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ABSTRACT In order to solve the problems about color distortion and low contrast of underwater images,
we propose an underwater image enhancement algorithm that combines adaptive color correction with
improved Retinex algorithm. Our algorithm is a single-image enhancement method that does not require
specialized hardware and underwater scenes prior. Firstly, the adaptive color correction is carried out
on the underwater distorted images to solve the color cast problem effectively. Then, on the one hand,
we use the image decomposition to strengthen the detail part and obtain a detail enhanced image. On the
other hand, we use the improved Retinex algorithm to strengthen the edge part and obtain an edge
enhanced image. Finally, the detail enhanced image and the edge enhanced image are fused based on the
non-subsampled shearlet transform (NSST) to obtain the final enhanced underwater image. The results
show that our method outperforms several state-of-the-art methods about underwater image enhancement in
terms of PCQI, UCIQE, UIQM and IE. By scale invariant feature transform (SIFT) algorithm, we calculate
the number of feature matching points of the input image and the enhanced image, and our proposed
method achieves the best experimental results. The source code of our proposed algorithm is available at:
https://github.com/lin9393/ underwater-image-enhance.

INDEX TERMS Underwater image enhancement, adaptive color correction, improved Retinex algorithm,
non-subsampled shearlet transform.

I. INTRODUCTION
With the increasing shortage of resources on land, the
ocean that is rich in oil and mineral resources has been
eagerly explored. Obtaining high-quality and clear underwa-
ter images is an important guarantee for the development
of underwater vehicle control [1], underwater infrastructure
inspection [2], marine biological research [3]. Therefore,
enhancing the visual effects of underwater images is an
important link of the ocean exploration journey. However, due
to the attenuation and scattering of light in water, problems
such as color cast, image blurring, and low contrast, will
appear in underwater images [4]. In order to promote the
subsequent research and application, it is necessary to
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enhance underwater image. Due to the diversity of water bod-
ies and the inconsistency of image degradation, the expres-
sion forms of images are varied. Therefore, how to use
image enhancement technology to extract underwater image
information and solve various degradation problems is worth
further study.

In recent years, underwater image enhancement has
achieved significant progress by taking advantage of physical
model-based methods, non-physical model-based methods
and deep learning-basedmethods. In the following, we briefly
review these relevant methods.

A. PHYSICAL MODEL-BASED METHODS
These methods in [5], [6], [7], [8], [9], [10], [11], and [12]
establish underwater image enhancement models by studying
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the distortion principle of underwater images. He et al. [5]
estimated the light composition and transmittance of under-
water images through the dark channel prior principle.
Indeed, the prior transmittance estimated in [5] is too large,
which makes the final enhanced image dark. Shafuda et al.
[6] combined light and dark priors to estimate backscattered
light in underwater images. For the light absorption prob-
lem, Peng et al. [7] proposed a depth estimation method to
accurately estimate the underwater scene depth. Yang et al.
[8] introduced a novel background light estimation method
which uses deep learning to capture red channel information
of the background light in the dark channel. Gong et al. [9]
improved the exposure of underwater images by fusing the
polarization image with the intensity image. By estimating
ambient light, Ueki [10] proposed a generalized dark channel
prior model which can adapt to more underwater images.
Considering the forward scattering, Park et al. [11] drew the
conclusion that the distance of the observed object is inversely
proportional to the geodesic color distance of the background
light. Based on dark channel and underwater attenuation
priors, Song et al. [12] enhanced underwater images by esti-
mating the transmission map and background light. In short,
physical model-based methods often require higher accurate
estimation of complex underwater image parameters, which
will cause the models to be sensitive to image types.

B. NON-PHYSICAL MODEL-BASED METHODS
These methods [13], [14], [15], [16], [17], [18], [19],
[20], [21] utilize traditional image processing techniques to
enhance underwater images. Ghani [13] used homomorphic
filtering to remove blue-green noise and enhance image
details. The methods proposed in [13] improved underwa-
ter image visibility by recursively overlapping contrast lim-
ited histograms and dual-image wavelet. Ancuti et al. [14]
conducted multi-scale fusion to obtain enhanced images by
introducing the white balance technique that can compensate
the colors of underwater images and effectively improve
the color authenticity. Chang et al. [15] proposed an adap-
tive color correction method combined with guided filter-
ing, which improves the visual effect of underwater images
to a certain extent. Based on channel priors and histogram
equalization, Srinivas et al. [16] used the multi-scale Retinex
technique to obtain the luminance component. Zhang [17]
enhanced underwater images through the principle of mini-
mum color loss and local adaptive contrast. On the basis of the
Retinex algorithm, Zhang [18] obtained the detail enhanced
images by fusing the Rayleigh distribution, adaptive gamma
correction and differential pyramid techniques. Apart from
that, histogram stretching [19], image layer separation [20]
and swarm intelligence [21] are also adopted to improve
brightness and contrast of underwater images. Non-physical
model-based methods aim to modify image pixel values
to improve visual quality. However, these methods ignore
the underwater imaging mechanism, which induces that
non-physical model-based methods have poor generalization
ability.

C. DEEP LEARNING-BASED METHODS
Due to the powerful learning ability of deep learning, deep
learning-based methods [22], [23], [24], [25], [26], [27]
have achieved an unqualified success in the aspect of under-
water image enhancement. However, these methods typ-
ically require a large amount of data to build a dataset
for training. Li et al. [22] transformed aerial images into
underwater images by using the style classifier and condi-
tional vector, which alleviates the problem of lack of real
underwater images. The model proposed by Liu et al. [23]
enhances underwater images by residual learning combined
with polynomial loss function. A novel spiral generative
adversarial framework introduced by Han et al. [24] can
enhance image details while removing noise caused by scat-
tering and attenuation. In order to learn underwater image
feature, Li et al. [25] built the UIEB dataset that covers a wide
range of underwater scenes and degradation forms. Based
on a normalization method across space and channel dimen-
sions, Fu et al. [26] devised the SCNet for learning underwa-
ter desensitized representation which is suitable for different
water bodies, but the detail textures of the enhanced images
are blurred. Li [27] designed a multi-color space embedded
network which can effectively improve the visual quality of
underwater images. Above all, deep learning-based methods
rely on a large number of distorted and clear underwater
images. However, most images are artificially synthesized
which are different from the real-world underwater images,
so the robustness and generalization ability of deep learning-
based methods is limited.

In this paper, we pay attention to the problem about weak
generalization ability of non-physical model-based meth-
ods, Inspired by the work in [14], we introduce an adap-
tive underwater image enhancement method that is suitable
for underwater complex images. More precisely, our main
contributions can be summarized as follows:

•We use color correction, contrast enhancement, tone
adjustment and image fusion methods to achieve underwater
image enhancement. Compared with contrast algorithms, our
proposed algorithm has achieved better results on PCQI,
UCIQE, UIQM and IE metrics.

•For the complex underwater environment, we propose an
adaptive color correctionmethod, which can remove the color
cast of underwater images.

•We improve the Retinex algorithm to adaptively adjust the
tone of underwater images, which can convert dark or bright
underwater images into pleasing images.

The outline of the paper is organized as follows.
Section II presents our proposed underwater image enhance-
ment method. Section III presents the experimental results
and several concluding remarks are provided in Section IV.

II. PROPOSED METHOD
In this paper, we firstly perform the adaptive color correction
method on underwater distorted images in order to deal with
the color bias phenomenon. Then on the one hand, the dual-
scale image decomposition and Gamma correction are used
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FIGURE 1. The flowchart of the proposed algorithm.

to yield a detail enhanced image. On the other hand, the
sharpen algorithm and the improved Retinex algorithm are
used to adjust the hue of the image to produce an edge
enhanced image. Finally, based on NSST technique, we fuse
the detail enhanced image and the edge enhanced image to
obtain the final enhanced underwater image. The algorithm
flow is shown in Figure 1.

A. ADAPTIVE COLOR CORRECTION
In order to effectively remove color cast, we propose an
adaptive color correction method that consists of two parts,
namely, the channel compensation and the color balance.

The color compensation theory proposed by Ancuti et al.
[14] only compensates the red channel with constant
compensation coefficients, which contradicts the complex
underwater environment. As a consequence, we design a
channel compensation method to restore the authenticity
of underwater image color from a more comprehensive
perspective.

Let Ir , Ig and Ib respectively denote the average pixels of
the red, green and blue channels. Since the green channel is
often better preserved [14], if

Ir + Ib
Ir + Ib + Ig

<
1
3

(1)

holds, then the red and blue channels are severely lost. There-
fore, the color cast can be removed through color balance
without the need for the channel compensation. If the inequal-
ity (1) does not hold, then it is necessary to perform channel
compensation on the distorted images.

The complex underwater environment often makes the
color distortion inconsistent. Therefore, it should separately
compensate the red, green and blue channels, namely,

Ir (x) = Ir (x) + α(Ig − Ir )(1 − Ir (x))Ig(x), (2)

Ig(x) = Ig(x) + β(
∣∣Ig − Ib

∣∣)(1 − Ig(x))Ib(x), (3)

Ib(x) = Ib(x) + γ (
∣∣Ig − Ib

∣∣)(1 − Ib(x))Ig(x), (4)

where Ir (x), Ig(x), and Ib(x) respectively represent the pixel
values of the red, green, and blue channels, α, β and γ are
respectively compensation coefficients of red, green and blue
channels. The following describes the calculation method of
compensation coefficients in four cases. Let ε be an parameter
that measures channel loss levels. If ε is too small, it will lead
to over-compensation. If ε is too large, it will lead to under-
compensation. The experiment shows that when ε = 0.1,
it can balance the difference of loss level among channels
well.

a. If
∣∣Ig − Ib

∣∣ ≤ ε, then

α = 1 − ln(Ig − Ir ), β = 0, γ = 0. (5)

In this case, the loss of the blue and green channels is small,
so we only need to compensate for the red channel.

b. If Ib − Ig > ε, then

α = 1 − ln(Ig − Ir ), β = 0, γ = −ln(Ib − Ig). (6)

In this case, the image is bluish, indicating that the red and
green channels are seriously lost, while the blue channel is
well preserved. Hence we only compensate for the red and
green channels.

c. If Ig − Ib > ε and Ir − Ib ≤ ε, then

α = 1 − ln(Ig − Ir ), β = (1 − ln(Ig − Ir ))−1, γ = 0. (7)

In this case, the image is greenish, then we only compensate
for the red and green channels. Notice that we refer to the
color compensation method proposed in [15]. we impose the
reasonable restrictions on the blue compensation to prevent
the blue compensation from exceeding the red compensation.

d. If Ig − Ib > ε and Ir − Ib > ε, then

α = 0, β = 1 − ln(Ig − Ib), γ = 0. (8)

In this case, the image is yellowish which illustrates that
the blue channel is seriously lost while the red and green
channels are well preserved, so we only compensate for the
blue channel.
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FIGURE 2. Color correction comparisons of different algorithms.

After obtaining the compensated image, we perform the
color balance operation to adjust the image global tone. For
C ∈ {R,G,B}, let IC denote the mean value of the compen-
sated image in C channel, then define

qc,1 = 0.005
max{Ir , Ig, Ib}

Ic
,

qc,2 = 1 − qc,1. (9)

Let Q(qc,1) and Q(qc,2) denote the q1 and q2 quantile pixel
values of the image in C channel, then we perform the fol-
lowing operation

Ic(x) =


Q(qc,1) , Ic(x) < Q(qc,1)
Q(qc,2), Ic(x) > Q(qc,2)
Ic(x), others.

,C ∈ {R,G,B} (10)

to obtain the image Ic(x). Finally, we stretch the image Ic(x)
to obtain the color corrected image, namely,

Ic =
Ic − Ic,min

Ic,max − Ic,min
, (11)

where Ic,max and Ic,min respectively represent the maximum
and minimum values in C channel. Accordingly, we obtain
the color corrected image I .
Figure 2 shows the enhanced images by our proposed

adaptive color correction method, and the color correction
methods proposed by Zhang [28], Ancuti [14], Chang [15],
Yuan [29]. Apparently, our color correction algorithm
can effectively restore color fidelity and improve visual
effects.

FIGURE 3. Visual comparisons of the different stages of distorted image
enhancement. (a) distorted images (b) the images after adaptive color
correction (c) the images after dual-scale decomposition (d) the images
after gamma correction.

B. DUAL-SCALE DECOMPOSITION AND GAMMA
CORRECTION
Although the color correctionmethod can well solve the color
bias problem, the detail texture of color corrected image is
not rich enough. Consequently, it is necessary to enhance
the contrast of underwater image. In particular, we utilize
dual-scale image decomposition to enhance the details of
underwater images. That is to say, we use the large-scale
mean filtering to decompose the color corrected image I into
two parts: the base layer Cn and detail layer Dn, namely,{

Cn = I ⊗ Z ,
Dn = I − Cn,

(12)

where ⊗ is the convolution operation and Z is the mean
filtering with size 50∗50. To prevent insufficient image detail
extraction or excessive image smoothing, the dual-scale detail
enhanced image is computed by,

Rout = I + ζDn, (13)

where ζ is the enhancement coefficient. Finally, applying
Gamma correction [30] to the image Rout yields the detail
enhanced image ID.
Figure 3 shows an example of visual enhancement effect

at the different stages of a distorted image. From Figure 3,
we can observe that the image details are improved after dual-
scale enhancement. After gamma correction, the local image
brightness is adjusted. Apparently, the final detail enhance-
ment images appear more beautiful.
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C. IMPROVED RETINEX ALGORITHM
By the sharpen method proposed in [14], we strengthen the
edge of the color corrected image I to get the sharpen image
IS . Concretely, let G be Gaussian filtering, and ψ{.} be nor-
malized operator, then IS is computed by

IS = (I + ψ{I − G⊗ I })/2. (14)

However, IS tends to appear too bright or dim. Thus we
design an improved Retinex algorithm for underwater image
tone adjustment. Basically, the improved Retinex algorithm
is divided into three parts: global adaptation, local adaptation
and color balance.

Firstly, global adaptation is carried out. According to the
Weber-Fechner law, the brightness perception of human eyes
is approximately a logarithmic function [31]. The brightness
value of the estimated scene, denote by Lw(x, y), is computed
by,

Lw(x,y)= 0.299Ir (x,y)+0.587Ig(x, y) + 0.114Ib(x, y). (15)

The brightness value after global adaptation, denote by
Lg(x, y), is computed by

Lg(x, y) =
ln(Lw(x, y)/Lw + 1)

ln(Lw,max/Lw + 1)
, (16)

where Lw,max is the maximum value of the estimated scene
brightness value. Let Lw be the log-average brightness
denoted by

Lw = exp

 1
N

∑
x,y

ln (δ + Lw (x, y))

 , (17)

where N represents the total number of pixels and δ is a
small positive number. The traditional Retinex algorithm uses
Gaussian filtering to adjust the tone. However, in the area of
high brightness, the estimated reflection components appear
very dark, which will result in halo artifacts. Therefore,
we use guided filtering [32] to replace the Gaussian filtering,
namely

Hg(x, y) = Guide
(
Lg(x, y), gmax(Lg(x, y))

)
, (18)

where Guide represents the guide filtering, gmax represents
the maximum filtering.

Next, local adaptation is performed. The offset β that
adaptively changes with scene content is computed by

β = λLg, (19)

where λ is the nonlinear control parameter and Lg is the global
adaptive log-average brightness. The contrast enhancement
factor α(x, y) is computed by

α(x, y) =

(
1 + η

Lg(x, y)
Lg,max

)1+
Lg,max

Lg,max+ηLg(x,y)

, (20)

where Lg,max is the maximum value of Lg. Consequently, the
reflection component R(x, y) is computed by

R(x, y) = α(x, y)ln
(
Lg(x, y)
Hg(x, y)

+ β

)
. (21)

FIGURE 4. The comparisons of different tone adjustment algorithms.

Finally, we perform our proposed color balance operation
defined by (9)-(11) on the image Iout by

Iout (x,y) =
R(x, y)
Lw(x, y)

IS (22)

to obtain the edge enhanced image IE .
Traditional Retinex algorithm often fails to get good

results when processing high-brightness images, because the
logarithmic processing of the reflection component com-
presses the display range of the bright area, which results
in the weakening of image details. Inspired by the image
tone restoration algorithm proposed in [31], we use the
color balance technology to make the improve Retinex
algorithm applicable to underwater image tone restoration,
while adding maximum filtering to complement local adapta-
tion. The contrast enhancement factor α(x, y) can effectively
balance the logarithmization processing in the reflection
component. Figure 4 compares our improved Retinex algo-
rithm with several tone adjustment algorithms, including
MSRCR [33] algorithm, traditional Retinex algorithm, the
improved Retinex algorithm with guided filtering [15] and
the method proposed in [31]. Figure 4 indicates that improved
Retinex algorithm is more effective than the contrast algo-
rithms in the aspect of adjusting the brightness of underwater
images.

D. IMAGE FUSION
NSST is an advanced multi-scale geometric analysis tool
with the characteristics of translation invariance and multi-
directionality. An image can be decomposed by NSST
to obtain low-frequency and high-frequency images [34].
We fuse the detail enhanced image ID and edge enhanced
image IE , which are respectively labeled as Image A and
Image B for convenience. We use the NSST to obtain the
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Algorithm 1 Underwater Image Enhancement Based on
Adaptive Color Correction and Improved Retinex Algorithm
1: Input: input image
2: if Eq. (1) holds then
3: Calculate compensation coefficients by Eqs. (5)-(8).
4: Compensates for red, green and blue channels by

Eqs. (2)-(4).
5: end if
6: Perform the color balance operation by Eqs. (9)-(11).
7: Compute the detail enhanced image by Eqs. (12)-(13).
8: Compute the edge enhanced image by Eqs. (14)-(22) and

Eqs. (9)-(11).
9: Perform NSST to obtain low-frequency and high-

frequency of the detail enhanced image and the edge
enhanced image.

10: Perform weighted fusion by Eqs. (23)-(26) for the
low-frequency image.

11: Perform PAPCNN fusion for the high-frequency image.
12: Perform the inverse NSST to obtain the final enhanced

image.
13: Output the final enhanced image

low-frequency and high-frequency components of Image A
and Image B.

We compute the saliency weight and saturation weight
to fuse the low frequency images. The saliency weight is
intended to emphasize underwater images that lose saliency,
but it tends to favor regions with high luminance values. Sat-
uration weight can make full use of highly saturated regions
to adapt chromaticity information.

The saliency weightWS is computed by

WS = (L − Lmean)2 + (a− amean)2 + (b− bmean)2, (23)

where L, a, b respectively represent the brightness layer,
red-green layer, yellow-blue layer of the Lab image, and
Lmean, amean, bmean respectively express the mean pixel value
of the corresponding layer. The saturation weight WSat is
computed by

WSat =

√
1/3[(R− L)2 + (G− L)2 + (B− L)2], (24)

where R,G,B respectively represent the three channels of the
RGB image.

Using saliency weights WSk and saturation weights WSatk
associated to Image A and Image B. we compute the aggre-
gation mapsWk by

Wk =
WSk +WSatk

WSA +WSatA +WSB +WSatB
, k ∈ {A,B}. (25)

The low-frequency fused image Ilow is computed by

Ilow = WAIlowA +WBIlowB , (26)

where IlowA , IlowB denote the low-frequency component of
Image A and Image B respectively.

We use the parameter adaptation pulse coupled neural
networks (PAPCNN) [34] for high frequency image fusion.

TABLE 1. The IE values of detail enhanced images, edge enhanced
images and fused images for Figure 3.

PAPCNN can capture edges and details of high-frequency
images only by iteration, instead of training. Finally, we per-
form the inverse NSST on the fused low-frequency and
high-frequency images to get the final enhanced underwater
image.

In order to illustrate the effectiveness of the fusion tech-
nique, we take the images in Figure 3 to compare the
image information entropy (IE) values of detail enhanced
images, edge enhanced images and fused images. As shown
in Table 1, the IE value of the fused image is improved, After
introducing the above sub-algorithms, the complete descrip-
tion of our proposed algorithm is exhibited in Algorithm 1.

III. EXPERIMENTS
A. EXPERIMENTAL SETUP
We conduct experiments on a 64-bit Windows 10 operat-
ing system with a running memory of 16G. All simulation
results are calculated in the MATLAB (2019b) environment.
In order to control the amount of calculation, the number
of NSST decomposition layers is set to 2, the number of
high-frequency images per layer is [22, 23], the number of
directions per layer is [6, 6]. The detail enhancement coef-
ficient ζ is set to 0.5. Guide filtering parameters are set to
r = 10, eps = 0.09.
In order to verify the effectiveness of our proposed algo-

rithm, we selected blue, green, yellow and blurred underwater
degraded images from the UIEB dataset. We compare our
proposed algorithm with five state-of-the-art methods about
underwater image enhancement, namely, IBLA (2017) [7],
CBFU (2018) [14], NFSI (2019) [21], MBOT (2020) [12] and
SCNet (2022) [26] subjective and objective Comparison.

B. SUBJECTIVE COMPARSION
Figure 5 contains the comparison results of 8 different
underwater images enhanced by the above algorithms. These
images can be divided into four groups that represent four
situations of underwater images, namely, bluish (Img 1, 2),
greenish (Img 3, 4, 5), yellowish (Img 6, 7) and hazy (Img 8)
underwater images.

It can be seen from Figure 5 that the IBLA algorithm
can’t solve the degradation problems about image color well.
Although the CBFU and NFSI algorithms can solve the prob-
lem about various color distortions, they can’t enhance the
image details and contrast well. In addition, the enhanced
image is grayish, the color characteristics are not obvious.
The MBOT and SCNet algorithms have good enhance-
ment in image details and contrast, but they can’t solve
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FIGURE 5. Subjective comparisons of different algorithms.

FIGURE 6. PCQI values of the enhanced images obtained by different algorithms.

the problem about color deviation when processing green
and yellow images. In contrast, our proposed algorithm is
suitable for the images in the different underwater envi-
ronments, so our algorithm can solve different degradation
problems, such as, color correction, noise elimination and
detail preservation. In brief, our proposed algorithm can
better improve the subjective visual effect of underwater
images.

C. OBJECTIVE COMPARSION
In order to illustrate the effectiveness of our proposed algo-
rithm objectively, PCQI [35], UCIQE [36], UIQM [37], and
IE indexes are selected as the evaluation metrics of different
algorithms. PCQI is used to compare the contrast difference
between two images. A higher PCQI value suggests better
visibility of the enhanced image. UCIQE reflects the chroma,
saturation and contrast of underwater images. The higher
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FIGURE 7. UCIQE values of the enhanced images obtained by different algorithms.

FIGURE 8. UIQM values of the enhanced images obtained by different algorithms.

FIGURE 9. IE values of the enhanced images obtained by different algorithms.

TABLE 2. Quantitative comparisons of different methods on the UCCS [40] and UIEB [25] datasets.

the UCIQE value, the better the image quality. UIQM is
closely related to human vision, which embodies the color,

clarity and contrast of underwater images. A higher UIQM
value means that the enhanced images are more consistent
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TABLE 3. Ablation study on the UCCS [40] and UIEB [25] datasets.

TABLE 4. The average number of feature points about images in Figure 5.

with human visual perception. IE reflects the richness of
image information. The higher the IE value, the more detailed
information the enhanced image contains.

Figure 6-Figure 9 show PCQI, UCIQE, UIQM and IE
values of different algorithms for the images in Figure 5.
Notice that only the UCIQE value of Image 6 enhanced by our
algorithm is slightly lower than the IBLA algorithm. How-
ever, the images enhanced by color of the IBLA algorithm
have color distortion. The IBLA algorithm can not remove
the yellow background. The reason is that the UCIQE index
tends to evaluate the contrast of the image.

Indeed, even if there is color difference in the image,
it is still possible to obtain a higher UCIQE value [38],
[39]. Hence UCIQE index has certain limitations. In the
other underwater environments, the PCQI, UCIQE, UIQM,
and IE values of our proposed algorithm have achieved the
best results. Overall, our proposed algorithm significantly
enhanced in terms of color correction, image saturation and
image contrast. The enhanced images are more consistent
with the visual perception of human eyes.

Beyond that, the objective comparisons were conducted
on the UCCS [40] and UIEB [25] datasets. The UCCS
dataset contains 100 images in blue, blue-green and green,
respectively. The UIEB dataset contains 890 images of vari-
ous underwater scenes. The objective comparison results are
shown in Table 2, from which we can see that our algorithm
has achieved the best results on PCQI, UCIQE, UIQM and IE
indexes on the UCCS and UIEB datasets.

D. ABLATION STUDY
To verify the effectiveness of our proposed model, we per-
form ablation experiments in the following cases. Case1 rep-
resents our model without adaptive color correction. Case2
represents our model without detail enhancement. Case3

represents our model without edge enhancement, and Case0
represents the results of our proposed model.

Table 3 shows the results of the ablation experiments on the
UCCS and UIEB datasets. The best result is in red whereas
the second best result is in blue. As presented in Table 3, our
proposed model achieves the best performance in the two test
datasets, which indicates that each key component contributes
to the good performance of our method.

E. APPLICATION TEST
For many downstream tasks of underwater images, it is of
great significance to compute matching point detection by
SIFT algorithm [41]. The effectiveness of our proposed algo-
rithm is verified by calculating the matching of feature points
between the enhanced images and the original images. The
greater the number of feature matching points, the more
significant the local feature enhancement effect is.

Table 4 shows the results about the average feature points
of the images in Figure 5. The average number of feature
matching points in the original distorted image is 231. After
enhanced by our algorithm, the average number of feature
matching points is 1765.25, which has great advantage over
other algorithms. Moreover, the images enhanced by our
algorithm can have better detailed feature information.

IV. CONCLUSION
The complex underwater environment causes the problems
about color distortion, low contrast and image blur. Aim-
ing at these phenomena, we propose an underwater image
enhancement algorithm based on adaptive color correction
and improved Retinex algorithm. The designed adaptive color
correction algorithm can effectively remove various color
distortion. The improved Retinex algorithm can enhance the
details and edges of the color corrected image. The detail
enhanced image and the edge enhanced image are fused
through NSST to produce the final enhanced image. The
experimental results show that our proposed algorithm can
effectively improve the visual effect of underwater distorted
images in different underwater environments. Our proposed
algorithm not only outperforms several existing algorithms
in PCQI, UCIQE, UIQM, and IE indexes but also performs
the best value on the SIFT application test. Although our
proposed algorithm has achieved good results in enhanc-
ing visual effects of underwater images, image fusion using
NSST requires a large amount of computation. To this end, we
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consider exploring efficient algorithms suitable for underwa-
ter image fusion in our future work.

REFERENCES
[1] A. Sahoo, S. K. Dwivedy, and P. S. Robi, ‘‘Advancements in the field

of autonomous underwater vehicle,’’ Ocean Eng., vol. 181, pp. 145–160,
Jun. 2019, doi: 10.1016/j.oceaneng.2019.04.011.

[2] G. L. Foresti, ‘‘Visual inspection of sea bottom structures by an
autonomous underwater vehicle,’’ IEEE Trans. Syst., Man, Cybern., B,
vol. 31, no. 5, pp. 691–705, Oct. 2001, doi: 10.1109/3477.956031.

[3] S. Mark, E. Harvey, and D. Abdo, ‘‘A review of underwater stereo-image
measurement for marine biology and ecology applications,’’ in Oceanog-
raphy and Marine Biology. Boca Raton, FL, USA: CRC Press, 2016,
pp. 269–304.

[4] Y. Wang, N. Li, Z. Li, Z. Gu, H. Zheng, B. Zheng, and M. Sun,
‘‘An imaging-inspired no-reference underwater color image quality assess-
ment metric,’’ Comput. Elect. Eng., vol. 70, pp. 904–913, Aug. 2017.

[5] K. He, J. Sun, and X. Tang, ‘‘Single image haze removal using dark
channel prior,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341–2353, Dec. 2011, doi: 10.1109/TPAMI.2010.168.

[6] F. Shafuda and H. Kondo, ‘‘A simple method for backscattered
light estimation and image restoration in turbid water,’’ in
Proc. OCEANS, San Diego, CA, USA, Sep. 2021, pp. 1–6, doi:
10.23919/OCEANS44145.2021.9705704.

[7] Y.-T. Peng and P. C. Cosman, ‘‘Underwater image restoration based on
image blurriness and light absorption,’’ IEEE Trans. Image Process.,
vol. 26, no. 4, pp. 1579–1594, Apr. 2017, doi: 10.1109/TIP.2017.2663846.

[8] S. Yang, Z. Chen, Z. Feng, and X. Ma, ‘‘Underwater image enhancement
using scene depth-based adaptive background light estimation and dark
channel prior algorithms,’’ IEEE Access, vol. 7, pp. 165318–165327, 2019,
doi: 10.1109/ACCESS.2019.2953463.

[9] K. Gong and D. Hua, ‘‘Research on the method of color compensation
and underwater image restoration based on polarization characteristics,’’
in Proc. 3rd Int. Conf. Comput. Vis., Image Deep Learn. Int. Conf.
Comput. Eng. Appl., Changchun, China, May 2022, pp. 746–751, doi:
10.1109/CVIDLICCEA56201.2022.9824370.

[10] Y. Ueki and M. Ikehara, ‘‘Underwater image enhancement based on the
iteration of a generalization of dark channel prior,’’ in Proc. IEEE Vis.
Commun. Image Process. (VCIP), Sydney, NSW, Australia, Dec. 2019,
pp. 1–4, doi: 10.1109/VCIP47243.2019.8965726.

[11] E. Park and J.-Y. Sim, ‘‘Underwater image restoration using geodesic
color distance and complete image formation model,’’ IEEE Access, vol. 8,
pp. 157918–157930, 2020, doi: 10.1109/ACCESS.2020.3019767.

[12] W. Song, Y. Wang, D. Huang, A. Liotta, and C. Perra, ‘‘Enhancement of
underwater images with statistical model of background light and opti-
mization of transmission map,’’ IEEE Trans. Broadcast., vol. 66, no. 1,
pp. 153–169, Mar. 2020, doi: 10.1109/TBC.2019.2960942.

[13] A. S. A. Ghani, ‘‘Image contrast enhancement using an integration of
recursive-overlapped contrast limited adaptive histogram specification
and dual-image wavelet fusion for the high visibility of deep under-
water image,’’ Ocean Eng., vol. 162, pp. 224–238, Aug. 2018, doi:
10.1016/j.oceaneng.2018.05.027.

[14] C. O. Ancuti, C. Ancuti, C. De Vleeschouwer, and P. Bekaert,
‘‘Color balance and fusion for underwater image enhancement,’’ IEEE
Trans. Image Process., vol. 27, no. 1, pp. 379–393, Jan. 2018, doi:
10.1109/TIP.2017.2759252.

[15] J. Chang and X. Han, ‘‘Underwater image enhancement combining guided
filtering and adaptive operators,’’ Comput. Eng. Appl., vol. 59, no. 4,
pp. 216–223, 2023.

[16] S. Srinivas, V. R. Siddharth, S. Dutta, N. S. Khare, and L. Krishna,
‘‘Channel prior based Retinex model for underwater image enhance-
ment,’’ in Proc. 2nd Int. Conf. Adv. Electr., Comput., Commun. Sus-
tain. Technol. (ICAECT), Bhilai, India, Apr. 2022, pp. 1–10, doi:
10.1109/ICAECT54875.2022.9807919.

[17] W. Zhang, P. Zhuang, H.-H. Sun, G. Li, S. Kwong, and C. Li, ‘‘Underwater
image enhancement via minimal color loss and locally adaptive contrast
enhancement,’’ IEEE Trans. Image Process., vol. 31, pp. 3997–4010, 2022,
doi: 10.1109/TIP.2022.3177129.

[18] W. Zhang, L. Dong, and W. Xu, ‘‘Retinex-inspired color correction
and detail preserved fusion for underwater image enhancement,’’ Com-
put. Electron. Agricult., vol. 192, Jan. 2022, Art. no. 106585, doi:
10.1016/j.compag.2021.106585.

[19] W. L. Luo, S. Q. Duan, and J. W. Zheng, ‘‘Underwater image restora-
tion and enhancement based on a fusion algorithm with color balance,
contrast optimization, and histogram stretching,’’ IEEE Access, vol. 9,
pp. 31792–31804, 2021, doi: 10.1109/ACCESS.2021.3060947.

[20] C. Dai, M. Lin, J. Wang, and X. Hu, ‘‘Dual-purpose method for
underwater and low-light image enhancement via image layer
separation,’’ IEEE Access, vol. 7, pp. 178685–178698, 2019, doi:
10.1109/ACCESS.2019.2958078.

[21] K. Z. M. Azmi, A. S. A. Ghani, Z. M. Yusof, and Z. Ibrahim,
‘‘Natural-based underwater image color enhancement through fusion of
swarm-intelligence algorithm,’’ Appl. Soft Comput., vol. 85, Dec. 2019,
Art. no. 105810, doi: 10.1016/j.asoc.2019.105810.

[22] N. Li, Z. Zheng, S. Zhang, Z. Yu, H. Zheng, and B. Zheng, ‘‘The syn-
thesis of unpaired underwater images using a multistyle generative
adversarial network,’’ IEEE Access, vol. 6, pp. 54241–54257, 2018, doi:
10.1109/ACCESS.2018.2870854.

[23] P. Liu, G. Y. Wang, H. Qi, C. F. Zhang, H. Y. Zheng, and Z. B. Yu, ‘‘Under-
water image enhancement with a deep residual framework,’’ IEEE Access,
vol. 7, pp. 94614–94629, 2019, doi: 10.1109/ACCESS.2019.2928976.

[24] R. Han, Y. Guan, Z. Yu, P. Liu, andH. Zheng, ‘‘Underwater image enhance-
ment based on a spiral generative adversarial framework,’’ IEEE Access,
vol. 8, pp. 218838–218852, 2020, doi: 10.1109/ACCESS.2020.3041280.

[25] C. Li, C. Guo, W. Ren, R. Cong, J. Hou, S. Kwong, and D. Tao,
‘‘An underwater image enhancement benchmark dataset and beyond,’’
IEEE Trans. Image Process., vol. 29, pp. 4376–4389, 2019, doi:
10.1109/TIP.2019.2955241.

[26] Z. Fu, X. Lin, W. Wang, Y. Huang, and X. Ding, ‘‘Underwater
image enhancement via learning water type desensitized
representations,’’ in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Singapore, May 2022, pp. 2764–2768, doi:
10.1109/ICASSP43922.2022.9747758.

[27] C. Li, S. Anwar, J. Hou, R. Cong, C. Guo, and W. Ren, ‘‘Underwater
image enhancement via medium transmission-guided multi-color space
embedding,’’ IEEE Trans. Image Process., vol. 30, pp. 4985–5000, 2021.

[28] W. Zhang, G. Li, and Z. Ying, ‘‘A new underwater image enhancingmethod
via color correction and illumination adjustment,’’ in Proc. IEEE Vis.
Commun. Image Process. (VCIP), St. Petersburg, FL, USA, Dec. 2017,
pp. 1–4, doi: 10.1109/VCIP.2017.8305027.

[29] J. Yuan, Z. Cai, and W. Cao, ‘‘TEBCF: Real-world underwater image
texture enhancement model based on blurriness and color fusion,’’
IEEE Trans. Geosci. Remote Sens., vol. 60, pp. 1–15, 2021, doi:
10.1109/TGRS.2021.3110575.

[30] Z. C. Liu, D. W. Wang, and Y. Liu, ‘‘Adaptive correction algorithm of
uneven illumination image based on two-dimensional gamma function,’’
J. Beijing Univ. Technol., vol. 36, no. 2, pp. 191–196, 2016.

[31] H. Ahn, B. Keum, D. Kim, and H. S. Lee, ‘‘Adaptive local tone
mapping based on Retinex for high dynamic range images,’’ in Proc.
IEEE Int. Conf. Consum. Electron. (ICCE), Jan. 2013, pp. 153–156, doi:
10.1109/ICCE.2013.6486837.

[32] K. He, J. Sun, and X. Tang, ‘‘Guided image filtering,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013, doi:
10.1109/TPAMI.2012.213.

[33] D. J. Jobson, Z.-U. Rahman, and G. A. Woodell, ‘‘A multiscale Retinex
for bridging the gap between color images and the human observation of
scenes,’’ IEEE Trans. Image Process., vol. 6, no. 7, pp. 965–976, Jul. 1997,
doi: 10.1109/83.597272.

[34] M. Yin, X. Liu, Y. Liu, and X. Chen, ‘‘Medical image fusion with
parameter-adaptive pulse coupled neural network in nonsubsampled shear-
let transform domain,’’ IEEE Trans. Instrum. Meas., vol. 68, no. 1,
pp. 49–64, Jan. 2019, doi: 10.1109/TIM.2018.2838778.

[35] S. Wang, K. Ma, H. Yeganeh, Z. Wang, and W. Lin, ‘‘A patch-structure
representation method for quality assessment of contrast changed images,’’
IEEE Signal Process. Lett., vol. 22, no. 12, pp. 2387–2390, Dec. 2015, doi:
10.1109/LSP.2015.2487369.

[36] M. Yang and A. Sowmya, ‘‘An underwater color image quality evaluation
metric,’’ IEEE Trans. Image Process., vol. 24, no. 12, pp. 6062–6071,
Dec. 2015, doi: 10.1109/TIP.2015.2491020.

[37] K. Panetta, C. Gao, and S. Agaian, ‘‘Human-visual-system-inspired under-
water image quality measures,’’ IEEE J. Ocean. Eng., vol. 41, no. 3,
pp. 541–551, Jul. 2016, doi: 10.1109/JOE.2015.2469915.

[38] X. Chen, P. Zhang, L. Quan, C. Yi, and C. Lu, ‘‘Underwater image
enhancement based on deep learning and image formation model,’’ 2021,
arXiv:2101.00991.

VOLUME 11, 2023 27629

http://dx.doi.org/10.1016/j.oceaneng.2019.04.011
http://dx.doi.org/10.1109/3477.956031
http://dx.doi.org/10.1109/TPAMI.2010.168
http://dx.doi.org/10.23919/OCEANS44145.2021.9705704
http://dx.doi.org/10.1109/TIP.2017.2663846
http://dx.doi.org/10.1109/ACCESS.2019.2953463
http://dx.doi.org/10.1109/CVIDLICCEA56201.2022.9824370
http://dx.doi.org/10.1109/VCIP47243.2019.8965726
http://dx.doi.org/10.1109/ACCESS.2020.3019767
http://dx.doi.org/10.1109/TBC.2019.2960942
http://dx.doi.org/10.1016/j.oceaneng.2018.05.027
http://dx.doi.org/10.1109/TIP.2017.2759252
http://dx.doi.org/10.1109/ICAECT54875.2022.9807919
http://dx.doi.org/10.1109/TIP.2022.3177129
http://dx.doi.org/10.1016/j.compag.2021.106585
http://dx.doi.org/10.1109/ACCESS.2021.3060947
http://dx.doi.org/10.1109/ACCESS.2019.2958078
http://dx.doi.org/10.1016/j.asoc.2019.105810
http://dx.doi.org/10.1109/ACCESS.2018.2870854
http://dx.doi.org/10.1109/ACCESS.2019.2928976
http://dx.doi.org/10.1109/ACCESS.2020.3041280
http://dx.doi.org/10.1109/TIP.2019.2955241
http://dx.doi.org/10.1109/ICASSP43922.2022.9747758
http://dx.doi.org/10.1109/VCIP.2017.8305027
http://dx.doi.org/10.1109/TGRS.2021.3110575
http://dx.doi.org/10.1109/ICCE.2013.6486837
http://dx.doi.org/10.1109/TPAMI.2012.213
http://dx.doi.org/10.1109/83.597272
http://dx.doi.org/10.1109/TIM.2018.2838778
http://dx.doi.org/10.1109/LSP.2015.2487369
http://dx.doi.org/10.1109/TIP.2015.2491020
http://dx.doi.org/10.1109/JOE.2015.2469915


S. Lin et al.: Underwater Image Enhancement Based on Adaptive Color Correction

[39] Z. Jiang, Z. Li, S. Yang, X. Fan, and R. Liu, ‘‘Target oriented perceptual
adversarial fusion network for underwater image enhancement,’’ IEEE
Trans. Circuits Syst. Video Technol., vol. 32, no. 10, pp. 6584–6598,
Oct. 2022, doi: 10.1109/TCSVT.2022.3174817.

[40] R. Liu, X. Fan, M. Zhu, M. Hou, and Z. Luo, ‘‘Real-world underwater
enhancement: Challenges, benchmarks, and solutions under natural light,’’
IEEE Trans. Circuits Syst. Video Technol., vol. 30, no. 12, pp. 4861–4875,
Dec. 2020, doi: 10.1109/TCSVT.2019.2963772.

[41] Y. Ke and R. Sukthankar, ‘‘PCA-SIFT: A more distinctive representation
for local image descriptors,’’ in Proc. IEEE Comput. Soc. Conf. Comput.
Vis. Pattern Recognit. (CVPR), Washington, DC, USA, 2004, pp. 506–513,
doi: 10.1109/CVPR.2004.1315206.

SHIJIE LIN is currently pursuing the bachelor’s
degree with the School of Mathematics and
Statistics, Changchun University of Science and
Technology. He works on underwater image
processing.

ZHE LI received the B.S. and M.S. degrees
from the School of Mathematics and Statistics,
Northeast Normal University, Changchun, China,
in 2004 and 2006, respectively, and the Ph.D.
degree from the School of Mathematics, Jilin Uni-
versity, Changchun, in 2011. She is currently a
Professor with the School of Mathematics and
Statistics, Changchun University of Technology,
China. Her research interests include numerical
approximate theory, verification computation, and
signal processing.

FUHAI ZHENG is currently pursuing the
bachelor’s degree with the School of Mathematics
and Statistics, Changchun University of Science
and Technology. He works on underwater image
processing.

QI ZHAO is currently pursuing the bachelor’s
degree with the School of Mathematics and
Statistics, Changchun University of Science and
Technology. She works on underwater image
processing.

SHIMENG LI is currently pursuing the bachelor’s
degree with the School of Mathematics and
Statistics, Changchun University of Science and
Technology. She works on underwater image
processing.

27630 VOLUME 11, 2023

http://dx.doi.org/10.1109/TCSVT.2022.3174817
http://dx.doi.org/10.1109/TCSVT.2019.2963772
http://dx.doi.org/10.1109/CVPR.2004.1315206

