π t
24 ), resulting in values between -1 (midday)

and 1 (midnight).
12) Daily-report nearest neighbour distance: The aver-

age distance of the nearest daily-report data point
to each data point in the trajectory. This is a good
indicator of whether a unit is in familiar territory or
not.

13) Alarm nearest neighbour distance: The average dis-
tance of the nearest historic alarm data point to each
data point in the trajectory. A value of zero would indi-
cate that the exact trajectory has been travelled before.
This is a good indicator of recurring own-handling
alarms.

14) Nearest time of day cluster: Figure 6 shows the time
of day distribution of all recorded alarms. We see two
bumps around 6:30 am and 16:00 pm, a typical time
when farmers would work with their animals. However,
farmers’ schedules differ, some farms show bumps
centred around 8:00 am and 17:00 pm, for example.
K-means (withK = 2) is performed on a unit’s historic
alarm times to learn recurring alarm times. The value
for this feature is equal to the distance between the
current alarm’s time of day and the closest cluster cen-
tre. This is a good indicator of recurring own-handling
alarms.

15) Percentage of close alarms: Percentage of historic
alarms within 2 hours of the current alarm.

16) Average number of alarms per day: The average
number of alarms that are triggered each day for a unit.

17) Time since last alarm: The time in minutes since the
previous alarm was triggered.

18) Animal type 1: This value is 1 if the type of animal on
which the unit is mounted is a sheep and zero otherwise.

19) Animal type 2: This value is 1 if the type of animal on
which the unit is mounted is cattle and zero otherwise.

20) Trigger count: The number of trigger events in a
trajectory. Although an alarm has started, the unit’s
algorithm continues to report new triggers within the
current alarm which extends the tracking time.

Taken together, each trajectory x(n) can now be represented
with a 20-dimensional vector.

FIGURE 6. The histogram of which hour of the day alarms occurred.

IV. SUPERVISED LEARNING
In this section, we evaluate a supervised approach for clas-
sifying events. We compare various supervised models and
report their cross-validation performance on the validation
set described in Section III-B2. The models are trained
on the fixed-dimensional representations as discussed in
Section III-F.

A. MODELS
We evaluate classifier models from the Scikit-learn API
[15] as well as CatBoost [16] and XGBoost [17]. Since
we have little labelled data, we try to constrain the mod-
els in such a way as to prevent overfitting. For the tree-
based models, we restrict the maximum depth of the tree and
for the other models, we add a large regularisation penalty
factor. The models with their hyper-parameters are listed
below:

• K-nearest neighbours: number of neighbours, K = 5.
• Logistic regression: L2 regularization strength, α = 1.
• C-SupportVectorMachine: L2 regularization strength,

α = 1.
• Multi-layer Perceptor (MLP): L2 regularization
strength, α = 1.

• Decision tree: Maximum tree depth = 3.
• Random forest: Maximum tree depth = 5.
• Gradient boosting: Maximum tree depth = 5.
• AdaBoost: Maximum tree depth = 5.
• CatBoost: Maximum tree depth = 5.
• XGBoost: Maximum tree depth = 5.

These hyper-parameters were tuned to produce the best mean
cross-validation performance. The models described here are
also used in our semi-supervised approach in Section VI.
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TABLE 2. A comparison of class-specific F1 scores (expressed as a
percentage) for the top performing models for the supervised approach.

B. RESULTS
To evaluate the models, we perform 15-fold cross-validation
on the validation data set described in Section III-B2, with
the features described in Section III-F. The top-performing
models are logistic regression, MLP, and AdaBoost with
accuracies of 68%, 66%, and 55%, respectively. However,
in the remainder of this paper, we focus on metrics other
than accuracy, since this can be misleading given the major
class imbalances (see Section III-B). We rather opt for class-
specific F1 scores, defined as the harmonic mean of the recall
and precision for a certain class. Class-specific recall and
precision are defined as:

Rc =
TPc

TPc + FNc
(7)

Pc =
TPc

TPc + FPc
(8)

where the subscript c denotes a certain class. Class-specific
metrics also allow us to evaluate classification performance
on a class-by-class basis. This is important because we are
more interested in identifying some classes than others. Con-
cretely, classifying theft events is the top priority. Table 2
shows the resulting class-specific F1 scores for the top-
performing models. As can be seen by looking at Table 2,
these models are successful in distinguishing own-handling
alarms. However, the models are not as good as a human
expert at classifying the remaining three classes. They are
especially poor at classifying the other class. To a certain
degree, this could be expected since the other class is some-
what noisy and we do not expect this class to have an inherent
structure to it.

V. UNSUPERVISED TRAJECTORY EMBEDDINGS
Wehave a large corpus of unlabelled trajectories, as described
in Section III-B1. In the preceding section, we ignored this
data when training supervised models. To leverage this data,
we need to incorporate unsupervised learning. In our previous
work [4], we showed that classes can be distinguished to
some degree in a purely unsupervised clustering approach,
which incorporates fixed-dimensional autoencoder embed-
dings. In Section VI these unsupervised trajectory embed-
dings are combined with the list of features described in
Section III-F to form a semi-supervised classifier model.

FIGURE 7. The architecture of the convolutional-deconvolutional
autoencoder. The model takes a four-channel, one-dimensional input as
described in equation 6, encodes it to a ten-dimensional vector and then
decodes it to reproduce the input. Layer types and output shapes are
shown. The convolutional component has three 1-D convolution layers
with 8, 16 and 32 filters respectively, each followed by a ReLU layer. All
filters have a size of 3 and a stride of 1.

A. MODEL: TRAJECTORY EMBEDDINGS
In order to produce fixed-dimensional trajectory embeddings,
we implement a convolutional-deconvolutional autoen-
coder (AE) with the goal of extracting valuable features from
the GPS data which can be used for downstream classifi-
cation. The input to the model is the feature time series
described in equation 6. By training this model to reconstruct
its input through a lower-dimensional compressed represen-
tation, the hope is that the latent embedding would capture
distinguishing features. We encourage the reader to refer to
our previous work [4] where this approach is covered in
detail.

The model’s architecture is shown in Figure 7. First, the
input is encoded to a fixed-dimensional space smaller than
the dimensionality of the input, called the latent trajectory
embedding h, and then decoded to the original form of
the trajectory. We constrict the latent embedding to a fixed
10 dimensions and limit the length of each time series x(n)

described in equation (6) to T = 30, which is the default
length of alarms. A value of 10 for the size of the latent
embedding was arrived upon based on downstream clustering
metrics in development experiments. The model is trained by
minimizing the mean squared error (MSE) loss between the
input x(n) and the reconstructed output x̂(n):

LAE =
1
N

N∑
n=1

lMSE(x(n), x̂(n)) (9)

with

lMSE(x, x̂) =
1
T

T∑
i=1

||zi − ẑi||2 (10)

LAE is therefore the mean loss over all the training trajectories
and N is the batch size. The model is trained with the Adam
[18] optimiser, a batch size of 256 and a learning rate of 0.05.

B. INTERMEDIATE EVALUATION
After training themodel for 100 epochs on the unlabelled data
described in Section III-B1, the mean square error loss of the
autoencoder on the validation and training set is 0.7 and 0.3,
respectively. Figure 8 shows the reconstruction before and
after training the model. The model is able to learn useful
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FIGURE 8. Grey-scale images to show the reconstruction that the
autoencoder produces for five samples (a) before and (b) after training.
These samples are not seen during training. Each row in each image is a
channel of the sample as described in Section III-E.

features that can be used to reconstruct the input. When we
perform K-means clustering (with K = 7) on the resulting
embeddings, we achieve a total clustering purity of 60%,
calculated on the validation set described in Section III-B2.
The hope is that these extracted features, which can be used
to reconstruct a trajectory, will help to classify events.

VI. SEMI-SUPERVISED LEARNING
In this section, we evaluate a semi-supervised approach for
classifying events. The approach incorporates the unlabelled
data in Section III-B1 as well as the hand-labelled train-
ing data in Section III-B3. Concretely, our semi-supervised
approach consists of three parts:

1) Extending the unsupervised model in Section V with a
classifier that is jointly trained with the autoencoder.

2) Performing K-means clustering on the resulting trajec-
tory embeddings and assigning cluster labels. Note that
we do not use the embeddings directly.

3) Training new classifier models which incorporate both
the cluster labels and the list of features described in
Section III-F. These models are trained and evaluated
in a 15-fold cross-validation setup on the ground truth
data described in Section III-B2.

A. JOINT TRAINING
We train an autoencoder and a single-layer softmax clas-
sifier jointly, with the architecture shown in Figure 9. The
autoencoder is trained on the unlabelled data set as before
in Section V. We use the hand-labelled training data set,
as described in Section III-B3, to train the classifier. Although
this data set is considered to be unsuitable for training a
final classifier, the idea here is to improve the embeddings.
By adding the classifier, we inject crucial information into the
embeddings, which is not present in the trajectory data alone
and is therefore absent in the purely unsupervised approach
from Section V. Concretely, we are forcing the embeddings
to capture information required for classification as well, not
only for reconstruction. This model is trained with a loss

FIGURE 9. The semi-supervised model architecture. The autoencoder
branch is the same as in Figure 7. The classifier branch consists of a fully
connected linear layer with 4 output values, one for each class. As a
result of joint training, the classifier’s classification performance is much
worse than the supervised and semi-supervised approaches.

function defined as

Ltotal = LCLF + LAE (11)

with cross-entropy (CE) as the classification loss between the
class label y and the predicted class distribution ŷ:

LCLF =
1
N

N∑
n=1

lCE(y(n), ŷ(n)) (12)

with

lCE(y, ŷ) = − log
exp(ŷc=y)∑C
c=1 exp(ŷc)

(13)

where C = 4 is the number of classes and N is the batch size.
The reconstruction loss LAE is already defined in equation (9).
In equation 11, we can assign weights to the losses in order
to prioritise one task above the other. These weights can then
also be scheduled throughout the training process. We exper-
imented with these techniques but saw no improvement in
downstream classification performance.

FIGURE 10. Clustering metrics after K-means is performed, for an
increasing number of unlabelled training data.

B. CLUSTERING
After training the joint model, K-means clustering is per-
formed on the resulting embeddings of the large unla-
belled data set. A value of K = 7 was arrived upon
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based on the elbow method, silhouette method [19] and the
Davies-Bouldin Index [20] giving roughly the same number
of clusters. These cluster labels are then used as a feature
for the downstream classification models. Note that we do
not use the embeddings directly. When using the embed-
dings directly, we do not see an increase in classification
performance in comparison to the supervised approach in
Section IV. However, when using the cluster labels, we are
injecting the structural information of the whole unlabelled
data set. This effect is visualised in Figure 10, where we
see an improvement in clustering performance metrics as the
number of items used for clustering increases. If we were to
use the embeddings directly, we lose out on this structural
information.

In terms of clustering performance metrics, we evaluate
total purity and homogeneity, completeness and V-measure
for the theft class. In short, homogeneity, completeness and
V-measure are comparable to precision, recall and F1 score,
respectively. The semi-supervised model outperforms the
purely unsupervised approach in Section V. Total purity is
increased from 60% to 63% and theft V-measure increased
from 47% to 55%. These results are not specifically impor-
tant, they are simply an intermediate check to show that the
clustering is reasonable to be used downstream.

C. CLASSIFICATION
The cluster labels, in the form of a one-hot vector, are con-
catenated to the feature vector described in Section III-F.
We train the same models as described in Section IV-A.
The classifier branch of the model performs much worse in
comparison to the other classifiers. This is to be expected
because we are not optimising the model for classification
alone. Note that, because of the larger feature vector and the
small amount of data the classifiers are trained on, we might
expect the models to be more at risk of overfitting.

D. RESULTS
To evaluate the classification performance, we perform
15-fold cross-validation on the validation data set described
in Section III-B2. The top-performing models achieve accu-
racies of 67%, 66%, and 59%, respectively. Again, we rather
focus on F1 scores, since accuracy can be misleading given
the class imbalance. Table 3 shows the resulting class-specific
F1 scores for the best-performing models. The MLP model
shows a significant increase in theft F1 score and is overall
the best-performing model. The model shows comparable
performance to a human expert in identifying theft and own-
handling alarms. However, the model is worse at identifying
predation alarms and is poor at identifying other alarms.

VII. COMPARING SUPERVISED AND SEMI-SUPERVISED
LEARNING
We have evaluated two approaches for classification: a super-
vised approach described in Section IV and a semi-supervised
approach described in Section VI. In this section, we compare
these two methodologies. A comparison of class-specific

TABLE 3. A comparison of class-specific F1 scores (expressed as a
percentage) for the top performing models for the semi-supervised
approach.

F1 scores between these two approaches is shown in
Table 4. Both approaches show comparable performance to a
human expert in classifying own-handling events. The semi-
supervised approach shows an increase in theft F1 score in
comparison to the supervised approach. Both approaches are
poor at classifying other events. As previously mentioned,
this is to be expected since there is no inherent structure to
events from this class.

It is important to remember that, during 15-fold cross-
validation, classifier models are only trained on 164 to
165 items. Due to this, we are unable to train complex classi-
fier models because the models are heavily restricted to avoid
overfitting. Therefore, we can expect even better performance
once more labelled data has been acquired.

TABLE 4. The class-specific F1 scores (expressed as a percentage) for the
top performing classifier for the supervised and semi-supervised
approach. Human performance is also shown.

VIII. CONCLUSION
In this work, we introduce a novel application of machine
learning: using GPS trajectory data to classify livestock
threats. We compare a supervised and a semi-supervised
approach for classification. We show that a semi-supervised
approach outperforms a supervised approach, especially in
distinguishing theft.

A. GOAL: CLASSIFICATION
Our goal is the classification of livestock threats with a special
emphasis on the theft class. The final semi-supervised model
shows comparable performance to a human expert in theft
and own-handling classification. We show that, within this
low-resource setting, the classification of livestock threats
is indeed possible to an extent. By deploying this model,
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farmers can be provided with critical information in emer-
gency situations.

B. FUTURE WORK
We propose to increase the GPS sampling rate so that more
nuanced information can be captured in a trajectory which
should, in turn, improve classification performance. More
labelled data should be acquired so that more complex classi-
fier models can be developed. Other channels of data should
be investigated. Recording acceleration data could prove to
be useful when combined with GPS data.
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